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Classial solutions of drift�diffusion equations 1
AbstratWe regard drift�di�usion equations for semiondutor devies in Lebesguespaes. To that end we reformulate the (generalized) van Roosbroek systemas an evolution equation for the potentials to the driving fores of the urrentsof eletrons and holes. This evolution equation falls into a lass of quasi-linear paraboli systems whih allow unique, loal in time solution in ertainLebesgue spaes. In partiular, it turns out that the divergene of the eletronand hole urrent is an integrable funtion. Hene, Gauss' theorem applies,and gives the foundation for spae disretization of the equations by means of�nite volume shemes. Moreover, the strong di�erentiability of the eletronand hole density in time is onstitutive for the impliit time disretizationsheme. Finite volume disretization of spae, and impliit time disretizationare aepted ustom in engineering and sienti� omputing. � This investi-gation puts speial emphasis on non-smooth spatial domains, mixed boundaryonditions, and heterogeneous material ompositions, as required in eletronidevie simulation.
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2 H.-Chr. Kaiser, H. Neidhardt, J. Rehberg1 IntrodutionIn 1950 van Roosbroek [48℄ established a system of partial di�erential equationsdesribing the motion of eletrons and holes in a semiondutor devie due to driftand di�usion within a self-onsistent eletrial �eld. In 1964 Gummel [28℄ publishedthe �rst report on the numerial solution of these drift�di�usion equations for an op-erating semiondutor devie. From that time on van Roosbroek's system has beenthe bakbone of many a model in semiondutor devie simulation. The �rst papersdevoted to the mathematial analysis of van Roosbroek's system appeared in theearly seventies of the previous entury [38, 39℄; for a historial synopsis and furtherreferenes see [11℄. In 1986 Gajewski and Gröger proved the global existene anduniqueness of weak solutions under realisti physial and geometrial onditions[13℄. The key for proving these results and also for establishing stable numerialsolving proedures is the existene of a Lyapunov funtion for the van Roosbroeksystem. This solution theory entails restriting onditions on the models for thereombination of eletron�hole pairs, see [11, 2.2.3℄, [14, Ch. 5℄, [15, Ch. 6℄, [18℄, and[19℄. In this paper we relax the ondition on the reation terms in the equationsonsiderably, up to the point that some external ontrol to the generation or anni-hilation of eletrons or holes an be applied individually. In partiular, this aims atradiative reombination of eletron-hole pairs in semiondutor lasers, and at thegeneration of eletron-hole pairs in optoeletroni detetors. Notwithstanding thisgeneralization, we ontinue to use the name van Roosbroek system for the modelequations.Van Roosbroek's system onsists of urrent�ontinuity equations � one for ele-trons, another one for holes � whih are oupled to a Poisson equation for theeletrostati potential, and omprise generative terms, �rst of all reombination ofeletron�hole pairs. The urrent�ontinuity equations an be viewed as quasi-linearparaboli equations. However, the natural formulation of balane laws is in integralform
∂

∂t

∫

ω

uk dx =

∫

∂ω

ν · jk dσω +

∫

ω

rk dx. (1.1)Here u2 and u1 is the density of eletrons and holes, respetively, jk is the orre-sponding �ux, and rk is a reation term. ω is any (suitable) sub-domain of thewhole domain under onsideration, ν the outer unit normal to the boundary ∂ω of
ω and σω the ar measure on ∂ω. In the weak formulation of the balane law theboundary integral of the normal omponent of the urrent is expressed as the volumeintegral of the divergene of the orresponding urrent. Very little is known aboutthe question whether the weak solutions also satisfy the original balane law equa-tions (1.1). Obviously, this depends on the appliability of Gauss' theorem. So, theproblem is about the divergene of the urrents in weak solutions being funtions �Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



Classial solutions of drift�diffusion equations 3not only distributions. In partiular, this omes to bear in the numerial treatmentof van Roosbroek's system. The hoie for spae disretization of drift�di�usionequations is the �nite volume method, see [17℄, whih rests on the original balanelaw formulation (1.1) of the equations.In this paper we solve this problem for the spatially two-dimensional van Roosbroeksystem by showing that it admits a lassial solution in a suitably hosen Lebesguespae�at least loally in time. Aiming at the inlusion of rather general reom-bination and generation proesses for eletron-hole pairs we annot expet globalexistene anymore, and we annot rely on a Lyapunov funtion. Instead we applyloal methods for quasi-linear evolution equations. To that end, we rewrite vanRoosbroek's system as an evolution equation for the eletrohemial potentials ofeletrons and holes, and apply a reently obtained result on quasi-linear paraboliequations in Lebesgue spaes, see [31℄. This yields a lassial solution of van Roos-broek system loally in time with urrents the divergene of whih is Lebesgueintegrable to some exponent greater than one. The strong di�erentiability of theeletron and hole density in time is onstitutive for the impliit time disretizationsheme whih is aepted ustom in engineering and sienti� omputing, see forinstane [11℄.Please note that in devie simulation one is always onfronted with ontated deviesof heterogeneous material omposition. That leads to mixed boundary onditionsand jumping material oe�ients in the model equations. Hene, standard theoremson existene, uniqueness and regularity do not apply.
2 Van Roosbroek's systemBasi variablesIn the following we investigate van Roosbroek's model for a semiondutor deviewhih desribes the �ow of eletrons and holes in a self-onsistent eletrial �eld dueto drift and di�usion. The physial quantities one is interested in are: the densities
u1 and u2 of holes and eletrons, the densities j1 and j2 of the hole and eletronurrent, the eletrostati potential ϕ̃ of the self-onsistent eletrial �eld, and theeletrohemial potentials φ̃1 and φ̃2 of holes and eletrons These unknowns haveto satisfy Poisson's equation and the urrent�ontinuity equations for eletrons andholes with some side onditions. The latter are given by the relations between thepotentials and the densities.Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



4 H.-Chr. Kaiser, H. Neidhardt, J. RehbergSpatial domainWe study only semiondutor devies whih are quasi translational invariant in onespae diretion or angular symmetri. In that ase van Roosbroek's system in realspae an be redued to a similar set of equations in the plane. That means, weregard a ut through the devie perpendiular to the diretion of invariane. Let
Ω̂ be the resulting two-dimensional (bounded) representative domain. Parts of thedevie may be insulating, for instane formed by an oxide. Then, eletrons and holesan move only in a sub-domain Ω of Ω̂. This also overs the ase of harges whihare arti�ially immobilized on a sub-domain Ω̂\Ω. Furthermore, we mark out a part
Γ̂ of the boundary of Ω̂ where the devie borders on an insulator. The remainingpart of the boundary represents (possibly several) ontats of the devie. We alsomark out a part Γ of Ω's boundary. In the ase of a stand alone drift�di�usionmodel of the semiondutor devie again Γ represents areas of the devie borderingto an insulator, whereas the remaining part is the ontat area.External ontrolIn real�world modeling of semiondutor devies van Roosbroek's system oftenserves as a omponent in a ompound model of the devie. Then the superordinatedsystem � for instane a iruit model � may exerise a ontrol on van Roosbroek'ssystem. Apart of a superordinated iruit model, ompound models omprising inaddition to van Roosbroek's system equations for the lattie temperature or thepower of lasing modes play an important role in devie simulation, see for instane[11, 2, 4, 3℄. But the onept of external ontrol also omes to bear in segmentationof the simulation domain, in partiular in onnetion with multisale modeling, seefor instane [32, 33, 30℄.If van Roosbroek's equations serve as a omponent of a ompound model, thensystem parameters, state equations, boundary onditions, et alii, possibly bear adi�erent physial meaning than in the stand-alone model.We make assumptions about an external ontrol from the initial time T0 up to atime T1.2.1 Poisson equationThe solution of the Poisson equation with mixed boundary onditions,

−∇ · (ε∇ϕ̃) = d̃(t) + u1 − u2 on Ω̂,
ϕ̃ = ϕD̂(t) on D̂

def

= interior(∂Ω̂ \ Γ̂),
ν · (ε∇ϕ̃) + εΓ̂ϕ̃ = ϕΓ̂(t) on Γ̂, (2.1)Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



Classial solutions of drift�diffusion equations 5gives the eletrostati potential ϕ̃ on Ω̂ subjet to the eletron and hole density u2and u1. Stritly speaking, the densities uk, k = 1, 2, are only de�ned on Ω but, weextend them by zero to Ω̂.The parameters in (2.1) have the following meaning: ε is a bounded, measurablefuntion on Ω̂ with values in the set of real, symmetri, 2 × 2, positive de�nitematries and orresponds to the spatially varying dieletri permittivity on the spaeregion oupied by the devie. Moreover, we assume
‖ε(x)‖B(R2) ≤ ε• and (ε(x)ξ) · ξ ≥ ε•‖ξ‖2

R2 for almost all x ∈ Ω̂ and all ξ ∈ R
2with two stritly positive onstants ε• and ε•. Furthermore, εΓ̂ is a non-negativefuntion on Γ̂, representing the apaity of the part of the devie surfae borderingon an insulator. We assume that D̂ is not empty or εΓ̂ is positive on a subset of

Γ̂ with positive ar measure. In other words, the devie has a Dirihlet ontat orpart of its surfae has a positive apaity. ϕD̂(t) and ϕΓ̂(t) are the voltages appliedat the ontats of the devie, and d̃(t) represents a harge. In the ase of a standalone drift�di�usion model ϕD̂, ϕΓ̂, and d̃ are onstant in time, and d̃ solely is theharge density of dopants in the semiondutor materials omposing the devie. Ingeneral, ϕD̂, ϕΓ̂, and d̃ are funtion whih are de�ned on the time interval [T0, T1]where a possible ontrol ats on the devie.2.2 Current�ontinuity equationsThe urrent�ontinuity equations for holes and eletrons (k = 1, 2, respetively)
u′k −∇ · jk = rk(t, ϕ̃, φ̃1, φ̃2) on Ω (2.2)haraterize the evolution of the eletron and hole density under the ation of theurrents jk and the reations rk subjet to the mixed boundary onditions

φ̃k(t) = φD,k(t) on D
def

= interior(∂Ω \ Γ),
ν · jk = 0 on Γ, (2.3)from the initial onditions

φ̃k(T0) = Φ0
k. (2.4)Eah rk, k = 1, 2 is a reation term whih models the generation and annihila-tion of eletrons and holes. In partiular, this term overs the reombination ofeletrons and holes in the semiondutor devie. r1 and r2 an be rather generalfuntions of the partile and urrent densities, see �2.4. We require that the set

D = interior(∂Ω \ Γ) is not empty. The boundary values φD,1, φD,2 in general de-pend on time. Moreover, the reations rk may expliitly depend on time. Thisdependene on time, again, allows for a ontrol of the system by some other part ofa superordinated ompound model.Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



6 H.-Chr. Kaiser, H. Neidhardt, J. Rehberg2.3 Carrier and urrent densitiesVan Roosbroek's system has to be omplemented by a presription relating thedensity of eletrons and holes as well as the densities of the eletron and hole urrentto the hemial potentials of these harge arriers. We assume
uk(t, x)

def

= ρk(t, x)Fk (χk(t, x)) , x ∈ Ω, k = 1, 2, (2.5)where χ1 and χ2 are the hemial potentials
χk

def

= φ̃k + (−1)kϕ̃+ bk, k = 1, 2, (2.6)and φ̃2, φ̃1 are the eletrohemial potentials of eletrons and holes, respetively.
bk, ρk, k = 1, 2 are positive, bounded funtions on Ω. They desribe the eletroniproperties of the materials omposing the devie. b2 and b1 are the band edge o�setsfor eletrons and holes, and ρ2, ρ1 are the orresponding e�etive band edge densitiesof states. If the equations under onsideration form part of a ompound model forthe semiondutor devie, then bk, ρk, k = 1, 2, may depend on time. For instane,the ρk ould be subjet to an external ontrol of the devie temperature. Then theydepend on time via the temperature. Mathematially, we assume the following.2.1 Assumption. For every t ∈ [T0, T1] the funtions ρk(t) are essentially boundedon Ω and admit positive lower bounds whih are uniform in t ∈ [T0, T1]. Themappings

[T0, T1] ∋ t 7→ ρk(t) ∈ L2(Ω), k = 1, 2 (2.7)are di�erentiable on the interval ]T0, T1[ with Hölder ontinuous derivatives ρ′k.The funtions F1 and F2 represent the statistial distribution of the holes and ele-trons on the energy band. In general, Fermi�Dira statistis applies, i.e.
Fk(s)

def

=
2√
π

∫ ∞

0

√
t

1 + et−s
dt, s ∈ R. (2.8)However, often Boltzmann statistis Fk(s) = es is a good approximation.As for the kineti relations speifying the urrent�ontinuity equations we assumethat the eletron and hole urrent is driven by the negative gradient of the eletro-hemial potential of eletrons and holes, respetively. More preisely, the urrentdensities are given by

jk(t, x) = −Gk (χk(t, x))µk(x)∇φ̃k(t, x) , x ∈ Ω, k = 1, 2. (2.9)The mobilities µ2 and µ1 for the eletrons and holes, respetively, are measurable,bounded funtion on Ω with values in the set of real, 2×2, positive de�nite matriessatisfying for almost all x ∈ Ω̂ and all ξ ∈ R
2

‖µk(x)‖B(R2) ≤ µ• and (µk(x)ξ) · ξ ≥ µ•‖ξ‖2
R2, k = 1, 2,Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



Classial solutions of drift�diffusion equations 7with two stritly positive onstants µ• and µ•. The mobilities are aounted for onthe parts of the devie where eletrons and holes an move due to drift and di�usion.2.2 Remark. In semiondutor devie modeling, usually, the funtions Gk and Fkoinide, see for instane [44℄ and the referenes there. However, a rigorous formu-lation as a minimal problem for the free energy reveals that Gk = F ′
k is appropriate.This topi has been thoroughly investigated for analogous phase separation prob-lems, see [40, 41, 22, 23℄, see also [18℄ and [24℄. In order to over both ases weregard independent funtions Gk and Fk.2.3 Assumption. Mathematially, we demand that the distribution funtions Fk,

Gk, k = 1, 2, are de�ned on the real line, take positive values, and are either exponen-tials, or twie ontinuously di�erentiable and polynomially bounded. Moreover, F ′
1,

F ′
2 are stritly positive on R. In the sequel we will all suh distribution funtions'admissible.' This inludes Boltzmann statistis, as well as Fermi�Dira statistis(see (2.8)).Let us omment on the (e�etive) band edges bk and the (e�etive) densities ofstates ρk, see (2.5) and (2.6): Basially the band edge o�sets bk and the e�etiveband edge densities of states ρk are material parameters. In a heterogeneous semi-ondutor devie they are generially pieewise onstant on the spatial domain Ω.As Assumption 3.7 reveals, we annot ope with suh a situation as far as the bandedges bk are onerned. However, in the ase of Boltzmann statistis one an rewrite(2.5) and (2.6) as

uk = ρke
bke(φ̃k+(−1)kϕ̃) on Ω, k = 1, 2,with modi�ed e�etive densities of states and identially vanishing band edge o�sets.In the ase of Fermi�Dira statistis this reformulation is not possible and one has toreourse to some approximation of the bk by funtions on�rming to Assumption 3.7.Disontinuities of the band edge o�sets up to now seem to be an obstale in whateverapproah to solutions of van Roosbroek's equations, if the statistial distributionfuntion is not an exponential, see for instane [19℄.There are ompound multisale models of semiondutor devies suh that the ef-fetive band edges and the e�etive densities of states result by upsaling fromquantum mehanial models for the eletroni struture in heterogeneous semion-dutor materials, see [2, 3, 35℄. In view of an o�ine oupling to eletroni struturealulations we allow for an expliit dependene of ρk, and bk on time.2.4 Reation ratesThe reation terms on the right hand side of the urrent�ontinuity equations anbe rather general funtions of time, of the eletrostati potential, and of the vetorPreprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



8 H.-Chr. Kaiser, H. Neidhardt, J. Rehbergof the eletrohemial potentials. r1 and r2 desribes the prodution of holes andeletrons, respetively � generation or annihilation, depending on the sign of thereation term. Usually van Roosbroek's system omprises only reombination ofeletrons and holes: r = r1 = r2.We have formulated the equations in a more generalway, in order to inlude also oupling terms to other equations of a superordinatedompound model. That is why we also allow for an expliit time dependeny of thereation rates.Our formulation of the reation rates, in partiular, inludes a variety of mod-els for the reombination and generation of eletrons�hole pairs in semiondutors.This overs non-radiative reombination of eletrons and holes like the Shokley�Read�Hall reombination due to phonon transition and Auger reombination. But,radiative reombination (photon transition), both spontaneous and stimulated, isalso inluded. Mathematial models for stimulated optial reombination typiallyrequire the solution of additional equations for the optial �eld. Thus, the reom-bination rate may be a non-loal operator. Moreover, by oupling van�Roosbroekssystem to the optial �eld some additional ontrol of this optial �eld may alsointerat with the internal eletronis. For instane, in modeling and simulation ofedge�emitting multiple�quantum�well lasers van�Roosbroek's system augmentedby some Helmholtz equation often serves as a transversal (to the light beam) model,and a ontrol of the optial �eld is exerised by a master equation or some modelfor the longitudinal (on the axis of the light beam) behavior of the laser, see forinstane [51, 2, 3℄.Modeling reombination of eletron�hole pairs in semiondutor material is an artin itself, see for instane [36℄. However, for illustration, let us list some ommonreombination models, see for instane [44, 11℄ and the referenes ited there.Shokley�Read�Hall reombination (phonon transitions):
r1 = r2 = rSRH =

u1u2 − n2
i

τ2(u1 + n1) + τ1(u2 + n2)
,where ni is the intrinsi arrier density, n1, n2 are referene densities, and τ1, τ2 arethe lifetimes of holes and eletrons, respetively. ni, n1, n2, and τ1, τ2 are parametersof the semiondutor material; thus, depend on the spae variable, and ultimately,also on time.Auger reombination (three partile transitions):

r1 = r2 = rAuger = (u1u2 − n2
i )(c

Auger
1 u1 + cAuger

2 u2),where cAuger
1 and cAuger

2 are the Auger apture oe�ients of holes and eletrons,respetively, in the semiondutor material.Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



Classial solutions of drift�diffusion equations 9Stimulated optial reombination:
r1 = r2 = rstim =

∑

j

f(σj)
|ψj |2∫
|ψj|2

,where f additionally depends on the vetor of the densities, and on the vetor of theeletrohemial potentials. σj , ψj are the eigenpairs of a salar Helmholtz�operator:
∆ψj + ǫ(u1, u2)ψj = σjψj .In laser modeling eah eigenpair orresponds to an optial (TE) mode of the laserand |ψj |2 is the intensity of the eletrial �eld of the σj�mode. ǫ is the dieletripermittivity (for the optial �eld); it depends on the density of eletrons and holes.The salar Helmholtz�equation originates from the Maxwell equations for the optial�eld [50℄.The funtional analyti requirements on the reation terms will be established inAssumption 3.6.3 Mathematial prerequisitesIn this setion we introdue some mathematial terminology and make preise as-sumptions about the problem.3.1 General AssumptionsFor a Banah spae X we denote its norm by ‖·‖X and the value of a bounded linearfuntional ψ∗ on X in ψ ∈ X by 〈ψ∗ |ψ〉X. If X is a Hilbert spae, identi�ed withits dual, then 〈· | ·〉X is the salar produt in X. Just in ase X is the spae R

2, thesalar produt of a, b ∈ R
2 is written as a·b. Upright X denotes the diret sum X⊕Xof slanted X with itself. B(X;Y ) is the spae of linear, bounded operators from Xinto Y , where X and Y are Banah spaes. We abbreviate B(X) = B(X;X) andwe denote by B∞(X) the spae of linear, ompat operators on the Banah spae

X. The notation [X, Y ]θ means the omplex interpolation spae of X and Y to theindex θ ∈ [0, 1]. The (distributional) ∇�alulus applies. If ψ is a (di�erentiable)funtion on an interval taking its values in a Banah spae, then ψ′ always indiatesits derivative.3.2 Spatial DomainsThroughout this paper we assume that Ω̂ as well as Ω are bounded Lipshitz domainsin R
2, see [25, Ch. 1℄. By ↑ we denote the operator whih extends any funtionPreprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



10 H.-Chr. Kaiser, H. Neidhardt, J. Rehbergde�ned on Ω by zero to a funtion de�ned on Ω̂. Conversely, ↓ denotes the operatorwhih restrits any funtion de�ned on Ω̂ to Ω. The operators ↑ and ↓ are adjoint toeah other with respet to the duality indued by the usual salar produt in spaesof square integrable funtions.With respet to the marked out Neumann boundary parts Γ̂ ⊂ ∂Ω̂ and Γ ⊂ ∂Ω ofthe boundary of Ω̂ and Ω we assume eah being the union of a �nite set of openar piees suh that no onneted omponent of ∂Ω̂ \ Γ̂ and ∂Ω \ Γ onsists onlyof a single point. We denote the parts of the boundary where Dirihlet boundaryonditions are imposed by D̂
def

= interior(∂Ω̂ \ Γ̂) and D
def

= interior(∂Ω \ Γ).3.3 Funtion spaes and linear ellipti operatorsWe exemplarily de�ne spaes of real-valued funtions on spatial domains with respetto the bounded domain Ω ⊂ R
2 and its boundary. Spaes of funtions on Ω̂ andparts of its boundary may be similarly de�ned and are denoted by hatted symbols.If r ∈ [1,∞[, then Lr is the spae of real, Lebesgue measurable, r-integrable funtionson Ω and L∞ is the spae of real, Lebesgue measurable, essentially bounded funtionson Ω. W 1,r is the usual Sobolev spae W 1,r(Ω), see for instane [46℄. W 1,r

Γ is thelosure in W 1,r of
{
ψ|Ω : ψ ∈ C∞

0 (R2), suppψ ∩ (∂Ω \ Γ) = ∅
}
,i.e. W 1,r

Γ onsists of all funtions from W 1,r with vanishing trae on D. W−1,r
Γdenotes the dual of W 1,r′

Γ , where 1/r + 1/r′ = 1. 〈· | ·〉W 1,2

Γ

is the dual pairingbetween W 1,2
Γ and W−1,2

Γ . Correspondingly, the divergene for a vetor of squareintegrable funtions is de�ned in the following way: If j ∈ L2, then ∇ · j ∈W−1,2
Γ isgiven by

〈∇ · j |ψ〉W 1,2

Γ

= −
∫

Ω

j · ∇ψ dx, ψ ∈ W 1,2
Γ . (3.1)

σ is the natural ar measure on the boundary of Ω. We denote by L∞(∂Ω) and
Lr(∂Ω), the spaes of σ-measurable, essentially bounded, and r-integrable, r ∈
[1,∞[, funtions on ∂Ω, respetively. Moreover, W s,r(∂Ω) denotes the Sobolev spaeof frational order s ∈]0, 1] and integrability exponent r ∈ [1,∞[ on ∂Ω, see [25,Ch. 1℄. Mutatis mutandis for funtions on σ-measurable, relatively open parts of
∂Ω.Let us now de�ne in a strit sense the (linear) Poisson operator and the elliptioperators governing the urrent ontinuity equations.3.1 De�nition. We de�ne the Poisson operator −∇ · ε∇ : Ŵ 1,2 → Ŵ−1,2

Γ̂
by

〈−∇ · ε∇ψ1 |ψ2〉Ŵ 1,2

Γ̂

def

=

∫

Ω̂

ε∇ψ1 · ∇ψ2 dx+

∫

Γ̂

εΓ̂ψ1ψ2 dσ̂, (3.2)Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



Classial solutions of drift�diffusion equations 11for ψ1 ∈ Ŵ 1,2 and ψ2 ∈ Ŵ 1,2

Γ̂
. P0 denotes the restrition of −∇ · ε∇ to Ŵ 1,2

Γ̂
; wedenote the maximal restrition of P0 to any range spae whih ontinuously embedsinto Ŵ−1,2

Γ̂
by the same symbol P0.3.2 De�nition. With respet to a funtion ς ∈ L∞ we de�ne the operators

−∇ · ςµk∇ : W 1,2 →W−1,2
Γ , k = 1, 2, by

〈−∇ · ςµk∇ψ1 |ψ2〉W 1,2

Γ

def

=

∫

Ω

ς µk∇ψ1 · ∇ψ2 dx, ψ1 ∈W 1,2, ψ2 ∈W 1,2
Γ .If, in partiular, ς ≡ 1, then we simply write ǎk for −∇ · µk∇. Moreover, we denotethe restrition of ǎk to the spae W 1,2

Γ by ak, i.e. ak : W 1,2
Γ →W−1,2

Γ .3.3 Proposition. (see [26℄ and [27℄) There is a number q̂ > 2 (depending on Ω̂, εand Γ̂) suh that for all q ∈ [2, q̂] the operator P0 : Ŵ 1,q

Γ̂
→ Ŵ−1,q

Γ̂
is a topologialisomorphism. Moreover, there is a q̌ > 2 (depending on Ω, µ1, µ2 and Γ) suh thatfor all q ∈ [2, q̌] the operators ak : W 1,q

Γ → W−1,q
Γ provide topologial isomorphisms,and additionally, generate analyti semigroups on W−1,q

Γ .3.4 De�nition. From now on we �x a number q ∈]2,min(4, q̂, q̌)[ and de�ne p def

= q
2
.With respet to this p we de�ne the operators

Ak : ψ 7→ akψ, ψ ∈ Dk
def

= dom(Ak)
def

=
{
ψ ∈W 1,2

Γ : akψ ∈ Lp
}
, k = 1, 2,

A : D → Lp, A
def

=
(
A1 0
0 A2

)
, D def

= dom(A) = D1 ⊕D2 →֒ Lp .3.5 Remark. If ψ ∈ Dk, k = 1, 2, then ν ·(µk∇ψ)|Γ = 0 in the sense of distributions,see for instane [5, Ch. 1.2℄ or [16, Ch.1.2℄.After having �xed the number q and, orrespondingly, the spae Lp, we will nowformulate our mathematial requirements on the reation terms:3.6 Assumption. The reation terms rk, k = 1, 2, are mappings
rk : [T0, T1] × Ŵ 1,q × W1,q → Lp.Moreover, we assume that there is a real number η ∈]0, 1] and for any boundedsubset M ⊂ Ŵ 1,q ⊕ W1,q a onstant rM suh that

∥∥rk(t, v, ψ) − rk(ť, v̌, ψ̌)
∥∥
Lp

≤ rM
(
|t− ť|η + ‖v − v̌‖Ŵ 1,q + ‖ψ − ψ̌‖W1,q

)
,

t, ť ∈ [T0, T1], (v, ψ), (v̌, ψ̌) ∈M.3.7 Assumption. The funtions bk : [T0, T1] → W 1,q, k = 1, 2, are Hölder ontin-uous. Moreover, they are Hölder ontinuously di�erentiable when onsidered as Lpvalued.Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



12 H.-Chr. Kaiser, H. Neidhardt, J. Rehberg3.4 Representation of Dirihlet boundary valuesFor setting up the Poisson and urrent�ontinuity equations in appropriate funtionspaes we must split up the solution into parts, where one part represents the inho-mogeneous Dirihlet boundary values ϕD̂ and φD,k, k = 1, 2. In this setion we treatof just this representation. We make the following assumptions about the Dirihletboundary values of the eletrohemial potentials φk, k = 1, 2, and for their initialvalues, see (2.3), (2.4).3.8 Assumption. There is a Hölder ontinuous funtion
Φ = (Φ1,Φ2) : [T0, T1] → W1,q, k = 1, 2,suh that for all t ∈ [T0, T1]

ǎkΦk(t) = 0 (3.3)
tr
(
Φk(t)

)∣∣
D

= φD,k(t) (3.4)Moreover, we assume, that eah Φk, k = 1, 2, � as a funtion with values in Lp �is di�erentiable and its derivative is Hölder ontinuous.3.9 Remark. It should be noted that (3.3) and the de�nition of the operators ǎkimply ν ·µk∇Φk = 0 on Γ in the distributional sense, see for instane [5, Ch. 1.2℄ or[16, Ch. II.2℄. This implies for the urrent densities (2.9) that ν · jk = 0 on Γ in thedistributional sense, provided that χk ∈W 1,q.We will now give a su�ient ondition on φD,k for the existene of a Φk with theassumed properties.3.10 Lemma. 1. If ψ ∈ W 1−1/q,q(D), then there is a unique funtion Ψ ∈ W 1,qful�lling
ǎkΨ = 0, and tr(Ψ)

∣∣
D

= ψ.2. If ψ : [T0, T1] → W 1−1/q,q(D) is Hölder ontinuous with index η, then the funtion
Ψ : [T0, T1] → W 1,q whih is given for eah t ∈ [T0, T1] by item 1 is also Hölderontinuous with index η. Moreover, if ψ � as a funtion with values in W 1/2,2(D)� is Hölder ontinuously di�erentiable with Hölder index η, then Ψ is Hölder on-tinuously di�erentiable with Hölder index η.Proof. Let ex : W 1−1/q,q(D) → W 1−1/q,q(∂Ω) be a linear and ontinuous extensionoperator, and let tr−1 be a linear and ontinuous right inverse of the trae operator
tr : W 1,q(Ω) → W 1−1/q,q(∂Ω). Suh operators exist aording to [25, Thm 1.4.3.1℄and [25, Thm 1.5.1.3℄, respetively. Thus, tr−1 ◦ exψ ∈W 1,q. Moreover, let ψ̆ be thesolution of the di�erential equation

akψ̆ = ǎk ◦ tr−1 ◦ exψ (3.5)Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



Classial solutions of drift�diffusion equations 13in W 1,q
Γ . This solution exists and is unique beause the right hand side of (3.5) isfrom W−1,q

Γ and the operators ak are isomorphisms from W 1,q
Γ onto W−1,q

Γ . We nowde�ne
Ψ

def

= tr−1 ◦ exψ − ψ̆. (3.6)The asserted properties of Ψ follow diretly from the onstrution.The seond assertion is proved by observing that all steps in the �rst part of theproof depend linearly on the datum.3.11 Assumption. We assume that the initial values Φ0
k belong to W 1,q, k = 1, 2.Moreover, there is a θ ∈]1/2 + 1/q, 1[ suh that for eah of the initial values Φ0

k thedi�erene Φ0
k − Φk(T0) belongs to the omplex interpolation spae [Lp,Dk]θ.3.12 Remark. For all θ ∈]1/2 + 1/q, 1[ the spae [Lp,Dk]θ ompatly embeds into

W 1,q
Γ →֒ L∞, see [31, Thm. 5.2℄.With respet to the inhomogeneous terms ϕD̂ and ϕΓ̂ in the boundary onditions ofPoisson's equation (2.1) we make the following assumptions.3.13 Assumption. There is a Hölder ontinuous funtion ϕ◦ : [T0, T1] → Ŵ 1,q suhthat ϕ◦ � as a funtion from [T0, T1] into L̂p � is Hölder ontinuously di�erentiable.For all t ∈ [T0, T1] it holds true

−∇ · ε∇ϕ◦(t) = 0, (3.7)
tr
(
ϕ◦(t)

)∣∣
D̂

= ϕD̂(t). (3.8)The funtion
[T0, T1] ∋ t 7→ ϕΓ̂(t) ∈ L∞(Γ̂)is di�erentiable and possesses a Hölder ontinuous derivative.3.14 Remark. Similar to Lemma 3.10 it is possible to give a su�ient ondition onthe existene of a representing funtion t 7→ ϕ◦(t) whih only rests on the funtion

t 7→ ϕD̂(t). We do not arry out this here.3.15 Remark. For all t ∈ [T0, T1] we extend ϕΓ̂(t) by zero to a σ̂�measurable,essentially bounded funtion on ∂Ω̂. Due to the ontinuous embedding
Ŵ 1,q′

Γ̂
→֒ Ŵ 1,q′ →֒W 1−1/q′,q′(∂Ω̂) →֒ Lq

′

(∂Ω̂),see [25, Thm 1.5.1.3℄, there is a ontinuous embedding
L∞(∂Ω̂) →֒ Lq(∂Ω̂) →֒ Ŵ−1,q

Γ̂
.Thus, ϕΓ̂(t), t ∈ [T0, T1] an be regarded as an element of Ŵ−1,q

Γ̂
. We denote ϕΓ̂ asa funtion from [T0, T1] into Ŵ−1,q

Γ̂
by ϕ•. The Hölder ontinuous di�erentiability of

ϕΓ̂ entails the Hölder ontinuous di�erentiability of ϕ• : [T0, T1] → Ŵ−1,q

Γ̂
with thesame Hölder exponent.Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



14 H.-Chr. Kaiser, H. Neidhardt, J. Rehberg3.5 The linear Poisson equationLet us assume the following about d̃� the doping pro�le (or ontrol parameter) onthe right hand side of Poisson's equation (2.1).3.16 Assumption. The funtion d̃ : [T0, T1] → Ŵ−1,q

Γ̂
is ontinuously di�erentiablewith Hölder ontinuous derivative. We de�ne a �generalized doping�

d : [T0, T1] → Ŵ−1,q

Γ̂
by d(t)

def

= d̃(t) + ϕ•(t), t ∈ [T0, T1]. (3.9)We now de�ne what is a solution of Poisson's equation (2.1).3.17 De�nition. Let uk ∈ Ŵ−1,q

Γ̂
, k = 1, 2 be given. We say that ϕ̃ is a solution ofPoisson's equation (2.1) at t ∈ [T0, T1], if
ϕ̃ = ϕ+ ϕ◦(t), (3.10)and ϕ ∈ Ŵ 1,q

Γ̂
is the unique solution of

P0ϕ = d(t) + u1 − u2. (3.11)
ϕ and ϕ̃ depend parametrially on t, u1, and u2. If onvenient, we indiate thedependene on t by writing ϕ(t) and ϕ̃(t), respetively.3.18 Remark. With respet to the boundary onditions in (2.1) it should be notedthat (3.8) and the property ϕ ∈ Ŵ 1,q

Γ̂
give ϕ̃|D̂ = ϕD̂. Additionally, if d̃, u1, and

u2 belong to the spae L̂1, then (3.9), (3.10) and (3.11) together with (3.7) imply
ν · (ε∇ϕ̃) + εΓ̂ϕ̃ = ϕΓ̂(t), see for instane [5, Ch. 1.2℄ or [16, Ch. II.2℄.Throughout this setion we demand several times Hölder ontinuity of funtionsand/or their derivatives. Clearly, there is a ommon Hölder exponent whih we willdenote from now on by η.4 Preise Formulation of the ProblemWe are now going to de�ne the problem outlined in �2.4.1 De�nition. We say the van Roosbroek system admits a loal in time solution,if there is a time T ∈]T0, T1] and (ϕ̃, φ̃) = (ϕ̃, φ̃1, φ̃2) suh that

φ̃(T0) = (φ̃1(T0), φ̃2(T0)) = (Φ0
1,Φ

0
2) ∈ W1,q, (4.1)

ϕ
def

= ϕ̃− ϕ◦ ∈ C([T0, T ]; Ŵ 1,q

Γ̂
) ∩ C1(]T0, T [; Ŵ 1,q

Γ̂
) (4.2)Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



Classial solutions of drift�diffusion equations 15
φ

def

= φ̃− Φ ∈ C1(]T0, T [,Lp) ∩ C(]T0, T ],D) ∩ C([T0, T ], [Lp,D]θ), (4.3)ful�ll the Poisson equation and the urrent ontinuity equations:
P0(ϕ(t)) = d(t) + ↑u1(t) − ↑u2(t) t ∈ [T0, T ], (4.4)

u′k(t) −∇ · jk(t) = rk(t, ϕ̃(t), φ̃(t)), k = 1, 2, t ∈]T0, T [. (4.5)The arrier densities and the urrent densities are given by
uk(t)

def

= ρk(t)Fk

(
χk(t)

)
, (4.6)

jk(t)
def

= Gk
(
χk(t)

)
µk∇φ̃k(t), (4.7)

χk(t)
def

= φ̃k(t) + (−1)k↓ϕ̃(t) + bk(t). (4.8)and satisfy
uk ∈ C([T0, T ], L∞) ∩ C1(]T0, T [, Lp), (4.9)

jk ∈ C([T0, T ], Lq), (4.10)
∇ · jk ∈ C(]T0, T ], Lp) (4.11)for k = 1, 2.5 Reformulation as a quasi-linear paraboli systemIn this setion we provide the tools to rewrite the problem from De�nition 4.1 asa quasi-linear system for the ontinuity equations. To that end we eliminate theeletrostati potential from the ontinuity equations. Replaing the arrier densities

u1 and u2 on the right hand side of (4.4) by (4.6) making use of (4.8) and (3.10) oneobtains a nonlinear Poisson equation for ϕ. We solve this equation with respet topresribed parameters bk and φ̃k, k = 1, 2, whih we will assume here to be from L∞.This way to deouple van Roosbroek's equations into a nonlinear Poisson equationand a system of paraboli equations is also one of the fundamental approahes tothe numerial solution of the van Roosbroek system. It is due to Gummel [28℄ andwas the �rst reliable numerial tehnique to solve these equations for arriers in anoperating semiondutor devie struture.5.1 The nonlinear Poisson equationWe are now going to prove the unique solvability of the nonlinear Poisson equationand some properties of its solution. First we show that the supposed admissibilityof the arrier distribution funtions Fk ensures that the relation between a potentialand its orresponding arrier density is monotone and even ontinuously di�eren-tiable when onsidered between adequate spaes.Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



16 H.-Chr. Kaiser, H. Neidhardt, J. Rehberg5.1 Lemma. Let ρ and g be from L∞ and F = Fk be an admissible arrier distri-bution funtion, see Assumption 2.3.1. The operator
Ŵ 1,2

Γ̂
∋ h 7−→ ↑ρF(g + ↓h) ∈ L̂2 (5.1)is well de�ned, ontinuous and bounded. Its omposition with the embedding L̂2 →֒

Ŵ−1,2

Γ̂
is monotone.2. The Nemykii operator

L∞ ∋ h 7−→ ρF(g + ↓h)indued by the funtion
Ω × R ∋ (x, s) 7−→ ρ(x)F(g(x) + s),maps L∞ ontinuously into itself and is even ontinuously di�erentiable. Its Fréhetderivative at h ∈ L∞ is the multipliation operator given by the essentially boundedfuntion

Ω ∋ x 7−→ ρ(x)F ′(g(x) + h(x)). (5.2)Proof. Indeed, the assumption that the arrier distribution funtions should be ad-missible assures that the operator (5.1) is well de�ned, ontinuous and bounded, see[47℄ for the ase of an exponential, and see [1, Chapter 3℄ for the ase of a polyno-mially bounded funtion. The asserted monotoniity follows from the monotoniityof the funtion F and the fat that the duality between Ŵ 1,2

Γ̂
and Ŵ−1,2

Γ̂
is theextension of the L̂2 duality:

〈↑ρF(g + ↓h1) − ↑ρF(g + ↓h2) | h1 − h2〉Ŵ 1,2

Γ̂

=

∫

Ω̂

(
↑ρF(g + ↓h1) − ↑ρF(g + ↓h2)

)
(h1 − h2) dx

=

∫

Ω

(ρF(g + ↓h1) − ρF(g + ↓h2)) (↓h1 − ↓h2) dx ≥ 0 for all h1, h2 ∈ Ŵ 1,2

Γ̂
.The seond assertion follows from a result by Gröger and Reke, see [42, Thm 5.1℄.5.2 Corollary. The mappinĝ

W 1,q ∋ h 7−→ ↑ρF(g + ↓h)takes its values in L̂∞ and is also ontinuously di�erentiable. Its derivative at apoint h ∈ Ŵ 1,q equals the multipliation operator whih is indued by the funtion
↑ρF ′(g + ↓h).Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



Classial solutions of drift�diffusion equations 175.3 Theorem. Under Assumption 2.3 on the distribution funtions F1, F2 andAssumption 2.1 the following statements are true:1. For any pair of funtions z = (z1, z2) ∈ L∞ the operator
ϕ 7−→ P0ϕ− ↑ρ1F1(z1 − ↓ϕ) + ↑ρ2F2(z2 + ↓ϕ) (5.3)is strongly monotone and ontinuous from Ŵ 1,2

Γ̂
to Ŵ−1,2

Γ̂
, where the operator P0 isaording to De�nition 3.1. The monotoniity onstant of (5.3) is a least that of

P0.2. For all f ∈ Ŵ−1,2

Γ̂
and z = (z1, z2) ∈ L∞ the nonlinear Poisson equation

P0ϕ− ↑ρ1F1(z1 − ↓ϕ) + ↑ρ2F2(z2 + ↓ϕ) = f (5.4)admits exatly one solution ϕ whih we denote by L(f, z). This solution belongs to
Ŵ 1,2

Γ̂
and satis�es the estimate

‖ϕ‖Ŵ 1,2

Γ̂

≤ 1

m

∥∥↑ρ1F1(z1) − ↑ρ2F2(z2) + f
∥∥
Ŵ−1,2

Γ̂

,where m is the monotoniity onstant of P0.3. The maximal restrition of the operator (5.3) to the range spae Ŵ−1,q

Γ̂
has thedomain Ŵ 1,q

Γ̂
. Moreover, if M is a bounded subset of Ŵ−1,q

Γ̂
⊕ L∞, then the set

{L(f, z) : (f, z) ∈M} is bounded in Ŵ 1,q

Γ̂
.4. The mapping L : Ŵ−1,q

Γ̂
⊕L∞ → Ŵ 1,q

Γ̂
is ontinuously di�erentiable. Let (F, Z) =

(F, Z1, Z2) be from Ŵ−1,q

Γ̂
⊕ L∞; we de�ne the funtion

Nk
def

= ↑ρkF ′
k(Zk + (−1)k↓L(F, Z)), (5.5)and we also denote the orresponding multipliation operator on Ω̂ by Nk. Then theFréhet derivative ∂L at a point (F, Z) = (F, Z1, Z2) is the bounded linear mappinggiven by

[∂L(F, Z)] (f, z) = (P0 + N1 + N2)
−1 (f + N1

↑z1 −N2
↑z2
)
, k = 1, 2 (5.6)for all (f, z) = (f, (z1, z2)) ∈ Ŵ−1,q

Γ̂
⊕ L∞ .5. The norm of ∂L(F, Z) ∈ B(Ŵ−1,q

Γ̂
⊕ L∞; Ŵ 1,q

Γ̂
) an be estimated as follows:

‖∂L(F, Z)‖
B(Ŵ−1,q

Γ̂
⊕L∞;Ŵ 1,q

Γ̂
)

≤ 2‖P−1
0 ‖

B(L2;Ŵ 1,q

Γ̂
)

√
‖N1 + N2‖L∞‖N1 + N2‖L1 + ‖P−1

0 ‖
B(Ŵ−1,q

Γ̂
;Ŵ 1,q

Γ̂
)

+ ‖P−1
0 ‖

B(L̂2;Ŵ 1,q

Γ̂
)

√
‖N1 + N2‖L∞‖P−1/2

0 ‖
B(Ŵ−1,q

Γ̂
;L̂2)Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



18 H.-Chr. Kaiser, H. Neidhardt, J. RehbergProof. 1. The assumption that D̂ is not empty or εΓ̂ is positive on a set of positivear measure ensures that the operator P0 is strongly monotone. Thus, taking intoaount Lemma 5.1, the mapping (5.3) is strongly monotone and ontinuous from
Ŵ 1,2

Γ̂
to Ŵ−1,2

Γ̂
.2. The seond assertion follows from the �rst one by standard results on monotoneoperators, see for instane [16℄.3. For f ∈ Ŵ−1,2

Γ̂
the solution L(f, z) is from Ŵ 1,2

Γ̂
and hene,

−↑ρ1F1

(
z1 − ↓L(f, z)

)
+ ↑ρ2F2

(
z2 + ↓L(f, z)

)
∈ L̂2 →֒ Ŵ−1,q

Γ̂
,see Lemma 5.1. By the seond assertion of the theorem, the set

{L(f, z) : (f, z)∈M} is bounded in Ŵ 1,2

Γ̂
.From this we onlude again by Lemma 5.1 that the set

{
↑ρ1F1

(
z1 − ↓L(f, z)

)
− ↑ρ2F2

(
z2 + ↓L(f, z)

)
: (f, z) ∈M

}is bounded in L̂2, and hene, is bounded in Ŵ−1,q

Γ̂
. Thus, the set

{
↑ρ1F1

(
z1 − ↓L(f, z)

)
− ↑ρ2F2

(
z2 + ↓L(f, z)

)
+ f : (f, z) ∈M

}is also bounded in Ŵ−1,q

Γ̂
. Consequently, the image of this set under P−1

0 is boundedin Ŵ 1,q

Γ̂
.4. We de�ne an auxiliary mapping K : Ŵ 1,q

Γ̂
⊕ Ŵ−1,q

Γ̂
⊕ L∞ → Ŵ−1,q

Γ̂
by

K(ϕ, f, z)
def

= P0ϕ− ↑ρ1F1(z1 − ↓ϕ) + ↑ρ2F2(z2 + ↓ϕ) − fsuh that K
(
L(f, z), f, z

)
= 0 for all f ∈ Ŵ−1,q

Γ̂
and all z ∈ L∞. The assertionfollows from the Impliit Funtion Theorem if we an prove that K is ontinuouslydi�erentiable and the partial derivative with respet to ϕ is a topologial isomor-phism between Ŵ 1,q

Γ̂
and Ŵ−1,q

Γ̂
. For any ϕ ∈ Ŵ 1,q

Γ̂
, f ∈ Ŵ−1,q

Γ̂
, and z ∈ L∞ thepartial derivatives of K are given by

∂ϕK(ϕ, f, z) = P0 +

2∑

k=1

↑ρkF ′
k(zk + (−1)k↓ϕ) ∈ B(Ŵ 1,q

Γ̂
; Ŵ−1,q

Γ̂
), (5.7)

∂fK(ϕ, f, z) = −I ∈ B(Ŵ−1,q

Γ̂
; Ŵ−1,q

Γ̂
), (5.8)

∂zk
K(ϕ, f, z) = (−1)k↑ρkF ′

k(zk + (−1)k↓ϕ) ∈ L̂∞ →֒ B(L∞; Ŵ−1,q

Γ̂
) (5.9)and they are ontinuous, see Lemma 5.1 and [42, �5℄.Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



Classial solutions of drift�diffusion equations 19Now we onsider the equation
P0ψ +

2∑

k=1

↑ρkF ′
k(zk + (−1)k↓ϕ)ψ = f ∈ Ŵ−1,q

Γ̂
(5.10)Beause∑2

k=1
↑ρkF ′

k(zk+(−1)k↓ϕ) is a positive funtion from L̂∞, (5.10) has exatlyone solution ψ ∈ Ŵ 1,2

Γ̂
by the Lax-Milgram-Lemma. Moreover,

2∑

k=1

↑ρkF ′
k(zk + (−1)k↓ϕ)ψ ∈ L̂2 →֒ Ŵ−1,q

Γ̂
,and P0 : Ŵ 1,q

Γ̂
→ Ŵ−1,q

Γ̂
is a topologial isomorphism. Thus, a rearrangement ofterms in (5.10) gives ψ ∈ Ŵ 1,q

Γ̂
.5. We now estimate the Fréhet derivative (5.6):

∥∥(P0 + N1 + N2)
−1(f + N1

↑z1 −N2
↑z2)

∥∥
Ŵ 1,q

Γ̂

≤
∥∥(P0 + N1 + N2)

−1f
∥∥
Ŵ 1,q

Γ̂

+
∥∥(P0 + N1 + N2)

−1(N1
↑z1 −N2

↑z2)
∥∥
Ŵ 1,q

Γ̂

. (5.11)We treat the right hand side terms separately; for the seond addend one obtains
∥∥(P0 + N1 + N2)

−1(N1
↑z1 −N2

↑z2)
∥∥
Ŵ 1,q

Γ̂

≤
∥∥∥(P0 + N1 + N2)

−1
√

N1 + N2

∥∥∥
B(L̂2;Ŵ 1,q

Γ̂
)
‖g‖L2 , (5.12)where the funtion g ∈ L2 is de�ned by

g(x)
def

=
N1(x)z1(x) −N2(x)z2(x)√

N1(x) + N2(x)
for x ∈ Ω. (5.13)Please note that the funtions Nk are stritly positive almost everywhere in Ω dueto the positivity of the distribution funtions and Assumption 2.1. For the funtion

g in (5.13) one has the following bound:
‖g‖L2 ≤

√
‖N1 + N2‖L̂1 (‖z1‖L∞ + ‖z2‖L∞) .Making use of the operator identity

(P0 + N1 + N2)
−1 = P−1

0 − P−1
0 (N1 + N2)(P0 + N1 + N2)

−1 (5.14)Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



20 H.-Chr. Kaiser, H. Neidhardt, J. Rehbergone obtains
∥∥∥(P0 + N1 + N2)

−1
√

N1 + N2

∥∥∥
B(L̂2;Ŵ 1,q

Γ̂
)
≤
∥∥∥P−1

0

√
N1 + N2

∥∥∥
B(L̂2;Ŵ 1,q

Γ̂
)

+
∥∥∥P−1

0

√
N1 + N2

√
N1 + N2(P0 + N1 + N2)

−1
√
N1 + N2

∥∥∥
B(L̂2;Ŵ 1,q

Γ̂
)

≤
∥∥P−1

0

∥∥
B(L̂2;Ŵ 1,q

Γ̂
)

√
‖N1 + N2‖L̂∞ ×

×
(

1 +
∥∥∥
√

N1 + N2(P0 + N1 + N2)
−1/2

∥∥∥
2

B(L̂2)

)We note that ∥∥∥
√

N1 + N2(P0 + N1 + N2)
−1/2

∥∥∥
B(L̂2)

≤ 1 (5.15)beause the bounded multipliation operator N1 +N2 is form subordinated to P0 +

N1 +N2, see for instane [34, VI.2.6℄. Thus, we get for the seond addend of (5.11):
∥∥(P0 + N1 + N2)

−1(N1
↑z1 −N2

↑z2)
∥∥
Ŵ 1,q

Γ̂

≤ 2
∥∥P−1

0

∥∥
B(L̂2;Ŵ 1,q

Γ̂
)

√
‖N1 + N2‖L̂∞

√
‖N1 + N2‖L̂1 (‖z1‖L∞ + ‖z2‖L∞) (5.16)Applying (5.14) to the �rst term on the right hand side of (5.11) we �nd

∥∥(P0 + N1 + N2)
−1f
∥∥
Ŵ 1,q

Γ̂

≤
∥∥P−1

0

∥∥
B(Ŵ−1,q

Γ̂
;Ŵ 1,q

Γ̂
)
‖f‖Ŵ−1,q

Γ̂

+
∥∥P−1

0

∥∥
B(L̂2;Ŵ 1,q

Γ̂
)

∥∥(N1 + N2)(P0 + N1 + N2)
−1
∥∥
B(Ŵ−1,q

Γ̂
;L̂2)

‖f‖Ŵ−1,q

Γ̂

. (5.17)The terms ∥∥P−1
0

∥∥
B(Ŵ−1,q

Γ̂
;Ŵ 1,q

Γ̂
)
and ∥∥P−1

0

∥∥
B(L̂2;Ŵ 1,q

Γ̂
)
are �nite. As for the remainingterm

∥∥(N1 + N2)(P0 + N1 + N2)
−1
∥∥
B(Ŵ−1,q

Γ̂
;L̂2)

≤
√
‖N1 + N2‖L̂∞

∥∥∥
√
N1 + N2(P0 + N1 + N2)

−1/2
∥∥∥
B(L̂2)∥∥∥(P0 + N1 + N2)

−1/2P1/2
0

∥∥∥
B(L̂2)

∥∥∥P−1/2
0

∥∥∥
B(Ŵ−1,q

Γ̂
;L̂2)we note that ∥∥∥P−1/2

0

∥∥∥
B(Ŵ−1,q

Γ̂
;L̂2)

is �nite, sine Ŵ−1,q

Γ̂
embeds ontinuously into Ŵ−1,2

Γ̂and P1/2
0 : L̂2 → Ŵ−1,2

Γ̂
is a topologial isomorphism. Again, P0 is form subordinatedto P0 + N1 + N2. Hene, besides (5.15) one has
‖(P0 + N1 + N2)

−1/2P1/2
0 ‖

B(L̂2) ≤ 1.Thus, we get from (5.17):
∥∥(P0 + N1 + N2)

−1f
∥∥
Ŵ 1,q

Γ̂

≤
∥∥P−1

0

∥∥
B(Ŵ−1,q

Γ̂
;Ŵ 1,q

Γ̂
)
‖f‖Ŵ−1,q

Γ̂

+
∥∥P−1

0

∥∥
B(L̂2;Ŵ 1,q

Γ̂
)

√
‖N1 + N2‖L̂∞

∥∥∥P−1/2
0

∥∥∥
B(Ŵ−1,q

Γ̂
;L̂2)

‖f‖Ŵ−1,q

Γ̂

. (5.18)Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



Classial solutions of drift�diffusion equations 21Inserting (5.16) and (5.18) into (5.11) �nishes the proof.5.4 Corollary. Let the assumptions of Theorem 5.3 be satis�ed. Then holds true:1. The mapping L : Ŵ−1,q

Γ̂
⊕ L∞ → Ŵ 1,q

Γ̂
is boundedly Lipshitzian, i.e. for anybounded subset M ⊂ Ŵ−1,q

Γ̂
⊕ L∞ there is a onstant LM suh that

∥∥L(f, z) −L(f̌ , ž)
∥∥
W 1,q ≤ LM

(∥∥f − f̌
∥∥
Ŵ−1,q

Γ̂

+ ‖z − ž‖L∞

)for all (f, z), (f̌ , ž) ∈M .2. Let additionally Assumption 3.16 be satis�ed. If
z = (z1, z2) ∈ C([T0, T ],L∞) ∩ C1(]T0, T [,Lp),then the funtion [T0, T ] ∋ t 7→ ϕ(t) ∈ Ŵ 1,q

Γ̂
given by ϕ(t)

def

= L(d(t), z(t)) ∈ Ŵ 1,q

Γ̂
isontinuous, and ontinuously di�erentiable on ]T0, T [. Its derivative is

ϕ′(t) =
[
∂L
(
d(t), z(t)

)] (
d′(t), z′(t)

)

= (P0 + N1 + N2)
−1 (d′(t) + N1

↑z′1 −N2
↑z′2
)
,where Nk is again de�ned by (5.5) � there (F, Z) spei�ed as (d(t), z(t)).5.2 Derivation of the quasi-linear systemWe start now with the reformulation of the van Roosbroek system as de�ned inDe�nition 4.1 as a quasi-linear paraboli system for the ontinuity equations. Theaim of eliminating the eletrostati potential in mind, we �rst look for a substitutefor its time derivative. In order to ahieve this, we formally di�erentiate Poisson'sequation (4.4) with respet to time. This gives

P0ϕ
′ = d′ + ↑(u′1 − u′2). (5.19)From (4.5) one obtains

u′1 − u′2 = ∇ · j1 −∇ · j2 + r1(t, ϕ̃, φ̃) − r2(t, ϕ̃, φ̃). (5.20)Inserting (5.20) into (5.19), one gets
P0ϕ

′ = d′ + ↑
(
∇ · j1 −∇ · j2 + r1(t, ϕ̃, φ̃) − r2(t, ϕ̃, φ̃)

)
. (5.21)Just in ase, r = r1 = r2 is only reombination, this is preisely the well knownonservation law for the total urrent, see [11℄. Clearly, (5.21) leads to

↓ϕ
′ = ↓P−1

0

(
d′ + ↑

(
∇ · j1 −∇ · j2 + r1(t, ϕ̃, φ̃) − r2(t, ϕ̃, φ̃)

))
. (5.22)Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



22 H.-Chr. Kaiser, H. Neidhardt, J. RehbergNow we di�erentiate (4.6) (with (4.8)) with respet to time and obtain
u′k = ρkF ′

k(φ̃k + (−1)k↓ϕ̃+ bk)
[
φ̃′
k + (−1)k↓ϕ̃

′ + b′k
]

+ ρ′kFk(φ̃k + (−1)k↓ϕ̃+ bk), k = 1, 2, (5.23)Pending further notie we do not write out the argument φ̃k + (−1)k↓ϕ̃ + bk of thedistribution funtion Fk and its derivative. We also abstain from drawing out theargument of the reation terms rk. Aording to (3.10) we split ϕ̃′ = ϕ′ + ϕ′
◦ andinsert (5.23) into the urrent ontinuity equation (4.5). Thus, we �nd

[
φ̃′
k + (−1)k↓ϕ

′
]
ρkF ′

k −∇ · jk = rk −
[
(−1)k↓ϕ

′
◦ + b′k

]
ρkF ′

k − ρ′kFk, k = 1, 2.Using (5.22) we get further
ρkF ′

kφ̃
′
k −∇ · jk + (−1)kρkF ′

k↓P−1
0

(
d′ + ↑

(
∇ · j1 −∇ · j2 + r1 − r2

))

= rk −
[
(−1)k↓ϕ

′
◦ + b′k

]
ρkF ′

k − ρ′kFk, k = 1, 2.Dividing this by ρkF ′
k we obtain

(
φ̃′

1

φ̃′
2

)
−
(

1 + ↓P−1
0

↑F ′
1ρ1 −↓P−1

0
↑F ′

2ρ2

−↓P−1
0

↑F ′
1ρ1 1 + ↓P−1

0
↑F ′

2ρ2

)( 1
ρ1F ′

1

0

0 1
ρ2F ′

2

)( ∇ · j1
∇ · j2

)

=

(
r1
ρ1F ′

1

+ r1↓P−1
0

↑ − r2↓P−1
0

↑

−r1↓P−1
0

↑ + r2
ρ2F ′

2

+ r2↓P−1
0

↑

)
+

(
↓P−1

0 d′ + ↓ϕ
′
◦ − b′1 − ρ′

1

ρ1
F1

F ′
1

−↓P−1
0 d′ − ↓ϕ

′
◦ − b′2 − ρ′

2

ρ2
F2

F ′
2

)This evolution equation an be written in the ondensed form
φ̃′ − [I + Z(t, φ̃)]E(t, φ̃)∇ · j = Y (t, φ̃) (5.24)where φ̃ = (φ̃1, φ̃2) and ∇ · j def

= (∇ · j1,∇ · j2). Moreover, I denotes the identity.The oe�ients Z, E, and Y are given in the following way: First we split o� theDirihlet inhomogeneities of ϕ̃ in the sense of �3.4 and we replae ϕ by the solutionof the nonlinear Poisson equation, see Theorem 5.3. With respet to an arbitrary
ψ = (ψ1, ψ2) ∈ W1,q we set

Qk(t, ψ)
def

= ψk + (−1)k↓L
(
d(t), z(t)

)
+ (−1)k↓ϕ◦(t) + bk(t), k = 1, 2, (5.25)where z def

= (z1, z2) with
zk(t)

def

= ψk + (−1)k↓ϕ◦(t) + bk(t), k = 1, 2. (5.26)Now we de�ne
Z(t, ψ)

def

=

(
↓P−1

0
↑F ′

1(Q1(t, ψ))ρ1(t) −↓P−1
0

↑F ′
2(Q2(t, ψ))ρ2(t)

−↓P−1
0

↑F ′
1(Q1(t, ψ))ρ1(t) ↓P−1

0
↑F ′

2(Q2(t, ψ))ρ2(t)

) (5.27)
E(t, ψ)

def

=
(
E1(t,ψ) 0

0 E2(t,ψ)

)
, Ek(t, ψ)

def

=
1

ρk(t)F ′
k(Qk(t, ψ))

(5.28)
R(t, ψ)

def

=

(
r1(t,L(d(t), z(t)) + ϕ◦(t), ψ)

r2(t,L(d(t), z(t)) + ϕ◦(t), ψ)

)
, (5.29)Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



Classial solutions of drift�diffusion equations 23and �nally
Y (t, ψ)

def

=
[
I + Z(t, ψ)

]
E(t, ψ)R(t, ψ) −X(t, ψ), (5.30)where X(t, ψ) =

(
X1(t, ψ), X2(t, ψ)

) with
Xk(t, ψ)

def

= (−1)k↓
(
P−1

0 d′(t) + ϕ′
◦(t)
)

+ b′k(t) +
ρ′k(t)

ρk(t)

Fk(Qk(t, ψ))

F ′
k(Qk(t, ψ))

, (5.31)
k = 1, 2. Please note

Z(t, ψ)E(t, ψ) =
(

↓P
−1

0
↑ −↓P

−1

0
↑

−↓P
−1

0
↑

↓P
−1

0
↑

)
. (5.32)Next we apply the de�nition (2.9) of the urrents jk and get

∇ · jk = ∇ ·
(
Gk(φ̃k + (−1)k↓ϕ+ (−1)k↓ϕ◦ + bk)µk∇φ̃k

)
, k = 1, 2,or in shorter notation

∇ · j = ∇ ·G(t, φ̃)µ∇φ̃, (5.33)where � see also (5.25) and (2.9) �
G(t, ψ)

def

=
(
G1(t,ψ) 0

0 G2(t,ψ)

)
, Gk(t, ψ)

def

= Gk
(
Qk(t, ψ)

)
. (5.34)Now, putting together (5.33) and (5.24) we obtain in onlusion the evolution equa-tion

φ̃′ −
[
I + Z(t, φ̃)

]
E(t, φ̃)∇ ·G(t, φ̃)µ∇φ̃ = Y (t, φ̃) (5.35)whih has to be omplemented by the boundary onditions (2.3) and the initialondition (2.4), see also Remark 3.9.6 The quasi-linear paraboli equationEvolution equations of the type (5.35) were investigated in [31℄: (5.35) has a unique,loal in time solution, if the funtions E, G, Z and Y de�ned by (5.28), (5.34), (5.27)and (5.30), respetively, satisfy the following onditions.6.1 Assumption. With respet to q ∈]2,∞[ and p = q/2, as spei�ed in De�-nition 3.4, there is an η ∈]0, 1] and further for any bounded set M ⊂ W1,q existpositive onstants EM , GM , YM , and ZM suh that the mappings

E : [T0, T1] × W1,q −→ L∞, (6.1)
G : [T0, T1] × W1,q −→ W1,q, (6.2)
Z : [T0, T1] × W1,q −→ B∞(Lp), (6.3)
Y : [T0, T1] × W1,q −→ Lp (6.4)Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



24 H.-Chr. Kaiser, H. Neidhardt, J. Rehbergsatisfy the onditions
min
k=1,2

inf
t∈[T0,T1]
ψ∈M

vraimin
x∈Ω

Ek(t, ψ)(x) > 0 (6.5)
min
k=1,2

inf
t∈[T0,T1]
ψ∈M

vraimin
x∈Ω

Gk(t, ψ)(x) > 0 (6.6)and for all t, ť ∈ [T0, T1] and all ψ, ψ̌ ∈M :
‖E(t, ψ) −E(ť, ψ̌)‖L∞ ≤ EM

(
|t− ť|η + ‖ψ − ψ̌‖W1,q

)
, (6.7)

‖G(t, ψ) −G(ť, ψ̌)‖W1,q ≤ GM

(
|t− ť|η + ‖ψ − ψ̌‖W1,q

)
, (6.8)

‖Z(t, ψ) − Z(ť, ψ̌)‖B(Lp) ≤ ZM
(
|t− ť|η + ‖ψ − ψ̌‖W1,q

)
, (6.9)

‖Y (t, ψ) − Y (ť, ψ̌)‖Lp ≤ YM
(
|t− ť|η + ‖ψ − ψ̌‖W1,q

)
. (6.10)6.2 De�nition. Let the Assumptions 3.8 and 6.1 be satis�ed. Further, let A :

D → Lp be the operator from De�nition 3.4 and let V be a Banah spae suhthat D →֒ V →֒ W1,q. We say the evolution equation (5.35) with initial ondition
φ̃(T0) = Φ0 ∈ W1,q has a unique loal solution φ̃ = φ + Φ with respet to V if
Φ0 − Φ(T0) ∈ V implies the existene of a number T ∈]T0, T1] suh that the initialvalue problem
φ′(t) +

[
I + Z

(
t, φ(t) + Φ(t)

)]
E
(
t, φ+ Φ(t)

)
G
(
t, φ(t) + Φ(t)

)
Aφ(t)

= Y
(
t, φ(t) + Φ(t)

)
− Φ′(t) + J

(
t, φ(t)

)
, φ(T0) = Φ0 − Φ(T0) (6.11)admits a unique solution

φ ∈ C1(]T0, T [,Lp) ∩ C(]T0, T ],D) ∩ C([T0, T ], V ). (6.12)For (t, ψ) ∈ [T0, T1] × W1,q
Γ the term J in (6.11) is given by

J(t, ψ)
def

=
[
I + Z

(
t, ψ + Φ(t)

)]
E
(
t, ψ + Φ(t)

)
∇G

(
t, ψ + Φ(t)

)
· µ∇

(
ψ + Φ(t)

)
.6.3 Remark. We have to larify the relation between (5.35) and (6.11). If φ̃ = φ+Φis a solution in the sense of De�nition 6.2, then

∇ ·G(t, φ̃)µ∇φ̃ = G(t, φ̃) Aφ+ ∇G(t, φ̃) · µ∇φ̃ (6.13)is satis�ed, whih allows to rewrite (6.11) in the form (5.35).6.4 Remark. If φ̃ = (φ̃1, φ̃2) is a solution of (5.35) in the sense of De�nition 6.2,then
tr
(
φ̃k(t)

)∣∣
D

= tr
(
Φk(t)

)∣∣
D

= φD,k(t), k = 1, 2, t ∈ [T0, T ].The Neumann boundary ondition
0 = ν · µk∇φ̃k(t)

∣∣
Γ

= ν · µk∇Φk(t)
∣∣
Γ
, k = 1, 2, t ∈ [T0, T ],holds in the distributional sense, see Remark 3.9.Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



Classial solutions of drift�diffusion equations 256.5 Proposition. (See [31℄.) Let the Assumptions 3.8 and 6.1 be satis�ed. Foreah γ ∈
]

1
2

+ 1
q
, 1
[ the initial value problem (5.35) with initial value Φ0 ∈ W1,qhas a unique loal solution φ with respet to the omplex interpolation spaes V def

=[
Lp,D

]
γ
.We are now going to show that the mappings E, G, Y and Z satisfy Assumption 6.1.To that end we need the following preparatory lemma.6.6 Lemma. If ξ : R → R is ontinuously di�erentiable, then ξ indues a Nemykiioperator from L∞ into itself whih is boundedly Lipshitzian. If ξ : R → R is twieontinuously di�erentiable, then it indues a Nemykii operator from W 1,q into itselfwhih is boundedly Lipshitzian.The proof is straightforward. Reall that, aording to De�nition 3.4, q is �xed andlarger than two.6.7 Lemma. Let the Assumptions 3.7, 3.13 and 3.16 be satis�ed. Then the equation(5.25) de�nes mappings Qk : [T0, T1] × L∞ → L∞, k = 1, 2, and the restrition ofeah Qk to [T0, T1] × W1,q takes its values in W 1,q. Moreover, there is a number

η ∈]0, 1] and then for any bounded subset M ⊂ L∞ a positive number QM existssuh that for all t, ť ∈ [T0, T1] and all ψ, ψ̌ ∈M :
‖Qk(t, ψ) −Qk(ť, ψ̌)‖L∞ ≤ QM

(
|t− ť|η + ‖ψ − ψ̌‖L∞

)
, k = 1, 2.Analogously, for eah bounded subset M ⊂ W1,q there is a positive number QM suhthat for all t, ť ∈ [T0, T1] and all ψ, ψ̌ ∈M :

‖Qk(t, ψ) −Qk(ť, ψ̌)‖W 1,q ≤ QM

(
|t− ť|η + ‖ψ − ψ̌‖W1,q

)
, k = 1, 2.The proof is obtained from Corollary 5.4.6.8 Lemma. Let the Assumptions 3.7, 3.13 and 3.16 be satis�ed. If ξ : R → R isontinuously di�erentiable, then ξ indues operators

[T0, T1] × L∞ ∋ (t, ψ) 7−→ ξ(Qk(t, ψ)) ∈ L∞, k = 1, 2.Moreover, there is a onstant η ∈]0, 1] and for any bounded set M ⊂ L∞ a onstant
ξM suh that for all t, ť ∈ [T0, T1] and all ψ, ψ̌ ∈M :

‖ξ
(
Qk(t, ψ)

)
− ξ
(
Qk(ť, ψ̌)

)
‖L∞ ≤ ξM

(
|t− ť|η + ‖ψ − ψ̌‖L∞

)
, k = 1, 2.If ξ is twie ontinuously di�erentiable, then the restrition of ξ◦Qk to [T0, T1]×W1,qmaps into W 1,q, k = 1, 2. Moreover, there is a number η ∈]0, 1] and for any boundedsubset M ⊂ W1,q a onstant ξM suh that for all t, ť ∈ [T0, T1] and all ψ, ψ̌ ∈M :

‖ξ
(
Qk(t, ψ)

)
− ξ
(
Qk(ť, ψ̌)

)
‖W 1,q ≤ ξM

(
|t− ť|η + ‖ψ − ψ̌‖W1,q

)
, k = 1, 2.Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



26 H.-Chr. Kaiser, H. Neidhardt, J. RehbergThe proof follows from Lemma 6.6 and Lemma 6.7.6.9 Lemma. Let the Assumptions 3.7, 3.13 and 3.16 be satis�ed. Then there isa number η ∈]0, 1] suh that the mappings E and G de�ned by (5.28) and (5.34)satisfy the onditions (6.1), (6.5), (6.7), and (6.2), (6.6), (6.8), respetively.Proof. The funtions 1
F ′

k

are ontinuously di�erentiable by Assumption 2.3. Conse-quently, by Lemma 6.8 the mappings Ẽk, given by
[T0, T1] × L∞ ∋ (t, ψ) 7−→ 1

F ′
k

(
Qk(t, ψ)

) ∈ L∞, k = 1, 2,are well de�ned. Moreover, Lemma 6.8 provides a onstant η ∈]0, 1] suh that forany bounded set M ⊂ L∞ a onstant CM exists suh that for all t, ť ∈ [T0, T1] andall ψ, ψ̌ ∈M :
‖Ẽk(t, ψ) − Ẽk(ť, ψ̌)‖L∞ ≤ CM

(
|t− ť|η + ‖ψ − ψ̌‖L∞

)
, k = 1, 2.Sine W1,q embeds ontinuously into L∞ for any bounded set M ⊂ W1,q there is aonstant, again named CM , suh that for all t, ť ∈ [T0, T1] and all ψ, ψ̌ ∈M :

‖Ẽk(t, ψ) − Ẽk(ť, ψ̌)‖L∞ ≤ CM
(
|t− ť|η + ‖ψ − ψ̌‖W1,q

)
, k = 1, 2.The identity Ek = 1

ρk
Ẽk and Assumption 2.1 now imply (6.1) and (6.7). Aordingto Lemma 6.7 the sets

{Qk(t, φ) : (t, φ) ∈ [T0, T1] ×M} , k = 1, 2,are bounded in L∞. Sine the derivative of the arrier distribution funtions Fk,
k = 1, 2, are ontinuous and positive, (6.5) immediately follows.Using the seond assertion of Lemma 6.8 we verify (6.2), (6.6), and (6.8) in a similarmanner.6.10 Lemma. Let the Assumptions 3.7, 3.13, and 3.16 be satis�ed. Then the map-ping Z given by (5.27) de�nes a family {Z(t, ψ)}(t,ψ)∈[T0,T1]×W1,q of linear, ompatoperators Z(t, φ) : Lp → Lp . Additionally, there is a Hölder exponent η ∈]0, 1] andonstants ZM suh that (6.3) and (6.9) are satis�ed.Proof. It su�es to show the analogous assertions for the entries of the operatormatries Z(t, ψ). Firstly, Lemma 6.8 gives us the estimate
‖F ′

k

(
Qk(t, ψ)

)
− F ′

k

(
Qk(ť, ψ̌)

)
‖B(Lp)

≤ ‖F ′
k

(
Qk(t, ψ)

)
− F ′

k

(
Qk(ť, ψ̌)

)
‖L∞

≤ CM
(
|t− ť|η + ‖ψ − ψ̌‖W1,q

)
, k = 1, 2,Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



Classial solutions of drift�diffusion equations 27where the onstant CM an be taken uniformly with respet to t, ť ∈ [T0, T1] and
ψ, ψ̌ from any bounded set M ⊂ W1,q. This estimate together with Assumption 2.1implies (6.9). As ↓P−1

0
↑ is a linear and even ompat operator from Lp into itself,this gives (6.3).6.11 Lemma. Let the Assumptions 3.6, 3.7, 3.13, and 3.16 be satis�ed. Then themapping Y de�ned by (5.30) meets the onditions (6.4) and (6.10).Proof. At �rst one dedues from the assumptions and Corollary 5.4 that (5.29)de�nes a mapping R : [T0, T1] × W1,q → Lp for whih there is a Hölder exponent

η ∈]0, 1]. Moreover, for any bounded set M ⊂ W1,q exists a onstant CM suh thatfor all t, ť ∈ [T0, T1] and all ψ, ψ̌ ∈M :
‖R(t, ψ) − R(ť, ψ̌)‖Lp ≤ CM

(
|t− ť|η + ‖ψ − ψ̌‖W1,q

)
.Applying Lemma 6.9 and Lemma 6.10 one obtains (6.4) and (6.10) for the mapping

[T0, T1] × W1,q ∋ (t, ψ) 7−→
[
I + Z(t, ψ)

]
E(t, ψ)R(t, ψ).The addends b′k and ↓ϕ

′
◦ of (5.31) have the required properties due to Assumption 3.7and Assumption 3.13, respetively. For P−1

0 d′ they follow from Assumption 3.13 (seealso Remark 3.15), Assumption 3.16 and the fat that P0 is an isomorphism from
Ŵ 1,q

Γ̂
onto Ŵ−1,q

Γ̂
. The addend ρ′

k
(t)

ρk(t)
Fk(Qk(t,ψ))
F ′

k
(Qk(t,ψ))

of (5.31) an be treated by means ofLemma 6.8 and Assumption 2.1.We are now going to establish existene and uniqueness of a loal solution to theevolution equation (5.35).6.12 Theorem. Under the Assumptions 3.6, 3.7, 3.8, 3.11, 3.13 and 3.16 the quasi-linear paraboli equation (5.35) with the initial ondition φ̃(T0) = Φ0 admits a uniqueloal solution in the sense of De�nition 6.2 with respet to the interpolation spae
V = [Lp,D]θ.Proof. Aording to the Lemmas 6.9, 6.10, 6.11 the mappings E, G, Z, and Y ,de�ned by (5.28), (5.34), (5.27), and (5.30), respetively, ful�ll Assumption 6.1.Hene, the result follows from Proposition 6.5, see also Remarks 6.3 and 6.4.7 Main resultWe are going to show that a solution of the evolution equation (5.35) in the senseof De�nition 6.2 provides a solution of the van Roosbroek system in the sense ofDe�nition 4.1.We start with a tehnial lemma.Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



28 H.-Chr. Kaiser, H. Neidhardt, J. Rehberg7.1 Lemma. Let ξ : R → R be twie ontinuously di�erentiable. The omposition
ξ ◦ψ is from C([T0, T ], L∞), if ψ∈C([T0, T ], L∞). If ψ omposed with the embedding
L∞→֒Lp, p ≥ 1, is ontinuously di�erentiable in Lp on ]T0, T [, then ξ ◦ ψ om-posed with the same embedding is ontinuously di�erentiable in Lp on ]T0, T [ and itsderivative is given by

dξ ◦ ψ
dt

(t) = ξ′
(
ψ(t)

)
ψ′(t) ∈ Lp, t ∈]T0, T [.Proof. If h1, h2 ∈ L∞, then, by Lemma 5.1 � see also Assumption 2.3, we maywrite

ξ(h1) − ξ(h2) = ξ′(h1)(h1 − h2) + T (h1, h2)((h1 − h2)where T (h1, h2) onverges to zero in L∞ if h1∈L∞ is �xed and h2 approahes h1 inthe L∞-norm. Now we set h1 = ψ(t) and h2 = ψ(ť) and divide both sides by t− ť. Inthe limit ť→ t there is limť→t T (ψ(t), ψ(ť)) = 0 in L∞, while limť→t
ψ(t)−ψ(ť)

t−ť
= ψ′(t)in Lp by supposition.Our next aim is to justify formula (5.23).7.2 Lemma. Let the Assumptions 3.7, 3.8, 3.13, and 3.16 be satis�ed and assumethat φ̃ is a solution of (5.35). We de�ne

z
def

= (z1, z2) with zk(t)
def

= φ̃k(t)+bk(t)+(−1)k↓ϕ◦(t), k = 1, 2, t ∈ [T0, T ], (7.1)and ϕ(t)
def

= L
(
d(t), z(t)

). Then Qk(t, φ̃(t)) = zk(t) + (−1)k↓ϕ(t), and the funtions
[T0, T ] ∋ t 7−→ Gk(t, φ̃(t)) = Gk

(
Qk(t, φ̃(t))

)
∈ L∞,and

[T0, T ] ∋ t 7−→ uk(t)
def

= ρk(t)Fk

(
Qk(t, φ̃(t))

)
∈ L∞are ontinuous and onatenated with the embedding L∞→֒Lp they are ontinuouslydi�erentiable on ]T0, T [. The time derivative of uk is given by

u′k(t) = ρ′k(t)Fk

(
Qk(t, φ̃(t))

)

+ ρk(t)F ′
k

(
Qk(t, φ̃(t))

)[
φ̃′
k(t) + b′k(t) + (−1)k↓ϕ

′
◦(t) + (−1)k↓ϕ

′(t)
] (7.2)

k = 1, 2, t ∈]T0, T ].Proof. Due to Assumption 3.8 and De�nition 6.2 the funtion φ̃ belongs to the spae
C([T0, T ],L∞) ∩ C1(]T0, T [,Lp) (7.3)see also Remark 3.12. Hene, the Assumptions 3.7 and 3.13 ensure that the fun-tion z also belongs to this spae, and by Corollary 5.4, so does the funtion ϕ =

L
(
d(t), z(t)

). Thus, we may apply Lemma 7.1.Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



Classial solutions of drift�diffusion equations 297.3 Remark. Lemma 7.2 justi�es the formal manipulations in �5.2. First, (5.23) isgiven a strit sense. Furthermore, the di�erentiation of Poisson's equation (5.19) hasthe following preise meaning: sine φ̃ is from the spae (7.3), the funtion t 7→ ϕ(t)is di�erentiable � even in a muh 'better' spae than φ̃� see Corollary 5.4. Hene,the right hand side of (4.4) is di�erentiable with respet to time in the spae Ŵ−1,q

Γ̂and (5.19) is an equation in the spae Ŵ−1,q

Γ̂
.We ome now to the main results of this paper.7.4 Theorem. Under the Assumptions 3.6, 3.7, 3.8, 3.11, 3.13, and 3.16 vanRoosbroek's system with initial ondition φ̃(T0) = Φ0 ∈ W1,q admits a unique loalin time solution in the sense of De�nition 4.1.Proof. By Theorem 6.12 the auxiliary evolution equation (5.35) admits � in thesense of De�nition 6.2 � a unique loal solution φ̃ satisfying the initial ondition

φ̃(T0) = Φ0. Let us show that � in the sense of De�nition 4.1 � the pair {ϕ̃, φ̃},with ϕ̃ given by
ϕ̃(t)

def

= ϕ◦(t) + L
(
d(t), z(t)

)
, t ∈ [T0, T ], (7.4)and z aording to (7.1), is a loal solution of van Roosbroek's system. First, (4.3)is idential with (6.12). By the embedding V →֒ W1,q

Γ →֒ L∞ (see Remark 3.12) thefuntion [T0, T ] ∋ t 7→ φ(t) ∈ L∞ is ontinuous, and so is the funtion [T0, T ] ∋ t 7→
Φ(t) ∈ L∞ in view of Assumption 3.8. Thus, φ̃ ∈ C([T0, T ],L∞) ∩ C1(]T0, T [,Lp).Moreover, for z, see (7.1), one obtains from the Assumptions 3.7 and 3.13 that
z ∈ C([T0, T ],L∞) ∩ C1(]T0, T [,Lp). Consequently, property (4.2) follows by Corol-lary 5.4, while (4.9) results from Lemma 7.2. The Poisson equation (4.4) withdensities (4.6) is obviously satis�ed by (7.4) due to the de�nition of L. (4.10) fol-lows from ∇φ̃k ∈ C(]T0, T ],Lq), k = 1, 2, and Lemma 7.2. (4.11) is implied by (6.12)and (6.13). It remains to show that the ontinuity equations (4.5) are satis�ed. Forthis, one �rst notes the relations

Qk(t, φ̃(t)) = φ̃k(t) + (−1)k↓ϕ̃(t) + bk(t) = zk(t) + (−1)k↓ϕ(t), k = 1, 2, (7.5)and
R(t, φ̃(t)) =

(
r1(t,ϕ̃(t),φ̃(t))

r2(t,ϕ̃(t),φ̃(t))

)
, (7.6)whih follows from the de�nitions (5.25) and (5.29) of R and Q, and (7.1), (7.4).Further, in Assumption 3.6 we demand that the mappings rk, k = 1, 2, take theirvalues in Lp � onsequently, R takes its values in Lp. From (7.2) and (5.28) onegets

Ek(t, φ̃(t))u′k(t) = φ̃′
k(t) + b′k(t) + (−1)k↓ϕ̃

′(t) +
ρ′

k
(t)

ρk(t)
Fk(Qk(t,φ̃(t)))

F ′
k
(Qk(t,φ̃(t)))

,Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



30 H.-Chr. Kaiser, H. Neidhardt, J. Rehbergand by means of the evolution equation (5.35) we obtain
E(t, φ̃(t))u′(t) =

[
I + Z(t, φ̃(t))

]
E(t, φ̃(t))∇ ·G(t, φ̃(t))µ∇φ̃(t)

+
[
I + Z(t, φ̃(t))

]
E(t, φ̃(t))R(t, φ̃(t)) +

(
↓P

−1

0
d′(t)−↓ϕ

′(t)

↓ϕ
′(t)−↓P

−1

0
d′(t)

)
.We now make use of the representation (4.7) of the urrents j = (j1, j2), and get

E(t, φ̃(t))
[
u′(t) −∇ · j(t) −R(t, φ̃(t))

]

= Z(t, φ̃(t))E(t, φ̃(t))
[
∇ · j(t) +R(t, φ̃(t))

]
+
(

↓P
−1

0
d′(t)−↓ϕ

′(t)

↓ϕ
′(t)−↓P

−1

0
d′(t)

)
.We already know that the formal di�erentiation of Poisson's equation is justi�ed,see Remark 7.3. Thus, (5.19) yields

E(t, φ̃(t))
[
u′(t) −∇ · j(t) −R(t, φ̃(t))

]

= Z(t, φ̃(t))E(t, φ̃(t))
[
∇ · j(t) +R(t, φ̃(t))

]
+
(

↓P
−1

0
↑(u′

2
(t)−u′

1
(t))

↓P
−1

0
↑(u′

1
(t)−u′

2
(t))

)
,and, observing (5.32) and (7.6), we get

[
E(t, φ̃(t)) +

(
↓P

−1

0
↑ −↓P

−1

0
↑

−↓P
−1

0
↑

↓P
−1

0
↑

)] (
u′
1
(t)−∇·j1(t)−r1(t,ϕ̃(t),φ̃(t))

u′
2
(t)−∇·j2(t)−r2(t,ϕ̃(t),φ̃(t))

)
= 0. (7.7)The operator on the left is ontinuous on Lp; we show now that its kernel is trivial.Let f1, f2 ∈ Lp be suh that

[
E(t, φ̃(t)) +

(
↓P

−1

0
↑ −↓P

−1

0
↑

−↓P
−1

0
↑

↓P
−1

0
↑

)] (
f1
f2

)
= 0.This is equivalent to the relations

f2 = −E1(t,φ̃(t))

E2(t,φ̃(t))
f1 and ↓P−1

0
↑
((

1 + E1(t,φ̃(t))

E2(t,φ̃(t))

)
f1

)
= −E1(t, φ̃(t))f1.

P−1
0

↑
(
(1 + E1(t,φ̃(t))

E2(t,φ̃(t))
)f1

) is a ontinuous mapping from W 1,q
Γ into L̂∞. Indeed, theembedding L̂p →֒ Ŵ−1,q

Γ̂
is ontinuous, and P0 is an isomorphism between Ŵ 1,q

Γ̂
and

Ŵ−1,q

Γ̂
, see Proposition 3.3. Hene, we may multiply both sides with f1 + E1(t,φ̃(t))

E2(t,φ̃(t))
f1and integrate over Ω; this yields

∫

Ω
↓P−1

0
↑
(
f1 + E1(t,φ̃(t))

E2(t,φ̃(t))
f1

)(
f1 + E1(t,φ̃(t))

E2(t,φ̃(t))
f1

)
dx

=

∫

Ω̂

P−1
0

↑
(
f1 + E1(t,φ̃(t))

E2(t,φ̃(t))
f1

)
↑
(
f1 + E1(t,φ̃(t))

E2(t,φ̃(t))
f1

)
dx

= −
∫

Ω

E1(t, φ̃(t))
(
1 + E1(t,φ̃(t))

E2(t,φ̃(t))

)
f 2

1 dx (7.8)Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



Classial solutions of drift�diffusion equations 31The quadrati form ψ 7→
∫
Ω̂
(P−1

0 ψ)ψ dx is non-negative on L̂2 and extends byontinuity to L̂p, where it is also non-negative. On the other hand, the funtion
E1(t, φ̃(t))

(
1 + E1(t,φ̃(t))

E2(t,φ̃(t))

) is almost everywhere on Ω stritly positive. Therefore,the right hand side of (7.8) an only be non-negative if f1 is zero almost everywhereon Ω. Hene, (7.7) establishes the ontinuity equations (4.5).To prove uniqueness of a solution of van Roosbroek's system in the sense of Def-inition 4.1 one assures that any solution in the sense of De�nition 4.1 proures asolution in the sense of De�nition 6.2. Indeed this has been done on a formal stageby the reformulation of van Roosbroek's system as a quasi-linear paraboli systemin �5. In fat, all formal steps an be arried out in the underlying funtion spaes.We aomplish this in the sequel for the ruial points. (4.4) and (4.6) ensure, that
ϕ is a solution of (5.4). Hene, Corollary 5.4 implies that ϕ indeed is ontinuouslydi�erentiable in Ŵ 1,q

Γ̂
, and, onsequently, (5.21) makes sense in Ŵ−1,q

Γ̂
. The deriva-tion of (4.6), see also (4.8), is justi�ed by Lemma 7.1. Thus, (5.23) holds in a stritsense. The division by ρkF ′

k is allowed beause both fators have (uniform) upperand lower bounds. The rest of the manipulations up to (5.35) is straight forward tojustify.Next we want to establish the natural formulation of the balane laws in van Roos-broek's system in integral form, see (1.1), whih is one of the entral goals of thispaper. At �rst, one realizes that the boundary integral has to be understood in thedistributional sense � as is well known from Navier-Stokes theory, see [45℄ � if oneonly knows that the urrent is a q�summable funtion and that its divergene is
p�summable. More preisely, the following proposition holds.7.5 Proposition. Let ω ⊂ R

2 be any bounded Lipshitz domain. Assume j : ω → R
2to be from Lq(ω; R2) and let the divergene (in the sense of distributions) ∇ · j of jbe p�integrable on ω. If q > 2 and p = q

2
, then there is a uniquely determined linearontinuous funtional jν ∈W

−1+ 1

q′
,q
(∂ω) suh that

∫

ω

j · ∇ψ dx+

∫

ω

ψ∇ · j dx = 〈jν |ψ|∂ω〉 for all ψ ∈W 1,q′(ω), (7.9)where 〈· | ·〉 on the right hand side denotes the duality between W
1− 1

q′
,q′

(∂ω) and
W

−1+ 1

q′
,q
(∂ω). If, in addition, the funtion j is ontinuously di�erentiable on ω andthe partial derivatives have ontinuous extensions to ω, then

∫

ω

j · ∇ψ dx+

∫

ω

ψ∇ · j dx =

∫

∂ω

ψ|∂ων · j dσω for all ψ ∈W 1,q′(ω),where ν is the outer unit normal of ∂ω, and σω is the ar�measure on ∂ω.Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



32 H.-Chr. Kaiser, H. Neidhardt, J. RehbergProof. The �rst statement is a slight generalization, see [30, Lemma 2.4℄, of wellknown results from [45, Ch. 1℄. The seond assertion has been proved in [8, Ch. 5.8℄.7.6 Theorem. If (ϕ̃, φ̃) is a solution of van Roosbroek's system in the sense ofDe�nition 4.1, and ω ⊂ Ω is an open Lipshitz domain, then there are uniqueontinuous funtions jkν :]T0, T ] → W
−1+ 1

q′
,q
(∂ω), k = 1, 2, suh that

∂

∂t

∫

ω

uk(t) dx = 〈jkν(t) | 1〉 +

∫

ω

rk(t, ϕ̃(t), φ̃(t)) dx, k = 1, 2, (7.10)where 〈· | ·〉 again denotes the duality between W 1− 1

q′
,q′

(∂ω) and W−1+ 1

q′
,q
(∂ω).Proof. From (4.5) we obtain for any open Lipshitz domain ω ⊂ Ω

∫

ω

u′k(t) −∇ · jk(t) dx =
∂

∂t

∫

ω

uk(t) dx−
∫

ω

∇ · jk(t) dx =

∫

ω

rk(t, ϕ̃(t), φ̃(t)) dx,where jk is de�ned by (4.7). Using Proposition 7.5 we �nd for every t ∈]T0, T ]a unique element jkν(t)∈W−1+ 1

q′
,q
(∂ω) suh that (7.10) holds. Moreover, ontinu-ity passes over from the funtions (4.10) to the mappings ]T0, T ] ∋ t 7→ jkν(t) ∈

W
−1+ 1

q′
,q
(∂ω).If the urrents jk(t) are ontinuously di�erentiable on ω and the partial derivativeshave ontinuous extensions to ω, then by the seond part of Proposition 7.5 theformula (7.10) takes the form (1.1).8 NumerisTheorem 7.6 is the basis for spae disretization of drift�di�usion equations bymeans of the �nite volume method (FVM). The FVM was adopted for the numerialsolution of van Roosbroek's equations by Gajewski, and this approah has beenfurther investigated in [12, 10, 17, 9℄. To disretise the spatial domain one uses apartition into simplex elements. Let E be the set of all edges eil = xi − xl of thistriangulation, where x1, x2,. . . are the verties. Moreover, we de�ne the Voronoi ellassigned to a vertex xi by

Vi
def

= {x in the spatial simulation domain, suh that
‖x− xi‖ ≤ ‖x− xl‖ for all verties xl of the triangulation},where ‖·‖ refers to the norm in the spatial simulation spae R

2. Now, to get a spaedisrete version of the urrent�ontinuity equation, we speify (7.10) with ω = Vi,Preprint 1189, Weierstrass Institute for Applied Analysis and Stohastis, Berlin 2006



Classial solutions of drift�diffusion equations 33and approximate 〈jkν(t) | 1〉 pieewise by jkilσ(∂Vi ∩ ∂Vl), σ being the ar measureon the boundary of ω = Vi. The intermediate value jkil an be obtained as follows:The main hypothesis with respet to the disretization of the urrents � due toSharfetter and Gummel [49℄ � is that the eletron and hole urrent density j2 and
j1 are onstant along simplex edges. This assumption allows to alulate j1il and
j2il � the onstant values on the edge eil � in terms of the node values of theeletrostati potential and the partile densities, see for instane [17℄. Thus, oneends up with the following FVM disretization of van Roosbroek's system for allinterior Voronoi ells Vi:

ε(xi)
∑

l : eil∈E

(∇ϕ)ilσ(∂Vk ∩ ∂Vl) =
(
d̃(xi) + u1(xi) − u2(xi)

)
|Vi|,

∂uk
∂t

(xi)|Vi| − jkilσ(∂Vi ∩ ∂Vl) = rk(t, ϕ̃, φ̃1, φ̃2)(xi)|Vi|,where |Vi| is the volume of the Voronoi ells Vi. Here we have tested the Poissonequation also with the harateristi funtion 1Vi
of the Voronoi ell Vi, and wehave applied Gauss' theorem. In view of Proposition 7.5 we assume, additional toAssumption 3.16, d̃ : [T0, T1] → L̂p, and observe that ϕ• an be hoosen suh that

〈ϕ• | 1Vi
〉 = 0 for interior Voronoi ells Vi, see Remark 3.15. Again, we approxi-mate the right hand side of (7.9) pieewise by (∇ϕ)ilσ(∂Vi ∩ ∂Vl), and we assume� in onsonane with the hypothesis about urrents � that the gradient of theeletrostati potential is onstant on the edges of the triangulation, that means
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−∇ · ε∇ : Ŵ 1,q

Γ̂
→ Ŵ−1,q

Γ̂
and −∇ · µk∇ : W 1,q

Γ → W−1,q
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