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Abstra
tThe paper introdu
es and dis
usses di�erent estimation methods for multi index mod-els where the indi
es are parametri
 and the link fun
tion is nonparametri
. More spe-
i�
, the here introdu
ed methods follow the idea of Hrista
he et al. (2001), modifyand try to improve it. Moreover, they 
onstitute alternatives to the so 
alled MAVE-based methods (Xia et al, 2002). We 
on
entrate on an intuitive presentation of whatea
h pro
edure is doing to the data and its implementation. All methods 
onsideredhere we have made freely available in R. We 
on
lude with a 
omparative simulationstudy based on the provided pa
kage EDR.1 Introdu
tionDimensionality 
ontinues to be a 
hallenging problem in nonparametri
 estimation andtesting. Many di�erent methods have been proposed to 
ir
umvent the so 
alled 
urse ofdimensionality. In nonparametri
 estimation one 
ould distinguish basi
ally between twodi�erent approa
hes. One is the data explorative method sear
hing for a stru
tural adapta-tion. The alternative is exploring stru
tural restri
tions motivated from model theory. These
ond one refers to additional knowledge available in the spe
i�
 
ontext, e.g. e
onomi
s,medi
ine, biology, physi
s, et
. whi
h might impose separability 
onditions like additivityor similar knowledge of stru
ture.In this arti
le we 
on
entrate on the �rst approa
h. We suppose to have data (Yi,Xi),
i = 1, . . . , n, whi
h are generated by a model of the form

Yi = f(Xi) + εi = g(θT
1 Xi, θ

T
2 Xi, · · · , θT

MXi) + εi = g(ΘXi) + εi , (1)where Yi are s
alar response variables, Xi are d-dimensional explanatory variables, εi arerandom errors and f(·), respe
tively g(·), are unknown fun
tions f : IRd → IR, g : IRM →
IR with M ≤ d.In other words, Θ is a linear (orthogonal) mapping from the high-dimensional spa
e IRdonto IRM . For identi�
ation we impose that Θ Θ⊤ = IM , where IM is the M ×M identitymatrix. Note that in our estimation pro
edures this restri
tion is neither ne
essary norwanted. Moreover, the length of ve
tor θj 
hara
terizes the variability of the fun
tion ffrom (1) in that dire
tion. Therefore, g is homogeneous, i.e. has the same smoothness inall M dire
tions, what simpli�es the 
hoi
e of smoothing parameters.IfM = d then we are ba
k in the fully nonparametri
 
ase. In pra
ti
e, however, model (1)explains most of the variation of Y for rather smallM (a
tually, forM = 1, 2 sometimes 3).Relations as in (1) are referred to as multi-index regression models. All the information1



about f(x) is 
on
entrated in a (low-dimensional) proje
tion Θx. The aim is to rea
hdimension redu
tion for the regression problem, and to des
ribe the index spa
e I = Im Θ⊤whi
h is also referred to as the e�e
tive dimension spa
e, see e.g. [8℄, [9℄ and [3℄.Many di�erent methods have been proposed to address the problem of adaptive dimensionredu
tion. We do not intend to give a 
omprehensive overview but refer only to somere
ent 
ontributions and referen
es therein. An interesting new approa
h has been intro-du
ed in [13℄. They �rst span the mean 
entral subspa
e by the Fourier transform of thedensity weighted gradient of f . This way they avoid the di�
ult estimation of f and itsderivative(s). A parti
ularly interesting 
ontribution of their work is that afterwards, theysu

eed to des
ribe the whole 
entral subspa
e. This is done by the means of the mean
entral subspa
es of all possible transformations of response Y . This paper also 
ontainsa good review of existing methods in
luding re
ent advan
es like the 
ontour regressionpro
edure of [7℄, and inverse regression with a minimum dis
repan
y approa
h, see [4℄.Our methods 
ome 
losest to the following 
ontributions. [5℄, [11℄ and [12℄ proposed algo-rithms for estimating the index spa
e for a given e�e
tive dimension M , whi
h allows tobypass this 
urse of dimensionality problem using the stru
tural adaptation approa
h.All methods dis
ussed here 
onsist of three main steps. The �rst is to estimate the d ×
d matrix Υ of squared averaged derivatives ( 1

n

∑n
i=1 ∇f(Xi) ∇f⊤(Xi)) by an iterativepro
edure. This pro
edure does not rely on the unknown e�e
tive dimension M . In these
ond step theM -dimensional index spa
e is estimated for a givenM . Finally we estimatethe link fun
tion to obtain a 
omplete des
ription of the model.All pro
edures introdu
ed and 
ompared here are made available as a pa
kage (EDR) ofthe R-Statisti
al System [10℄.The rest of the paper is organized as follows. In the next se
tion we explain the basi
ideas underlying all estimation pro
edures 
onsidered here. In Se
tion 3.1 we des
ribe �rstthe original [5℄ estimation method based on these ideas, in
luding a des
ription of ourimplementation and a dis
ussion of the 
hoi
e of (initial) parameters. We then proposea modi�
ation that leads to improved numeri
al results. Finally, we present a pro
edurethat involves an additional penalization for dire
tions outside a presumed lower dimen-sional spa
e. This again improves results in our numeri
al study. We try to provide fullyautomati
 pro
edures in the sense that in 
ase of doubts, reasonable defaults for the param-eters are available. In Se
tion 4 we 
ompare the numeri
al performan
e of the introdu
edmethods.2 Basi
 Ideas2.1 Estimating the Generalized Prin
iple ComponentsRe
all that we 
onsider the model

E[Y |X = x] = f(x) = g
{
θT
1 x, θ

T
2 x, . . . , θ

T
Mx
}

= g {Θx} , (2)2



where Θ = (θ1, θ2, . . . , θM )T ∈ IRM×d. Note that Θ is a linear orthogonal mapping fromthe high-dimensional spa
e IRd onto the spa
e IRM , M ≤ d, satisfying the identi�
ation
ondition that the maximal eigenvalue of ΘΘ⊤ is equal to one. For the ease of presentationwe will assume X ∈ [−1, 1]d. As it is well known that the optimal design for nonparametri
regression is the uniform one, an appropriate data transform is re
ommended.The model stru
ture (2) implies that ea
h gradient ∇f(Xi), belongs to the index spa
e I,whi
h in turn is spanned by the ve
tors ∇f(Xi). Therefore, a natural basis in I 
an bede�ned via the single value de
omposition of the matrix Υ de�ned as
Υ =

1

n

n∑

i=1

∇f(Xi)∇f⊤(Xi) = OdΛO
⊤
d (3)with an orthonormal d × d-matrix Od and a d × d-diagonal matrix Λ with de
reasingeigenvalues. These matri
es deliver information about model (2). Let M be the rank of Υ,then the �rst M 
olumns of Od provide an orthonormal basis of the spa
e I. The diagonalelements of Λ show how fast the fun
tion g varies in ea
h dire
tion. This suggests to �rstestimate Υ from the data and then re
over the spa
e I using this estimate. Moreover, thisprovides a natural ordering of the indi
es.Matrix Υ is a quadrati
 fun
tional of the gradient of the regression fun
tion f . [6℄ proposean estimation pro
edure based on the expansion of the gradient ∇f with respe
t to anorthonormal basis. Suppose that we are given a 
olle
tion {ψℓ , ℓ = 1, . . . , L} of fun
tions

ψℓ : IRd → IR whi
h satisfy
n∑

i=1

ψℓ(Xi)ψℓ′(Xi) = δℓℓ′ ,where δℓℓ = 1 and δℓℓ′ = 0 for ℓ 6= ℓ′. Now, let β∗ℓ with
β∗ℓ =

n∑

i=1

∇f(Xi)ψℓ(Xi) (4)be the ℓ-th 
oe�
ient of ∇f with respe
t to the basis system {ψℓ}. Note that ea
h d-ve
tor
β∗ℓ is a linear fun
tional of the gradient and hen
e belongs to I. Thus if the dimensionof the spa
e spanned by β∗1 , . . . , β∗L equals M , this set of ve
tors 
ompletely 
hara
terizesthe index spa
e I, and one 
an identify the spa
e I by seeking for the �rst M prin
ipal
omponents of the set β1, . . . , βL.In order to estimate B∗(B∗)T = ΥL (B∗ being the matrix having β∗k , k = 1, . . . , L as
olumns) one 
an �rst 
onstru
t an estimate β̂ℓ of ea
h 
oe�
ient β∗ℓ , e.g.

β̂ℓ =

n∑

i=1

∇̂f(Xi)ψℓ(Xi) (5)on the basis of a pilot estimate ∇̂f of the gradient, and then 
ompose the estimate
Υ̂L =

L∑

ℓ=1

β̂ℓβ̂
⊤
ℓ3



of ΥL. It is su�
ient for our purposes to 
hoose L su
h that rank(ΥL) = M .It holds ΥL ≤ Υ and sin
e ΥΥL = ΥLΥ, the eigenve
tors of Υ are at the same time theeigenve
tors of ΥL. Both matri
es are nonnegative and the eigenvalues of ΥL are uniformlysmaller or equal to the eigenvalues of Υ. Finally, it is 
lear that ΥL = Υ if L ≥ n. Forthe 
ase of the multi-index fun
tion f(x) = g(θ⊤1 x, . . . , θ
⊤
Mx), the matrix Υ is of rank M ,so that the rank ΥL is not greater than M . We suppose that the system {ψℓ} is sele
tedproperly and the rank of ΥL is also M . Then this matrix 
an be used for des
ribing thestru
ture of the original model in pla
e of Υ. The reason for using the matrix ΥL insteadof Υ is that the problem of estimating the quadrati
 fun
tional Υ is mu
h harder than theproblem of estimating the family of linear fun
tionals βℓ de�ning the matrix ΥL providedthat the basis fun
tions ψℓ are su�
iently smooth. Therefore, as we always estimate Υ via

Υ̂L, we will skip the index L in the following.As representation (2) is not unique, it is more 
onvenient for our purposes to work withanother one. Ea
h ve
tor β∗ℓ belongs to I and hen
e rank(B∗) ≤ M . If B∗ 
ompletelydes
ribes the index spa
e I, then we have even rank(B∗) = M . Let λ1 ≥ λ2 ≥ . . . ≥ λdbe the ordered set of eigenvalues of Υ. Sin
e rank(Υ) = M , only the �rst M of them arepositive and the remaining ones are equal to zero. Lemma 2.1. of [5℄ o�ers an expli
itrepresentation of the model via the orthogonal de
omposition of the symmetri
 L×L-matrix
(B∗)⊤B∗. Due to this lemma, the model (1) 
an always be rewritten in the form

f(x) = g
(
(B∗OM )⊤x

) (6)whi
h is used in the sequel. We de�ne also
R∗ = B∗OM . (7)2.2 Estimating the LinkThe proposed pro
edures are designed for getting the unknown stru
ture of the model.The so far published theoreti
al results indi
ate that the stru
ture (the unknown indexspa
e) 
an be estimated at the best possible rate n−1/2 as long as M ≤ 3, and so ourmethods do. We will see that all the pro
edures also deliver an estimator of the regressionfun
tion f . However, this estimate is only suboptimal in rate. The optimal 
hoi
e of thebandwidth depends upon the smoothness of g. Rate optimality for the lo
al linear methodsis a
hieved for the bandwidth of order n−1/(4+M) for the M -index 
ase.A natural way of improving the quality of estimating the regression fun
tion f (or thelink fun
tion g) is to perform one more estimation step. Denote by Υ̂M the best M -rankapproximation of Υ̂. I.e. if Υ̂ = O diag{µ2

1, . . . , µ
2
d}O⊤ with µ1 ≥ µ2 ≥ . . . ≥ µd, thende�ne also RM = OM diag{µ1, . . . , µM} where OM is the blo
k of the �rst M 
olumns of

O.We 
an now infer on target fun
tion f by estimating the g as a fun
tion of t = R⊤
Mx . A

4



lo
al linear estimator of g and its �rst (partial) derivatives at t = R⊤
Mx is given by

(
ĝ(t)

ĝ′)(t)

)
= arginf

ai,θi

n∑

j=1

(
Yj − ai − θ⊤i zj

)2
K
(
|zj |2/b2

)

=




n∑

j=1

(
1
zj

)(
1
zj

)⊤

K
(
|zj |2/b2

)



−1
n∑

j=1

(
1
zj

)
YjK

(
|zj |2/b2

)with zj = t − tj. The bandwidth b 
an be sele
ted by a data-driven sele
tor like 
rossvalidation. Estimation of g for M ≤ 2 
an be performed e.g. using the pa
kage sm for theR Statisti
al System [10℄, see [1℄ or [2℄.3 The Estimation Pro
eduresWe 
onsider three methods, the pro
edure published in [5℄ [HJPS℄, in
luding a slight mod-i�
ation of this method [mod-HJPS℄ that leads to signi�
ant improvements in the perfor-man
e, and a new method that aims to yield further adaptation to the given dimension
M [Penalized method℄.3.1 The HJPS pro
edureWe 
onsider the following iterative stru
tural adaptation approa
h. We start with theestimates ∇̂f obtained by a fully nonparametri
 lo
al linear �t and some bandwidth h1.We then 
al
ulate β̂ℓ =

∑n
i=1 ∇̂f(Xi)ψl(Xi), ℓ = 1, . . . , L. Although this estimate isvery rough, it 
ontains some information about the stru
ture of the fun
tion f and, inparti
ular, about the mapping Θ. All ve
tors β̂ℓ, up to the estimation error, belong to theindex spa
e I. This information 
an be used for produ
ing another, more 
areful estimateof the gradient fun
tion and hen
e, of the ve
tors β∗ℓ . More pre
isely, let B̂1 be the matrix
omposed from the ve
tors β̂ℓ, ℓ = 1, . . . , L. We de�ne the gradient estimate ∇̂f (2)

(Xi) at
Xi by a lo
al linear �t
(
f̂ (2)(Xi)

∇̂f (2)
(Xi)

)
= arginf

c∈IR, b∈IRd

n∑

j=1

[
Yj − c− b⊤(Xj −Xi)

]2
K

( |S2Xij |2
h2

2

)

=





n∑

j=1

(
1
Xij

)(
1
Xij

)⊤

K
( |S2Xij |2

h2
2

)




−1
n∑

j=1

Yj

(
1
Xij

)
K
( |S2Xij |2

h2
2

)
,with Xij = Xi −Xj. Smoothing is performed restri
ting positive weights to the ellipsoid

{x : |S2(x − Xi)| ≤ h2}, with S2 = (I + ρ−2
2 B̂1B̂⊤

1 )−1/2 for some ρ2 < 1 and h2 > h1.In other words, we shrink the original isotropi
 support of the kernel in all dire
tions β̂ℓ(ρ2 < 1) and stret
h them in all orthogonal dire
tions. This leads to estimates
β̂

(2)
ℓ =

1

n

n∑

i=1

∇̂f (2)
(Xi)ψℓ(Xi)5



of β∗ℓ produ
ing the matrix B̂2. We 
ontinue this way ea
h time 
ompressing the averagingwindows in the dire
tion of the 
urrent estimate B̂k and expanding them in orthogonaldire
tions.The results presented in [5℄ show that this pro
edure allows to estimate the index spa
e Iat the rate n−1/2 provided that M < 4.The pro
edure involves input parameters h1 and ρmin < ρ1, su
h that ρ de
reases geomet-ri
ally from ρ1 to ρmin by a fa
tor cρ and h in
reases geometri
ally by a fa
tor ch duringiterations. The 
hoi
e of these parameters as well as the set of basis fun
tions {ψℓ} will bedis
ussed later.To guarantee 
onvergen
e of the pro
edure some lo
al regularity of the design is required.Otherwise the gradient estimates 
ould have a very large standard deviation whi
h maydeteriorate the quality of the index estimates. This problem 
an be avoided by weightingea
h element of the sum in the expression for β̂(k)
ℓ with some 
oe�
ients that express thedegree of lo
al regularity of the design.We now provide the algorithm in 
losed form.

• Step 1. Initialization: spe
ify parameters ρ1, ρmin , cρ , h1 , ch, Cw and the set offun
tions {ψℓ}; De�ne w as the square root of the minimal eigenvalue of the matrix
V with

V =
1

EK(ζ⊤ζ)
E

(
1
ζ

)(
1
ζ

)⊤

K(ζT ζ)where ζ is random and uniformly distributed over the ball B1 = {x ∈ IRd : |x| ≤ 1}:
w2 = λmin

(
V
); set k = 1, B̂0 = 0 ;

• Step 2. Compute Υ̂(k) = B̂(k−1)B̂⊤

(k−1). If ‖Υ̂(k)‖ > 1, then normalize it by itsmaximal eigenvalue: Υ̂(k) := Υ̂(k)/‖Υ̂(k)‖∞; Set Sk =
(
I + ρ−2

k Υ̂(k)
)1/2;

• Step 3. For every i = 1, . . . , n, 
ompute the matrix Vk(Xi) with
Vk(Xi) =

n∑

j=1

(
1

Wij,k

)(
1

Wij,k

)⊤

K
(
W⊤

ij,kWij,k

)where Wij,k = h−1
k Sk(Xj −Xi) and de�ne wi by w2

i = λmin (Vk(Xi)) /λmax (Vk(Xi));
• Step 4. If the 
ondition

1

n

n∑

i=1

wi ≥ Cwwis not ful�lled, then in
rease hk by the fa
tor ch, that is, hk := chhk and de
rease ρk(if k > 1) by ch. Repeat from Step 3.
6



• Step 5. For every i = 1, . . . , n, 
ompute ∇̂f (k)
(Xi):

(
f̂ (k)(Xi)

∇̂f (k)
(Xi)

)
=





n∑

j=1

(
1
Xij

)(
1
Xij

)⊤

K
( |SkXij|2

h2
k

)




−1
n∑

j=1

Yj

(
1
Xij

)
K
( |SkXij |2

h2
k

)
;

• Step 6. For every ℓ = 1, . . . , L, 
ompute the ve
tor β̂(k)
ℓ

β̂
(k)
ℓ =

(
n∑

i=1

wi

)−1 n∑

i=1

∇̂f (k)
(Xi)ψℓ(Xi)wiwith the previously obtained wi's. Compose the matrix B̂k with 
olumns β̂(k)

ℓ , ℓ =

1, . . . , L.
• Step 7. Set ρk+1 = cρρk, and hk+1 = chhk. If ρk+1 ≥ ρmin, then set k = k + 1 and
ontinue with Step 2.In the following, we denote by kn the number of iterations. We set B̂ = B̂kn

, and ρkn
hkn

=

(ρh)kn
.3.1.1 A Modi�
ation: mod-HJPSA 
orre
tion in Step 3 of the algorithm seems to signi�
antly improve its numeri
al behav-ior. Pre
isely we repla
e the de�nition of Vk(Xi) by

Vk(Xi) =

n∑

j=1

(
1
Xij

)(
1
Xij

)⊤

K
(
W⊤

ij,kWij,k

)whi
h resembles the weighting s
heme of the lo
al linear estimate used in Step 5.3.2 An Alternative: the Penalized AlgorithmThe algorithm HJPS/mod-HJPS used the idea of stru
tural adaptation to 
reate a sequen
eof in
reasingly e

entri
 ellipsoids that allowed to estimate an M -dimensional e�e
tivedimension redu
tion spa
e by the spa
e spanned by the prin
ipal axis 
orresponding tothe M largest eigenvalues of the ellipsoid. E

entri
ity of the ellipsoids de�ned by Sk isonly driven by inhomogeneities within the data and is usually small if M ≈ d or if thestru
tural information is weak.If we know the dimensionM of the EDR and thatM << d we 
an exploit this informationeven more. To do this we introdu
e a basis optimization inside the estimation pro
edure.Re
all that HJPS suggests to take a very large set of basis fun
tions {ψℓ}. As mentionedin [5℄, the ideal 
hoi
e of this family is given by orthogonalization of the set of partialderivatives ∇f1, . . . ,∇fd of the target fun
tion f . Sin
e the gradient ∇f(x) belongs, for all
x, to theM -dimensional index spa
e, we would, in 
ase of full knowledge on the EDR, need7



only M basis fun
tions. We 
an again use stru
tural adaptation to utilize the availablestru
tural information for approa
hing this ideal 
hoi
e of basis fun
tions. We de�ne newbasis fun
tions as linear 
ombinations of the original ones. Under this restri
tion, theoptimal 
hoi
e is given by proje
ting the gradient ∇f onto the subspa
e in IRn generatedby the ψℓ. This proje
tion is des
ribed via the singular value de
omposition of the d × Lmatrix ∇f · Ψ = B, or, equivalently, by the eigenvalue de
omposition of the L× L matrix
(B)⊤B. This matrix is of rank M and it maps the whole spa
e IRL into a M -dimensionalsubspa
e denoted as Ĩ. Let us denote this proje
tor on Ĩ by Π∗. The produ
t Ψ̃ = ΨΠ∗de�nes a system of basis fun
tions whi
h e�e
tively 
ontains onlyM nontrivial elements. If
Π̂∗ is an estimate of the proje
tor Π∗, then the produ
t ΨΠ̂∗ is the data-driven 
ounterpartof the �ideal� Ψ̃. The use of su
h a basis system is equivalent to multiplying the matrix
B̂ = ∇̂f · Ψ by Π̂∗, i.e. using the matrix ∇̂f · Ψ · Π̃.A penalization using exa
tly M nontrivial basis element may be to restri
tive, espe
iallyif the information about the true EDR is weak. We therefore allow to perform the penal-ization within a spa
e of spaned by m, (M ≤ m << d) linear 
ombinations.To 
on
lude, in our pro
edure we �rst de�ne Π̂∗ in the kth iteration by

Π2
k = ρ2

kIL×L + M̂k−1 (8)with the proje
tor M̂k = UmU
T
m, where Um ∈ IRL×m 
onsists of the �rst m Eigenve
torsof (B̂kΠk)

T B̂kΠk. Then, we repla
e B̂kB̂T
k in HJPS, mod-HJPS by B̂kΠkΠ

T
k B̂T

k . Note alsothat Πk = ΠT
k .Finally, we normalize the proje
tor giving

Υ̂(k) =
B̂kΠ

2
kB̂T

k

‖B̂kΠ
2
kB̂T

k ‖∞
. (9)This yields a numeri
ally stable algorithm.We now present the des
ription of the estimation method. The main part of the estimationpro
edure is the iterative stru
tural adaptive algorithm. As a result, some estimates of theve
tors {βℓ} and matrix Υ are obtained. Afterwards, the index spa
e, the link fun
tion gand the regression fun
tion f are 
onstru
ted on the base of these estimates.3.2.1 Estimating the βℓ's for given mAs before, for ea
h iteration k we redu
e the parameter hk, and ρk geometri
ally. Theinitial values (k = 1) of these parameters 
orrespond to the situation with no stru
turalinformation about the model (see Step 1), the �nal values 
orrespond to the situation withalmost full information and 
an be sele
ted in a data driven way.De�ne Uh(x) as the number of the design points Xi in the ball of the radius h and the
enter at x. Then the algorithm reads as follows:

• Step 1. Initialization: Initialize the parameters ρ1 = 1.0, cρ = e−1/6, ch =
√
cρ, the8



bandwidth h1 and de�ne the set of basis fun
tions {ψℓ} as in (HJPS). Set k = 1,
M̂(0) = IL×L and Υ̂(0) = 0d×d.

• Step 2. Compute
S2

k = ρ2
kI + Υ̂k−1, Π2

k = ρ2
kI + M̂k−1,

• Step 3. For every i = 1, . . . , n, 
ompute the matrix
V(k)(Xi) =

n∑

j=1

(
1
Xij

)(
1
Xij

)⊤

K
( |SkXij |2

h2
k

)
. (10)and de�ne wi by w2

i = λmin (Vk(Xi)) /λmax (Vk(Xi))

• Step 4. If the 
ondition
1

n

n∑

i=1

wi ≥ Cwwis not ful�lled, then in
rease hk by the fa
tor ch, that is, hk := chhk and de
rease ρk(if k > 1) by ch. Repeat from Step 3.
• Step 5. For every i = 1, . . . , n 
ompute:

(
f̂ (k)(Xi)

∇̂f (k)
(Xi)

)
= {Vk(Xi)}−1

n∑

j=1

Yj

(
1
Xij

)
K
( |SkXij |2

h2
k

)

• Step 6. Compute the ve
tors β̂(k)
ℓ = (

∑n
i=1w

(k)
i )−1

∑n
i=1w

(k)
i ∇̂f(Xi)ψℓ(Xi), ℓ =

1, . . . , L with (w
(k)
i )2 := λmin(Vk(Xi))/λmax(Vk(Xi)), and 
ompose the d×L matrix

B̂(k) with 
olumns β̂(k)
1 , . . . , β̂

(k)
L ;

• Step 7. Perform a singular value de
omposition of the matrix
B̂kΠk =

d∑

i=1

µiuiv
T
iwith single values µi and 
orresponding ve
tors ui, vi. Then update

Υ̂k =
B̂kΠ

2
kB̂T

k

‖B̂kΠ
2
kB̂T

k ‖∞
= µ−2

1

d∑

i=1

µ2
iuiu

T
i and M̂k =

m∑

i=1

viv
T
i

• Step 8. If ρk ≤ ρ1n
−1/3, stop. Else, set ρk+1 = cρρk, hk+1 = chhk, in
rease k by one,

k := k + 1, and 
ontinue with Step 2;Again, for the given m, the estimator ÎM of the index spa
e I is spanned by the �rst mprin
ipal 
omponents of the matrix B̂kn
B̂T

kn
. 9



3.3 Choi
e of parametersIt is obvious that the quality of estimation by the proposed methods depends on the rule for
hanging the parameters h and ρ, and, in parti
ular, on their values at the initial and �naliteration. The values ρk de
rease from ρ1 to ρmin while the hk in
rease during iterationfrom h1 to hmax. The value h1 is to be sele
ted in su
h a way that for the majority of points
Xi, the estimate ∇̂f(Xi) is well de�ned. A ne
essary (and usually su�
ient) 
ondition isthat every ball {x : |x −Xi| ≤ h1} 
ontains at least d + 1 design points. The estimate of
βl is restri
ted to use only su
h points by the de�nition of wi in Step 3 of HJPS and step4 of the penalized algorithm. Step 4 of the algorithms guarantees that a su�
ient numberof design points with positive weights exists.The proposed rule leads to kn ≈ 6 log(ρ1/ρmin) ≈ 2 log n iterations and provides that
hkn

≈ C0. Note also that assuming the stru
ture of the matrix B̂(k−1)B̂⊤

(k−1) to follow thestru
ture of the target matrix Υ∗, neighborhood Ek(Xi) is stret
hed at ea
h iteration stepby fa
tor ch in all dire
tions and is shrunk by fa
tor cρ in dire
tions of the M -dimensionalindex spa
e I. Therefore, the Lebesgue measure of every su
h neighborhood is 
hangedea
h time by the fa
tor e d

2(4∨d)
−

m

6 whi
h is larger or equal to 1 for all M ≤ 3 and d > M .Under the assumption of a random design with a positive density, this would lead to anin
rease of the mean number of design points inside ea
h Ek(Xi).Theoreti
al results, see e.g. [5℄ suggest that kn ≥ ln(n). Our simulation studies suggestthat kn = 2 ln(n) is a good 
hoi
e. This explains why we set cρ = e−1/6 in step 1 for given
ρmin = ρ1n

−1/3. Certainly, a di�erent 
ombination (cρ, ρmin) would also be possible. Froma theoreti
al point of view we need n−1/3 ≤ ρmin

ρ1
≤ n−2/5 and thus e−1/6 = 0.84648 ≥

cρ ≥ 0.81873 = e−1/5. To our experien
e, taking e.g. cρ = e−1/5 or e−1/6 does not make asigni�
ant di�eren
e in pra
ti
e.For the 
ase with M ≤ 3, we propose the following rule of thumb
ρ1 = 1, ρmin = n−1/3, cρ = e−1/6,

h1 = C0n
−

1
4∨d , Cw = 1

6∨log(n) ch = e
1

2(4∨d) ,
(11)where C0 is to be de�ned depending on the design.Remark: We designed all pro
edures su
h that they 
an be used as fully automati
 (dataadaptive) pro
edures. However, that requires that all 
omponents of X have approximatelythe same s
ale. Standardization of the explanatory variables may therefore be ne
essary.Additional tuning may be possible by modifying the initial values ρ1 and h1.4 Numeri
al Performan
eWe now present the results of a small simulation study. We illustrate and 
ompare theproperties of the proposed pro
edures in two situations 
hara
terized by a one and two-10



dimensional EDR, respe
tively.Example 4.1 We 
onsider a single index model (M = 1)
Yi = XT

i θ sin(
√

5XT
i θ) + ǫi , i =, 1, . . . , n (12)with θ = (1, 2, 0, . . . , 0)/

√
5 and Xi uniformely distributed in [−1, 1]d. The errors ǫi aregenerated from a Gaussian distribution with standard deviation 0.3.
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Figure 1: MAE estimated from 1000 simulations for Example 4.1 with M = 111



Example 4.2 The se
ond example is a multi-index model with a M = 2-dimensional EDR
Yi = XT

i θ1 sin(
√

5XT
i θ2) +XT

i θ2 sin(
√

(5)XT
i θ1) + ǫi , i = 1, . . . , n (13)with θ1 = (1, 2, 0, . . . , 0)/

√
5, θ2 = (−2, 1, 2, 0, . . . , 0)/3. Again the Xi are uniformelydistributed in [−1, 1]d and the errors ǫi are Gaussian with standard deviation 0.3.
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Figure 2: Loss1 estimated from 1000 simulations for Example 4.1 with M = 1
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Simulations of size 1000 were performed spe
ifying di�erent values for dimension d (d =

10, 20, 40) and sample size n (n = 10d and n = 20d). The initial bandwidth h1 was spe
i�edas h1 = .85
√
d(d/n ∗∏d

j IQR(X.j))
1/d, with IQR(X.j) denoting the Inter-Quartile-Rangeof the jth explanatory variable.
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Figure 3: MAE estimated from 1000 simulations for Example 4.2 with M = 2.For the Penalized algorithm we have, as an additional parameter, to spe
ify the rank mof matrix M̂k that determines the penalization of the basis. Within the simulations we13
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Figure 4: Loss1 estimated from 1000 simulations for Example 4.2 with M = 2.
ompare the HJPS and the modi�ed HJPS algorithms with the penalized pro
edure using
m = M , m = M + 1 and additionally, in 
ase of Example 4.2, m = M + 2. Estimation ofthe link fun
tion is performed using the pa
kage sm from the R Statisti
al System [10℄.
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We have 
al
ulated two di�erent performan
e measures for ea
h simulation, the averageabsolute error MAE
1

n

n∑

i=1

|g(x) − ĝ(x)|and the distan
e [loss1℄ between the real proje
tion and the estimated one of x through
R∗, respe
tively R̂m

∥∥R∗
{
I −RT

M (RMRT
M )−1RM

}∥∥
2
/ ‖R∗‖2 with ‖A‖2 = tr(AAT ), (14)where I is the identity. The results are summarized as box-plots. Figures 1 and 2 providethe MAE and the loss 14 for all 
onsidered situations in 
ase of Example 4.1. Figures 3and 4 
ontain the 
orresponding information for Example 4.2.In general we observe a signi�
ant improvement by using the modi�ed version of HJPS in
omparison to the original proposal. Further, the penalized algorithm seems to outperformthe modi�ed HJPS algorithm if the dimension m is 
hosen to be slightly larger then theusually unknown true dimension M of the EDR. In situations where d is large or n/d issmall 
hoosing m = M leads to over-penalization and loss of information within the adap-tation pro
ess. In situations where n/d is large the penalized method seems to outperformHJPS for all 
onsidered 
hoi
es of m.As a 
on
lusion our simulations suggest to use the penalized algorithm with m = M + 1if the true dimension M of the EDR 
an be guessed and the modi�ed HJPS pro
edure inother 
ases.
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