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Abstract

Diffusion Tensor Imaging (DTI) data is characterized by a high noise level. Thus,

estimation errors of quantities like anisotropy indices or the main diffusion direction

used for fiber tracking are relatively large and may significantly confound the accuracy

of DTI in clinical or neuroscience applications. Besides pulse sequence optimization,

noise reduction by smoothing the data can be pursued as a complementary approach

to increase the accuracy of DTI. Here, we suggest an anisotropic structural adaptive

smoothing procedure, which is based on the Propagation-Separation method and pre-

serves the structures seen in DTI and their different sizes and shapes. It is applied

to artificial phantom data and a brain scan. We show that this method significantly

improves the quality of the estimate of the diffusion tensor and hence enables one

either to reduce the number of scans or to enhance the input for subsequent analysis

such as fiber tracking.

1 Introduction

Since the early times of nuclear magnetic resonance, it has been known that this phe-

nomenon is sensitive to, and thus can be used to measure, diffusion of molecules in

complex systems [Carr and Purcell, 1954]. The basic principles of magnetic resonance

diffusion weighted imaging (DWI) were introduced in the 1980’s [Bihan and Breton, 1985,

Merboldt et al., 1985, Taylor and Bushell, 1985]. Since then, DWI has evolved into a

versatile tool for in-vivo examination of tissues in the human brain [Bihan et al., 2001]

and spinal cord [Clark et al., 1999], leading to a plethora of clinical and neuroscience ap-

plications. The broad interest in this technique grows from the fact that DWI probes

microscopic structures well beyond typical image resolutions through water molecule dis-

placement, which can be used in particular to characterize the integrity of neuronal tissue

in the central nervous system.

Diffusion in neuronal tissue is usually not isotropic but depends on the particular micro-

scopic structure of the tissue. Different diffusion directions can be probed by application

of corresponding bipolar magnetic field diffusion gradients [Stejskal and Tanner, 1965]. In

diffusion tensor imaging (DTI) [Basser et al., 1994b, Basser et al., 1994a], this direction

dependence is utilized to reveal information not only about local diffusivity but also local
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diffusion anisotropy, and thus, fiber structure. The information contained in the diffusion

weighted images consists of a voxelwise integral of the microscopic diffusion properties. In

DTI, this information is reduced to a three dimensional Gaussian distribution model for

diffusion. Within this model, diffusion is completely characterized by the diffusion tensor,

a symmetric positive definite 3× 3 matrix with six independent components. This model

describes diffusion completely if the microscopic diffusion properties within a voxel are

homogeneous. In the presence of partial voluming effects, like crossing fibers, this model

is only an approximation. For these cases, more sophisticated models exist, which include

higher order tensors or describe non-Gaussian diffusion distributions, like high angular

resolution diffusion imaging [Tuch et al., 1999, Frank, 2001]. In this paper, we restrict

ourselves to the Gaussian diffusion tensor model for anisotropic diffusion, as used in DTI.

There are several clinical and basic neuroscience applications of DTI in the human brain.

For a review, see [Sundgren et al., 2004] and [Mori and Zhang, 2006], respectively. Dif-

fusion in brain white matter is highly anisotropic due to its organization into fibers of

neuronal axons. DTI is able to reveal information on this fiber structure and on connec-

tions of the different regions in the brain [Melhem et al., 2002]. Fiber tracking has become

an important field of interest, since it is possible to gain insight into the connections in the

brain in vivo with applications such as surgical planning. In clinical or developmental stud-

ies, diffusion or anisotropy indices are usually compared by normalizing the brain volumes

to a template before application of voxel-wise comparison tests [Schwartzman et al., 2005,

Smith et al., 2006]. This way, the accuracy of diffusion and anisotropy based measures

is of crucial importance, since their variability directly determines the sensitivity to

detect changes over time or differences between subjects. DTI has been used in lon-

gitudinal studies and comparison of patient groups, for example in cognitive studies

[Liston et al., 2006, Khong et al., 2006], developmental studies [McKinstry et al., 2002,

Schneider et al., 2004, Bengtsson et al., 2005, Mukherjee and McKinstry, 2006], assess-

ment of brain injury [Liu et al., 1999, Nakayama et al., 2006] and cancer treatment

[Leung et al., 2004], or genetic studies [Carbon et al., 2004, O’Sullivan et al., 2005]. All

these studies have in common that subtle changes in diffusion or anisotropy in white

matter brain areas were used as an indicator for neuronal changes or differences.

DTI suffers from significant noise which may render subsequent analysis or medical de-

cisions more difficult. This is especially important since it has been shown that noise

may induce a systematically biased assessment of features. For example, a well known

phenomenon is the biased estimation of anisotropy indices in the presence of noise

[Basser and Pajevic, 2000, Hahn et al., 2006]. At high noise levels, in addition to the

common random errors, the order of the diffusion eigenvectors is subject to a sorting bias.
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Noise reduction is therefore essential. Several approaches have been proposed for smooth-

ing diffusion tensor data. They include common methods such as Gaussian smoothing

[Westin et al., 1999], anisotropic kernel estimates [Lee et al., 2005], and methods based on

non-linear diffusion [Weickert, 1998, Weickert, 1999, Parker et al., 2000, Ding et al., 2005]

or splines [Heim et al., 2007]. In general, due to the bias introduced by noise, it is essential

to apply the smoothing directly to the images rather than to the direction field of the prin-

cipal tensor eigenvectors or the tensor field. This is even more advisable since operation in

tensor space involves serious mathematical difficulties in choosing the appropriate metric

[Fletcher, 2004].

Here, we propose a new method based on the Propagation-Separation (PS) approach

[Polzehl and Spokoiny, 2006]. By naturally adapting to the structures of interest at differ-

ent scales, the algorithm avoids loss of information on size and shape of structures, which

is typically observed when using non-adaptive filters. More specific, by virtue of inspecting

scale space in an iterative way, PS accumulates information on the spatial structure at

small scales and uses this information to improve estimates at coarser scales.

This article is organized as follows: In section 2 we briefly review the basic notation of

DTI and smoothing methods. Section 3 is dedicated to our structural adaptive smoothing

algorithm based on the propagation-separation approach. We apply the method to artifi-

cial as well as experimental data in section 4. The last section 5 summarizes and discusses

our results.

2 Diffusion Tensor Imaging

2.1 Diffusion Tensor

Let S~b
denote the diffusion weighted image acquired when applying the magnetic field

gradient in direction ~b with the ”b-value” b. S0 corresponds to the non-diffusion weighted

image (b = 0). As an effect of the diffusion of molecules in the gradient direction ~b, the

signal S~b
is attenuated relative to S0 approximately in an exponential way, i.e.,

S~b
= S0 exp(−bD(~b)) , (1)

where D(~b) is the diffusion constant with respect to the applied gradient. Using a Gaus-

sian model of diffusion, the anisotropy can be modeled by a diffusion tensor, which is
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represented by a symmetric positive definite 3× 3 matrix:

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz .

 (2)

Therefore, the ”b-value” in Eq.(1) is replaced by a ”b-matrix” [Mattiello et al., 1994,

Mattiello et al., 1997].

To completely determine the diffusion tensor, one has to acquire diffusion weighted images

for at least 6 gradient directions ~b. D can be estimated e.g. via multiple linear regression.

The tensor components depend on the orientation of the object in the scanner frame

xyz. To circumvent this dependence, only rotationally invariant quantities derived from

the diffusion tensor are usually used for further analysis, for example the eigenvalues and

eigenvectors.

The diffusion tensor can be represented by a diffusion ellipsoid where the three main axis

represent the eigenvalues of the tensor, µi (i = 1, 2, 3). The principal eigenvalue µ1 and the

corresponding eigenvector determine the main diffusion direction. Since the eigenvalues

are rotationally invariant, quantities based on these can be properly defined. One of these

invariant quantities is the trace of the diffusion tensor

Tr(D) = µ1 + µ2 + µ3 . (3)

The value 〈µ〉 = Tr(D)/3 is called mean diffusivity and completely neglects the anisotropy

of the diffusion. Another very commonly used parameter is the fractional anisotropy (FA),

which is based on second order moments of the eigenvalues, and is defined as

FA =

√
3
2

√
(µ1 − 〈µ〉)2 + (µ2 − 〈µ〉)2 + (µ3 − 〈µ〉)2

µ2
1 + µ2

2 + µ2
3

. (4)

Higher moments can be used for more complete characterization of anisotropy (such as

skewness or kurtosis) [Westin et al., 1999, Alexander et al., 2000].

Note that the estimation errors of the eigenvalues are not rotationally invariant. About 30

gradient directions are required for robust quantitative measurements of eigenvalues and

tensor orientation [Jones, 2003, Jones, 2004]. Therefore, to decrease estimation errors, in

practice one measures more than 6 directions [Kinglsey, 2006], however, at the cost of

acquisition time.

2.2 Smoothing diffusion tensor data

Due to the diffusion attenuation in the diffusion weighted images, the fact that white

matter appears already with low intensity in T2 weighted images, and its high mo-
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tion sensitivity, DTI suffers from significant noise. This is even more serious, as DTI

probes microscopic structures well below typical voxel sizes, causing intra-voxel dephas-

ing. Noise in the diffusion weighted images is reflected as noise in the estimated dif-

fusion tensor and subsequently all derived quantities. Additionally, it has been shown

[Basser and Pajevic, 2000, Hahn et al., 2006], that the estimates of the tensor and de-

rived quantities are intrinsically biased. This bias depends on the signal size S and the

noise variance.

Figure 1a,b shows the influence of relatively strong noise on the direction field of principal

eigenvectors. It is evident that the direction field is irreversibly corrupted by noise. There-

Figure 1: Effect of noise in the diffusion weighted images on the direction field of principal

eigenvectors. (a) An artificial 3D DTI dataset has been created based on the direction

field shown in the left figure. The direction of the lines corresponds to the direction of the

direction field whereas the length of the lines corresponds to the anisotropy (FA = 0 and

0.8 for the dots and lines, respectively). One slice is shown. (b) The direction field for

noisy images. Smoothing the direction field (and not the original images) can therefore

only be of limited use. (c) The direction field after smoothing the original images with

the here proposed method.

fore, smoothing algorithms that operate on the FA-map or the direction field itself such

as in [Koltchinskii et al., 2007] can only be of limited use. In addition, those algorithms

cannot improve the bias of the estimated diffusion tensor, and smoothing the tensor field

itself requires choice of an appropriate metric [Fletcher, 2004]. We therefore suggest to

smooth the diffusion weighted images. This has already been done using non-linear diffu-

sion methods [Parker et al., 2000, Ding et al., 2005] or splines [Heim et al., 2007]. Here,

we use the Propagation-Separation approach which has been successfully applied to the

analysis of fMRI data [Tabelow et al., 2006b, Tabelow et al., 2006a, Voss et al., 2007]. An
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application of this method to the artificial dataset is shown in Fig. 1c.

3 Structural Adaptive Smoothing of DTI data

The main idea of the proposed approach is to reduce the error of estimating the tensor

directions and tensor characteristics like fractional anisotropy by a preliminary smoothing

of the observed DTI data. The application of a standard Gauss filtering would be highly

inefficient in the DTI applications in view of the anisotropic nature of the diffusion tensor.

Indeed, the tensor direction remain constant only along the fiber directions and averaging

over a large symmetric neighborhood of every voxel would lead to the lost of directional

information.

Our underlying structural assumption is that for every voxel there is a neighborhood

of this voxel in which the diffusion tensor is nearly constant. This assumption re-

flects the fact that the structures of interest are regions with a homogeneous fractional

anisotropy, a homogeneous diffusivity, and a locally constant direction field. The shape of

this neighborhood can be quite different for different points and cannot be described by

few simple characteristics like bandwidth or principal directions. The PS approach from

[Polzehl and Spokoiny, 2006] is specially developed for dealing with spatial structures with

unknown shape. It describes the local neighborhood of homogeneity around every voxel

by means of a collection of nonnegative weights. However, the original proposal from

[Polzehl and Spokoiny, 2006] is only applicable to denoising the usual images or sequences

of images, [Tabelow et al., 2006b]. An extension of this proposal to the DTI is a nontrivial

task because it requires to compare estimated local DTI structures at different voxels.

3.1 Propagation-Separation approach

Let us assume that for each voxel with coordinates i = (ix, iy, iz), the expected values of

the diffusion weighted signal S~b,j
and the non-diffusion weighted signal S0,j within a local

vicinity j ∈ U(i) of voxel i can approximately be described by a constant, i.e.

ES~b,j
= ES~b,i

∀~b ∀j ∈ U(i). (5)

Discontinuities in any of the diffusion weighted images S~b
result in discontinuities for the

diffusion tensor. We therefore assume that within U(i) the diffusion tensor is homogeneous.

In order to estimate the diffusion weighted signal S~b,i
(as well as S0,i), we define local

weights Wi = {wi1, . . . , win} (n the number of voxels). In contrast to non-adaptive weight-

ing schemes, which depend on some fixed bandwidth and kernel function, we determine
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Wi for each voxel i from the data to reflect the local homogeneity structure given by U(i).

If we knew the neighborhood U(i), we could define local weights as wij = Ij∈U(i) and use

the weighted least squares estimate

Ŝ~b,i
=

∑
j

wijS~b,j
/

∑
j

wij (6)

as an estimate of ES~b,i
. From this we could get an improved estimate D̂i for the diffusion

tensor from

− ln
Ŝ~b,i

Ŝ0,i

= ~b ~D + ε~b,i , (7)

with matrix b = ~b ~b> and tensor D vectorized as ~b = (bxx, byy, bzz, 2bxy, 2bxz, 2byz)>

and ~D = (Dxx, Dyy, Dzz, Dxy, Dxz, Dyz)>, respectively. The error ε~b,i is considered to be

Gaussian N (0, σi), although realistic noise is more complicated due to the nonlinearities

in Eq. (7) [Hahn et al., 2006]. An estimate σ̂2
i for σ2

i can be obtained from the residuals

of the linear model Eq. (7). Hence, we have

Var ~̂Di = σ2
i B , (8)

where B =
∑

b
~b~b> [Mattiello et al., 1994, Mattiello et al., 1997]. Since the homogeneity

structure is defined from the diffusion tensor, we use the same weighting scheme Wi for

obtaining estimates Ŝ~b
for all diffusion weighted images.

However, the neighborhoods U(i) are unknown and hence must be determined from the

data. If we had estimates of Ŝ~b,i
, we could decide whether j belongs to the set U(i) by

testing the hypothesis

H : ES~b,i
= ES~b,j

∀~b . (9)

Due to the high dimensionality of the space of diffusion weighted images, a test simply

based on the Euclidian distance would be highly inefficient [Neyman, 1937, Fan, 1996].

A much more efficient test can be derived using an informative sub-space. Since the

information we are interested in is contained in the diffusion tensor itself, a natural test

statistic is

Tij =
1
σ̂2

i

(~̂Di −
~̂Dj)B−1(~̂Di −

~̂Dj)> . (10)

This basically amounts in testing the hypothesis

H ′ : Di = Dj . (11)

Based on the value of Tij , we can refine the non-adaptive weighting scheme Wi and assign

zero weights if Di and Dj are significantly different. This corrected weighting scheme
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reflects the homogeneity structure U(i) and can be used to obtain new estimates of ES~b,i

and hence D in each voxel i by Eqns. (6) and (7) .

We utilize both steps, estimation of parameters and testing homogeneity, in an iterative

procedure. Iteration starts at step 0 with a very local model in each voxel i given by

weights

w
(0)
ij = δij ,

where δij is Kronecker’s delta symbol. The initial estimates Ŝi using Eq. (6) therefore

coincide with the data.

We now generate a geometric series (h(k))k=0,··· ,k∗ of bandwidths. First, an anisotropic

metric

∆2(i, j,D) = detD


ix − jx

iy − jy

iz − jz


>

D−1


ix − jx

iy − jy

iz − jz

 (12)

is defined. It enables us to use the anisotropy information contained in the diffusion tensor

itself by inserting a regularized estimate of the diffusion tensor, D̃. Defining weights as

w̃
(k)
ij = Kloc(∆(i, j, D̃(k−1)

i )/h(k)) (13)

leads to series of anisotropic kernel estimates similar to [Chung et al., 2005,

Lee et al., 2005].

Let W
(k−1)
i be the weighting scheme from step k − 1. We can then use the homogeneity

information available from D̂(k−1) by introducing a statistical penalty

s
(k)
ij = N

(k−1)
i T

(k)
ij /λ (14)

with N
(k−1)
i =

∑
j w

(k−1)
ij and a positive real control parameter λ, which is the main

parameter in our approach. The choice of λ will be explained in Subsection 3.3. In the

kth iteration, new weights are generated as

w
(k)
ij = Kloc(∆(i, j, D̃(k−1)

i )/h(k))Kst(s
(k)
ij ) . (15)

Both Kloc and Kst are monotone non-decreasing kernels with compact support on [−1; 1].

The regularized tensor estimate used in Eq. (13) is given by

D̃(k−1)
i = D̂(k−1)

i +
ρ√

N
(k−1)
i

I , (16)

depending on a regularization parameter ρ and the sum of weights N
(k−1)
i , which charac-

terizes the variability of the estimated tensor.
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Then we recompute the estimates employing the just defined weights as

Ŝ
(k)
~bi

=
1

N
(k)
i

∑
j

w
(k)
ij S~b,j

. (17)

The resulting procedure is essentially a multiscale procedure. In each iteration we allow for

a different amount of smoothing by increasing the bandwidth h(k). The resulting weighting

scheme excludes observations in voxel j from being used in estimates at voxel i as soon as

they are detected to behave significantly different. With a high probability, such decisions

are retained within the following iterations. We refer to [Polzehl and Spokoiny, 2006] for

detailed properties of the weighting scheme.

3.2 Effect of spatial correlation

DTI data inherently contain spatial correlation. The statistical penalty sij effectively

measures the probability of observing the estimate D̂i if the correct diffusion tensor Di

equals D̂j . The penalty heavily depends on a correct assessment of the variability of D̂i.

In case of (positive) spatial correlation the variance reduction achieved will be reduced

and therefore we need to adjust the statistical penalty.

As a rough model we assume the spatial correlation to be caused by convolution with a

Gaussian kernel KG with unknown bandwidths g = (gx, gy, gz). This leads to a multi-

plicative correction factor

Ci(g, h) =

∑
l

[∑
j Kloc(∆(i, j, D̃i)/h)KG(∆(i, j, Ig)/(gxgygz))

]2∑
j Kloc(∆(i, j, D̃i)/h)2

∑
j KG(∆(i, j, Ig)/(gxgygz))2

, (18)

with Ig = diag(g), in the statistical penalty. For the first introduction of this correction

factor see [Tabelow et al., 2006b].

3.3 Choice of parameters - Propagation Condition

The proposed procedure involves several parameters. The most important one is the

control parameter λ, which appears as a scale parameter in the statistical penalty sij .

The special case λ = ∞ simply leads to an adaptive anisotropic kernel estimate with

bandwidth h(k∗) and anisotropic kernel determined by D̂(k∗−1)
i . We propose to choose

the control parameter λ as the smallest value satisfying a propagation condition. This

condition requires that, if the local assumption is valid globally, i.e., Di ≡ D does not

depend on i, then with high probability the final estimate for hmax = ∞ coincides in every

point with the global estimate. Since the estimate of the diffusion tensor itself is biased,
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with bias depending on the mean and variance of S0 and Sb, we formulate the propagation

condition in terms of the estimated diffusion weighted images. More formally, we request

that in this case for each iteration k and arbitrary D and S0

E|Ŝ(k)
0 −ES0| < (1 + α)E|Š(k)

0 −ES0| (19)

for a specified constant α > 0, where Š
(k)
0 is the nonadaptive estimate obtained employing

weights

w
(k)
ij = Kloc(∆(i, j, D̃(k−1)

i )/h(k)) . (20)

and Eq. (6). Note that this also guarantees a similar condition for the estimates of ESb

due to the use of the same weighting schemes. The value α characterizes a maximal loss in

efficiency of the adaptive estimate compared to its non-adaptive counterpart, with α = 0.2

providing reasonable results.

The control parameter λ provided by this condition is characteristic for the selected class

of error distributions. A default value for λ can therefore be selected by simulations using

artificial DTI data with independent Gaussian noise on structureless diffusion weighted

images. In general there is no need to adjust this parameter for any experimental DTI

dataset if the noise is Gaussian.

The second parameter of interest is the maximal bandwidth h(k∗) and hence the number of

iterations k∗, which controls both numerical complexity of the algorithm and smoothness

within homogeneous regions. The maximal bandwidth can be chosen by heuristic argu-

ments, including the amount of computing time, the maximal size of homogeneous regions

within the image, and the variance reduction aspired. The separation property of the

procedure secures that, up to a constant factor, the quality of reconstruction reached at

any intermediate step will not be lost for larger bandwidths [Polzehl and Spokoiny, 2006].

Additionally, we specify a number of parameters and kernel functions that have less influ-

ence on the resulting estimates. As a default, the kernel functions are chosen as

Kloc(x, p) = Kst(x, p) =


1 x < p
x−p
1−p p ≤ x ≤ 1

0 x > 1

 . (21)

The initial bandwidth is chosen as h(0) = 1. The bandwidth is increased after each

iteration by a default factor ch = 1.251/2. p = 0.25.

The regularization parameter ρ from Eq.(16) should be chosen such that at early steps the

anisotropy in the location penalty is small, whereas at final steps with stabilized tensor

estimates, the regularization has less effect.
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3.4 Propagation-Separation algorithm for DTI data

We describe the adaptive smoothing algorithm briefly.

• Initialization: Generate B =
∑

b
~b~b> from gradient directions b = ~b ~b>, ~b =

(bxx, byy, bzz, 2bxy, 2bxz, 2byz)>. Set k = 0, initialize the bandwidth h(0) = 1 and the

estimates for the diffusion weighted images

Ŝ
(0)
i = Si ,

and compute the diffusion tensor estimates D̂(0)
i as well as σ̂(0) from Eq. (7). Set

N
(0)
i = 1, k = 1 and h(1) = chh(0).

• Adaptation: For every pair i, j, we compute the penalty

s
(k)
ij =

N
(k−1)
i

λCi(g, h(k−1))σ̂2
i

(~̂Di −
~̂Dj)B−1(~̂Di −

~̂Dj)> .

Weights are computed as

w
(k)
ij = Kloc

(
∆(i, j, D̃(k−1)

i )/h(k)
)
Kst

(
s
(k)
ij

)
,

using regularized tensor estimates D̃(k−1)
i = D̂(k−1)

i + ρq
N

(k−1)
i

I.

• Estimation of diffusion weighted images: Updated local MLE estimates Ŝ
(k)
~b,i

and Ŝ
(k)
0,i of ES~b,i

and ES0,i are obtained as

Ŝ
(k)
~b,i

= U
(k)
~b,i

/N
(k)
i , Ŝ

(k)
0,i = U

(k)
0,i /N

(k)
i ,

with N
(k)
i =

∑
j w

(k)
ij , U

(k)
~b,i

=
∑

j w
(k)
ij S~b,j

and U
(k)
0,i =

∑
j w

(k)
ij S0,j .

• Tensor estimation: Estimate D̂(k)
i and σ̂(k) from

− ln
Ŝ

(k)
~b,i

Ŝ
(k)
0,i

= ~b ~D + ε
(k)
~bi

.

• Stopping: Stop if k = k∗, otherwise set h(k+1) = chh(k), increase k by 1 and

continue with the adaptation step.
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4 Examples

4.1 Numerical phantom

We constructed a numerical phantom by defining a series of isocentric cylindrical shells

with variable directionality and anisotropy. The phantom mimics typical situations ob-

served in the brain parenchyma, cerebrospinal fluid (CSF), and background. It is described

in detail in Fig. 2. Figure 2a shows the FA map of a slice in the x-y plane through the

phantom, computed from a noise-free data set. Figures 2b–e show corresponding unrolled

cylindrical shells, starting with the innermost shell and proceeding to the outermost shell.

Noise was added to the phantom by transforming the T2 and diffusion weighted volumes

slice-wise (in the xy plane) to k-space and adding Gaussian noise to both the real and

imaginary part. The volumes where then slice-wise backtransformed into image space.

Figures 2f–j show the same slice as Fig. 2a–e but computed from noisy data, and Figs. 2k–

o show the result after smoothing with the proposed method. As a result, the shape of

the phantom could be recovered well from the noisy data (Fig. 2k), the blurred areas in

Fig. 2g appear to be distinct again (Fig. 2l), regions with different direction fields and

FA inhomogeneity could be recovered well (Fig. 2m–o), the CSF compartment appears to

be homogenous again (Fig. 2k, black area between the cylindrical shells), and, finally, the

problem of negative eigenvalues as evident as black spots in Figs. 2f–j has been overcome.

Note that the expected intensity values in the noisy diffusion weighted images are larger

than the corresponding values in the true S0 and Sb volumes. Therefore, there are two

sources of bias in the estimated tensor. The first part is caused by the positive bias of the

observed S0 and Sb images. This intrinsic bias can only be removed by a bias correction

for the observed S0 and Sb images. The second contribution to the bias comes from the

nonlinear transformation in Eq. (7). This bias part is caused by variance of the observed

images and can be reduced by adequate smoothing procedures. In order to illustrate this

effect, we report numerical results for the FA values with respect to the tensor Ď obtained

from the expected ES0 and ESb volumes by Eq. (7) rather than the tensor defining the

phantom.

To better quantify the effects of our proposed smoothing method, we computed boxplots

of absolute errors of the estimated FA and deviations between the estimated FA and the

FA obtained from Ď, see Figs. 3a–b. These values were only computed for voxels inside

the phantom. The absolute error in FA was reduced by 70 − 90%. Figures 3a–b show

an significant reduction in the variance and an almost complete elimination of the bias

12



Figure 2: Reconstruction of a numerical DTI phantom of 64 × 64 × 26 voxels. The

phantom consists of 4 centered cylindrical shells. The innermost shell contains eight

homogeneous segments with a diffusion tensor pointing in z-direction. The second and

third shell are characterized by regions with zero z-component in the tensor and constant

anisotropy index (FA) within slices. The outermost shell again contains tensors with zero

z-component but smoothly varying anisotropy index. Empty space between the cylinder

shells and in the center is characterized by an isotropic tensor and a true S0 value of

2500. Outside the phantom the true S0 value is set to zero. The S0-value within the

cylindrical shells decreases with the FA-value. Noisy Sb and S0 images are generated

using the diffusion tensor model and adding noise with standard deviation 1600 to both

the real and imaginary part in k-space.
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(a) Voxelwise estimates
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(b) Smoothed  estimates

Figure 3: Boxplots of errors of the estimated FA with respect to the FA obtained from ES0

and ESb volumes for different true FA-values. (a) Errors in FA for voxelwise estimates.

(b) Errors in FA for smoothed (PS) estimates.

component caused by noise variability in the diffusion weighted images.
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(b) Smoothed estimates

Figure 4: Boxplots of errors of the estimated principal direction measured in radians. (a)

Voxelwise estimates, (b) smoothed (PS) estimates.

Figures 4a–b provide corresponding results for the estimated principal diffusion direction.

The absolute direction error was defined as the mean of the absolute angles between the

true (from the noise free phantom) and the estimated direction, modulo 90 degrees. We

observe a mean reduction of the directional error by 50− 70%.

In order to investigate the effect of the number of diffusion weighted images used, we ob-
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Figure 5: Absolute error of estimated principal direction as a function of the number

of gradients. Gradient directions have been obtained to maximize the mean distance of

gradient directions to their three neighboring directions for number of gradients equal to

12, 15, 18, 21, 24, 27, 30, 33, 36, 40, 45, 50 and 55. Solid lines correspond to errors

of principal directions for PS estimates as a function of the number of gradients used,

while dashed lines show the same information for voxelwise estimates. Curves for different

FA-values are obtained from regions of constant FA-values within the phantom.

tained sets of gradient directions by numerically optimizing the mean distance of gradient

directions to their three neighboring directions. This was done for 12, 15, 18, 21, 24, 27, 30,

33, 36, 40, 45, 50 and 55 gradients, respectively. The mean error of the estimated principal

direction was then obtained for varying number of gradients by simulation based on our

phantom. Figure 5 provides curves for smoothed (solid lines) and voxelwise (dashed lines)

estimates and different FA-values. The figure suggests that a small number of gradients

together with spatially adaptive smoothing as proposed in this paper allows for improved

results compared to using a large number of gradients and voxelwise estimates.
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4.2 Brain scan

Next, the procedure is applied to the DTI data of the brain of a normal volunteer. (The

imaging parameters were as follows: We utilized parallel imaging on an 8-channel brain

coil (acceleration factor of 2), on a 3.0 Tesla General Electric Excite MRI scanner. We

used a single-shot spin-echo EPI sequence with one image without diffusion weighting and

55 diffusion gradient directions, which were approximately isotropically distributed over

the sphere. Echo and repeat time were TE = 68.3 ms, TR = 7000 ms, respectively, and

72 axial slices with a matrix size of 128 × 128 were acquired. Images were zero filled to

a matrix size of 256 × 256, yielding a resolution of 0.82 × 0.82 × 1.8 mm3. The b-value

in the diffusion weighted images was 1000 s/mm2. The subject provided written informed

consent in compliance with the institutional review board of Weill Medical College of

Cornell University.)

Figure 6a shows a corresponding FA direction map of a medial axial slice through the brain.

Figure 6c shows an FA direction map of the same brain volume which was computed from

only 30 (instead of all 55 measured) diffusion images. For comparison, Figs. 6b and 6d

show FA direction maps of the smoothed data (λ = 25) corresponding to Figs. 6a and

6c, respectively. It can be seen that smoothing the DTI images with PS preserves white

matter structures well, without evident blurring. Furthermore, smoothing the volume that

was acquired with only 30 gradient directions (Fig. 6d) achieves a less noisy FA direction

map than the un-smoothed analysis using all 55 measured gradients (Fig. 6c), without

evident loss of structure. These results are in accordance with the phantom results as

described before. Although we do not have a gold standard of the brain scan here, it can

be assumed, therefore, that the benefits of smoothing include a lower directional and FA

variability and bias, without loss of white matter structures.

5 Summary and Conclusions

This paper presents a new anisotropic structural adaptive approach for smoothing diffusion

weighted images. The procedure is entirely data driven and focuses on homogeneity of

the diffusion tensor along its principal direction. We demonstrate, using phantom and

experimental data, that the proposed procedure allows for a significant decrease of both the

error in the estimated FA and in the estimate of the principal direction of the tensor. The

gain in efficiency allows for providing the same accuracy with considerably less gradient

directions, leading to possibly shorter acquisition times.

The method in its form as described here puts equal value on all six tensor components.
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Figure 6: Application of the proposed smoothing algorithm to a brain scan: FA map of

an axial slice of the original data using all 55 diffusion weighted images (a). FA map of

the smoothed data with the procedure described in the paper (b). FA map of the original

data using a reduced set of only 30 diffusion weighted images (c). FA map of the smoothed

data with only 30 diffusion weighted images (d). In all images, black regions inside the

brain denote areas in which at least one of the eigenvalues was negative.
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In other words, we were assuming that neither direction (three components of the diag-

onalized tensor, the normalized, orthogonal eigenvectors) nor diffusivity (the other three

components, the eigenvalues) are favored in applications. Variations by altering the test

statistic, Eq. (10), and, subsequently, the statistical penalty, Eq. (14). are possible. For

example, for fiber tracking, in which the FA values are used only for thresholding and are of

minor importance, could profit from putting more weight onto the estimation of principal

tensor directions. Clinical applications, in which subtle between-patients or longitudinal

differences between anisotropy or diffusivity values are searched for, may profit from ne-

glecting principal tensor directions. To evaluate the balances between these alternatives

will be the scope of future work.
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