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Abstrat. We analyze a di�erential system arising in the theory of isothermalvisoelastiity. This system is equivalent to an integrodi�erential equation of hy-perboli type with a ubi nonlinearity, where the dissipation mehanism is on-tained only in the onvolution integral, aounting for the past history of thedisplaement. In partiular, we onsider here a onvolution kernel whih entailsan extremely weak dissipation. In spite of that, we show that the related dynam-ial system possesses a global attrator of optimal regularity.1. IntrodutionLet Ω ⊂ R
3 be a bounded domain with smooth boundary ∂Ω. For t ∈ R

+ = (0,∞),we onsider the evolution system arising in the theory of isothermal visoelastiity[9, 20℄(1.1) 





∂ttu− ∆u−
∫ ∞

0

µ(s)∆η(s)ds+ g(u) = f,

∂tη = Tη + ∂tu,where u = u(t) : Ω × [0,∞) → R, η = ηt(s) : Ω × [0,∞) × R
+ → R and T = −∂s,supplemented with the boundary and initial onditions(1.2) {

u(t)|∂Ω = ηt|∂Ω = ηt(0) = 0,

u(0) = u0, ∂tu(0) = v0, η0(s) = η0(s).Here, g : R → R is a nonlinear term of (at most) ubi growth satisfying somedissipativity onditions, f : Ω → R is an external fore, whereas the memory kernel µis an absolutely ontinuous summable dereasing (thus nonnegative) funtion de�nedon R
+. Problem (1.1)-(1.2) is ast in the so-alled memory setting (see [5, 6℄), andis equivalent to the integrodi�erential equation

∂ttu− (1 + ς)∆u+

∫ ∞

0

µ(s)∆u(t− s)ds+ g(u) = f,where ς =
∫ ∞

0
µ(s)ds > 0, with boundary ondition u(t)|∂Ω = 0 and initial on-ditions u(0) = u0, u(t) = u0 − η0(−t), for t < 0, and ∂tu(0) = v0. We addressthe reader to [11℄ for more details on the equivalene of the two formulations. It isknown that (1.1)-(1.2) generates a dissipative dynamial system S(t) on the phasespae H1

0 (Ω) × L2(Ω) × L2
µ(R+;H1

0 (Ω)), the so-alled history spae, sine the vari-able η ontains the information on the past history of the system. The asymptotibehavior of S(t) has been investigated quite extensively. For instane, if the �rstequation ontains an extra term of the form ∂tu (physially, a dynamial frition),then S(t) has a global attrator of optimal regularity [1, 3, 18℄. When this term doesnot appear, as in our ase, the existene of the global attrator and its regularityan still be proved, although the dissipation is ontained in the memory term only[4, 10℄. Clearly, this situation requires a more areful analysis, the dissipation beingmuh weaker. However, all the above results (as well as all the results on the as-ymptoti behavior of dynamial systems arising from equations with memory) havebeen proved under the apparently unavoidable ondition(1.3) µ′(s) + δµ(s) ≤ 0,1



for some δ > 0 and (almost) every s ∈ R
+. Indeed, even in the linear homogeneousase, (1.3) seemed to play an essential role in establishing exponential stability (see[8, 15, 16℄). It is readily seen that (1.3) is equivalent to

µ(s+ σ) ≤ e−δσµ(s),for every σ ≥ 0 and (almost) every s ∈ R
+. On the other hand, [2℄ proves that aneessary ondition in order to have exponential stability in the linear homogeneousase (and, onsequently, in order for S(t) to possess at least an absorbing set) is(1.4) µ(s+ σ) ≤ Ce−δσµ(s),for some C ≥ 1, δ > 0, every σ ≥ 0 and (almost) every s ∈ R

+. Nonetheless,between (1.3) and (1.4), there is quite an elbowroom. In partiular, (1.3) does nothold when µ is too �at (whih orresponds to having zones of very low, or evennull, dissipation). An interesting situation from the physial viewpoint, that mightnot omply with (1.3), but obviously �ts (1.4), ours when µ eventually vanishes.Along this diretion, the very reent artile [17℄, foused on the linear homogeneousase, shows that exponential stability is still present when (1.4) holds, but (1.3) isheavily violated. Here, we are able to translate the semigroup approah of [17℄ interms of suitable energy funtionals, so to extend the analysis to the nonlinear ase.This is not, in general, a straightforward fat: there are linear systems (in partiular,the one assoiated with our problem) whih an be takled via semigroup methods,but whose nonlinear ounterparts require the introdution of ad ho, and oftenquite subtle, tehniques. In the present work, we establish the existene of a globalattrator of optimal regularity for S(t) when µ ful�lls the neessary ondition (1.4),but under muh weaker hypotheses than (1.3). Besides, ontrary to [4℄, the kernel µwill be allowed to blow up at zero. For instane, we an onsider the weakly singularkernel
µ(s) =

ke−αs

s1−β
,with k ≥ 0 and α, β > 0, whih has been suessfully used to �t experimentaldata for some real materials. To the best of our knowledge, this is the �rst resultof this kind for nonlinear systems with memory. In fat, this approah an besuessfully applied to other low-dissipative models with memory, suh as reation-di�usion equations with a Gurtin-Pipkin ondution law [12℄.Plan of the paper. In the next Setion 2, we write the assumptions on f , g and

µ. In Setion 3, we formulate the main theorem, whih is proved in Setion 4. Theremaining setions are devoted to the proofs of Lemma 4.3 and Lemma 4.4 appearingis Setion 4.Notation. We onsider the positive operator A = −∆ ating on (L2(Ω), 〈·, ·〉, ‖ · ‖)with domain D[A] = H2(Ω) ∩ H1
0 (Ω). For r ∈ R, we denote by Hr = D[Ar/2] thesale of Hilbert spaes generated by A, with the usual inner produts 〈·, ·〉D[Ar/2] =

〈Ar/2·, Ar/2·〉, and by Mr = L2
µ(R+;H1+r) the Hilbert spae of square summablefuntions on R

+ with values in H1+r, with respet to the measure µ(s)ds. To2



aount for the boundary onditions on η, we view T = −∂s as the linear operatorwith domain
D[T ] =

{

ψ = ψ(s) ∈ M0 : ∂sψ ∈ M0, ψ(0) = 0
}

,where ∂s is the distributional derivative with respet to the internal variable s. Then,
T is the in�nitesimal generator of the right-translation semigroup R(t) onM0 atingas

[R(t)ψ](s) =

{

0, 0 < s ≤ t,

ψ(s− t), s > t.Finally, we introdue the produt Hilbert spaes
Hr = H1+r ×Hr ×Mr.Throughout the paper, c ≥ 0 will denote a generi onstant (whose value may varyeven within the same formula). Any further dependene of c on other quantities willbe spei�ed on ourrene. Also, we shall often taitly use the Poinaré, the Youngand the Hölder inequalities, as well as the usual Sobolev embeddings.2. General AssumptionsConerning the nonlinearity and the external fore, we take f ∈ H0 independent oftime, and g ∈ C2(R), with g(0) = 0, suh that the following growth and dissipationonditions are satis�ed:

|g′′(u)| ≤ c
(

1 + |u|
)

,(2.1)
lim inf
|u|→∞

g(u)

u
> −λ,(2.2)where λ > 0 is the �rst eigenvalue of A. Following [4℄, we deompose g into the sum

g = g0 + g1, where g0, g1 ∈ C2(R) ful�ll
|g′′0(u)| ≤ c(1 + |u|),(2.3)
g0(u)u ≥ 0,(2.4)
g′0(0) = 0,(2.5)
|g′1(u)| ≤ c.(2.6)Setting G(u) =

∫ u

0
g(y)dy and G0(u) =

∫ u

0
g0(y)dy, it follows from (2.1)-(2.4) that

−(1 −̟)‖A1/2u‖2 − c ≤ 2〈G(u), 1〉 ≤ c(1 + ‖A1/2u‖4),(2.7)
0 ≤ 2〈G0(u), 1〉 ≤ c(1 + ‖A1/2u‖4),(2.8)for every u ∈ H1 and some ̟ > 0. Conerning instead the memory kernel, weassume that µ : R

+ → [0,∞) is absolutely ontinuous, summable and noninreasing.In partiular, µ is di�erentiable almost everywhere with µ′ ≤ 0, and it is possiblyunbounded in a neighborhood of zero. Without loss of generality, we may (and do)assume that
∫ ∞

0

µ(s)ds = 1.3



This, together with the above assumptions on f and g, is enough to show thatproblem (1.1)-(1.2) generates a strongly ontinuous semigroup S(t) on the phasespae H0 (see [4, 18℄). For further onveniene, we reall that the third omponentof the solution S(t)(u0, v0, η0) = (u(t), ∂tu(t), η
t) has the expliit representation [18℄(2.9) ηt(s) =

{

u(t) − u(t− s), 0 < s ≤ t,

η0(s− t) + u(t) − u0, s > t.We point out that, given u(t), the representation formula (2.9) depends only on thestruture of the seond equation of (1.1). When f = g = 0 (linear homogeneousase), the monotoniity of µ ensures that S(t) is a (linear) ontration semigroup.Remark 2.1. In fat, as in [2, 17℄, we ould onsider without substantial hanges inthe subsequent analysis more general kernels, allowing µ to have a �nite number ofjumps, or even an in�nite number of jumps, provided that the points where µ hasjumps form an inreasing sequene.De�nition 2.2. We say that µ is an admissible kernel if there exists Θ > 0 suhthat(2.10) ∫ ∞

s

µ(σ)dσ ≤ Θµ(s), ∀s ∈ R
+.Remark 2.3. Note that, in view of the other assumptions on µ, onditions (1.4)and (2.10) are equivalent. Indeed, it is apparent that (1.4) implies (2.10) (just take

Θ = C/δ). Conerning the reverse impliation, sine µ is positive and monotonenoninreasing, we have, for every r > 0,
Θµ(s) ≥

∫ ∞

s

µ(σ)dσ ≥
∫ s+r

s

µ(σ)dσ ≥ rµ(s+ r).Hene, there exists ̺ < 1 and r > 0 suh that
µ(s+ r) ≤ ̺µ(s).Due to the monotoniity of µ, the above inequality readily yields (1.4). Indeed,setting σ = nr + ϑ, with n ∈ N and ϑ ∈ [0, r), we get

µ(s+ σ) ≤ µ(s+ nr) ≤ ̺nµ(s) = en log ̺µ(s) ≤ Ce−δσµ(s),with C = 1/̺ and δ = −(log ̺)/r.Thus, µ is admissible if and only if the semigroup assoiated with the linear homo-geneous system is exponentially stable (see [2℄).3. The Main TheoremOur main result reads as follows.Theorem 3.1 (Existene of the global attrator). Let µ be an admissible kernel.Assume in addition that(3.1) µ′(s) < 0, for a.e. s ∈ R
+.Then S(t) possesses a onneted global attrator A ⊂ H0 whih oinides with theunstable set of equilibria. 4



Corollary 3.2 (Regularity of the global attrator). The global attrator A is on-tained and bounded in H1. Moreover, alling Π the projetion of H onto M0, wehave the additional regularity
ΠA ⊂ D[T ], sup

η∈ΠA
‖Tη‖M0 <∞, sup

η∈ΠA, s∈R+

‖Aη(s)‖ <∞.Remark 3.3. Hypothesis (3.1) an be relaxed when the nonlinearity g is subritial,that is, if (2.1) is replaed by
|g′(u)| ≤ c(1 + |u|β), β < 2.More preisely, the above results hold true even if the set P0 = {s ∈ R

+ : µ′(s) = 0}has positive measure not exeeding a ertain limit whih depends on the physialonstants of the system. The exat ondition is the same as the one required tohave exponential stability of the orresponding linear semigroup (see [17℄).Remark 3.4. If the �rst equation of (1.1) also ontains the dissipative term ∂tu,it is not hard to show, using the tehniques of this paper, that Theorem 3.1 andCorollary 3.2 hold without hypothesis (3.1). Hene, in that situation, being anadmissible kernel is a neessary and su�ient ondition in order for the relateddynamial system S(t) to possess the global attrator.4. Proof of the Main Theorem4.1. The gradient system. We begin to establish the following fat.Proposition 4.1. The semigroup S(t) is a gradient system on H0 and the set S ofits equilibria is bounded in H0.Proof. The seond assertion is quite immediate. Indeed,
S =

{

(u0, 0, 0) ∈ H0 : Au0 + g(u0) = f
}

,whih is bounded on aount of the assumptions on f and g. We de�ne the funtion
L ∈ C(H0,R) as

L(p, q, ψ) = ‖(p, q, ψ)‖2
H0

+ 2〈G(p), 1〉 − 2〈f, p〉.We have to show that L is a Lyapunov funtion, namely,(i) L(z) → ∞ if and only if ‖z‖H0 → ∞,(ii) L(S(t)z) is noninreasing for any z ∈ H0,(iii) if L(S(t)z) = L(z) for all t > 0, then z is an equilibrium.Property (i) is apparent in light of (2.7). Indeed,(4.1) 1

c
‖z‖2

H0
− c ≤ L(z) ≤ c‖z‖4

H0
+ c, ∀z ∈ H0,for some c ≥ 1. Next, if z = (u0, v0, η0) is a su�iently regular datum (in partiular,

η0 ∈ D[T ]), we have (see [4℄)
d

dt
L(S(t)z) =

∫ ∞

0

µ′(s)‖A1/2ηt(s)‖2ds.5



Hene, hoosing δ > 0 small enough suh that the set N = {s ∈ R
+ : µ′(s)+δµ(s) ≤

0} has positive measure (here we are using (3.1)),
L(S(t)z) ≤ L(z) − δ

∫ t

0

∫

N

µ(s)‖A1/2ητ(s)‖2dsdτ, ∀t > 0.By density, the inequality holds for every z ∈ H0. In partiular, (ii) follows. Finally,if L(S(t)z) = L(z) for all t > 0, then ηt(s) = 0 for every t > 0 and every s ∈ N .From the representation formula (2.9), we learn that u(t) has period s, for every
s ∈ N . Sine N has positive measure, it follows that u(t) = u0, and therefore
∂tu(t) = v0 = 0. Using again (2.9), we get

ηt(s) =

{

0, 0 < s ≤ t,

η0(s− t), s > t.To prove (iii), we are left to show that η0 = 0. Indeed, the equality L(S(t)z) = L(z)now reads
∫ ∞

0

µ(s+ t)‖A1/2η0(s)‖2ds =

∫ ∞

0

µ(s)‖A1/2η0(s)‖2ds, ∀t > 0.Sine µ vanishes monotonially at in�nity, taking the limit t→ ∞ in the right-handside and applying the dominated onvergene theorem, we onlude that η0 = 0. �Remark 4.2. Note that we did not use (3.1) in its full strength. Indeed, to obtainthe desired onlusion, it is enough to have a set of positive measure on whih µ isnot onstant (f. Remark 2.1).4.2. The semigroup deomposition. We deompose the solution S(t)z into thesum
S(t)z = D(t)z +K(t)z,where D(t)z = (v(t), ∂tv(t), ξ

t) and K(t)z = (w(t), ∂tw(t), ζ t) solve the problems


















∂ttv + Av +

∫ ∞

0

µ(s)Aξ(s)ds+ g0(v) = 0,

∂tξ = Tξ + ∂tv,

(v(0), ∂tv(0), ξ0) = zand


















∂ttw + Aw +

∫ ∞

0

µ(s)Aζ(s)ds+ g(u) − g0(v) = f,

∂tζ = Tζ + ∂tw,

(w(0), ∂tw(0), ζ0) = 0.Then, we haveLemma 4.3. There exist κ > 0 and an inreasing nonnegative funtion Q suh that
‖D(t)z‖H0 ≤ Q(‖z‖H0)e

−κt,for every t ≥ 0. 6



Lemma 4.4. Let B ⊂ H0. Assume that
sup
t≥0

sup
z∈B

‖S(t)z‖H0 = C <∞.Then, K(t)B ⊂ Hr, for every t ≥ 0 and every r ∈ [0, 1
2
), and there is M =

M(C, r) ≥ 0 suh that
sup
t≥0

sup
z∈B

‖K(t)z‖Hr ≤M.Lemma 4.5. Let B ⊂ H1/3. Assume that
sup
t≥0

sup
z∈B

‖S(t)z‖H1/3
= C <∞.Then, K(t)B ⊂ H1, for every t ≥ 0, and there is M = M(C) ≥ 0 suh that

sup
t≥0

sup
z∈B

‖K(t)z‖H1 ≤M.The proofs of the three above lemmata will be given in the following setions.Corollary 4.6. Let B ⊂ Hr, for some r ∈ (0, 1]. Assume that K(t)B ⊂ Hr, forevery t ≥ 0, and
sup
t≥0

sup
z∈B

‖K(t)z‖Hr = M <∞.Then, for every t ≥ 0, K(t)B belongs to the ompat set
KM

r =
{

z0 : ‖z0‖Hr ≤M, ‖∂sΠz0‖Mr−1 ≤M, ‖A(1+r)/2Πz0(s)‖ ≤ 2M, Πz0(0) = 0
}

.Proof. The ompatness of ΠKM
r in M0 (and, onsequently, the ompatness of KM

rin H0) is guaranteed by Lemma 5.5 of [18℄. From the analogue of (2.9) for ζ t, weknow that
ζ t(s) =

{

w(t) − w(t− s), 0 < s ≤ t,

w(t), s > t.This shows that ζ t(0) = 0 and ‖A(1+r)/2ζ t(s)‖ ≤ 2M . Besides,
∂sζ

t(s) =

{

∂tw(t− s), 0 < s ≤ t,

0, s > t.Hene, ‖Ar∂sζ
t(s)‖ ≤M , whih implies that ‖∂sζ

t‖Mr−1 ≤M . �4.3. Proof of Theorem 3.1. Sine S(t) is a gradient system and S is bounded in
H0, using a general argument that an be found in [13, 14℄ (see also the Appendix of[4℄), the existene of the (onneted) global attrator A oiniding with the unstableset of S is ahieved if we show that(a) D(t) deays to zero uniformly on bounded sets,(b) for any given R > 0, there is a ompat set K = K(R) ⊂ H0 suh that

K(t)z ∈ K for every t ≥ 0 and every z ∈ H0 of norm less than or equal to
R. 7



In that ase, A ⊂ K, for some R > 0 large enough. Point (a) is exatly the ontentof Lemma 4.3, whih says even more than is needed, sine the deay is of exponentialtype. Conerning point (b), due to (4.1) and to the monotoniity of L along thetrajetories, if ‖z‖H0 ≤ R, then ‖S(t)z‖H0 ≤ C, for some C = C(R). Hene, given
r ∈ (0, 1

2
), applying Lemma 4.4 (with B equal to the ball of H0 of radius R), itfollows that ‖K(t)z‖Hr ≤M . Therefore, by Corollary 4.6 (with B equal to the ballof Hr of radius M), we onlude that K(t)z ∈ KM

r .4.4. Proof of Corollary 3.2. At this point, we know (in partiular) that A isbounded in H1/3. Besides, A is fully invariant for S(t), namely, S(t)A = A, forevery t ≥ 0. Hene, for every z ∈ A and every t ≥ 0, there exists zt ∈ A suhthat z = D(t)zt +K(t)zt. An appliation of Lemma 4.3 and Lemma 4.5 entails theboundedness of A in H1. Finally, Corollary 4.6 yields the desired regularity. Indeed,
ΠKM

1 ⊂ D[T ].Remark 4.7. In fat, by Lemma 4.3 and a slight modi�ation of Lemma 4.4 andLemma 4.5, together with the transitivity of the exponential attration property [7℄,one an show the existene of a regular exponentially attrating set and, in turn,of an exponential attrator of �nite fratal dimension, whose basin of exponentialattration is the whole phase spae H0. As a byprodut, the global attrator A has�nite fratal dimension as well. It is also worth observing that the regularity of Aan be inreased up to where f and g permit.5. Some Auxiliary FuntionalsWe begin with some preliminary work in order to be in a position to prove Lemma 4.3,Lemma 4.4 and Lemma 4.5. We introdue the probability measure µ̂ on R
+ as

µ̂(P ) =

∫

P

µ(s)ds,for any (measurable) set P ⊂ R
+. For any δ > 0, we onsider the sets

Pδ =
{

s ∈ R
+ : µ′(s) + δµ(s) > 0

} and Nδ =
{

s ∈ R
+ : µ′(s) + δµ(s) ≤ 0

}

.Clearly, Pδ ∪Nδ = R
+ (exept, possibly, a nullset). Besides, on aount of (3.1),

lim
δ→0

µ̂(Pδ) = 0.Then, for ψ ∈ M0, we denote
Pδ[ψ] =

∫

Pδ

µ(s)‖A1/2ψ(s)‖2ds and Nδ[ψ] =

∫

Nδ

µ(s)‖A1/2ψ(s)‖2ds.Observe that Pδ[ψ]+Nδ[ψ] = ‖ψ‖2
M0

. In order to deal with the (possible) singularityof µ(s) at zero, given any ν ∈ (0, 1
2
), we hoose s∗ = s∗(ν) > 0 suh that

∫ s∗

0

µ(s)ds ≤ ν

2
,and we introdue the funtion ω : R

+ → R
+ as

ω(s) = µ(s∗)χ(0,s∗](s) + µ(s)χ(s∗,∞)(s),8



where χ denotes the harateristi funtion. Finally, we de�ne the funtionals on
H0

Φ1(p, q, ψ) = −
∫ ∞

0

ω(s)〈q, ψ(s)〉ds,

Φ2(p, q, ψ) = 〈q, p〉,

Ψ(p, q, ψ) =

∫ ∞

0

(
∫ ∞

s

µ(σ)χPδ
(σ)dσ

)

‖A1/2(ψ(s) − p)‖2ds,and the funtional
Φ(p, q, ψ) = Φ1(p, q, ψ) + (1 − 2ν)Φ2(p, q, ψ).In light of (2.10), it is readily seen that(5.1) 0 ≤ |Φ1(p, q, ψ)| + |Φ2(p, q, ψ)|+ Ψ(p, q, ψ) ≤ c‖(p, q, ψ)‖2

H0
.We now onsider the system(5.2) 





∂ttp+ Ap+

∫ ∞

0

µ(s)Aψ(s)ds+ k = 0,

∂tψ = Tψ + ∂tp,where k = k(p, t) is a suitable nonlinearity. Observe that (5.2) may not generatea strongly ontinuous semigroup on H0. Assuming that (p, ∂tp, ψ) is a su�ientlyregular global solution to (5.2) (in partiular, ψ ∈ D[T ]), we haveLemma 5.1. The following inequality holds:
d

dt
Φ1(p, ∂tp, ψ) ≤ 2

√
ν ‖A1/2p‖2 − (1 − ν)‖∂tp‖2

− µ(s∗)

λν

∫ ∞

0

µ′(s)‖A1/2ψ(s)‖2ds+ (2µ̂(Pδ) +
√
ν )Pδ[ψ] +

3

ν
Nδ[ψ]

+

∫

Pδ

µ(s)〈A1/2p, A1/2ψ(s)〉ds+

∫ ∞

0

ω(s)〈k, ψ(s)〉ds.The last term an be onveniently estimated as
∫ ∞

0

ω(s)〈k, ψ(s)〉ds ≤ ‖k‖‖ψ‖M−1.Lemma 5.2. The following inequality holds:
d

dt
Φ2(p, ∂tp, ψ) ≤ −(1 − ν)‖A1/2p‖2 + ‖∂tp‖2 +

1

ν
Nδ[ψ]

−
∫

Pδ

µ(s)〈A1/2p, A1/2ψ(s)〉ds− 〈k, p〉.The proofs of Lemma 5.1 and Lemma 5.2 an be found in [17℄, where the samefuntionals have been introdued to treat the linear homogeneous ase. Colletingthe above results, and observing that(5.3) ∫

Pδ

µ(s)〈A1/2p, A1/2ψ(s)〉ds ≤ αµ̂(Pδ)‖A1/2p‖2 +
1

4α
Pδ[ψ], ∀α > 0,we readily obtain 9



Lemma 5.3. The following inequality holds:
d

dt
Φ(p, ∂tp, ψ) ≤ −(1 − 6

√
ν )‖A1/2p‖2 − ν‖∂tp‖2 − µ(s∗)

λν

∫ ∞

0

µ′(s)‖A1/2ψ(s)‖2ds

+ 2(µ̂(Pδ) +
√
ν )Pδ[ψ] +

4

ν
Nδ[ψ] + ‖k‖‖ψ‖M−1 − (1 − 2ν)〈k, p〉.Finally, we haveLemma 5.4. The following inequality holds:

d

dt
Ψ(p, ∂tp, ψ) ≤ −1

2
Pδ[ψ] + 2µ̂(Pδ)‖A1/2p‖2.Proof. Using the equality ∂tψ = Tψ + ∂tp,

d

dt
Ψ(p, ∂tp, ψ) = 2

∫ ∞

0

(
∫ ∞

s

µ(σ)χPδ
(σ)dσ

)

〈A1/2Tψ(s), A1/2(ψ(s) − p)〉ds

= 2

∫ ∞

0

(
∫ ∞

s

µ(σ)χPδ
(σ)dσ

)

d

ds
〈A1/2ψ(s), A1/2p〉ds

−
∫ ∞

0

(
∫ ∞

s

µ(σ)χPδ
(σ)dσ

)

d

ds
‖A1/2ψ(s)‖2ds.An integration by parts then yields

d

dt
Ψ(p, ∂tp, ψ) = −Pδ[ψ] + 2

∫

Pδ

µ(s)〈A1/2ψ(s), A1/2p〉ds,and, using (5.3), the onlusion follows. �Remark 5.5. The above results ontinue to hold with (Ar/2p, Ar/2∂tp, A
r/2ψ) in plaeof (p, ∂tp, ψ). The only di�erene is that the terms ‖k‖‖ψ‖M−1 and 〈k, p〉 must bereplaed by ‖k‖‖Arψ‖M−1 and 〈k, Arp〉, respetively.6. Proof of Lemma 4.3Here and in the sequel, all the estimates are performed within a suitable regulariza-tion sheme. We de�ne L0 ∈ C(H0,R) as

L0(p, q, ψ) = ‖(p, q, ψ)‖2
H0

+ 2〈G0(p), 1〉.For every δ > 0, we have
d

dt
L0(D(t)z) =

∫ ∞

0

µ′(s)‖A1/2ξt(s)‖2ds ≤ 0.We now hoose an arbitrary z suh that ‖z‖H0 ≤ R. Throughout the end of theproof, the generi onstant c ≥ 0 may depend (inreasingly) onR. Hene, on aountof (2.3)-(2.5),
‖D(t)z‖2

H0
≤ L0(D(t)z) ≤ c‖D(t)z‖2

H0
.10



Let ε ∈ (0, 1
2
) to be spei�ed later, and put ν = ε2 (this �xes the orresponding s∗).Then, selet δ > 0 small enough suh that µ(s∗) ≤ λ/δ and µ̂(Pδ) ≤ ε2. Finally,setting (p(t), ∂tp(t), ψ

t) = D(t)z and k = g0(v) in (5.2), introdue the funtional
E(t) =

1

δ
L0(D(t)z) + ε3Φ(D(t)z) +

ε2

4
Ψ(D(t)z).For ε small enough,(6.1) 1

2
‖D(t)z‖2

H0
≤ E(t) ≤ c‖D(t)z‖2

H0
.With the above hoie of ν and δ, exploiting Lemma 5.3 and Lemma 5.4, and notingthat 〈g0(v), v〉 ≥ 0, we obtain the di�erential inequality

d

dt
E ≤ −ε3

(1

2
− 6ε

)

‖A1/2v‖2 − ε5‖∂tv‖2 − ε2
(1

8
− 4ε2

)

Pδ[ξ]

+
(1

δ
− εµ(s∗)

λ

)

∫ ∞

0

µ′(s)‖A1/2ξ(s)‖2ds+ 4εNδ[ξ] + ε3‖g0(v)‖‖ξ‖M−1.Observe that
(1

δ
− εµ(s∗)

λ

)

∫ ∞

0

µ′(s)‖A1/2ξ(s)‖2ds+ 4εNδ[ξ] ≤
1

2δ

∫ ∞

0

µ′(s)‖A1/2ξ(s)‖2ds+ 4εNδ[ξ]

≤ −
(1

2
− 4ε

)

Nδ[ξ],while
ε3‖g0(v)‖‖ξ‖M−1 ≤ cε3‖A1/2v‖‖ξ‖M0 ≤

ε3

4
‖A1/2v‖2 + cε3Nδ[ξ] + cε3Pδ[ξ].Hene,

d

dt
E ≤ −ε3

(1

4
− 6ε

)

‖A1/2v‖2 − ε5‖∂tv‖2 − ε2
(1

8
− cε

)

Pδ[ξ] −
(1

2
− cε

)

Nδ[ξ].It is then lear that, up to taking ε small enough (depending on c), we obtain
d

dt
E(t) + ε5‖D(t)z‖2

H0
≤ 0,whih, together with (6.1) and the Gronwall lemma, yield the desired onlusion.Notie that the obtained deay rate κ depends on c (and thus on R). However, usingthe semigroup properties, it is immediate to show that it an be �xed independentlyof R, provided that we enlarge Q(R) aordingly.7. Proofs of Lemma 4.4 and Lemma 4.5The proofs of the lemmata lean on the existene of a (weak) dissipation integral.Namely,Lemma 7.1. Assume that the hypotheses of Lemma 4.4 hold. Then, for every ε > 0and every t ≥ τ ≥ 0,

∫ t

τ

‖∂tu(y)‖dy ≤ ε(t− τ) +K,for some K = K(C, ε) ≥ 0. 11



Proof. In this proof, the generi onstant c will depend on the bound C of the normof S(t)z in H0. For any �xed ε > 0 (without loss of generality, we assume that
ε ≤ 1/2), hoose ν = ε2 and δ > 0 suh that µ(s∗) ≤ λ/δ and µ̂(Pδ) ≤ ε2. It isapparent that

∫

Pδ

µ(s)〈A1/2u,A1/2η(s)〉ds ≤ cεand
‖g(u) − f‖‖η‖M−1 ≤

1

ε2
Nδ[η] + cε.Then, setting (p(t), ∂tp(t), ψ

t) = S(t)z and k = g(u) − f in (5.2), in view ofLemma 5.1 and Remark 5.5, the funtional Φ1(S(t)z) satis�es the inequality
d

dt
Φ1 ≤ −1

2
‖∂tu‖2 − µ(s∗)

λε2

∫ ∞

0

µ′(s)‖A1/2η(s)‖2ds+
4

ε2
Nδ[η] + cε.Finally, we de�ne

E(t) =
1

δ
L(S(t)z) + ε4Φ1(S(t)z),where L is the Lyapunov funtion introdued above. Due to (5.1), we have |E| ≤ c/δ.Reasoning as in the proof of Lemma 4.3, if ε is small enough (whih is learly not aonstraint in view of our aim), we obtain

d

dt
E +

ε4

2
‖∂tu‖2 ≤ cε5.Integrating this inequality over (τ, t), and subsequently applying the Hölder inequal-ity, we reah the desired onlusion. �7.1. Proof of Lemma 4.4. Again, the generi onstant c appearing below willdepend on the bound C of the norm of S(t)z in H0. For r ∈ [0, 1

2
), we introdue thefuntional

Qr(t) = ‖K(t)z‖2
Hr

+ 2〈g(u(t)) − g0(v(t)) − f, Arw(t)〉,whih satis�es the estimates
1

2
Qr(t) − c ≤ ‖K(t)z‖2

Hr
≤ 2Qr(t) + cand the di�erential equality

d

dt
Qr −

∫ ∞

0

µ′(s)‖A(1+r)/2ζ(s)‖2ds

= 2〈[g′0(u) − g′0(v)]∂tu,A
rw〉 + 2〈g′0(v)∂tw,A

rw〉 + 2〈g′1(u)∂tu,A
rw〉.By virtue of (2.3), (2.5)-(2.6) and the ontinuous embedding Hα →֒ L6/(3−2α)(Ω),we obtain the following estimates:

2〈[g′0(u) − g′0(v)]∂tu,A
rw〉 ≤ c(1 + ‖u‖L6 + ‖v‖L6)‖∂tu‖‖w‖L6/(1−2r)‖Arw‖L6/(1+2r)

(7.1)
≤ c‖∂tu‖‖A(1+r)/2w‖2,12



2〈g′0(v)∂tw,A
rw〉 ≤ c‖|v| + |v|2‖L3‖∂tw‖L6/(3−2r)‖Arw‖L6/(1+2r)(7.2)

≤ c‖A1/2v‖‖Ar/2∂tw‖‖A(1+r)/2w‖,and(7.3) 2〈g′1(u)∂tu,A
rw〉 ≤ c‖∂tu‖‖Arw‖ ≤ c‖∂tu‖ + c‖∂tu‖‖A(1+r)/2w‖2.Thus, we readily obtain

d

dt
Qr −

∫ ∞

0

µ′(s)‖A(1+r)/2ζ(s)‖2ds ≤ h + hQr,where we put
h(t) = c‖∂tu‖ + c‖A1/2v‖.For ε ∈ (0, 1

2
), we hoose ν = ε2 and δ > 0 suh that µ(s∗) ≤ λ/δ and µ̂(Pδ) ≤ ε2.Setting (p(t), ∂tp(t), ψ

t) = Ar/2K(t)z (here, Ar/2 is in fat the diagonal matrix whoseentries are Ar/2) and k = g(u) − g0(v) − f in (5.2), we onsider the funtional
Υr(t) = Φ(Ar/2K(t)z) + Ψ(Ar/2K(t)z).Applying Lemma 5.3 and Lemma 5.4, together with Remark 5.5 and the immediateontrol

‖g(u) − g0(v) − f‖‖Arζ‖M−1 − (1 − 2ε2)〈g(u) − g0(v) − f, Arw〉

≤ 1

2
‖A(1+r)/2w‖2 +

1

4
Pδ[A

r/2ζ ] + Nδ[A
r/2ζ ] + c,we obtain

d

dt
Υr ≤ −ε2

(

‖A(1+r)/2w‖2 + ‖Ar/2∂tw‖2 + Pδ[A
r/2ζ ]

)

− µ(s∗)

λε2

∫ ∞

0

µ′(s)‖A(1+r)/2ζ(s)‖2ds+
5

ε2
Nδ[A

r/2ζ ] + c,provided that ε is small enough. Finally, we introdue the energy
Wr(t) =

1

δ
Qr(t) + ε3Υr(t),whih ful�lls the inequalities (again, if ε is small enough)

1

c
Wr(t) − c ≤ ‖K(t)z‖2

Hr
≤ cWr(t) + c,for some c ≥ 1 depending on ε. Thus, we reah the desired onlusion if we showthat Wr(t) is bounded for all times. In light of the previous omputations, we have

d

dt
Wr ≤ −ε5

(

‖A(1+r)/2w‖2 + ‖Ar/2∂tw‖2 + Pδ[A
r/2ζ ]

)

+ 5εNδ[A
r/2ζ ]

+
(

1 − εδµ(s∗)

λ

)

∫ ∞

0

µ′(s)‖A(1+r)/2ζ(s)‖2ds+ h+ hWr + c.It is then apparent that, provided that we �x ε small, we end up with the inequality
d

dt
Wr + βWr ≤ h + hWr + c,13



for some β > 0. Observe also that, by virtue of Lemma 4.3 and Lemma 7.1,
∫ t

τ

h(y)dy ≤ β

2
(t− τ) + c.Sine Wr(0) = 0, the onlusion follows from a Gronwall-type lemma (see e.g. [4℄).7.2. Proof of Lemma 4.5. We basially repeat the proof of Lemma 4.4, setting

r = 1. In this ase, the generi onstant c appearing below will depend on the bound
C of the norm of S(t)z in H1/3. The only di�erene here is how we reah the ontrol(7.1), whereas (7.2)-(7.3) remain the same (for r = 1). Sine

|g′0(u) − g′0(v)| ≤ c|w|(1 + |u| + |w|),exploiting the Agmon inequality
‖w‖L∞ ≤ c‖A1/2w‖1/2‖Aw‖1/2 ≤ c‖Aw‖1/2and the embeddings H4/3 →֒ L9(Ω) and H1/3 →֒ L18/7(Ω), we are led to

2〈[g′0(u) − g′0(v)]∂tu,Aw〉 ≤ c‖∂tu‖‖w‖L∞‖Aw‖ + c‖u‖L9‖∂tu‖L18/7‖w‖L∞‖Aw‖
+ c‖w‖2/3

L6 ‖∂tu‖L18/7‖w‖4/3
L∞‖Aw‖

≤ c‖Aw‖3/2 + c‖Aw‖5/3

≤ γ‖Aw‖2 +
c

γ5
,for every γ ∈ (0, 1). Thus, for any given γ ∈ (0, 1), we onlude that

d

dt
Q1 −

∫ ∞

0

µ′(s)‖A(1+r)/2ζ(s)‖2ds ≤ γ‖Aw‖2 + h+ hQ1 +
c

γ5
.We an now proeed exatly as in the proof of Lemma 4.4. Note that the term
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