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AbstratThe topi of this study onerns the stability of the three-phase ontat-line of a dewetting thin liquid �lm on a hydrophobised substrate driven byvan der Waals fores. The role of slippage in the emerging instability at thethree-phase ontat-line is studied by deriving a sharp-interfae model for thedewetting thin �lm via mathed asymptoti expansions. This allows for aderivation of travelling waves and their linear stability via eigenmode analysis.In ontrast to the dispersion relations typially enountered for the �nger-instabilty, where the dependene of the growth rate on the wave number isquadrati, here it is linear. Using the separation of time sales of the slowlygrowing rim of the dewetting �lm and time sale on whih the ontat linedestabilises, the sharp-interfae results are ompared to earlier results for thefull lubriation model and good agreement for the most unstable modes isobtained.1 IntrodutionContat-line instabilities for thin liquid �lms that wet a solid substrate havebeen studied for deades, both theoretially and experimentally. The instabil-ities are typially driven by fores suh as gravity [1, 19, 44, 46℄, Marangonistresses or both [2, 6, 8, 14, 21℄. The derivation of redued mathematialmodels exploits a separation of length sales to obtain a simpli�ed lubriationmodel from the underlying Navier-Stokes equations in onjuntion with on-servation of mass. The stress singularity at the three phase ontat line, whihis inherited by the resulting fourth-order partial di�erential equation, is regu-larized for example via a slip boundary ondition or preursor model, wherethe height of the preursor or the slip length is usually muh smaller than theheight of the atual wetting �lm. The hoie of the boundary ondition atthe three phase ontat line typially enters only weakly in that it does notin�uene the eventual appearane of �ngers: see for example [1, 21, 24, 29℄.In ontrast to the wetting senarios the �lm thikness in dewetting exper-iments is typially smaller by orders of magnitude. The physial situationonsists of a thin visous polymer �lm that is uniformly spread on a substratesuh as a silion wafer with a hydrophobi oating. For suh a multi-layeredsystem one an reonstrut the disjoining pressure from a orresponding inter-moleular potential whih is omposed of repulsive and attrative long-rangevan der Waals ontributions and a short-range term whih aounts for Born-type repulsion, see e.g. [39, 40℄. The latter term provides a ut-o� by penal-izing a thinning of the �lm below a positive thikness threshold given by theminimum of the potential. For suh a situation the thin �lm dewets in a pro-ess that is initiated either spontaneously through spinodal deomposition or1



indued through nuleation for example. The dry spots, or holes, that form asa result subsequently grow as the newly formed ontat line reedes, therebyaumulating liquid in a harateristi apillary ridge at the edge of the hole,whih inreases in width and height as the dewetting proeeds. In a variety ofexperimental situations it is observed that, while in some ases the growth ofthe hole ontinues until it ollides with neighboring holes, in others the ridgeof the hole destabilizes into �nger-like strutures eventually pinhing o� andforming droplets. Suh �nger-like ontat-line instabilities have also been ob-served for straight dewetting fronts as opposed to radially symmetri fronts,see [23, 31, 35, 38, 41, 42, 48℄. Beause of the impat this has on the emergingmarosopi pattern, it is important to understand the dynamis leading tosuh an instability.For suh situations, the relevane of slippage at the liquid/solid interfaefor the instability have been disussed by several authors, [25, 28, 30, 37, 43℄.In [3, 20, 33℄ the dewetting rate and shape of the ridge has been treated usingapproximate formulas derived from saling arguments and energy balanes.However, in order to apture the dynamis of the ontat-line instability itis onvenient to desribe the evolution of the �lm surfae z = h(x, y, t) via alubriation approximation that inludes the in�uene of surfae tension andthe intermoleular potential φ(h) of the air/liquid/solid layer. Coordinates areintrodued here so that x, y denote the diretions parallel to the substrate,and z the diretion normal to it. In this ase the pressure at z = h(x, y, t) isgiven by
p = −∆h+ φ′(h). (1.1)where φ′(h) is the �rst derivative of the intermoleular potential with respetto the liquid �lm thikness h. A typial hoie for φ(h), and the one we willadopt in this paper, is [39℄

φ′(h) = ǫ−1Φ′(h/ǫ), where Φ(h) =
1

8h8
− 1

2h2
. (1.2)Note that Φ′(1) = 0 and Φ′′(1) > 0, so that φ has a minimum at h = ǫ ≪ 1.This implies that very thin �lms with a thikness sale of ǫ are energetiallypreferred to in partiular thiker �lms whih therefore tend to dewet. Makinguse of the length sale separation in the x, y vs. z diretion, one an thenderive the lubriation model [32℄ from the Navier-Stokes equation and (1.1)

ht + ∇ ·
[

hn∇
(

∆h− φ′(h)
)]

= 0, (1.3)stated here (as are all equations in this paper) in non-dimensional form. Here
hn is the mobility oe�ient, where the power n depends on the boundaryonditions at the liquid/solid interfae. A widely used ondition relates theslippage veloity u of the liquid at the wall to the loal shear rate uz via

u = b uz, (1.4)where the slip length b an be thought of as the distane below the interfaeat whih the liquid veloity extrapolates to zero. For the above slip boundary2
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Figure 1: (a) Sketh of a ross setion of a dewetting rim. (b) Sketh of a top viewof a (perturbed) ridge for a sharp-interfae model, showing the domain Ω oupiedby the ridge and the two free boundary urves Γ±.ondition at the substrate, the typially used no-slip boundary ondition isobtained if b = 0. On the other hand, stuying the hydrodynami eaquationsfor di�erent orders of magnitude of b it was shown, using asymptoti analysis[30℄, that a hierarhy of lubriation models emerge. One of them with themobility h2 has the distint property that it desribes dewetting �lms with adewetting rate of t1/3, [27℄. For this ase travelling-wave solutions were derivedusing mathed asymptoti expansions [30℄. In [28℄ a linear stability analysisshowed that small perturbations of the reeding front are ampli�ed, but inthe slip ase by orders of magnitude larger than in the no-slip ase. More-over, while the perturbations beome symmetrial in the no-slip ase, theyare asymmetrial and in [26℄ it was shown that these properties arry overinto the nonlinear regime of the lubriation models. In the ontext of lubria-tion models for dewetting thin �lms [13℄ derived asymptoti solutions for theshape of the dewetting ridges, their dewetting rates and for the limiting aseof the mobility h3 their ontat-line instability was investigated via mathedasymptoti expansions. In this study we will investigate the linear stabilityof the ontat-line for the lubriation model with mobility h2 by deriving �rsta sharp-interfae model. This also enables us to separate the slow growth ofthe rim from the faster time-sale on whih the ontat line destabilizes. Asa result, the linear stability analysis an be redued to an eigenvalue analysis.Note here that in the ontext of spreading liquid droplets, [15, 16, 17℄ intro-dued a variational approah leading to redued models for the motion of theontat line for the no-slip ase.We begin our study by �rst deriving the sharp-interfae model in setion 2.The we �rst derive their travelling waves in setion 3 and study their stabilityin setion 4. Finally we ompare our results the those for the full lubriationmodel studied in [26, 28℄.
3



2 Derivation of the sharp-interfae model2.1 Outer ProblemWe onsider here equation (1.3) for n = 2, i.e.
ht + ∇ ·

[

h2∇ ·
(

△h− ε−1
1 Φ′ (h/ε1)

)]

= 0, (2.1)and far �eld onditions
lim

x→−∞
h(x, y, t) = ε1, and lim

x→+∞
h(x, y, t) = 1, (2.2)where ε1 ≪ 1. This formulation is onvenient, for example, for numerialsimulations, where the unperturbed �lm thikness is held �xed and the growthof the rim is observed. For the derivation of the sharp interfae model, it isimportant that both the residual �lm on the left and the unperturbed �lmon the right are muh smaller in height of than the atual rim. Therefore,we resale the �lm pro�le h by a quantity 1/β that is large ompared to theunperturbed �lm thikness, i.e., β << 1, but at most of the order of thetypial ridge height. To maintain the form of the governing equation and thepotential, the other variables are saled aordingly, i.e.

h =
1

β
h̃, x =

1

β
x̃, y =

1

β
ỹ, t =

1

β2
t̃. (2.3)Introduing these salings yields, after dropping ∼ 's,

ht + ∇ ·
[

h2∇ ·
(

△h− ε−1Φ′ (h/ε)
)]

= 0, (2.4)and far �eld onditions
lim

x→−∞
h(x, y, t) = ε, and lim

x→+∞
h(x, y, t) = β, (2.5)where ε ≡ ε1β ≪ β ≪ 1. This is the appropriate outer saling for thesubsequent derivations.2.2 Transformation to inner oordinates near the on-tat lineLet x = (x, y) be a point in the neighborhood of the ontat line Γ−, parametrizedby r

−(t, s) = (r−1 (t, s), r−2 (t, s)), where s denotes arlength. Then
x = r

−(t, s) + εχν(t, s) (2.6)de�nes the boundary layer with χ being the boundary layer or `inner' vari-able. The normal ν(t, s) = (−r−2s(t, s), r
−
1s(t, s)) and the tangential unit vetor

t(t, s) = (r−1s(t, s), r
−
2s(t, s)) are hosen so that (t,ν) is a right hand system,and ν points into the ridge, i.e. into Ω, see �gure 1(b). In the inner region theheight is muh smaller and we set

h = εv (2.7)4



Making use of appendix A in [22℄ we obtain the expression
∇ ·
(

h2∇p
)

= ε2
[

2v
(

r−1s(1 − εχκ)vs + ε−1r−2svχ

) (

r−1s(1 − εχκ)ps + ε−1r−2spχ

)

+2v
(

r−2s(1 − εχκ)vs − ε−1r−1svχ

) (

r−2s(1 − εχκ)ps − ε−1r−1spχ

)

+v2
(

ε−2pχχ + ε−1κpχ + pss − χκ2pχ

)] (2.8)where
p = −ε−1

(

vχχ − Φ′(v)
)

− κvχ − ε
(

vss − χκ2vχ

) (2.9)Hene, to leading order in ε the seond term of (2.4) is
∇ ·
(

h2∇p
)

∼ ε−1
[

v2
(

vχ − Φ′(v)
)]

χ
(2.10)Sine the �rst term of (2.4) is transformed to

ht = −εV t(1 − εzκ)vs + V νvz + εvt (2.11)the leading order the inner problem beomes
[

v2
(

vχχ − Φ′(v)
)]

χ
= 0 (2.12)together with the boundary onditions

lim
χ→−∞

v = 1, lim
χ→−∞

vχ = 0, lim
χ→−∞

vχχ = 0 . (2.13)Integrating (2.13) twie, using the fat that the potential satis�es Φ′(1) = 0sine Φ has a minimum there, we get vχχ = Φ′(v), hene
vχ = 21/2 (Φ(v) − Φ(1))1/2 . (2.14)For mathing we need the behavior for large χ, whih is

vχ → 21/2 (−Φ(1))1/2 ≡ λ as χ→ ∞. (2.15)Transformation bak to outer variables via
v = χλ , where χ =

(x − r) · ν
ε

,yields
h = (x − r) · ν λ. (2.16)The sharp-interfae model then results from the leading order outer prob-lem, together with the boundary ondition found by mathing to (2.16),

ht = −∇ · (h2∇△h) , in Ω (2.17)
∂h

∂ν

= λ , h = 0 , h
∂

∂ν

△h− V −
ν = 0 on Γ−, (2.18)where the third boundary ondition in (2.18) arises by letting χ→ ∞, v → ∞in (2.12). In (2.18), we have introdued the notation

V −
ν ≡ r

−
t · ν. (2.19)Next, we derive the boundary ondition on Γ+.5



2.3 Transformation to inner oordinates near undis-turbed �lmHere we let x = (x, y) be a point in the neighborhood of the sharp interfae
Γ+, parametrized by r

+(t, s) = (r+1 (t, s), r+2 (t, s)). Then
x = r

+(t, s) + βγζν(t, s) (2.20)de�nes the boundary layer with ζ being the `inner' variable, where the salingexponent γ remains to be determined. As before, the normal unit vetor
ν(t, s) = (−r+2s(t, s), r

+
1s(t, s)) points into ridge (�gure 1(b)) and the tangentialunit vetor t(t, s) = (r+1s(t, s), r

+
2s(t, s)) is hosen so that (t,ν) form a righthand system.In this seond inner region we set

h = βu (2.21)To leading order in β we �nd for ht the expression
ht ∼ −β1−γV νuζ ∼ −β1−γ

(

r
+
t · ν

)

uζ (2.22)and we have
∇ ·
(

h2∇
(

△− ε−1Φ (h/ε)
)

)

∼ β3−4γ
(

u2
(

uζζ − β2γ−1ε−1Φ (βu/ε)
)

ζ

)

ζ(2.23)A travelling-wave balane for the moving rim thus requires
γ =

2

3
(2.24)In order for the intermoleular fores to play no role in this region we require

O
(

β2γ−1ε−1Φ (βu/ε)
)

≪ 1 (2.25)whih introdues a restrition on β in terms of ε, namely ε2 ≪ β8/3. Hene,we obtain for the leading order inner problem near the undisturbed �lm
−V +

ν (s, t)uζ +
(

u2uζζζ

)

ζ
= 0 (2.26)where

V +
ν (s, t) ≡ r

+
t · ν (2.27)This we integrate with respet to ζ and use the far �eld ondition

lim
ζ→−∞

u = 1 (2.28)to obtain
−V +

ν (s, t) (u − 1) + u2uζζζ = 0 (2.29)For the mathing to the outer problem we resale �rst ζ = η/(−V +
ν )1/3 toobtain the equation

uηηη =
u− 1

u2
. (2.30)6



See for example [47℄, where this equation has been disussed. Note that wean assume that as long as the basi motion of the rim in outer oordinates isto the right (i.e. in the positive diretion of the x-axis), V +
ν (s, t) is negative,hene the orientation is not reversed by the resaling from ζ into η variables.Therefore, the �at �lm far �eld ondition and the mathing onditions areimposed at η → −∞ and η → +∞, as before. Equation (2.30) has a solutionwith leading order behavior

u(η) ∼ 2 (2/3)1/2 η3/2 as η → +∞ (2.31)and hene
u(ζ) ∼ 2 (2/3)1/2 (−V +

ν )1/2ζ3/2 (2.32)as ζ → ∞. In outer sales we obtain
h = 2 (2/3)1/2 (−V +

ν )1/2
(

(

x− r
+
)

· ν
)3/2 (2.33)as the appropriate mathing ondition.Finally we get for the sharp-interfae model

ht = −∇ · (h2∇△h) , in Ω (2.34a)
h = 0 ,

∂h

∂ν

= λ , h
∂

∂ν

△h− V −
ν = 0 on Γ−, (2.34b)

h ∼ 2 (2/3)1/2 (−V +
ν )1/2

(

(

r
+ − x

)

· ν
)3/2 as x→ r

+ (2.34)For the subsequent disussion of the sharp-interfae model it is onve-nient to introdue the parametrization of Γ− and Γ+ as graphs of funtionsof s−(y, t) and s+(y, t), i.e. y 7→ (−y,−s−(y, t)) and y 7→ (y, s+(y, t)), respe-tively. We obtain the following expressions for the tangent and normal unitvetors
t
− =

(−s−y ,−1)
√

(s−y )
2
+ 1

and ν
− =

(1,−s−y )
√

(s−y )
2
+ 1

, (2.35)on Γ−, and
t
+ =

(s+y , 1)
√

(s+y )
2
+ 1

and ν
+ =

(−1, s+y )
√

(s+y )
2
+ 1

, (2.36)on Γ+.3 Travelling-wave solutionsWe now assume that the base state is a travelling wave that moves with on-stant speed c and does not depend on y. The ansatz is h = h0(x̄), where
x̄ = x− ct, and s̄±0 = s±0 − ct, with onstant s̄±0 (i.e. independent of x̄, y or t).Inserting the new variables, we obtain, after dropping the bars,

h0h0xxx = c , (3.1a)
h0 = 0 , h0x = λ , h2

0h0xxx = 0 on x = s−0 , (3.1b)
h0 ∼ 2 (2/3)1/2 c1/2

(

s+0 − x
)3/2 for x→ s+0 . (3.1)7



Here we have integrated the resulting ODE one and used the boundary on-ditions to �x the onstant of integration.We an resale (3.1a)-(3.1) to eliminate c and λ via
h0 = (λ3/c)ϕ0, x = (λ2/c)ξ + s−0 , s+0 = (λ2/c)d+ s−0 , (3.2)whih yields (with ′ = d/dξ):

ϕ0ϕ
′′′
0 = 1 , (3.3a)
ϕ0 = 0 , ϕ′

0 = 1 , ϕ2
0ϕ

′′′
0 = 0 on ξ = 0, (3.3b)

ϕ0 ∼ 2 (2/3)1/2 (d− ξ)3/2 for ξ → d. (3.3)Note that this an be integrated to
ϕ0ϕ

′′
0 − 1

2
ϕ2

0 = ξ − d . (3.4)We now disuss solutions of (3.3). Note �rst that the funtion on the righthand side of (3.3) is itself an exat solution of the ODE (3.3a). The generalexpansion for solutions of (3.3a) with the leading-order behaviour at ξ =
d required by (3.3) suggests a one-parameter (in addition to d) family ofsolutions and is given by
ϕ0(ξ) = 2 (2/3)1/2 (d− ξ)3/2 + a+(d− ξ)3/2+µ +

∞
∑

n=2

a+
n (d− ξ)3/2+µn (3.5)Here, µ denotes the onstant µ =

(

−1 +
√

13
)

/4 and a+ is a free parameter.The oe�ients a+
n must be determined reursively from the ODE for n ≥ 2.Similarly, at ξ = 0, we have a one parameter family of solutions thatsatisfy the relevant boundary onditions (3.3b). In fat, in [7℄, Bukinghamet al. �nd a general series expansion for (3.3a) at ξ = 0 that satis�es h(0) = 0with two free parameters. Using the form given by the authors and enforingthe boundary onditions (3.3b) to �x one of the two free parameters, we obtain

ϕ0(ξ) = ξ + (1/2)ξ2 ln ξ + a−ξ2 +

∞
∑

n=3

n
∑

m=2

a−nmξ
n(ln ξ)n−m at ξ = 0. (3.6)Here, a− is the remaining free parameter, and the a−mn must be determinedreursively from the ODE.In summary, we have, for eah boundary point a two-dimensional invari-ant manifold of trajetories in the three-dimensional phase spae of (3.3a).Solutions of (3.3) arise from intersetions of these manifolds. These are o-dimension one Intersetions so that we expet a disrete family of solutions,for a disrete family of d. In fat, as pointed out by [13℄, upon integrating(3.3a) one and imposing the boundary onditions, one �xes the onstant ofintegration and also obtain a single value for d,

d =
1

2
. (3.7)8
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Figure 2: The normalized base state for the base state of the slip model, obtainedas numerial solution of (3.3).We solved this problem numerially, using LSODE [18℄ to solve (3.3a) withinitial onditions obtained from the series expansion imposed at ξ = ξ1 and
ξ = 1/2−ξ1, with a small ξ1. Continuity of the solution and its derivative wasimposed at the mid point ξ = 1/4 and these onditions solved numerially for
a− and a+ by Newton iterations. We obtained a− = −2.175 and a+ = −2.226.The solution ϕ0 is shown in �gure 2.4 Linear stability4.1 FormulationWe �rst shift the governing equations of the sharp-interfae model (2.34) tothe moving frame of referene also used in (3.1), by letting x̄ = x − ct, and
s̄± = s± − ct, where now s̄± may be a non-onstant funtion depending on yand t. After introduing the new variables, we drop the bars to give
ht − chx + ∇ · (h2∇△h) = 0 , (4.1a)
h = 0 ,

hx − hys
−
y

(

1 + (s−y )2
)1/2

= λ,

h2
△hx −△hys

−
y

(

1 + (s−y )2
)1/2

− (s−t + c)h
(

1 + (s−y )2
)1/2

= 0, for x = s−y , (4.1b)
h ∼ 2 (2/3)1/2

(

s+t + c
(

1 + (s+y )2
)1/2

)1/2(

s+ − x
(

1 + (s+y )2
)1/2

)3/2 as x→ s+.(4.1)To address linear stability we now let
s± ∼ ±s0 + βs±1 (t) eiky, h ∼ h0 + βh1(x, t) e

iky , (4.2)where h0, s±0 denotes the solution of (3.1) obtained in the previous setion 3,whih serves as our base state. To O(β) we get
h1t − ch1x +

[

h2
0(h1xxx − k2h1x)

]

x
− k2h2

0(h1xx − k2h1) = 0 (4.3)9



with boundary onditions
h1 + λ s−1 = 0 , (4.4a)

h1x + h0xx s
−
1 = 0 , (4.4b)

h2
0h1xxx − ch1 = 0 , (4.4)as x→ s−0 and

h1 ∼ 61/2c1/2s+1
(

s+0 − x
)1/2 (4.5)as x→ s+0 .We make the ansatz

[ s±1 (t), h1(x, t) ] = [ ŝ±, ĥ(x) ] eαt (4.6)and obtain from (4.3)-(4.5) and the variable transformation
x =

λ2

c
ξ + s−0 , k =

c

λ2
q, (4.7a)

s+0 =
λ2

2c
+ s−0 , s−1 =

λ2

c
d−1 , s+1 =

λ2

c
d+
1 , (4.7b)

h0 =
λ3

c
ϕ0, h1 =

λ3

c
ϕ1, α =

c2

λ2
σ, (4.7)the eigenvalue problem

−σϕ1 =
(

ϕ2
0

(

ϕ1ξξ − q2ϕ1

)

ξ

)

ξ
− q2ϕ2

0

(

ϕ1ξξ − q2ϕ1

)

+ ϕ1ξ , (4.8a)
ϕ1ξ = ϕ0ξξϕ1 , ϕ2

0ϕ1ξξξ − ϕ1 = 0 , at ξ = 0, (4.8b)
ϕ1 ∼ 61/2d+

1 (1/2 − ξ)1/2 as ξ → 1/2, (4.8)where ϕ0 is the resaled base state, i.e. the solution of (3.3). Note that wehave used (4.4a), (4.4b) to eliminate s−1 i.e. d−1 from (4.8b). Note also thatthe leading behavior of ϕ0ξξ in (4.8b) an be obtained by taking derivatives of(3.6),
ϕ0ξξ =

3

2
+ 2a− + ln ξ +O(ξ ln ξ) for ξ → 0. (4.9)The general solution of the linear ODE (4.8a) an be found as a linearombination of four basis funtions with the following distint types of leading-order behaviour,

ψ−
1 ∼ 1+o(ξ2), ψ−

2 ∼ ξ+o(ξ2), ψ−
3 ∼ ξ ln ξ+o(ξ2), ψ−

4 ∼ ξ2, as ξ → 0.(4.10)In view also of (4.9), a linear ombination h1 =
∑4

i=1 ciψ
−
i satis�es only (4.8b)if c3 = c1 and c2 = (1/2 + 2a−) c1, i.e. in e�et two onditions are imposedat the boundary ξ = 0. The general solution of the ODE that satis�es theboundary ondition is then given by

ϕ1 = c−1 φ
−
1 + c−2 φ

−
2 , (4.11a)10



where
φ−1 = 1 +

(

1

2
+ 2a−

)

ξ + ξ ln ξ +O(ξ2 ln ξ), (4.11b)
φ−2 = ξ2 +O(ξ2 ln ξ), (4.11)as ξ → 0.Similarly, the four possible leading order behaviors as ξ → 1/2 are givenby (1/2 − ξ)ρ with ρ = 0, 3/2 − µ, 1/2, and 1 + µ, where µ = (1 +

√
13)/4denotes the same onstant as in setion 3. Only the last two power-law be-haviours are onsistent with the boundary ondition (4.8), where the seondlast orresponds to a shift in loation of the interfae, i.e. we also e�etivelyimpose two onditions at the right boundary, yielding the total of four ondi-tions required for a fourth order eigenvalue problem. The general solution of(4.8a) that satis�es (4.8) is given by

ϕ1 = c+1 φ
+
1 + c+2 φ

+
2 , (4.12a)where

φ+
1 ∼ (1/2 − ξ)1/2, (4.12b)
φ+

2 ∼ (1/2 − ξ)(5+
√

13)/4. (4.12)as ξ → 1/2.4.2 Numerial onstrutionTo obtain the eigensolutions we use use a onstrution based on the idea ofEvans funtions, [9, 10, 11, 12℄. For σ to be an eigenvalue, there must exist
c±1 and c±2 so that c−1 φ−1 + c−2 φ

−
2 and c+1 φ+

1 + c+2 φ
+
2 are non-zero and equal for

0 ≤ ξ ≤ 1/2. Then, the ommon funtion they represent is an eigenfuntionorresponding to the eigenvalue σ. The two linear ombinations are equalthroughout the whole interval if their value and the �rst three derivatives areequal at an arbitrary point of the interval. Therefore, an eigenvalue is foundif the Wronskian
W = detA, A =
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, (4.13)is zero at any point of the intervall and hene everywhere. If this is thease, the kernel of A spei�es the oe�ients c±1 and c±2 that determine theeigenfuntion via
A
(

c−1 , c
−
2 ,−c+2 ,−c+2

)T
= 0. (4.14)where the supersript indiates transposition.We used this approah to obtain the eigenvalues and eigenfuntions nu-merially. For given q and a given andidate eigenvalue σ, we �rst omputed11



the funtions φ±1 , φ±2 using LSODE. The initial onditions for the numerialsolver were imposed at ξ2 and 1/2 − ξ2 for a small positive ξ2 larger than thevalue ξ1 for the base state: this was done to avoid the singular or near singularbehavior at the boundary points and to obtain solutions with the presribedleading behavior there. The initial onditions were obtained from the �rstfew terms of the series expansions of eah of the four solutions, whih weredetermined prior to the numerial omputations with the aid of MAPLE. At
ξ = 1/4, we omputed the Wronskian. We restrited our attention to realeigenvalues so that the value of σ for whih W vanishes ould be determinedby bisetioning.We found two eigenvalues, shown in �gure 3. The �top� eigenvalue ispositive for a range of q > 0 up to a ut-o� wave number qc = 6.18 and hasa distint maximum at q = qm = 3.88, whih determines a preferred wave-length for the instability. The other, or �bottom� eigenvalue is always stable.Both eigenvalues tend to zero for q → 0. The orresponding eigenfuntionsare shown in �gure 4. Sine eigenfuntions an be resaled with an arbitraryfator, we an enfore a normalisation ondition, whih here we hose to be

ϕ1 = 1 at ξ = 0. (4.15)Interestingly, for q → 0, the eigenfuntions for the two eigenvalues both tendto the translational mode ϕ0ξ . This is in ontrast to the situation for the statiridge where the eigenfuntions tend to two di�erent eigenfuntions for q → 0,namely the peristalti mode and the variose mode. Inspetion of the solutionsof (4.8) for σ = 0 and q = 0 shows that while the translational mode ϕ0ξ isan eigenfuntion for σ = 0 where q = 0, the variation of the base state withrespet to resaling is ξϕ0ξ − ϕ0, whih is only a generalized eigenfuntion, inthe sense that plugging it into (4.8a) yields the eigenfuntion.Furthermore, the behavior of σ(q) is linear in q for q → 0 for both eigen-values, i.e. σ(q) ∼ σ1|q| rather than the O(q2) leading order behavior that istypially observed for the �nger instability in e.g. gravity or Marangoni-driventhin �lm �ows. But see also [45℄, where, via di�erent arguments, similar be-haviour was found for the situation of sliding two-dimensional droplets.4.3 The long-wave limitA long-wave expansion that we arry out now reveals that this behaviour isdue to the fat that for q = 0, the double eigenvalue σ = 0 has one properand one generalized eigenfuntion, i.e. the long-wave expansion arises as theperturbation of an algebraially double eigenvalue of geometri multipliityone. We �rst de�ne L to be the linear di�erential operator that desribes theleft hand side of (4.8a), i.e.,
Lϕ1 ≡

(

ϕ2
0

(

ϕ1ξξ − q2ϕ1

)

ξ

)

ξ
− q2ϕ2

0

(

ϕ1ξξ − q2ϕ1

)

+ ϕ1ξ ,Furthermore, let L0 and L1 be the parts of L that orrespond to terms thatare respetively independent of and quadrati in q. Also, let L∗
0 denote the12
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adjoint operator of L0:
L0ϕ ≡

(

ϕ2
0ϕξξξ

)

ξ
+ ϕξ, (4.16a)

L1ϕ ≡ −
(

ϕ2
0ϕξ

)

ξ
− ϕ2

0ϕξξ, (4.16b)
L∗

0ψ ≡
(

ϕ2
0ψξ

)

ξξξ
− ψξ. (4.16)We seek an expansion for the eigenvalues and eigenfuntions σ and ϕ1 of(4.8) of interest in terms of q. Motivated by our numerial �ndings, we makethe ansatz (assuming q ≥ 0):

σ = σ1q + σ2q
2 +O(q3), ϕ1 = ϕ0ξ + ϕ11q + ϕ12q

2 +O(q3). (4.17)Plugging this ansatz and the expansions of L in (4.16) into Lϕ1 = −σϕ1, theleading order terms are zero, while for the O(q) and O(q2) problems we obtain
L0ϕ11 = −σ1ϕ0ξ, (4.18a)

L0ϕ12 + L1ϕ0ξ = −σ1ϕ11 − σ2ϕ0ξ. (4.18b)Also, we ontinue to enfore the normalisation ondition (4.15) on ϕ1, whihimplies
ϕ1l = 0 at ξ = 0 for l ≥ 1. (4.19)Equation (4.18a) implies that ϕ11 must be the σ1 multiple of the generalizedeigenfuntion ρ̄, plus an arbitrary multiple of ρ. The arbitrariness is removedby (4.19), and we obtain

ϕ11 = −σ1 (ξϕ0ξ − ϕ0) . (4.20)We plug this result into (4.18b) and integrate the equation with respet to ξ,whih yields,
∫ 1/2

0
L1ϕ0ξ dξ = σ2

1

∫ 1/2

0
ξϕ0ξ − ϕ0 dξ (4.21)The integrals on both sides an be evaluated by partial integration, and thenwe an solve for σ2

1 = 1/2, or
σ1 = ±

√
2

2
. (4.22)Together with (4.20) we therefore obtain to O(q) for the branhes of eigenso-lution

σ = ±
√

2

2
q, (4.23a)

ϕ1 = ϕ0ξ ∓
√

2

2
q (ξϕ0ξ − ϕ0) . (4.23b)The knowledge of the eigenfuntions an be used to determine how the un-stable mode perturbs the two boundaries. For a given eigenfuntion h1 for anunstable eigenvalue σ for some q, the left boundary is perturbed by d−1 eiqy+σt,14



where d−1 = −ϕ1(0). This follows from (4.4a), resaled by (4.7). On the otherhand, it follows from equation (4.8) that d+
1 e

iqy+σt is the perturbation of theright boundary, and
d+
1 = lim

ξ→1/2

[

ϕ1/6
1/2(1/2 − ξ)1/2

]

.Sine the eigenfuntion ϕ1 is given as linear ombinations of the funtions
φ±1 and φ±2 , the expansions of whih we know at the boundaries, the valuesof d±1 an be expressed in terms of c±1 and c±2 . One �nds d−1 = −c−1 and
d+
1 = c+1 /6

1/2, thus
drel ≡

d+
1

d−1
=
c+1 /6

1/2

−c−1
. (4.24)For the translation mode, both boundaries are shifted by the same amountin the same diretion, and therefore drel = 1. The graphs of the eigenfuntionsin �gure 3 suggest that the ontribution of φ+

1 hene c+1 dereases as q inreasesand eventually hanges sign. This is indeed the ase, as seen in �gure 5, wherethe drel is shown as a funtion of q. The funtion dereases monotonially fromone and rosses zero near q = 3.62, just below the preferred wavenumber qm.For q > 3.62, the perturbation of the right boundary is out of phase withthe left boundary by half a period, so that rim would be omposed by thinnerand thiker parts resembling a peristalti perturbation. However, near q =
3.62 the perturbation of the right boundary is nearly zero and even when qapproahes the ut-o� wavenumber qc, beyond whih the perturbation deaysanyway, drel is less than 0.4 i.e. the perturbation is less than half the sizeof the left boundary. Hene, all unstable perturbations will appear to be`asymmetri' in the sense that the side faing the undisturbed �lm is muhless perturbed than the side faing the dewetted area.The expression (4.24) an be obtained approximately using the long-wave-approximation for the eigenfuntion (4.23b), and this leads to

drel = 1 −
√

2

4
q +O(q2). (4.25)The orresponding straight line is also shown in �gure 5 as a thinner line. Itompares well with the numerial result for small and even moderate valuesof q.5 Comparison to the full lubriation modelAs a next step, we investigate the stability of a growing rim for the full lubri-ation model in the slip ase, given by (2.4), (2.5).First, we obtain the base state by solving these equations numerially forthe ase where h does not depend on y, using a slightly smoothed jump asinitial data. We use here ǫ = 0.04 and set β = 1, as well as a slightly modi�edintermoleular potential

Φ(h) = Φ2(h) ≡
a1

8h8
− a2

2h2
+

a3

2(h + d)2
, (5.1a)15



with
a1 = 1.014, a2 = 1.014, a3 = 7.465, d = 25.34. (5.1b)This three-term potential was motivated by numerial studies in earlier artiles[26, 28, 30℄.The base pro�le grows as the rim moves in the diretion of the unperturbed�lm, see �gure 6(a). From the salings in (3.2), we see that the growth of theheight and width of the rim is inversely proportional to the dewetting rate

c = ṡ. Thus, the dewetting rate dereases as the rim moves further intothe unperturbed �lm. In fat, a spei� law for the evolution of the ontatline region, s(t) ∼ t2/3, an be found from the resalings (3.2) and a massbalane argument. Derivations and disussions of this law an be found in theliterature [4, 13, 30, 34, 36℄.The resalings (3.2) of the traveling wave solution in setion 3 lead to auniversal pro�le ϕ0 without any free parameters. Hene, if we resale the pro-�les in �gure 6(a) that were obtained for the full lubriation model aordingto (3.2), we expet the result to losely approximate ϕ0. Instead of obtaining cfrom the evolution of the ontat line, we resale h by maxx(h(x, t))/maxξ(ϕ(ξ));the orresponding lateral length sale is found by omparison with (3.2).Hene, we resale aording to
h =

maxx(h(x, t))

maxξ(ϕ0(ξ))
ϕ̂ x =

maxx(h(x, t))

λ maxξ(ϕ0(ξ))
ξ. (5.2)The result is shown in �gure 6(b). We learly see that the resaled solutionsof the full lubriaiton model onverge, for later times, onto the normalizedtraveling solution ϕ for the sharp interfae model, i.e. of (3.3). This is to beexpeted, sine for later times, the rim is larger and hene the residual �lmand the unperturbed �lm thikness are smaller relative to the rim height, andthis means the e�etive ǫ and β are smaller.As next step we desribe the ourrene of �ngers in the ridge for the fulllubriation model in terms of the evolution of a small perturbation of thebase state whih we now denote by hb(x, t). Spei�ally, we introdue theperturbation

h(x, y, t) = hb(x, t) + δhp(x, t) exp(iky)into the lubriation model, with δ ≪ 1 and retain only linear terms in δ. Weobtain for the linearized equation
∂hp

∂t
+ Lhp − k2

[(

h2
bh1x

)

x
+ h2

b

(

h1xx − ε−2Φ′′ (hb/ε)
)]

+k4 h2
bhp = 0, (5.3)where

Lhp ≡ ∂

∂x

[

2h2
b)
(

hbxxx − ε−2Φ′′ (hb/ε))hbx

)

hp − h2
b ε

−2Φ′′ (hb/ε) hbxhp

+h2
b

(

h1xxx − ε−2Φ′′ (hb/ε) h1x

)] (5.4)Note that sine we have a time dependent base state, the oe�ients ofthe linearized PDE are non-onstant in time, hene solutions for the linearized16
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problem annot be obtained via a lassial eigenvalue approah. Instead, wenumerially solve an initial value problem for (5.3), (5.4) for a �xed set ofwavenumbers, in tandem with the equation for the base state, and observehow the perturbations evolve in time. The omputational e�ort sales roughlylinearly with the number of wave-numbers we monitor.The evolution is omputed for a time interval [t0, t1] where t0 and t1 arethe times where the unperturbed front, more spei�ally, the left ontat lineregions, estimated for the purpose of this subsetion by the position of theturning point, has reahed a ertain position, namely
s(t0) = 0.883 and s(t1) = 1.48 · 104;the orresponding times are

t0 = 5.18 and t1 = 9.85 · 106.An initial perturbation h(t) is introdued at time t0 using the followingexpression:
hp(x, t0) =

∂hb

∂x
(x, t0), (5.5)whih orresponds to a `zig-zag' perturbation, i.e. we perturb both sides of theridge in the same diretion [5℄. For zero wave-number, (5.5) simply representsan in�nitesimal initial shift of the whole pro�le. Below, we also make someremarks on other hoies of the initial data for hp.To desribe the growth of bumps and eventually �ngers in the ridges, weuse the ampli�ation A(t) of the perturbation with respet to the initial state,

A(t) ≡ maxx |hp(x, t)|
maxx |hp(x, t0)|

for t0 ≤ t ≤ t1.We ompare ampli�ations ahieved at the same position of the dewettingfronts, rather than at the same value of t. Figure 7 displays A(t) vs. thefront position s(t) for several wavelengths l = 2π/k. For eah of the depitedwavelengths, the perturbation grows as the dewetting proeeds, then it reahesa maximum, after whih it deays. Longer wavelengths ahieve the maximalampli�ation fator
Amax ≡ max

t≥t0
A(t)at later stages of the dewetting, when the front has advaned further into the�lm and the ridge of the base state has grown in size, suggesting that themost ampli�ed wavelength orrelates with the width of the ridge [25℄. Thisoinides interestingly with results on the �ngering in gravity and Marangoni-driven �ows, where the most ampli�ed wavelength in the modal analysis isproportional to the length sale imposed by the bump width [46℄, and withpreditions for the breaking up of stati ridges [5℄ into droplets.Figure 7(b) shows pro�les of the perturbation hb for a �xed hoie of

k = 0.0237 at di�erent stages of ampli�ation. The initial perturbation (givenby (5.5)), whih has one pronouned maximum and a minimum, slowly evolvesinto a new pro�le where the minimum is replaed by a relatively �at part witha weak tendeny to reate a seond `bump' in the pro�le of the perturbation18
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after the maximum ampli�ation has been ahieved. This learly resembles ob-servations made earlier for the eigenfuntions of the linearized sharp interfaemodel.In fat, we an ompare the shape of the perturbation with the eigenfun-tion in a similar way as before for the base state. We resale x into ξ as inthe seond part of (5.2), leaving hp normalized so that the maximum is one.Also, we need to determine the wavenumber for whih to take the eigenfun-tion of the linearized sharp interfae model. This is found by saling k withthe inverse of the sale for x,
k =

λ maxξ(ϕ0(ξ))

maxx(h(x, t))
q. (5.6)For the hp-pro�le labelled '2' in �gure 7(b), we obtain q = 6.02 whih isvery lose to the ut-o� wavenumber for the sharp interfae model. Note thatsine maxx(h(x, t)) inreases with time, the �e�etive� wavenumber q dereaseswith time, and in fat, at the time tmax when A(t) reahes its maximum value

Amax, whih is slightl after the time of pro�le '2', the value for q turns out toapproximate the ut-o� wavenumber very losely.In �gure 8, we now ompare the resaled hp-pro�le with the eigenfuntion of(4.8) for q = 6.02. We see good agreement for ξ < 0.2 but some deteriorationas ξ approahes 1/2. In general, however, we an expet the agreement toimprove if we start with a larger l = 2π/k, sine then the base pro�les arelarger when a ertain value of q is reahed, hene the thikness of the residualand the unperturbed �lm thikness are smaller ompared to the size of therim.Furthermore, note that the evolution of the base state hb(x, t) is algebraiand thus slow ompared to the rapid exponential growth of an unstable modeof (4.3). This suggests that the evolution of hp is given at every instaneby solving (4.3) for the most unstable mode. This means in partiular thatwe treat c = ṡ(t) as a onstant for the purpose of solving (4.3), but retainits slow algebrai growth in the solution itself, in the sense of a �quasistati�approximation. This yields
h1(x, t) =

λ3

c
ϕ1(ξ; q) exp

[

c2

λ2
σt

]

, ξ =
c

λ2
(x− s), q =

λ2

c
k, (5.7)where ϕ1 and σ represent the eigensolution of (4.8) with the largest real partof σ. Reall that sine the wave number k of the perturbation of the fulllubriation model is kept �xed, q now hanges due to the quasi-stati evolutionof c = c(t) = ṡ.Rather than omparing (5.7) diretly with hp we solve (5.7) to express σin terms of a normalized maximum of h1,

σ =
λ2

c2
d

dt
ln

[

maxx h1(x, t)

maxx h1(x, t0)

]

. (5.8)and then replae h1 by hp, i.e. we monitor
σ̂ = σ̂(t) =

λ2

c2
d

dt
lnA(t; k). (5.9)20



The expression σ̂ an be evaluated in time using the numerial solutionsfor hp for an arbitrary �xed hoie of k. We note that it is onvenient to avoiddetermining c(t) = ṡ(t), so we proeed as for the resaling of the base stateand use (5.2), (5.6). The orresponding time sale an be found by omparisonwith (3.2), so that we atually ompute σ̂ via
σ̂ =

[

maxx(h(x, t))

λ2 maxξ(ϕ0(ξ))

]2 d

dt
lnA(t; k). (5.10)to generate the lines in �gure 8(b).If hp is indeed well approximated by h1, then the dispersion relation

(q, σ(q)) obtained from the eigenproblem (4.8) must be well approximated bythe urve (q(t), σ̂(t)). In fat, we an argue similarly as before that (q(t), σ̂) isexpeted to asymptotially approah (q, σ(q)) as we onsider larger t for thesame �xed k, whih means larger q(t) or repeat the proedure with a largerhoie for k. Indeed, this is what we see in �gure 8(b).6 ConlusionIn this paper we derived the sharp-interfae model for a dewetting rim from theorresponding lubriation model taking aount of slippage. For the resultigredued model we were able to derive analytial expressions for the dispersionrelations that show that the dependene of the growth rate on the wavenumberis linear. This is in ontrast to the quadrati denpendene typially found for�nger-type instabilities in thin �lm problems. It is therefore interesting toinvestigate via the methods of this study the linear stability of the sharp-interfae model orresponding to the typially used no-slip ase. This will bethe topi of a ompanion paper to follow.AknowledgementsAM gratefully aknowledges support by a Heisenberg fellowship. AM and BWare grateful for the support by the DFG researh enter Matheon in Berlinand by the DFG Priority Programme Nano- and Miro�uidis. JRK gratefullyaknowledges the support of the Royal Soiety /Wolfson foundation.Referenes[1℄ A. L. Bertozzi and M. P. Brenner. Linear stability and transient growthin driven ontat lines. Phys. Fluids, 9:530�539, Marh 1997.[2℄ A. L. Bertozzi, A. Münh, X. Fanton, and A. M. Cazabat. Contat linestability and `underompressive shoks' in driven thin �lm �ow. Phys.Rev. Lett., 81:5169�5172, Deember 1998.[3℄ F. Brohard-Wyart, P.-G. de Gennes, H. Hervert, and C. Redon. Wettingand slippage of polymer melts on semi-ideal surfaes. Langmuir, 10:1566�1572, 1994. 21
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