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Abstract

The paper provides formulae for calculating the limiting normal cone intro-
duced by Mordukhovich to a finite union of convex polyhedra. In the first
part, special cases of independent interest are considered (almost disjoint
cones, halfspaces, orthants). The second part focusses on unions of general
polyhedra. Due to the local nature of the normal cone, one may restrict
considerations without loss of generality to finite unions of polyhedral cones.
First, an explicit formula for the normal cone is provided in the situation of
two cones. An algorithmic approach is presented along with a refined, more
efficient formula. Afterwards, a general formula for the union of N cones is
derived. Finally, an application to the stability analysis of a special type of
probabilistic constraints is provided.

1 Introduction

In the variational geometry of nonconvex sets a distinguished role is played by the
(limiting) normal cone introduced in 1976 by Mordukhovich [6]. Its importance
in many areas of optimization and optimal control, stability analysis, set-valued
analysis etc. can be recognized from the monographs [10] (with emphasis on finite
dimensions) and [7] (with an extensive theory in infinite dimensions). Though this
cone enjoys a rich calculus, its computation for a concrete nonconvex set can be a
challenging task.

In [2] the authors studied the stability of a class of parameter-dependent variational
inequalities with a convex polyhedral constraint set C. The key step, that enabled
them to derive the main results, was the computation of the normal cone to the
graph of the standard normal cone mapping N¢ (-) associated with C'. Due to the
polyhedrality of C, this graph is a union of finitely many convex polyhedra [9]. It
possesses a special structure that was extensively exploited in the computation of
the normal cone. Nevertheless, the resulting formula is by no means easy to apply
(it describes a procedure which is quite involved even in case of very simple sets C).

A problem which, at least formally, is not too far from the investigations in [10],
arises in the stability analysis of a parameter-dependent constraint set

I'(z) = {y € R™|F(z,y) € A},

where again the normal cone to A plays a key role. Nevertheless, here A does not
necessarily have the structure of gph N¢, which prevents a straightforward applica-
tion of the results from [10].



The aim of this paper is to compute the normal cone to a finite union of convex
polyhedral cones. This result can be used then in the stability analysis of I'. It
may have, however, yet other applications, e.g. in disjunctive programming, and
has definitely importance of its own in variational analysis. As expected, also in
this case the resulting formula describes a nontrivial procedure, the complexity of
which substantially increases with the number of cones. Throughout the paper, we
use Motzkin’s Theorem of the Alternative as our workhorse which is well suited
for desribing the position of the considered point at the boundary of polyhedral
sets. Moreover, the focus of our analysis is on polyhedral cones, because only local
information is required for the computation of the limiting normal cone and, locally,
polyhedra look like cones.

The paper is organized as follows: In Section 2, we collect several basic results
extensively used in the sequel. Section 3 provides a compilation of explicit formulae
for the normal cone to specially structured unions of polyhedral cones. In Section
4, an explicit formula for the calculation of the limiting normal cone to the union of
two arbitrary polyhedral cones is derived in terms of the data of the original cones.
This formula may be used for numerical calculations in moderate dimension, but
it becomes inefficient soon. Therefore, Section 5 proposes a more efficient variant
of the formula along with an algorithmic procedure. The situation with a general
finite union is not fully recognized from the case of two cones. Section 6 generalizes
the observations obtained so far to the union of N cones. Finally, Section 7 presents
an application to the stability analysis of certain probabilistic constrains.

2 Preliminaries

We start with the definitions of the main objects in our investigation. For a closed
set A C R™and a point z € A, the Fréchet normal cone to A at z € A is defined by

No(z) = {z* € R*| (a*,2 — &) < o[z — 7||) Ve e A}

The (limiting) normal cone to A at & € A results from the Fréchet normal cone in
the following way:

Ni(z) := Limsup NA(m)

z—Z,xEA
The 'Limsup’ in the definition above is the upper limit of sets in the sense of
Kuratowski-Painlevé, cf. [10]. In this finite-dimensional setting, Nx(Z) is the nega-
tive polar cone to the contingent cone to A at z:
A—{z
Ta(z) := Limsup Q
£40

Hence, NA(E:) coincides with the standard normal cone in the sense of convex analysis

whenever A is convex. At this point, we state a simple observation which will be
useful in the sequel:



Lemma 2.1 Let K be a closed conver cone. Then, denoting by K* the negative
polar cone of K, it holds that

bdEK*= | Nk(a),
zeK\{0}
where 'bd’ refers to the topological boundary.

Proof. First note that, in the setting of the lemma, N coincides with the normal

cone of convex analysis. From a well-known representation of the boundary of convex
sets (see [5], Prop. 3.1.4 and 3.1.5), it follows that

bd K* = | J{s"|z € Nk+(s")}.
z#0

Since Ng«(s*) C K** = K, we may shrink the union to z € K\{0}. Exploiting now
the equivalence

z € NK*(S*) <~ st e NK(az)
(see [10], Example 11.4), the result follows. m
In this paper, we will be dealing with finite unions of polyhedra and polyhedral

cones. Let P := UN.P; where each component P; is a convex polyhedron. For
z € P, denote the indez set of active components by

I(z):={ee{l,..., N}z € B}.
Clearly, there exists some neighbourhood V of 0 such that
(P—{=z)nv= ] (P—{=z})nV.
1€l(x)

Moreover, for each ¢ € I(z), we can associate with P; the contingent cone Tp,(z) as
well as a neighbourhood ¥, of zero such that

Tpi(:IJ) N Z/{Z == (PZ — {:IJ}) N Z/{z

Consequently, the polyhedral cone A, := Tp/(z) and the neighbourhood U :=
Nier(@s NV of zero satisfies

(P—{zh)nu= ] nnu.

1€l(x)

Thus, for A := Usep(s)Ai, one ends up with Np(z) = Nx(0). In other words, it
suffices to compute the normal cone to a finite union of polyhedral cones at zero.
Given this reduction, we shall focus now on sets

N
A=A,
=1
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where the A; are convex polyhedral cones. Due to the polyhedral structure of A,
only a finite number of cones can be manifested as Nj(z), z € A, and, moreover,

for z #£ 0,
Ny(z) = Np(tz) Vi> 0.
It follows that
N
= JM@) =Mm0O)u [ ME@=Aau [ M=), @
€A zeA\{0} =1 zeA\{0}
where the last equality relies on the identity

N

UTA 0

=1

Na(0) = [T4(0)]° =

N . N
= ﬂ NAi(O) = ﬂA:
=1 =1

Owing to Lemma 2.1 above, one gets the inclusion

U m@e U Uine [ﬂ U ):de/\;,

zeA\{0} zEA\{O}z 1

Along with (1), we have the following upper estimate for the limiting normal cone:
N N

0) € (ArUlbdA;. (2)
=1 =1

3 Special Cases

Before turning to the union of polyhedral cones without further structural assump-
tions, it 1s worth considering some special cases which are of independent interest
and can be analyzed directly.

3.1 Almost Disjoint Cones

First, we consider the union of cones which are almost disjoint in the sense that their
pairwise intersections reduce to zero. As in this specific situation the polyhedral
structure is not essential, we formulate the result for arbitrary convex cones. The
resulting formula itself already appears as an inclusion in (2) and so, some derivations
in the next proposition are parallel to those preceding (2). However, here we consider
a situation which is more general on the one hand, in the sense that non-polyhedral
cones are considered and, which is more specific on the other hand in requiring
disjoint cones.



Proposition 3.1 Let A := UY | A; be a finite union of closed convez cones such that

AN Aj = {0} fori # 7. Then,
N N
Np(0) = (AT U JbdA;
=1 =1

Proof. First, we check the relation
N (0) = | Na(z). (3)
z€EA

If z* € Nj(0), then, by definition, there are sequences z, — 0, z;, — z*, such that
zn € A and z; € Np(z,). If 2, = 0, then 2} € Nj(0). Therefore, if z, = 0 holds

true for a subsequence, then

z* € Npy(0) € | Na(z)

zEA

by closedness of the normal cone. Otherwise, z,, # 0 for all n large enough. Since A
is just a finite union of the A;’s, we may assume, after passing to subsequences, that,
without loss of generality, z, € A;. Now, our assumption guarantees that, locally
around z,, A coincides with A;, hence, by Lemma 2.1

2 € Nu(z,) = Ny, (zn) C bd AL
With bd A} being a closed set, it follows again from Lemma 2.1 that

z* €bdAf = ] Na(2)
z€A\{0}

Consequently, there exists some z' € A;\{0} C A such that, with the same argu-
mentation as before,

z* € Ny, () = Na(2') € | Na(z).

zEA

This establishes the inclusion ’C’ in (3). For the reverse inclusion, let z* € NA(m)
for some z € A. If z = 0, then

z* € Np(0) C Na(0).

Therefore, we may assume that z # 0. Then, by our assumption, z belongs to
exactly one of the A;’s, say z € A;. Put z, :=n"'z € A;\{0}. We derive that

z* € Nu(z) = Nu, (z) = Ny, (z,) = Np(z,,).

Since z, — 0, the definition of the limiting cone yields that z* € N, (0). This
establishes (3).



We may continue (3) now as follows:

Nr(0) = | Ma(z)=Ma(0)u | Na(z)=[Na0)Ul) | WNalz)
z€EA z€A\{0} =1 =1 zeA;\{0}

N N N N
= Navld U Male)=NarulJbdar

i=1z€A;\{0}
Here, in the next to last equality, we exploited once more the assumption of our

proposition, whereas the last equality relies on Lemma 2.1. m

Proposition 3.1 is illustrated in Figure 1.

Figure 1: Illustration of Proposition 3.1. The left part shows the union of two
almost disjoint cones, the right part shows the resulting normal cone evaluated at
the origin.

3.2 Halfspaces

In this section, we consider unions of halfspaces, i.e.

N
A= UAZ-, where A; := {z € R"|{¢;,z) < 0} for some ¢; e R" (z=1,...,N).

(4)



Proposition 3.2 In (), assume that the ¢; are positively linear independent and
that

ci¢con{cjli=1,...,N,j#4} (1=1,...,N), (5)

where ‘con’ refers to the convez conic hull (i.e., we assume that the description (4)
is free of redundance). Then,

Ny (0) = U Ri{c} = U AZ.

Proof. Let j € {1,...,N} be arbitrary. We establish a contradiction to the
statement, that there exists some 7 € RY\{0} such that

N
Zﬂ-icizoa WzZO ’LE{].,,N}\{]}
=1

Indeed, otherwise we obtain a contradiction either with the assumption on positive
linear independence of the ¢;’s (if ; > 0) or with (5), because for 7; < 0 one has

N
Ur
C; = ——C;.
imlagj
By Motzkin’s Theorem, the non-existence of a solution to the system above is equiv-
alent to the existence of some h € R™ such that

(enh) =0; (e h) >0 (€{l,..., NN{}).
In particular, h € A\{0} and, locally around h, A coincides with A;. Thus,
Nu(h) = Na,(h) = AL
Along with (1), and taking into account that j was arbitrary, we derive that

A C | Malz) SNA(0) (j=1,...,N). (6)
zeA\{0}

Conversely, (5) guarantees that

MA7 = NR{a} = {0},

=1

Therefore, the result follows from (2) and (6):

N N
Na(0) € [ Jbd A7 € [ J A € Na(0).
=1 =1
|

The following two examples illustrate necessity of the assumptions in Proposition

3.2:



Example 3.3 Let
Cc1 = (1,0), Cy — (0, 1), C3 = (—1, —1)

Then, A = R? and the statement of Proposition 3.2 becomes false due to the failure
of positive linear independence:

Na(0) = {0} # U R{e}.

Example 3.4 Let
C1 — (1,0), Cy = (0, 1), C3z — (1, ].)

Then, A = R*\int R? and the statement of Proposition 3.2 becomes false due to the
failure of (5):

2 3
Na(0) = U Ri{ec} # UR+{Q}-
=1 =1
Actually, the inequality defined by c3 is redundant here.

As an application of Proposition 3.2, we consider the set

N
Q:=J% Q:={zeR"fi(z)<0} (i=1,...,N),

=1

where the f; : R™ — R are continuously differentiable. We want to compute Nq(z)
at a given point z € Q and assume without loss of generality that f;(z) = 0 for

i=1,...,N.

Corollary 3.5 Assume that the gradients V f;(z) are positively linearly independent
and none of them can be represented as a nonnegative linear combination of the
others. Then,

Nq(z) = U R{Vfi(z)}.

Proof. Being positively linearly independent, the V f;(z) are nonzero and, the
same holds true locally around z. In particular,

To() = Ay Aii=Ta(e) = {h e RY (VA=) H) SO} (i=1,...,N),



Now, by virtue of our assumptions, Proposition 3.2 yields that

URHVA(@)} = Nza(a(0) € Na(o),

where the inclusion holds generally true (cf. [10], Prop. 6.27 (a)). On the other hand,
as stated above, the V f;(y) are nonzero for y in a neighbourhood of z. Consequently,

No(y) = R{V fi(y)}

for such y, whenever y € ;. Since for all y € () there is some ¢ such that y € Q,,
the definition of the normal cone implies that

Na(z) = Limsup Na(y) € Limsup | JR{V£u)} = JRAVA@)},

y—rz,yef y—rz,yef i—1

where the last equality again relies on the fact that the V f;(z) are nonzero around
z. 1

Corollary 3.5 improves a result in [4], where the same expression for the normal
cone was obtained under the stronger assumption of (full) linear independence of

the V fi(z).

3.3 Orthants

We consider the following union of translated orthants
N
P:=|JP, Pi=u+R}, weR (i=1,...,N), (7)
=1

which is of interest in disjunctive programming or in optimization problems with
probabilistic constraints under discrete distributions (see, e.g., Remark 1 in [1]). In
order to compute Np(z), we shall assume that the u'’s are in general position, i.e.,

ui £ub Vie{l,...,n} Vi,ke{l,...,N}:i#k.
For y € R™ we introduce the index set of active orthants as
I(y):={i e {1,... , N}y € v’ + R}
and the index set of active components with respect to the :-th active orthant as

F(y) =G e {L,... ,ndly; = ui} (i € I(y)).

Lemma 3.6 Let z € bd P. Then, for each i € I(z) there is a sequence {y™} € P
such that y®) —, z, I(y™)) = {5} and I'(y™)) = I'(z).

9



Proof. Let ¢ € I(z) be arbitrary. Define h € R™ by

[ 0 ifjeli(a)
hij -—{ ~1 ifje{l,...,n}\I(z)

For v € N put y™ := & + v~*h. Then, yj(-") =z, = u; for 7 € I'(z). Moreover, since
z; > u; for 7 € {1,... ,n}\I*(z), one has that yj(-") =z;—v !> u; for v sufficiently
large and j € {1 ., nI\I(z). Tt follows that 7 € I(y™) and I*(y®)) = I'(z). To
show that I(y™)) = {z} assume that k € I(y™) for some k # 4. Our assumption
on the u'’s being in general position implies that I*(z) N I*(z) = & (otherwise
T = u; = uf for some 7). Consequently, I*(z) C {1,... ,n}\I*(z), and

yj(-") =z;—vl<z;= uf Vi€ I*(z).

Now, the assumption z € bd P implies that I*(z) # &. Hence, the relation above
()
<

shows that there really exists some j with y; uJ, whence a contradiction to
k € I(y™). This finishes our proof. m

Proposition 3.7 Under the assumption of general position, the normal cone to P
in (7) calculates as

U con{—e’|j € I'(z)} z€bdP
Np(a; = iel(z)
{0} z € int P

?

where the e refer to the standard unit vectors in R™.

Proof. The assertion is trivial in case that z € int P, so let z € bd P. In case
that |I(z)| = 1, say I(z) = {1}, then P coincides with P; locally around z. With P
being a translated orthant, it follows that

Np(z) = Np,(z) = con{—¢’|j € I'(x)},

so the assertion holds true. Now, let |I(z)| > 2. Referring back to the argumentation
in Section 2, we have that Np(z) = Nj(0), where

U Aiy, Ai:={heR"h; >0 Vje I'(z)}
i€l(x
Moreover, (2) translates to our setting as
c () Aru [ bda; (8)
1€l(x) 1€l(x)

(recall that the number N of cones considered in (2) has already been chosen to
coincide with the cardinality of the set of active indices I(z) relating to the polyhedra
P; in Section 2; thus it may be smaller than the original number N of polyhedra).

10



As already observed in the proof of Lemma 3.6, the assumption of general position
implies that

I'z)NI*z) =2 Vi,kcl(z),:#k. (9)

# @ for all v € I(z).

On the other hand, since z € bd P, one also has that I'(z)
| > 2 leads to |I'(z)| < n

Putting together these two arguments, the assumption |I(z)
for all 2 € I(z). Since

Ar = con{—€’|j € I'(z)}, (10)

it follows that A} is a closed set which is contained in a linear space of dimension
strictly less than n. We infer that A = bd Af for all : € I(z). Now, given an
arbitrary ¢ € I(z), Lemma 3.6 provides us with a sequence {y®} € P such that
y® =, z, I(y®) = {i} and I'(y™)) = I‘(z). Therefore, locally around each y™), P
coincides with the translated orthant P;, and so

~

Np(y®) = Np,(y*™) = con{—¢’|j € I'(y"))} = con {—¢’|j € I'(z)} = A} = bd A},
(11)

Consequently, as 7 € [(z) was chosen arbitrarily, it follows that

bd A¥ C Limsup Np(y) = Np(z) Vi€ I(z). (12)

y—rz,yeP

Finally, combining (9) and (10), one gets that
AN A ={0} Ve, kel(z),i#k.

Since we assumed that |[I(z)| > 2, this entails the identity N¥ A} = {0}, whence,
by (8), (12) and (11) the asserted identity

Np(z) = Ny (0) = | bdA; = ] con{—¢|j € I'(z)}.
1€](x) 1€l(x)
|

Figure 2 illustrates Proposition 3.7. In the example of the figure, one has that

I(z)={1,2}; I'(z)={3}; I*(z)={12}.
Hence, Proposition 3.7 yields that Np(z) = con {—e®*} U con {—e', —€*}.

Summarizing the previous sections, both special cases, the half-spaces and the trans-
lated orthants provide representations of the normal cone, where the upper estima-
tion in (2) is realized as an equality (see the last lines in the proofs of Prop. 3.2
and Prop. 3.7, respectively). In general, the normal cone may be strictly smaller
than the upper estimate due to overlapping parts in the union of polyhedra. To deal
with this general situation, we provide in the following sections a precise formula
for calculating the normal cone.

11



Figure 2: Ilustration of Prop. 3.7. The point z belongs to the union of the two
orthants u! + R‘:’_, u? + R‘:’_. The normal cone to this union at z is illustrated as an
attachment to the coordinate system. See discussion below.

4 The Case of Two Polyhedral Cones

In this section, we start to analyze the normal cone to the union of polyhedral
cones without further assumptions on their structure as in the special cases of the
previous section. However, since a formula for the limiting cone is difficult to obtain
at once for an arbitrary finite union, we focus first on the case of two components
and consider the general case in section 6.

So, let A := A; UA,, where Ay, A, are polyhedral cones. Using the decomposition
AN{0} = (A1\A2) U (A2\A1) U ((Ar N A2) \{0}),
we may invoke (1) to obtain the identity
M) =AMl | Nae)u | Naeu | Na@). (13)
€A1\ Az €A\ Ay z€(A1NA2)\{0}

Here, we exploited the fact that, for z € A;\A,, the union A coincides locally
around z with A, so Ny(z) = Ny, (z), and similarly with z € A;\A;. The following
observation allows to omit the last contribution in (13):

12



Lemma 4.1 Nj(z) C ATN A} for all z € (Ay N Ay) \{0}.

Proof. Since z € A; N A,, we may apply the calculus rules for Fréchet normal
cones:

~

Na(z) = Nayun, (z) = N, (z) N Nay(z) € AT N A3

The lemma allows to reduce (13) to

N(0) =AMl | Na ) U | Na(e) (14)

z€A1\ Ay z€A\Ay

Our aim is to represent Nj(0) by a formula which merely falls back on the data
of the original cones A; and A,. Everything is obvious for the first part in (14),
which is just the intersection of the polar cones and, which we would like to refer
to as the solid part of Nx(0). The reason is that, in contrast with the remaining
contributions in (13), it is typically of full dimension (see Figure 1 for an illustration
though in the context of nonpolyhedral cones). Since the second and third terms in
(14) are symmetric, we focus our analysis now on calculating NAI (z) for z € A1\ As.
In order to do so, it is convenient to assume an explicit description of A; and A,.
Accordingly, let

A = {2eR"{c,z) <0 (z=1,...,p)} (15)

Ay = {zeR"(d;,z) <0 (1=1,...,9)}
Then,

AM\A = | P (16)
3=1,....9
where
Pz s € R (c,2) S0 (i=1,0.,p), (—ds2) <O},

In the following, we fix an arbitrary index j € {1,...,q} and calculate the partial
contribution

U Fu(2) (17)

z€PJ

of P7 to the second term in (14). With each z € PJ, we associate the active index
set

I(z):={s € {1,...,p} (ci,z) = 0}.

13



Moreover, we introduce the following two families of index sets:

T+ = {I(@)s € P}
I, « ={IC{1,...,p}d; ¢ span{ci|s € I} + con{c;|z € I°}}.
Here, I¢:={1,... ,p}\! and, as before, ’con’ denotes the conic convex hull whereas

‘span’ refers to the linear hull.

Lemma 4.2 7, C T, and for any I € I,, there exists some © € P7 such that
ICI(z).

Proof. By Motzkin’s Theorem, the condition
d; ¢ span{c|i € I} + con{¢|s € I}
is equivalent with the existence of some x such that
(ciz) =0 (1€I), (cz)<0 (1€, (—djz)<O.
Now, the two assertions of the Lemma follow immediately from the respective defi-

nitions of Z; and P?. m

Proposition 4.3 The partial contribution (17) computes as

U Ny, (z) = U con {¢;|v € I}.

xcPi Ied,

Proof. First, we use the well-known identity
Ny, (z) = con {¢i € I(z)}, (18)
which holds true for all € A; and so for all z € P?. Thus,
U Ny, (z) = U con {¢;lv € I(z)} = U con {¢;lt € I} C U con {¢|i € I},
z€Pi z€Pi IeL, IeT,

where the last inclusion follows from the first statement of Lemma 4.2. On the other

hand, let
h € U con {¢s € I}
IEIZ

be arbitrary, so A € con {¢;|¢ € I} for some I € Z,. From the second statement of
Lemma 4.2, we derive the existence of some z € P? such that I C I(z). Then, (18)
implies that

con {¢lt € I} Ccon {¢;|i € I(z)} = NAl(m),

whence h € NAI (z). This establishes the reverse inclusion

U con {¢li € I} C U Ny, ().

Ied, zEPJI

14



Theorem 4.4 The limiting normal cone to the union A of two polyhedral cones Ay
and Ay may be represented by the formula

Na(0) = (A5 A3 U | con {aili e ITU | con {d;]5 € J},

7=1 IEAJ' =1 JeB;
where
A; - ={IC{l,...,p}d; ¢ span{c|t € I} + con{c|t € I°}}
B, : ={JC{L,...,q}ci ¢ span{d,|t € J} 4 con{d;|z € J°}}.

Proof.  The result follows directly from Proposition 4.3 upon aggregating the
contributions of all P? via (16), exchanging the role of A; and A, in (16) and

applying (14).
|

Figure 3: Illustration of Theorem 4.4.
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The following example illustrates Theorem 4.4:

Example 4.5 Consider the union A := A{UA; C R?, where Ay and A, are described
according to (15) by

e =(0,1), c=(-1,1), di=(-1,0), dy=(—1,-1)
(see Figure 8). Then,
Af = con{c, ez}, AL = con{di,dy}.
The upper estimate (2) provides the cone
[ATN A3 Ubd AT Ubd AL = Ry ({c} U {ca} U {di} U {ds})

15



which 1s the union of the thin half-rays in the right part of Figure 3. On the other
hand, one immediately identifies the normal cone from the figure as

Nu(0) = Ry ({{e} U{dr})

which 1s the union of the thick half-rays in the right part of Figure 8. This example is
an instance for a situation where the normal cone s strictly smaller than the upper
estimate (2). None of the special cases from Section 8 applies in this situation and
actually cannot apply due to the normal cones coinciding with the upper estimate in
all of these cases. On the other hand, one may use Theorem 4.4 here. For instance,
from the relations

di,ds € span{ci}+con{ca}; di,ds ¢ span{ca}+ con{ei};
di,dy € span{c}+span{c}; di,ds ¢ con{c;}+ con{c}

one derives that A; = Ay, = {{2},2}. Similarly, B, = By = {{1},2}. Since
AT N Ay = {0} (i.e., the solid part vanishes, see Figure 8), Theorem 4.4 provides

Ni(0) = con{eca} Ucon{di} = R ({{ec2} U {d:1}).

5 An Algorithm for the Numerical Calculation

The formula provided by Theorem 4.4 may be used for a numerical calculation.
Leaving aside the solid part, all one has to do is to determine the index sets .A; and
B;. For the Aj;, this amounts to checking the relations

d; ¢ span{c|i € I} + con{¢|s € I}

forall 7 € {1,...,q} and all subsets I C {1,...,p} (analogously for the B;). This
can be done numerically, for instance, via solving the linear program

max{(d;,z) |{c;,z) =0 (€I), (c,z)<0 (1€, zel[-1,1]"}

(see the equivalence in the proof of Lemma 4.2). The relation above will be satisfied
whenever the optimal value of this program is strictly positive, otherwise it will be
violated. As an illustration, we determine the normal cone to the union of the two
cones Ay = {z € R?|Cz < 0} and Ay = {z € R®|Dz < 0}, where C and D were

randomly generated as:

C = =
0.11 0.77 —0.74 0.06 —0.51 —-0.55 —0.76 —0.22 —0.24 0.90
—-0.11 —-0.51 0.82 —0.42 -0.10 —-0.75 0.44 0.28 —0.71 —-0.11
—0.45 0.99 0.33 0.48 0.61 0.17 —-0.25 —-0.66 —0.24 —0.79
0.36 —0.72 —0.47 0.95 —0.87 —0.57 0.15 0.64 —0.63 0.89
—0.05 —0.68 0.19 0.12 0.84 —-0.79 0.58 0.02 —0.76 0.77
—0.46 —0.06 —0.94 0.35 0.65 0.35 —0.76 0.49 0.87 0.10
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Applying the procedure described above and leaving aside the obvious solid part,
we get the following two contributions to the normal cone:

Contribution by A; \ A; :
con {c2,c3,c4,cb} Ucon{cl,e3,cd,cb} Ucon{cl,c2,cd,cb}
Ucon {cl, ¢2,¢3,cb} U con {cl, 2,3, c4}

Contribution by Ay \ A; :

con {d2,d3,d4,d6} U con {d1,d3,d4,d6} U con {d2,d4,d5, d6}
Ucon {d2,d3,d5,d6} U con {d2,d3,d4,d5} U con {d1,d4,d5,d6}
Ucon {d1,d3,d5,d6} U con {d1,d3,d4,d5}

It has to be noted that the formula in Theorem 4.4 does not generate minimal
representations of the normal cone because certain parts may be contained in others
and some part may appear in copies. The representation given in the example above
is minimal.

Although, the example demonstrates that the numerical calculation of the normal
cone is possible in principle, it becomes quickly inefficient when the number of in-
equalities describing the two cones exceeds ten or so. The reason is that the index
sets A; and B, are determined by checking all subsets of {1,... ,p} and {1,...,q},
respectively. In the following we derive a more efficient procedure, where only pos-
sibly small subsets have to be checked. As in the previous section, by symmetry, we
may restrict our considerations to the contribution (16).

We introduce the following selection operator o : [R\{0}**" = [R\{0}]™ for m + 1

nonzero vectors by
o({v1,... ,vm,w}) = {vi|Rjv; is an extremal ray of con{vi,... ,vm,w}}.

Fix an arbitrary 7 € {1,...,q}. The selection operator o provides a partition of the
total index set {1,...,p} into

L={ie{l,...,pta€c({c,...,co,—d;})}, L:={1,...,p}\ 1. (19)
Note that, by definition of ¢ and I;, one always has that
ek € con [{c;|r € L} U{—-d;}] Vke{l,...,p} (20)

Finally, as a refinement to the argumentation in the previous section, we introduce
the index set

I3 :={I C I|d; ¢ span {c;|t € I} + con {c;|s € 1\I}}.

Clearly, 73 C 7, (compare definition of 7, in the previous section). Now, generalizing
Lemma 4.2, we get the following result:
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Lemma 5.1 For any I € T, there exists some x € P’ such that I C I(z). More-
over, if the set {ci1,...,cp} is positive linearly independent and is a minimal set
describing Ay, then, T; C I;.

Proof. The first statement follows immediately from Lemma 4.2 along with the
inclusion 73 C 7,. Concerning the second statement, let I € Z; be arbitrary. By
definition, there is some z € P? such that I = I(z). We show first that [, N[ = &
for I, introduced in (19). Choose an arbitrary ¢* € I,. From (20), one gets that

¢ € con [{¢glt € L1} U{—d;}].

From Gordan’s Lemma, it follows that the strict inequality system

(ci,uy <0 (zelh), (—dju)<0, (cru)>0 (21)
has no solution. On the other hand, from z € P?, we know that

(ciyz) <0 (€ 1), (—djz)<0, (c,z)<O0. (22)
We claim that the equality

0= Xici — AoCi. (23)
1€l

does not hold for coefficients A; > 0 (¢ € I; U{0}) other than the trivial one. Indeed,

if Ag = 0, then
Z )\ici == 0,

iEIl

where not all of the A;’s vanish. This would mean that the set {¢;|z € I;} is positive
linearly independent, and much more this holds true for the larger set {ci,... , ¢},
whence a contradiction with the first assumption of our Proposition. On the other
hand, if A\g # 0, then ¢;» € con {¢;|¢ € I1} which contradicts the second assumption
of our Proposition (the inequality (¢;»,y) < 0 would follow then from the inequalities
(ci,y) < 0for: € I, and, since :* ¢ I;, this would allow to delete ¢;» from the set of
vectors {c1,... ,cp} describing A;). The stated nonexistence of a relation (23) with
nonnegative coefficients, not all of them being zero, allows to apply Gordan’s Lemma
once more and to derive the existence of some £ satisfying the strict inequality system

(ci,&) <0 (z€ ), (e, &) >0. (24)
We put
ti=tE+(1—t)z (t>0)

and obtain from (22) along with our assumption {¢;«,z) = 0, that, for sufficiently
small ¢ > 0,

<ci,mt> <0 (¢€ ), <—dj,a:t> <0, <ci*,azt> > (1 —1t) (e, ).
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Now, if 7* € I, then (¢;«,z) = 0 and (¢, z*) > 0. This, however, contradicts our
observation that (21) has no solution. Therefore, the assumption :* € I must be
wrong, so I,N I = & and, thus, I C I;. Moreover, observe that z € P? and [ = I(z)
imply that the system

<ci7m> =0 (’LE I): <ci7m> <0 ('LE Il\I)a <_dj7m> <0
has a solution. By Motzkin’s Theorem, it follows that
d; ¢ span{c|i € I} + con{c|s € I1\I}.

Summarizing, [ € Z3. &

Now, using the stronger statement of Lemma 5.1 rather than that of Lemma 4.2 in
the proof of Proposition 4.3, we may replace the index set 7, there by the smaller
index set Z3. From here, we derive a refined formula for the normal cone as compared
to Theorem 4.4. In the statement of the result, we have to take care about the fact
that the index set I; actually depends on 7 (which has been arbitrarily fixed before).

Theorem 5.2 If the sets {c1,... ,cp} and {d1,... ,dy} in (15) are positive linearly
mdependent and are minimal sets describing A1 and A,, respectively, then the lim-
1tang normal cone to the union A = Ay U Ay may be represented by the formula

Na(0) = [ATNA3J U] | con{alie YUl | con {d;]5 € J},

j=1IcA; 1=1 JeB}
where
A;- : ={I C L(y)|d; ¢ span{ci|s € I} + con{c;|z € I1(7)\I}}
B : ={JCJi(3)|c; ¢ span{d;|s € J} + con{d,|s € J1(:)\J}}
L(7) « ={te{l,...,pHa€ea({ct,...,e,—d;})} (F€{L,...,q})
Ji(e) - ={se{l,...,p}Hd; € o ({d1,... ,dy,—c:})} (G e{l,...,p}).

The advantage of Theorem 5.1 over Theorem 4.4 is that the index sets A} and B}
are (possibly much) smaller than the original index sets .4; and B;. This comes at
the price of requiring positive linear independence for the ¢; and d;. However, this
additional assumption will be satisfied as long as A; and A, do not contain nontrivial
vector subspaces. Theorem 5.1 suggests the following algorithm for calculating the
normal cone:

Algorithm 5.3 Given positive linearly independent sets {ci,... ¢}, {d1,... ,dq}
in (15), determine the contribution of Ay \ Ay to the normal cone as follows (and
the contribution of Ay \ A1 by symmetry):
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1. Eliminate those vectors ¢; from the set {ci, ... ,cp}, which are not extremal rays
of con{ci,...,cp}. Doing so, redundant ¢, will be removed from the description
(15). We assume now, that {c1,...,cp} is free of redundance.

2. Put :=0 and M := @.

3. Put j := 7+ 1. Determine the set E of extremal rays in con {ci,...,cp, —d;}
and put Iy :={1s € {1,... ,p}|c; € E}. Put S := {@}.

4. Select I € 2"\ S and put S := SU {I}.
5. Solve the linear program
a:=max{(d;,z)|{c;,z) =0 (2 € I), {c;,z) <0 (z € L\I), z € [-1,1]"}.
6. If a >0, then M := M U con{¢l: € I}.
If S # 25 then go to 4.

® N

If 7 < p then go to 8.

9. Select mazimal elements in the union M to obtain a union M which is free of
redundance. M 1s the desired contribution of A; \ Ay to the normal cone.

The set S acting in Steps 3 to 7 of the algorithm serves to select all possible subsets
of I} which are then checked in Step 5 for the defining relation of the index family
A7 introduced in the statement of Theorem 5.2. Evidently, all which is needed to
realize this algorithm are codes to solve a linear program and to find the extremal
rays in a finitely generated cone. For the latter problem, one may use, for instance,

the Fukuda’s code ’cdd’ (cf. [3]).

6 The Case of N Polyhedral Cones

We consider now a general finite union

A=A (25)

of polyhedral cones A;. Generalizing the ideas of Section 4, we partition A as

A= | [ANAL,

IC{1,...,N} I£@
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where, for arbitrary I C {1,... , N}, 1 # &, we make use of the concise notation
:ﬂAi; AH::UAZ" ]Iciz{l,...,N}\]I
i€l i€l
and adopt the convention Ay := &. Now, we develop the first equality in (1) as

=JM@E=)= U ¥ (=) (26)

zeA @£1C{1,..., N} z€ AT\ Age k€I

Here, the second equality follows from the fact that, for z € A"\ Az, A coincides,
locally around z, with Ay, whence

N ( NAH ﬂ NAk
kel

due to z € NgerAg. It is convenient, to assume now an explicit description of the
polyhedral cones:

A= {az € R" <c§?),m> <0 (j=1,... n)} (6=1,...,N).
For IC {1,...,N}, we introduce the following cartesian product of index sets:
Jio= {1}
1€l
For any integer vector J = (Jy,... ,Jjie) € Jie, we put
pl = {az cR™ <c§?’),m> <0 Vje{l,... ,m}Viel <c(J?,m> >0 Vie ]IC}.

From the very definitions, it follows that
MA= | P
Jeﬁc
Consequently, one may continue (26) as

Mmooy = U U UN (=) (27)

B#I1C{1L,...,N} JETic zc P kel

Our goal is to get rid of any dependence on z in the formula for N (0) in a way that
only the describing data for the A; remain there. Obviously, for each z € P/, there
exist subsets J,, C {1,... ,n;} for (z =1,...,|I|), such that

<c§."),a;> = 0 Vje T Viel;
(

(o
<

8
\/
AN

5 0 VJE{l, ,ni}\jz,iV’L.E]I; (28)
g

¢y,

0 Viel~

8
\/
\4
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For such z and a fixed k, one has
N, () = con {5 € Tun |
Note that, by convention, con @ = {0}. For any subset J = [[,.; Ji C J1, we put
R7 . =con {{c(j) i ¢ ]I“} U {—cg") el jedl,... ,ni}\ji}}
S{ . = span {c?”iE]I,jEZ}.
The solvability of (28) is equivalent, via Motzkin’s Theorem, to the condition
R n 57 = {0},

where J, = Hie]I Jez,i- We have shown that = € PHJ if and only if there exists some
J = Liet Ji € Ji such that R77n 87 = {0}. Therefore, given TC {1,... ,N},T #

@ and J = (J1,...,J1q) € Jic, we may write
U ﬂNAk(:I}) = U ﬂcon {cg-k) |7 € jk},
zeP] kel JeA] kel

where

Al ={7 c Z|R]7 n S = {0}}.

Combining this with (27), we may state the desired formula for the normal cone just
in terms of the data describing the polyhedral cones A; in the following

Theorem 6.1 The limiting normal cone to a finite union of polyhedral cones as in
(25) calculates as (for notation see tezt above)

mo - U U U N {d5ea).

2#1C{1,...,N} JEJte Fe A k€l

7 An Application

Consider a constraint set mapping I' : R* =% R™ defined by

I(p) = (J{y € R™|A f(p,y) <V}, (29)

=1

where f : R¥F x R™ — R™ is continuously differentiable, and, for 7 = 1,... ,N, A*
are matrices of order (I;,n) and b* € R".

Let y € I'(p). We want to examine the Aubin property (see [10]) of I' around (p, 7).
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Proposition 7.1 Assume that Vf (p,y) is surjective and define
P:={z cR" Az <¥} (i=1,...,N); P:=]P.

Then, I' has the Aubin property around (p,q) if and only if the implication

(%) eVi59) Ne(f(5,79)=p" =0 (30)

holds true.

Proof. Clearly, gph' = {(p,y) € R*x R™|f(p,y) € P}. By virtue of [10, Exercise
8.14 and Exercise 10.7],

R * ok m p* — — — —
Ngpnr (P,9) = {(p ,¥*) e RF xR (y) e Vf (53" Np (f(p,y))} :
It suffices now to apply the Mordukhovich criterion ([10, Theorem 9.40]) to arrive
at the implication (30). m

As an application of Proposition 7.1, we consider a linear probabilistic constraint as
it arises in stochastic optimization problems:

P(Ty>¢) 2 e (31)

Here, ¢ denotes an s-dimensional random vector and P is a probability measure.
The meaning of (31) is that a decision vector y is declared to be feasible, if the
stochastic inequality system Ty > € is satisfied with a probability not smaller than
a € [0,1]. Assuming that ¢ has a discrete distribution, one can show (see Remark
1 in [1]) that there exists a finite number, say N, of points ¢* such that (31) can be
equivalently rewritten as

N

Ty e | ({a'}+RY).

=1

Assume that we want to add a deterministic safety buffer of magnitude p > 0 to the
inequality system Ty > €. Then, (31) will be replaced by

P(Ty > ¢+ pl) > a,

where 1 = (1,...,1). The meaning of this modified constraint is that a decision
y is feasible if Ty over-dominates the random vector ¢ by a value of at least p at
a probability of at least a. As the choice of an appropriate value for p may be
arbitrary, it may be interesting to know, how the set of feasible decisions y changes
upon perturbations of a nominal value p. Passing to the equivalent description of
the probabilistic constraint presented above, but now adding the dependence on
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some variable safety buffer p, we might be led to investigate the Aubin property of

I'(p) == {y

at a point (p,y), where ¥ is feasible for the nominal buffer p. Obviously, we are in
the setting of Proposition 7.1 by putting (forz=1,... ,N)

the mapping

Ty —pl EU({q"}JrRi)},

=1

flp,y) =Ty —pl; A':=-I; b:=—¢; P :={¢}+R:.

If T is surjective, then Vf(p,g) = (—1,T) is surjective too and Proposition 7.1
may be invoked to derive that the Aubin property around (p,7) of the considered
contraint set mapping is equivalent with the constraint qualification (30) which turns
out to be always satisfied. Indeed, if

P’ _ _
(0> € Vf(p,9)" Ne(f(59),
then there exists some z* € Np (f (p, 7)) with T72* = 0 and p* = —172*. Surjec-
tivity of T implies that 2* = 0 and, thus, p* = 0.

However, in many situations, 7' may fail to have full rank (e.g., in stochastic network
design problems, where the number of inequalities may be substantially larger than
the dimension of the decision vector, see [8]). Then, an application of Proposition
7.1 is not possible in the formulation chosen before because V f (p,7) = (—1,T) may
not be surjective either. Fortunately, we can find another description for the same
constraint set mapping by putting (forz =1,... ,N)

flp,y) = (py); A :=(1,-T); b :=—¢; P :={(z,t)|Tz—1t1>q}.

As surjectivity of V f (p,y) = I is always satisfied, we may invoke once more Propo-
sition 7.1 to derive that the Aubin property around (p, y) of the considered contraint
set mapping is equivalent with the constraint qualification

(%) € Np(p,y) =>p" = 0.

In order to check this relation, one has to be able to calculate the normal cone to
the finite union P of the polyhedra F;.
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