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Abstract

The paper introduces and discusses different estimation methods for multi index mod-
els where the indices are parametric and the link function is nonparametric. More spe-
cific, the here introduced methods follow the idea of Hristache et al. (2001), modify
and try to improve it. Moreover, they constitute alternatives to the so called MAVE-
based methods (Xia et al, 2002). We concentrate on an intuitive presentation of what
each procedure is doing to the data and its implementation. All methods considered
here we have made freely available in R. We conclude with a comparative simulation
study based on the provided package EDR.

1 Introduction

Dimensionality continues to be a challenging problem in nonparametric estimation and
testing. Many different methods have been proposed to circumvent the so called curse of
dimensionality. In nonparametric estimation one could distinguish basically between two
different approaches. One is the data explorative method searching for a structural adapta-
tion. The alternative is exploring structural restrictions motivated from model theory. The
second one refers to additional knowledge available in the specific context, e.g. economics,
medicine, biology, physics, etc. which might impose separability conditions like additivity
or similar knowledge of structure.

In this article we concentrate on the first approach. We suppose to have data (Y;, X;),
i =1,...,n, which are generated by a model of the form

Y = f(Xi) +e = g(0TX;,00 X, - 01, X))+, = 9(0X;) +&; (1)

where Y; are scalar response variables, X; are d-dimensional explanatory variables, ¢; are
random errors and f(-), respectively g(-), are unknown functions f: R? — IR, g : R™ —
IR with M < d.

In other words, © is a linear (orthogonal) mapping from the high-dimensional space IR?
onto IRM . For identification we impose that © © T = I;, where I} is the M x M identity
matrix. Note that in our estimation procedures this restriction is neither necessary nor
wanted. Moreover, the length of vector 6; characterizes the variability of the function f
from (1) in that direction. Therefore, g is homogeneous, i.e. has the same smoothness in
all M directions, what simplifies the choice of smoothing parameters.

If M = d then we are back in the fully nonparametric case. In practice, however, model (1)
explains most of the variation of Y for rather small M (actually, for M = 1,2 sometimes 3).
Relations as in (1) are referred to as multi-index regression models. All the information



about f(z) is concentrated in a (low-dimensional) projection Ox. The aim is to reach
dimension reduction for the regression problem, and to describe the index space Z =Im© "
which is also referred to as the effective dimension space, see e.g. [8], [9] and |3].

Many different methods have been proposed to address the problem of adaptive dimension
reduction. We do not intend to give a comprehensive overview but refer only to some
recent contributions and references therein. An interesting new approach has been intro-
duced in [13]. They first span the mean central subspace by the Fourier transform of the
density weighted gradient of f. This way they avoid the difficult estimation of f and its
derivative(s). A particularly interesting contribution of their work is that afterwards, they
succeed to describe the whole central subspace. This is done by the means of the mean
central subspaces of all possible transformations of response Y. This paper also contains
a good review of existing methods including recent advances like the contour regression
procedure of [7], and inverse regression with a minimum discrepancy approach, see [4].

Our methods come closest to the following contributions. [5], [11] and [12] proposed algo-
rithms for estimating the index space for a given effective dimension M, which allows to
bypass this curse of dimensionality problem using the structural adaptation approach.

All methods discussed here consist of three main steps. The first is to estimate the d x
d matrix T of squared averaged derivatives (23" | Vf(X;) Vf'(X;)) by an iterative
procedure. This procedure does not rely on the unknown effective dimension M. In the
second step the M-dimensional index space is estimated for a given M. Finally we estimate
the link function to obtain a complete description of the model.

All procedures introduced and compared here are made available as a package (EDR) of
the R-Statistical System [10].

The rest of the paper is organized as follows. In the next section we explain the basic
ideas underlying all estimation procedures considered here. In Section 3.1 we describe first
the original [5] estimation method based on these ideas, including a description of our
implementation and a discussion of the choice of (initial) parameters. We then propose
a modification that leads to improved numerical results. Finally, we present a procedure
that involves an additional penalization for directions outside a presumed lower dimen-
sional space. This again improves results in our numerical study. We try to provide fully
automatic procedures in the sense that in case of doubts, reasonable defaults for the param-
eters are available. In Section 4 we compare the numerical performance of the introduced
methods.

2 Basic Ideas

2.1 Estimating the Generalized Principle Components

Recall that we consider the model

E[Y’X = ‘T] = f(z) = 9{6{x795x7 70%1/1‘T} = g{@x} ) (2)



where © = (01,0s,...,0y)7 € RM*9 Note that © is a linear orthogonal mapping from
the high-dimensional space IR? onto the space IRM, M < d, satisfying the identification
condition that the maximal eigenvalue of @O is equal to one. For the ease of presentation
we will assume X € [—1,1]%. As it is well known that the optimal design for nonparametric
regression is the uniform one, an appropriate data transform is recommended.

The model structure (2) implies that each gradient Vf(X;), belongs to the index space Z,
which in turn is spanned by the vectors Vf(X;). Therefore, a natural basis in Z can be
defined via the single value decomposition of the matrix YT defined as

Zv,f X))V (X)) = 0400 (3)

with an orthonormal d x d-matrix Oy and a d x d-diagonal matrix A with decreasing
eigenvalues. These matrices deliver information about model (2). Let M be the rank of Y,
then the first M columns of Oy provide an orthonormal basis of the space Z. The diagonal
elements of A show how fast the function g varies in each direction. This suggests to first
estimate Y from the data and then recover the space 7 using this estimate. Moreover, this
provides a natural ordering of the indices.

Matrix T is a quadratic functional of the gradient of the regression function f. [6] propose
an estimation procedure based on the expansion of the gradient Vf with respect to an
orthonormal basis. Suppose that we are given a collection {¢y, £ =1,..., L} of functions
Ve IR — IR which satisfy

Z Ye(Xi)ve (Xi) = o,

where 6 =1 and 6y = 0 for ¢ # £'. Now, let §; with

=) VF(Xi)ehe(X3) (4)
i=1

be the ¢-th coefficient of Vf with respect to the basis system {t,}. Note that each d-vector
B; is a linear functional of the gradient and hence belongs to Z. Thus if the dimension
of the space spanned by 37,..., 3] equals M, this set of vectors completely characterizes
the index space Z, and one can identify the space Z by seeking for the first M principal
components of the set G1,...,0L.

In order to estimate B*(B*)T = Y (B* being the matrix having Bi, k=1,...,L as
columns) one can first construct an estimate 3y of each coefficient 3}, e.g.

= VF (Xi)pe(X;) (5)

on the basis of a pilot estimate 6}' of the gradient, and then compose the estimate

L
Yo=> BB/
=1



of Y. It is sufficient for our purposes to choose L such that rank(Y ) = M.

It holds Tr, < 7T and since YY = T T, the eigenvectors of T are at the same time the
eigenvectors of Y. Both matrices are nonnegative and the eigenvalues of Y1, are uniformly
smaller or equal to the eigenvalues of T. Finally, it is clear that Yp = T if L > n. For
the case of the multi-index function f(z) = g(6] z,...,0;,z), the matrix T is of rank M,
so that the rank Y is not greater than M. We suppose that the system {¢y} is selected
properly and the rank of Y is also M. Then this matrix can be used for describing the
structure of the original model in place of Y. The reason for using the matrix Yy, instead
of YT is that the problem of estimating the quadratic functional Y is much harder than the
problem of estimating the family of linear functionals [y defining the matrix Y provided
that the basis functions v, are sufficiently smooth. Therefore, as we always estimate T via
'YL, we will skip the index L in the following.

As representation (2) is not unique, it is more convenient for our purposes to work with
another one. Each vector 8] belongs to Z and hence rank(B*) < M. If B* completely
describes the index space Z, then we have even rank(B*) = M. Let Ay > Ao > ... > )\
be the ordered set of eigenvalues of Y. Since rank(Y) = M, only the first M of them are
positive and the remaining ones are equal to zero. Lemma 2.1. of [5] offers an explicit
representation of the model via the orthogonal decomposition of the symmetric LxL-matrix
(B*)TB*. Due to this lemma, the model (1) can always be rewritten in the form

f(z) = g ((B*Ou)"x) (6)
which is used in the sequel. We define also

R* = B*Our . (7)

2.2 Estimating the Link

The proposed procedures are designed for getting the unknown structure of the model.
The so far published theoretical results indicate that the structure (the unknown index

~1/2 as long as M < 3, and so our

space) can be estimated at the best possible rate n
methods do. We will see that all the procedures also deliver an estimator of the regression
function f. However, this estimate is only suboptimal in rate. The optimal choice of the
bandwidth depends upon the smoothness of g. Rate optimality for the local linear methods

is achieved for the bandwidth of order n=1/4+M) for the M-index case.

A natural way of improving the quality of estimating the regression function f (or the
link function g) is to perform one more estimation step. Denote by 'YM the best M-rank
approximation of T. e if T = Odiag{,u%,...,ug}OT with g1 > pe > ... > pg, then
define also Ry = Opy diag{p1, ..., uar} where Oy is the block of the first M columns of
0.

We can now infer on target function f by estimating the g as a function of t = RL$ A



local linear estimator of g and its first (partial) derivatives at t = R}, is given by

(f)%) - argmfZ( — =07 5) K (|5)

a'u K3

-1
n

n T
_ IY(1 12 /32 1)y 12 /32
B .Z(Zj) <zj> K (l=/v) Z(%’)Y]K('Zﬂ ¥)
J=1 J=1
with z; = ¢ —t;. The bandwidth b can be selected by a data-driven selector like cross

validation. Estimation of g for M < 2 can be performed e.g. using the package sm for the
R Statistical System [10], see [1] or [2].

3 The Estimation Procedures

We consider three methods, the procedure published in [5] [HJPS], including a slight mod-
ification of this method [mod-HJPS] that leads to significant improvements in the perfor-
mance, and a new method that aims to yield further adaptation to the given dimension
M |[Penalized method|.

3.1 The HJPS procedure

We consider the following iterative structural adaptation approach. We start with the
estimates W obtained by a fully nonparametric local linear fit and some bandwidth h.
We then calculate 3, = Yoy W( Xi)i(X;), € = 1,...,L. Although this estimate is
very rough, it contains some information about the structure of the function f and, in
particular, about the mapping ©. All vectors Bg, up to the estimation error, belong to the
index space Z. This information can be used for producing another, more careful estimate
of the gradient function and hence, of the vectors ;. More precisely, let gl be the matrix

~ —~(2
composed from the vectors Gy, £ = 1,..., L. We define the gradient estimate Vf( )(Xi) at
X; by a local linear fit

FA(X3) T 2 (192X
_ f § —c—b (X;-X))| K .
(Vf(z)(Xi) ceﬁgﬁm { ‘ )} < h3 >

-1
)& 1\ 18X < 1 150X 152
N ;(X) (Xij> K Ca ) ;Y]<XJ>K< i )

with X;; = X; — X;. Smoothing is performed restricting positive weights to the ellipsoid
{z : |S2(x — X;)| < he}, with So = (I + p52811?1r)_1/2 for some ps < 1 and hg > hy.
In other words, we shrink the original isotropic support of the kernel in all directions (3,

(p2 < 1) and stretch them in all orthogonal directions. This leads to estimates

PONLE el ,
—n;Vf (XZ)T/}Z(XZ)



of 3; producing the matrix gg. We continue this way each time compressing the averaging
windows in the direction of the current estimate Bj and expanding them in orthogonal

directions.

The results presented in [5] show that this procedure allows to estimate the index space Z
at the rate n=1/2 provided that M < 4.

The procedure involves input parameters h; and ppin < p1, such that p decreases geomet-
rically from p1 to pmin by a factor ¢, and h increases geometrically by a factor ¢, during
iterations. The choice of these parameters as well as the set of basis functions {¢,} will be

discussed later.

To guarantee convergence of the procedure some local regularity of the design is required.
Otherwise the gradient estimates could have a very large standard deviation which may
deteriorate the quality of the index estimates. This problem can be avoided by weighting
each element of the sum in the expression for Bék) with some coefficients that express the

degree of local regularity of the design.

We now provide the algorithm in closed form.

e Step 1. Initialization: specify parameters pi, pmin,Cp,h1,cn, Cy and the set of
functions {1y}; Define W as the square root of the minimal eigenvalue of the matrix
V with

R

where ¢ is random and uniformly distributed over the ball By = {z € IR? : |z| < 1}:
W2 = Amin (V), set k=1,By=0;

e Step 2. Compute T*) = g(k—l)BN(;_l)- If |[Y®)]| > 1, then normalize it by its
_ _ _ o\ 1/2
maximal eigenvalue: Y*) .= Y®) /| T®)| ; Set S = (I + p,:zT(k)) ;
e Step 3. For every ¢ = 1,...,n, compute the matrix Vi (X;) with
(1 1\
N — T .
Vi(Xi) = Z; <ka> <W2]k> K (W”’kW”’k)
J:
Where Wij,k = h;lsk(Xj — XZ) and deﬁne w; by w? = )\min (Vk(XZ)) /)\max (Vk(XZ)),

e Step 4. If the condition

1 n
— E w; > Cyw
n

=1

is not fulfilled, then increase hy by the factor ¢y, that is, hy := cphi and decrease pg
(if £ > 1) by cp. Repeat from Step 3.



—(k
e Step 5. For every ¢ = 1,...,n, compute Vf( )(Xi):

- : y ! il R 12
EEAREORE Bl ONE- &

j=1 i=

e Step 6. For every £ =1,..., L, compute the vector Bf‘”

n -1 n
B = (Z w) S ) v () w
i=1 i=1

with the previously obtained w;’s. Compose the matrix gk with columns Bék), { =
1,..., L.

e Step 7. Set pri1 = cppr, and hyp1 = cphy. If pry1 > pmin, then set & =k + 1 and
continue with Step 2.

In the following, we denote by k,, the number of iterations. We set B= gkn, and pg, by, =

3.1.1 A Modification: mod-HJPS

A correction in Step 3 of the algorithm seems to significantly improve its numerical behav-
ior. Precisely we replace the definition of Vi (X;) by

P = é(é > ()é ‘>T K (WJ"CW’”)

which resembles the weighting scheme of the local linear estimate used in Step 5.

3.2 An Alternative: the Penalized Algorithm

The algorithm HJPS/mod-HJPS used the idea of structural adaptation to create a sequence
of increasingly eccentric ellipsoids that allowed to estimate an M-dimensional effective
dimension reduction space by the space spanned by the principal axis corresponding to
the M largest eigenvalues of the ellipsoid. Eccentricity of the ellipsoids defined by S is
only driven by inhomogeneities within the data and is usually small if M ~ d or if the
structural information is weak.

If we know the dimension M of the EDR and that M << d we can exploit this information
even more. To do this we introduce a basis optimization inside the estimation procedure.
Recall that HJPS suggests to take a very large set of basis functions {¢y}. As mentioned
in 5], the ideal choice of this family is given by orthogonalization of the set of partial
derivatives Vfy,..., Vfy of the target function f. Since the gradient Vf(z) belongs, for all
x, to the M-dimensional index space, we would, in case of full knowledge on the EDR, need



only M basis functions. We can again use structural adaptation to utilize the available
structural information for approaching this ideal choice of basis functions. We define new
basis functions as linear combinations of the original ones. Under this restriction, the
optimal choice is given by projecting the gradient Vf onto the subspace in IR"™ generated
by the 1,. This projection is described via the singular value decomposition of the d x L
matrix Vf - W = B, or, equivalently, by the eigenvalue decomposition of the L x L matrix
(B)"B. This matrix is of rank M and it maps the whole space IR* into a M-dimensional
subspace denoted as 7. Let us denote this projector on 7 by II*. The product U = UII*
defines a system of basis functions which effectively contains only M nontrivial elements. If
II* is an estimate of the projector IT*, then the product WII* is the data-driven counterpart
of the “ideal” W. The use of such a basis s system is equivalent to multiplying the matrix
B = Vf U by H* i.e. using the matrix Vf v -1

A penalization using exactly M nontrivial basis element may be to restrictive, especially
if the information about the true EDR is weak. We therefore allow to perform the penal-
ization within a space of spaned by m, (M < m << d) linear combinations.

To conclude, in our procedure we first define II* in the kth iteration by
I; = piloxr + Mio (8)

with the projector /\//\Ik = U,,UL, where U,, € IR*™ consists of the first m Eigenvectors
of (BiIly)” BiIli. Then, we replace BkBk in HJPS, mod-HJPS by Bkﬂkﬂfl?{. Note also
that IT;, = II7.
Finally, we normalize the projector giving

R 112 RT

= __NkTR (9)
1BRI12B] || oo

This yields a numerically stable algorithm.

We now present the description of the estimation method. The main part of the estimation
procedure is the iterative structural adaptive algorithm. As a result, some estimates of the
vectors {¢} and matrix T are obtained. Afterwards, the index space, the link function g
and the regression function f are constructed on the base of these estimates.

3.2.1 Estimating the §,’s for given m

As before, for each iteration k we reduce the parameter hy, and pi geometrically. The
initial values (k = 1) of these parameters correspond to the situation with no structural
information about the model (see Step 1), the final values correspond to the situation with
almost full information and can be selected in a data driven way.

Define Up(z) as the number of the design points X; in the ball of the radius h and the
center at z. Then the algorithm reads as follows:

e Step 1. Initialization: Initialize the parameters p; = 1.0, ¢, = e /6 ¢ = \/Cp, the



bandwidth h; and define the set of basis functions {¢y} as in (HJPS). Set k = 1,
M(O) = IL><L and T(O) = Od><d-

e Step 2. Compute

S,% = pzf + ?k_l, H% = sz + M1,

e Step 3. For every ¢ = 1,...,n, compute the matrix
(1 1\ " ISk X5
e = () () KR w
J:

and define w; by w? = Amin (Vk(X3)) /Amax Ve(X5))

e Step 4. If the condition

1 n
— Z w; > Cyw
o
is not fulfilled, then increase hy by the factor ¢y, that is, hg := cphi and decrease pg

(if £ > 1) by cp. Repeat from Step 3.

e Step 5. For every ¢ = 1,...,n compute:
F®(X;) v 1 S X |
N B R A T
(w (X;) ; T\ X < h2 )

e Step 6. Compute the vectors @Sk) = >n, u)gk))_1 Sy wgk)W(Xi)lbg(Xi), L =
1,..., L with (wgk))2 = Anin (Vie(X3)) / Amaz (Vi (X5)), and compose the d x L matrix
B®) with columns B%k), e ,Eék);

e Step 7. Perform a singular value decomposition of the matrix

d
» T
B Il = E MU v;
i—1

with single values u; and corresponding vectors u;,v;. Then update

?k — M - ,U1_2 zd:/ﬂu.uT and .K/l\k = ivv-T
g — /\T = g Wi lby - 1%
HBkH%Bk ||oo i=1 i=1

e Step 8. If pp < pln_1/3, stop. Else, set pyy1 = c,pk, hg41 = cphy, increase k by one,
k:=k + 1, and continue with Step 2;

Again, for the given m, the estimator fM of the index space 7 is spanned by the first m
principal components of the matrix Bkng,fn.



3.3 Choice of parameters

It is obvious that the quality of estimation by the proposed methods depends on the rule for
changing the parameters h and p, and, in particular, on their values at the initial and final
iteration. The values p;, decrease from p; to pmin while the hy increase during iteration
from hj to hyax. The value hy is to be selected in such a way that for the majority of points
X, the estimate W(XZ) is well defined. A necessary (and usually sufficient) condition is
that every ball {z : |x — X;| < h;} contains at least d + 1 design points. The estimate of
0 is restricted to use only such points by the definition of w; in Step 3 of HJPS and step
4 of the penalized algorithm. Step 4 of the algorithms guarantees that a sufficient number
of design points with positive weights exists.

The proposed rule leads to k, ~ 6log(p1/pmin) =~ 2logn iterations and provides that
hi, ~ Cp. Note also that assuming the structure of the matrix B\(k—l)@_l) to follow the
structure of the target matrix T*, neighborhood FEj(X;) is stretched at each iteration step
by factor ¢, in all directions and is shrunk by factor ¢, in directions of the M-dimensional
index space Z. Therefore, the Lebesgue measure of every such neighborhood is changed
each time by the factor 62(4;%_% which is larger or equal to 1 for all M < 3 and d > M.
Under the assumption of a random design with a positive density, this would lead to an
increase of the mean number of design points inside each Ej(X;).

Theoretical results, see e.g. [5] suggest that k, > In(n). Our simulation studies suggest

that &k, = 2In(n) is a good choice. This explains why we set ¢, = e~ 1/6

in step 1 for given
Pmin = p1n_1/3. Certainly, a different combination (c,, Pmin) would also be possible. From
a theoretical point of view we need n~1/3 < '”’;—li” < n=2/% and thus e~ /6 = 0.84648 >

1/5

cp > 0.81873 = e~1/5. To our experience, taking e.g. cp=¢e /7 or e~1/6 does not make a

significant difference in practice.

For the case with M < 3, we propose the following rule of thumb

1/3 1/6
7 )

P1 = 17 Pmin =N
hy=Con~wa, Gy

Cp =€

1 (11)
_ 1 — p2(4vd)
= gy Ch = €W,

where Cj is to be defined depending on the design.
Remark: We designed all procedures such that they can be used as fully automatic (data
adaptive) procedures. However, that requires that all components of X have approzimately

the same scale. Standardization of the explanatory variables may therefore be necessary.
Additional tuning may be possible by modifying the initial values p; and hy.

4 Numerical Performance

We now present the results of a small simulation study. We illustrate and compare the
properties of the proposed procedures in two situations characterized by a one and two-

10



dimensional EDR, respectively.

Example 4.1 We consider a single index model (M = 1)

Y; = X710 sin(vV5X10)+e¢, i=1,...,n (12)

with = (1,2,0,...,0)/v5 and X; uniformely distributed in [—1,1]%. The errors ¢; are

generated from a Gaussian distribution with standard deviation 0.3.
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Figure 1: MAE estimated from 1000 simulations for Example 4.1 with M =1
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Example 4.2 The second example is a multi-indexr model with a M = 2-dimensional EDR
Vi = X0 sin(VEXT0y) + X0y sin(/(5)XT0) +¢, i=1,....n  (13)

with 01 = (1,2,0,...,0)/v5, 6 = (=2,1,2,0,...,0)/3. Again the X; are uniformely
distributed in [—1,1]% and the errors ¢; are Gaussian with standard deviation 0.3.
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Figure 2: Lossl estimated from 1000 simulations for Example 4.1 with M =1
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Simulations of size 1000 were performed specifying different values for dimension d (d =
10, 20, 40) and sample size n (n = 10d and n = 20d). The initial bandwidth h; was specified
as hy = .85Vd(d/n + [[{ IQR(X ;))"/?, with IQR(X ;) denoting the Inter-Quartile-Range
of the jth explanatory variable.
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Figure 3: MAE estimated from 1000 simulations for Example 4.2 with M = 2.

For the Penalized algorithm we have, as an additional parameter, to specify the rank m
of matrix M, that determines the penalization of the basis. Within the simulations we
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Figure 4: Loss1 estimated from 1000 simulations for Example 4.2 with M = 2.

compare the HJPS and the modified HJPS algorithms with the penalized procedure using
m =M, m= M + 1 and additionally, in case of Example 4.2, m = M + 2. Estimation of
the link function is performed using the package sm from the R Statistical System [10].
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We have calculated two different performance measures for each simulation, the average
absolute error MAE

LS o) gt
=1

and the distance [lossl| between the real projection and the estimated one of x through
R*, respectively R,

[R*{I = Ry (RuRL) ™ Rast|ly / IR*[lz - with [|A]l2 = tr(AAT),  (14)

where [ is the identity. The results are summarized as box-plots. Figures 1 and 2 provide
the MAE and the loss 14 for all considered situations in case of Example 4.1. Figures 3
and 4 contain the corresponding information for Example 4.2.

In general we observe a significant improvement by using the modified version of HJPS in
comparison to the original proposal. Further, the penalized algorithm seems to outperform
the modified HJPS algorithm if the dimension m is chosen to be slightly larger then the
usually unknown true dimension M of the EDR. In situations where d is large or n/d is
small choosing m = M leads to over-penalization and loss of information within the adap-
tation process. In situations where n/d is large the penalized method seems to outperform
HJPS for all considered choices of m.

As a conclusion our simulations suggest to use the penalized algorithm with m = M + 1
if the true dimension M of the EDR can be guessed and the modified HJPS procedure in
other cases.
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