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AbstratIn this paper, we study a lass of singularly perturbed reation-di�usionsystems, whih exhibit under ertain onditions slowly varying multi-pulse so-lutions. This lass ontains among others the Gray-Sott and several versionsof the Gierer-Meinhardt model. We �rst use a lassial singular perturbationapproah for the stationary problem and determine in this way a manifold ofquasi-stationary N -pulse solutions. Then, in the ontext of the time-dependentproblem, we derive an equation for the leading order approximation of theslow motion along this manifold. We apply this tehnique to study 1-pulseand 2-pulse solutions for lassial and modi�ed Gierer-Meinhardt system. Inpartiular, we are able to treat di�erent types of boundary onditions, alu-late folds of the slow manifold, leading to slow-fast motion, and to identifysymmetry breaking singularities in the manifold of 2-pulse solutions.1 IntrodutionReation di�usion systems show already in one spae dimension a large variety of in-teresting spatio-temporal dynamis. Partiularly, pulse solutions play an importantrole in many biohemial and biologial systems [13, 10℄. Whereas the existene,stability, and motion of a single pulse is in many ases well understood, the situa-tion of several interating pulses is muh more di�ult to analyze. The basi ideato study pulse interation is the following: As soon as the distane between thepulses is su�iently large ompared to the pulse width, one an desribe eah pulseloally by a single-pulse solution and then study their interation in a perturbativeway. In ases where the system between the pulses is lose to a homogeneous stablestationary state, the pulses interat only via their exponentially deaying tails andhene the pulse motion is exponentially slow with respet to the pulse distane. Thisphenomenon is usually alled weak interation, see [15, 18℄.In ontrast to that, Doelman and Kaper introdued the notion of semistrong in-teration (see [3℄ and referenes there) for interating pulses where the bakgroundbetween the pulses is non-homogeneous and far from equilibrium. Like many pat-tern formation phenomena, semistrong interation requires the existene of variableswith di�erent di�usion lengths. This may lead to solutions, where in between thepulses the system is not lose to equilibrium, but shows spatial �utuations whihare governed by the long-ranging di�usion. At the same time, the pulses an beshort, beause they are governed by another variable with short di�usion length.1



As a general model for semistrong pulse interation, overing several spei� models,suh as lassial and modi�ed Gierer-Meinhardt, Gray-Sott, and others, Doelmanand Kaper suggested in [3℄ the following lass of systems:
ǫ2Ut = Uxx − ǫ2µU + f(U)V 2

Vt = ǫ2Vxx − V + g(U)V 2We onsider positive solutions U and V , for whih the funtions f and g, as wellas the parameters µ and ǫ should be positive. As usual, ǫ is assumed to be small.The spatial variable x is from the interval I, whih may be bounded or unbounded.Di�erent types of boundary onditions will be spei�ed later. For onveniene, weresale x here by ǫ and obtain after replaing ǫ2 by ε the system
Ut = Uxx − µU + 1

ε
f(U)V 2

Vt = ε2Vxx − V + g(U)V 2.
(1)In this way, ε re�ets the ratio of the di�erent di�usion lengths. In the sale of theshort di�usion length ξ = x/ε, the system for u(ξ, t) = U(εξ, t), v(ξ, t) = V (εξ, t) is

ut = 1
ε2 uξξ − µu + 1

ε
f(u)v2

vt = vξξ − v + g(u)v2.
(2)Based on the two di�erently saled versions (1) and (2), our approah will be some-what di�erent from that in [3℄. In analogy to lassial Fenihel theory for singularperturbed systems of ordinary di�erential equations, we desribe in setion 2 the setof interating pulse solutions as a manifold, where the motion vanishes in leading or-der. In setion 3, the slow motion along the manifold is obtained from the next orderterms at these quasi-stationary solutions. Finally, in setion 4 the general results areused to study manifolds of pulses for the spei� nonlinearities from the lassial andthe modi�ed Gierer-Meinhardt system. In this way, we an expliitely alulate themanifolds of interating pulse solutions for these systems. In partiular, we identifypoints of normal non-hyperboliity leading to di�erent senarios of hanges in thestability along the branhes of the manifolds. We also demonstrate the existeneof non-symmetri two-pulse solutions, whih, however, turn out to be not stable.The question of stability or normal hyperboliity of the obtained manifolds is notaddressed analytially in this paper. Instead, we use numerial simulation to giveevidene for the dynamial stability at ertain parts of the analytially obtainedslow-motion manifolds, and to verify the validity of our asymptoti approximationof the slow motion. An analytial study of the spetral problem, whih ould supplya rigorous proof for normal hyperboliity and the persistene of the slow manifoldsis beyond the sope of the present paper and will be the subjet of future investiga-tions.2 Constrution of quasi-stationary N-pulse solutionsThe stationary problem for is a singularly perturbed system of ordinary di�erentialequations and, hoosing the �ne spatial sale from (2), it an be written in the2



following form:
uξ = εp (3)
pξ = εµu − f(u)v2 (4)
vξ = q (5)
qξ = v − g(u)v2. (6)It is well known for suh systems that solutions may onsist of fast and slow parts.In this setion, we will �rst solve all these slow and fast parts separately and thenderive onsisteny onditions, whih allow us to glue them to leading-order solutions,whih are quasi-stationary N-pulse solutions. These quasi-stationary solutions willgive rise to a slow-motion manifold for the original PDE. Hene they will not solvethe stationary problem in seond approximation, and it is not an issue, whetherthere are true solutions to the stationary problem near these approximating quasi-stationary solutions.We apply now the standard proedure of singular perturbation theory. We distin-guish the fast alias small sale subsystem
uξ = 0 (7)
pξ = −f(u)v2 (8)
vξ = q (9)
qξ = v − g(u)v2, (10)obtained by putting ε = 0 in equations (3)�(6), and the slow alias large sale sub-system

Ux = P (11)
Px = µU (12)
0 = Q (13)
0 = V, (14)obtained by resaling bak to x and putting then ε = 0. Note that in priniple (14)should be

0 = V − g(U)V 2.We are here only interested in the branh orresponding to V = 0, whih allows toanel the term 1
ε
f(U)V 2 in (12), being O(ε) after substituting V = O(ε).The fast subsystem (7)�(10) an be solved expliitely by

u(ξ) ≡ a (15)
p(ξ) = b +

3f(a)

2g2(a)
tanh

(

ξ

2

) (

tanh2

(

ξ

2

)

− 3

) (16)
v(ξ) =

3

2g(a)

(

1 − tanh2

(

ξ

2

)) (17)
q(ξ) = − 3

2g(a)
tanh

(

ξ

2

)(

1 − tanh2

(

ξ

2

))

. (18)3



These solutions perform a single pulse in v and depend parametrially on a and b.Note that these solutions satisfy q(0) = 0, i.e. we have hosen from the family ofspatial translates those pulses whih are entered at zero. Their behavior at in�nityis given by
lim

ξ→±∞
(v(ξ)) = lim

ξ→±∞
(q(ξ)) = 0 (19)and

lim
ξ→±∞

(p(ξ)) = b ∓ 3f(a)

g2(a)
, (20)whih implies in partiular that the pulse in v is aompanied by a step-like pro�lein p with step-size 6f(a)

g2(a)
independent of b (see also equation 2.16 in [3℄).A general solution of the slow system (11)�(14) is given by

U(x) = c cosh (
√

µx) + d sinh (
√

µx) (21)
P (x) =

√
µ (c sinh (

√
µx) + d cosh (

√
µx)) (22)

V (x) ≡ 0 (23)
Q(x) ≡ 0 (24)depending on the two parameters c and d.We ompose now a quasistationary N-pulse by gluing together solutions from thefast and slow subsystem. First, we hoose pulse positions r1, . . . , rN ∈ I in the largespatial sale. In the viinity of rj , the quasistationary N-pulse will be given by

uj(ξj; aj, bj), pj(ξj; aj, bj), vj(ξj; aj, bj), qj(ξj; aj, bj), being a solution (15)�(18) with�xed parameters a = aj and b = bj , and the spae variable
ξj :=

x − rj

ε
. (25)In the intervals between the pulse positions

Ij := [rj, rj+1]we use solutions Uj(xj ; cj , dj), Pj(xj ; cj, dj), Vj(xj ; cj, dj), Qj(xj ; cj, dj) given by (21)�(24) for �xed c = cj , d = dj, and the spae variable
xj := x − rj . (26)For onveniene, we denote the left and right boundary of the whole domain I by r0and rN+1, respetively. In this way we get also the two intervals I0 at the left and

IN at the right boundary, whih an be treated in same manner as the others. Inthe ase of periodi boundary onditions, the intervals I0 and IN oinide modulo
L by hoosing r0 := rN − L and rN+1 := r1 + L, where L is the length of the wholedomain I.

4



At eah pulse position rj, j = 1 . . .N , we have to regard the following onsistenyonditions to assure ontinuity of the omposed solutions in the limit ε → 0:
Uj−1(yj−1; cj−1, dj−1) = lim

ξj→−∞
(uj(ξj; aj , bj)) (27)

Pj−1(yj−1; cj−1, dj−1) = lim
ξj→−∞

(pj(ξj; aj, bj)) (28)
Uj(0; cj, dj) = lim

ξj→∞
(uj(ξj; aj , bj)) (29)

Pj(0; cj, dj) = lim
ξj→∞

(pj(ξj; aj, bj)). (30)Here, we have used the abbreviation yj := rj+1 − rj for the length of the interval Ij .Note that orresponding onsisteny onditions for V and v, as well as for Q and qhold true automatially, sine they are all neessarily zero at the juntions, see (19)and (23), (24). Inserting now the expressions for the large sale solution aordingto (21), (22), and the limits of the small sale solution aording to (15) and (20),the onsisteny onditions read as
cj−1 cosh (

√
µyj−1) + dj−1 sinh (

√
µyj−1) = aj (31)

√
µ (cj−1 sinh (

√
µyj−1) + dj−1 cosh (

√
µyj−1)) = bj +

3f(aj)

g2(aj)
(32)

cj = aj (33)
√

µdj = bj −
3f(aj)

g2(aj)
(34)for j = 1, ..., N .The omposed quasistationary N-pulse has to satisfy also the boundary onditions,whih will imply additional onditions for the solution parameters. In the ase ofperiodi boundary onditions, we an identify the intervals I0 and IN modulo thelength L of the domain I and get the additional equations c0 = cN and d0 = dN . Inthe ase of Neumann boundary onditions

P0(0; c0, d0) = PN(yN ; cN , dN) = 0we obtain
d0 =

√
µ (cN sinh (

√
µyN) + dN cosh (

√
µyN)) = 0. (35)Analogously, Dirihlet onditions

U0(0; c0, d0) = UN (yN ; cN , dN) = 0lead to
c0 = cN cosh (

√
µyN) + dN sinh (

√
µyN) = 0. (36)Note that also inhomogeneous or mixed-type boundary onditions an be treatedeasily. In the ase of an unbounded domain, i.e. r0 = −∞, we annot use (26) for5



j = 0 and de�ne x0 := x1, instead. Consequently, for j = 0 equations (31) and (32)have to be hanged to
c0 = a1 (37)

√
µd0 = b1 +

3f(a1)

g2(a1)
. (38)The boundedness ondition

lim
x0→−∞

(U0(x0; c0, d0)) = lim
xN→∞

(UN(xN ; cN , dN)) = 0leads to the additional equations
c0 = d0, cN = −dN . (39)In all these ases, we obtain two extra parameter onstraints from the boundaryonditions. This means that in the 5N + 2-dimensional spae of pieewise solu-tions, given by the pulse parameters (aj, bj , rj)j=1...N and the bakground param-eters (cj, dj)j=0...N , there are 4N + 2 onsisteny onditions. Thus we an expetthat apart from degeneraies there is a N-dimensional manifold MN ⊂ R

5N+2 ofonsistent solution parameters, orresponding for �xed 0 < ε ≪ 1 to a manifold
Mε

N ⊂ X of quasistationary N-pulse solutions.3 Slow motion on the manifold of N-pulse solutionsThe position of the pulse in the small spatial sale at ξj = 0 has been hosenarbitrarily in the pulse solution (15)�(18). Indeed, with any shifted opy of thesessolutions a onsistent quasi-stationary solution an be omposed in the same way.In partiular, a slow motion of this small-sale pulse position is possible. We wantto determine now this slow motion. To this end, we �rst assume that the set ofsolutions to the system (31)�(34) is a N-dimensional manifold whih an be loallyparameterized by the pulse positions r1 . . . rN . Hene, the further parameters anbe onsidered as given funtions
aj(r1 . . . rN), bj(r1 . . . rN ), 1 ≤ i ≤ N
cj(r1 . . . rN), dj(r1 . . . rN), 0 ≤ j ≤ N.

(40)Then, we introdue the expliit time dependene r1(t) . . . rN(t) and assume that theother parameters aj, bj , cj, dj, follow adiabatially as
aj(t) = aj(r1(t) . . . rN(t))et. For a �xed hoie of pulse positions r1 . . . rN , the quasi-stationary pro�le in theviinity of the pulse at rj is given by

uj(ξj) = aj + ε

∫ ξj

0

pj(η; aj, bj)dη (41)
vj(ξj) ≡ vj(ξj; aj, bj) (42)6



with
ξj =

x − rj(t)

ε
. (43)Sine we want to go bak to the time dependent system (2), we have eliminated pas an extra independent variable by inorporating it as a �rst order orretion for

u. Inserting (41) and (42) into the v-equation of (2) and taking into aount theexpliit time dependene of the pulse parameters, we obtain
∂vj

∂ξj

ξ̇j +
∂vj

∂aj

N
∑

k=1

∂aj

∂rk

ṙk = εg′(aj)v
2
j

∫ ξj

0

p(η; aj, bj)dη + O(ε2). (44)On the right hand side we have used Taylor expansion and (9), (10) to anel leadingorder terms. Now we multiply with the derivative of the pulse ∂vj

∂ξj
and integrate.In this way we an isolate the small-sale pulse veloity ξ̇j. This proedure an beunderstood as a leading order approximation of the projetion to the generator ofthe shift of the pulse. Note that aording to (41) the u omponent of the pulse isin leading order onstant. This justi�es, that we neglet here the u-equation of (2),being multiplied with a derivative of order ε. Note that even though the system isnot self adjoint, the shift mode oinides with its adjoint in leading order. Takinginto aount that

∫ ∞

−∞

∂vj

∂ξj

∂vj

∂aj

dξj = 0,we obtain from this proedure
ξ̇j

∫ ∞

−∞

(

∂vj

∂ξj

)2

dξj = εg′(aj)

∫ ∞

−∞

∂vj

∂ξj

v2
j

∫ ξj

0

p(η; aj, bj)dηdξj. (45)Using partial integration, realling the expressions for v3
j and (

∂vj

∂ξj

)2 from (17) and(18), and employing known integrals for them we derive
ξ̇j = −

εg′(aj)
∫ ∞
−∞

v3

j

3
(p(ξj; aj , bj))dξj

∫ ∞
−∞

(

∂vj

∂ξj

)2

dξj

(46)
= −2εbjg

′(aj)

g(aj)
. (47)Taking into aount equation (43), we arrive �nally at

ṙj(t) = 2ε2 bj(t)g
′(aj(t))

g(aj(t)),
(48)whih, together with the solution of the onsisteny onditions (40), provides the lawof motion for the pulse positions rj , i = 1, . . . , N . Sine the slow motion takes plaein the �ne spatial sale ξj, it is of order ε2 in the large sale variable rj, whih enters7
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Figure 1: Pulse motion for 2-pulse solution of the modi�ed Gierer-Meinhardt model(49) with µ = 5, α = 0.2, L = 8, and Neumann boundary onditions. (a) Pulsedistane for numerial solutions of the full system with ǫ = 0.1 (grey dashed line)and ǫ = 0.02 (blak dashed line) ompared to the law of motion (48) (solid line).(b) v-omponent of the full numerial solution for ǫ = 0.1 (grey-sale plot) andpulse positions (urves) predited by (48). () pro�les at a �xed time t: Dashedline: numerial solution of the full system; solid line: ansatz-solution (15)�(18) and(21)�(24).into the onsisteny equations. Note that the motion of eah pulse is determinedby its loal pulse parameters aj , bj only. However, there is a pulse interation, sinethese parameters depend via (40) on the other pulse positions.In Figure 1 we ompare the e�etive pulse motion given by (48) with a numerialsolution for the full system, alulating the motion of a pair of two symmetriinterating pulses of the modi�ed Gierer-Meinhardt model (details of this model8



will be given in the next setion). Panel (a) shows the pulse distane as a funtionof time. As soon as the pulses are well separated, the e�etive pulse motion aordingto (48) (solid urve) is in good oinidene with the distane of the maxima of anumerial solution for the full system. Already for moderately small ε = 0.1 (greydashed line) the agreement is reasonably good and improves signi�antly for thesmaller value ε = 0.02 (blak dashed line).4 Interating pulse solutions of the Gierer-MeinhardtsystemWe apply now the general results from the preeeding setions to study manifoldsof interating pulse solutions for a spei� system. As an example, we have hosenthe well known Gierer-Meinhardt system [10℄ with a modi�ation introdued in [3℄.Speifying the nonlinearities
f(U) := 1, g(U) :=

1

U
+ α (49)in our general system (1), we obtain for α = 0 the lassial Gierer-Meinhardt system,and for α > 0 the modi�ed version from [3℄.4.1 1-pulse solutionsAs a warm up, we begin with solutions having a single pulse that interats with theboundary under Neumann boundary onditions. From the six onsisteny ondi-tions, given by (31)-(34) with j = 1 and (35), the pulse parameters c0, c1, d0, d1 anbe easily eliminated, and we remain with

a1
√

µ(tanh(
√

µr1) + tanh(
√

µ(L − r1))) =
6f(a1)

g2(a1)
(50)

a1
√

µ(tanh(
√

µr1) − tanh(
√

µ(L − r1))) = 2b1. (51)Inserting the Gierer-Meinhardt nonlinearities (49) with α = 0, equation (50) hasthe solution
6a1 =

√
µ(tanh(

√
µr1) + tanh(

√
µ(L − r1))),and the pulse motion from (48) is given by

ṙ1 = ε2(tanh(
√

µ(L − r1)) − tanh(
√

µr1)). (52)This implies that on the one-dimensional manifold of quasi-stationary 1-pulse solu-tions there is a unique globally stable equilibrium with the pulse at r1 = L/2.For α > 0, equation (50) reads
6a1

(1 + αa1)2
=

√
µ(tanh(

√
µr1) + tanh(

√
µ(L − r1))).9
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Figure 2: Left panel: Fold line and existene region (grey) for 1-pulse solutions(L = 2, µ = 5); right panel: stable and unstable (dashed) branhes for α = 0.375.Arrows and thin lines indiate slow motion and fast drop-o� at the foldThis equation is quadrati in a1 and has two real solutions, if
√

µα(tanh(
√

µr1) + tanh(
√

µ(L − r1))) ≤
3

2
. (53)The shaded region in Figure 2 shows the pulse positions in the domain [0, L] for

L = 2 where two branhes of 1-pulse solutions oexist. When (53) holds withequality, these two branhes meet in a fold, whih is represented by the blak linein �gure 2. Above this line (white region) no 1-pulse solution exists. The height ofthe fold-point is given by
a1 = aF =

1

α
.Our numerial simulations of the full system indiate, that the the branh with

a1 < aF is stable. The pulse motion is now given by
ṙ1 = ε2 αµ(tanh2(

√
µ(L − r1)) − tanh2(

√
µr1))

3 ±
√

9 − 6α
√

µ(tanh(
√

µr1) + tanh(
√

µ(L − r1)))
(54)(ompare (52)), showing that the stationary pulse at r1 = L/2, as long as it exists,is still globally stable within the stable branh of the slow manifold. For

α
√

µ tanh(
√

µL/2) >
3

4
(55)the pulse at r1 = L/2 does no longer exist, but a pulse loated lose to the boundarystill moves towards the middle of the domain until it reahes the fold. There, thesolution drops o� the slow manifold and diverges in a fast motion towards in�nity(see in the lower panel of Figure 2).4.2 2-pulse solutionsTo keep alulations simple, we will �rst investigate the ase of an unbounded do-main. The ten onsisteny onditions (31)�(34) for j = 1, 2, and (37), (39) an be10



simpli�ed to
(

a1 −
3f(a1)√
µg2(a1)

)

e
√

µ(r2−r1) =
3f(a2)√
µg2(a2)

(56)
(

a2 −
3f(a2)√
µg2(a2)

)

e
√

µ(r2−r1) =
3f(a1)√
µg2(a1)

(57)Note that for a1 = a2 these equations oinide both with (50) after inserting there
L = ∞. Indeed, a symmetri 2-pulse an be seen as an 1-pulse on the positive half-axis with a Neumann boundary ondition at zero. In this way, existene and motionof symmetri 2-pulses are given by orresponding expressions from the previoussetion. The branh of symmetri solutions an be parameterized by

r2 − r1 = − 1
√

µ
ln

(√
µ

3

(

1

a1
+ 2α + αa1

)

− 1

)

.For
α
√

µ <
3

4there are two symmetri 2-pulse solutions for eah pulse distane (ompare (55).This ondition already has been derived in [3℄ (eq. 5.3). For larger values of α
√

µthe two branhes meet in a fold with
a1 = aF =

1

α
,and there is a maximal pulse distane given by

r2 − r1 = yF = − 1
√

µ
ln

(

4α
√

µ

3
− 1

)

.Now we look for non-symmetri 2-pulse solutions.To this end, we eliminate the pulsedistane r2 − r1 from the equations (56) and (57) and obtain
G(a1) = G(a2)with

G(a) :=

(

a − 3f(a)
√

µg2(a)

)

f(a)

g2(a)
.For symmetri 2-pulse solutions, this equation is trivially satis�ed. Non-symmetrisolutions arise, if the funtion G is not monotone. Inserting the nonlinearities (49),di�erentiating, and alulating the disriminant of the resulting third order polyno-mial, one an �nd that non-monotoniity appears for the modi�ed Gierer-Meinhardtsystem with

α
√

µ ≤ 33
√

33 − 177

16
. (58)Remarkably, the bifuration is again governed by the produt α

√
µ.11



Figure 3: Manifolds of symmetri (solid lines) and asymmetri (dashed lines) 2-pulse solutions for the modi�ed Gierer-Meinhardt system with µ = 5 and di�erentvalues of α (unbounded domain). Stability (bold) has been deteted by numerialsimulation of the full system. Arrows indiate the diretion of stable slow motion,given by equation (48).At this point we invoke a numerial solution of the onsisteny equations (56) and(57). Using ontinuation methods, we obtain the manifolds depited in Figure 3. Wehave �xed µ = 5 and display the manifolds of 2-pulse solutions for di�erent valuesof α. For α = 0.5 inequality (58) does not hold true and there is only the foldedbranh of symmetri solutions. As a 1-pulse solution on the positive half-axis witha Neumann boundary ondition at zero, the lower part of this branh is stable. As asymmetri 2-pulse, however, it turns out to be unstable with respet to symmetry-breaking perturbations. For α = 0.35 inequality (58) is satis�ed and a small bubbleof non-symmetri 2-pulse solutions has appeared. At the same time the symmetribranh in the interior has beome stable. For further dereasing values of α, thestable part inreases until for α = 3
4
√

µ
the fold of the symmetri branh disappears toin�nity. At the same time the asymmetri branh beomes unbounded an separates12
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Figure 4: Panels (I)�(VI): on�gurations of manifolds of 2-pulse solutions for dif-ferent hoies of L and α (periodi boundary onditions). Large �gure: Bifurationdiagram, indiating transitions between these on�gurations at singularities of dif-ferent types. Grey area: existene of stable 2-pulse solutionsinto two omponents. Panels (d) and (e) show the situation short before and afterthis transition. The arrows depit the diretion of the drift of the stable two-pulsesolutions given by (48).Note that the stable parts of the manifolds loose their stability here in a symmetry-breaking pithfork, where a branh of symmetri solutions is rossed by a branh ofasymmetri solutions. The fold, whih was the reason for the loss of stability of the1-pulse, ours here at an already unstable part of the slow manifold. Anyhow, thefold points (there appear also several on the asymmetri branh) should orrespondto points of normal non-hyperboliity, where a persistene of the slow manifold an13



not be expeted. The symmetry-breaking pithfork explains also the asymmetriblow-up, whih was observed numerially in [3℄. Figure 3 shows that for the value
α = 0.342 used in [3℄ the fold and the pithfork are so lose that by numerialsimulation they are hardly to distinguish. This is however only a oinidene, whihdoes not hold true for other values of α.Finally, we investigate the ase of periodi boundary onditions. Here, the length
L of the interval enters as a further parameter. Again, there are ten onsistenyonditions from (31)�(34) for j = 1, 2 and from the boundary onditions. They anbe simpli�ed to

a1(sinh (
√

µ(L − x)) + sinh (
√

µx)) − a2 sinh (
√

µL) + 2
3f(a2)√
µg2(a2)

= 0 (59)
a2(sinh (

√
µ(L − x)) + sinh (

√
µx)) − a1 sinh (

√
µL) + 2

3f(a1)√
µg2(a1)

= 0. (60)By numerial ontinuation methods, we obtain the manifolds of symmetri andasymmetri 2-pulse solutions, depending on the hosen values of L and α. Panels(I)-(VI) show di�erent on�gurations: In (I) and (VI) there are no stable 2-pulsesolutions. In (II) and (III), there is a stable stationary symmetri 2-pulse to whihthe other stable 2-pulses onverge. In (IV) and (V), the stable 2-pulses move into apithfork instability, as desribed above. The piture is ompleted by a bifurationdiagram in the parameters L and α, indiating singularities that lead to transitionsbetween the on�gurations (I)�(VI): The solid lines are degenerate pithforks, atwhih bubbles of asymmetri solutions merge or emerge at a symmetri solution.The dashed line orresponds to a branh-swithing of the symmetri solutions andthe dashed-dotted line to the emergene of the seond asymmetri branh. Notethat for L → ∞ the senarios (VI), (IV), (III), and (II) orrespond preisely to thediagrams (a), (b), (e), and (f) of the �gure 3 for the unbounded domain.5 ConlusionsWe present here an systemati approah to the problem of semistrong interation,based on lassial onepts of singular perturbation theory. It an be applied toa variety of problems with interating steep fronts or pulses and a varying bak-ground between them. A similar approah has been applied to the interation ofoptial pulses in mode-loked semiondutor lasers [14℄. The singular perturbationapproah omes in two stages. First, we are looking for quasi-stationary solutionsof the original problem, whih �nally will onstitute a slow-motion manifold. Inontrast to ODEs, where the stationary problem is just an algebrai equation whoseleading order solutions supply immediately a leading order approximation of theslow manifold, the stationary problem is here a singularly perturbed ODE in thespatial variable. Solutions to this equation may onsist of slow and fast parts. Sinethe evolution takes plae in the spatial variable of the original system, these or-respond to small sale parts, whih are in fat the fronts or pulses, and large sale14



parts, whih are the bakground between the pulses. In order to obtain a leadingorder approximation for the solutions, it is su�ient to solve the fast and slow sub-problems separately and then ompose them to a global approximating solution.Solutions to the slow and fast subproblem appear usually in families depending ona �nite number of parameters, suh as e.g. pulse positions or pulse heights. Gluingthe pieewise slow and fast solutions together indues nonlinear onstraints betweenthese parameters. The full set set of leading order solutions is then found as thesolution manifold to the system of onstraints in the spae of parameters of all thesubproblems. For the spei� struture of the systems introdued in [3℄ and pre-sented here the subproblems an be solved analytially and hene the onstraintsan be written as simple algebrai expressions, allowing for a detailed qualitativeinvestigation of the resulting manifolds. Using numerial path-following tehniquesalready at an earlier stage, it would also be possible to treat more ompliatedproblems in a similar manner.In a seond step, we have used higher order terms to determine the slow motion alongthe manifolds of quasi-stationary solutions. This is based on the assumption thatthe manifolds are normally hyperboli and hene persist for ε > 0. This assumptionshould of ourse be veri�ed in a rigorous way. Our investigations show that normalhyperboliity breaks down as soon as the manifold is not parametrized by the pulsepositions. In this way we were able not only to desribe the semistrong interation,but also the breakdown of this regime in two di�erent senarios.In the derivation of the equation (48) for the slow motion of the interating pulses,we disover the strange fat that the motion does not take plae in the next order,but is only of order ε2. This is related to the fat that the small sale pulse problem(5), (6) is reversible and hene has a generi homolini solution. At that point oneould introdue pulse veloities of order one in the small spatial sale as additionalsolution parameters, whih in general have not to be identially zero as in thispartiular ase.Referenes[1℄ A. Afendikov, A.Mielke,Multi-pulse solutions to the Navier-Stokes problem be-tween parallel plates, Z. Angew. Math. Phys. 52 (2001) no. 1 79-100[2℄ J.Carr and R.Pego, Metastable patterns in solutions of ut = e2uxx − f(u),Comm. Pure Appl. Math 42 (1989), 523-576 .[3℄ A. Doelman, T. Kaper, Semistrong Pulse Interation in a Class of CoupledReation-Di�usion Equations, SIAM J. Applied Dynamial Systems 2 (2003),no. 1, 53-96[4℄ A.Doelman, W. Ekhaus, T.J. Kaper, Slowly modulated two-pulse solutions inthe Gray-Sott model I: Asymptoti onstrution and stability SIAM J. Appl.Math. 61 (2000), 1080-1102 15
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