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Abstract

The integral equation method for the simulation of the diffraction by optical gratings is an efficient
numerical tool if profile gratings determined by simple cross-section curves are considered. This
method in its recent version is capable to tackle profile curves with corners, gratings with thin coated
layers, and diffraction scenarios with unfavorably large ratios period over wavelength. We discuss
special implementational issues including the efficient evaluation of the quasi-periodic Green kernels,
the quadrature algorithm, and the iterative solution of the arising systems of linear equations. Finally,
as application we present the simulation of coated echelle gratings which demonstrates the efficency
of our approach.

1 Introduction

For the numerical simulation of diffraction by optical gratings, several methods have been proposed,
among them differential and integral methods, methods based on Rayleigh or eigenmode expansions,
finite element or finite difference methods and methods of analytical continuation (cf., e.g., the Rigorous
Coupled Wave Analysis [18], the C-Method [5], and the Finite Element Methods [26, 2, 7]). However, if
the cross section of the grating geometry can be described by a small number of interface curves, then
the approximation of the scattered electromagnetic field by an integral equation method is recommended.
Integral equation methods are robust, reliable, and efficient. Such methods for calculating field compo-
nents and efficiencies have been developed by e.g. Maystre, Pomp, Chen, Friedman, Prather et.al., Popov
et.al., Yeung, Barouch, Goray, Sadov, and Kleemann (cf. [17, 19, 4, 22, 21, 28, 11, 12]).

Integral equation methods are well suited for the simulation of profile gratings with profile curves of
arbitrary shape (cf. [12]). The grating materials can be dielectric or conducting, and profile gratings
with coated layers can be treated as well (cf. [19, 21, 11] and the treatment of large numbers of layers
in [10]). If the integrals occurring in the method are approximated by properly chosen quadrature rules,
then coated layers with extremely small thickness are admissible. Even corners in the profile curve do
not cause serious problems as long as the singular behavior of the electromagnetic field at the corner
points is taken into account by the right discretization of the integral equations. More challenging is
the treatment of gratings with large ratios period (grating constant) over wavelength. Such examples
usually require numerical algorithms with large numbers of degrees of freedom, i.e., long computing times
and huge storage capacities. Note, however, that surprisingly good results have been reported for the
unconventional Modified Integral Method by Goray [9].

Integral equation methods can be considered as a special case of the so-called boundary element
methods applied to boundary value problems for the elliptic Helmholtz equation. Consequently, the
standard boundary element techniques can be utilized for the grating problems as well. This includes
the choice of the discretization scheme and the quadrature rules and the adaption to corners and thin
layers. Unfortunately, high ratios period over wavelength result in large wavenumbers which makes the
fast iterative solution of the arising linear systems of equations or the implementation of fast methods
like fast multipole or wavelet algorithms difficult. Though to our knowledge no attempt has been made
to apply the fast boundary element techniques, we believe that they will be useful to design faster
integral equation methods for gratings. Finally, let us stress one particularity of the grating problems
in comparison to other boundary elements. The kernel functions are quasi-periodic Green’s functions
represented as infinite sums or integrals. Therefore, the kernel evaluation consumes a lot of computing
time, and a fast but accurate evaluation algorithm is often the essential point in an efficient realization
of the integral equation method (cf. the contributions by Sadov [24] and Linton [14]).
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The subject of the present paper is to describe the recent improvements in the implementation of the
integral equation package IESMP of the Carl Zeiss AG in Germany. These improvements enables IESMP
to treat gratings with large ratios period over wavelength illuminated under large angles of incidence.
Efficiencies of the reflected light in high orders can be determined. In addition, edges (corners of the
profile curve in the cross section) and thin dielectric layers can be treated. For example, aluminum echelle
gratings with aluminum oxide layers can be simulated. Following Pomp [19], we describe the integral
equations for coated gratings and the numerical method in Section 2. In particular, section 2.4 contains
some comments on the improved numerical scheme including a mesh grading at the corners. In Section
3.1 we present a new efficient way for the evaluation of the kernel functions inspired by Linton [14]. The
new quadrature algorithm is given in Section 3.2, and the iterative solution of the discretized integral
equations is discussed in Section 4. Finally, in Section 5 we discuss the application of the IESMP package
to the simulation of coated echelle gratings.

2 Integral equations and their numerical discretization

2.1 Diffraction problems for optical gratings
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Figure 1: Cross-section of a coated grating

A one-dimensional grating is a structure on a planar surface which is periodic in one surface direction
and constant in the other. For example, this can mean lots of parallel grooves on the surface of an optical
device which, additionally, may be coated. The cross section of a coated diffraction grating, which is
periodic in x and homogeneous in z direction, is depicted in Fig. 1. The substrate in domain G0 × R
is coated with some optical material, which fills the domain G1 × R. From the superstrate G2 × R the
structure is illuminated by an electromagnetic plane wave which is reflected and, possibly, transmitted
in a finite number of outgoing plane waves. We consider the case of classical TE and TM polarization,
where the direction of the wave vector of the incoming wave is in the (x, y)-plane. Then the wave vectors
of the diffracted waves are located in the same (x, y)-plane, and the TE and TM diffraction problems can
be described by transmission problems for the Helmholtz equation in R2 as follows.

We denote the period of the grating by d, the frequency of the incoming wave by ω and the wavelength
by λ = 2π/ω. Moreover, we denote the electric permittivity constant of the material in Gj×R, j = 0, 1, 2,
by εj . We assume that the optical materials are non-magnetic and denote the permeability of vacuum
by µ. For notational convenience, we scale the geometrical dimensions by a factor of 2π/d such that
the structure becomes 2π-periodic in x-direction. In the case of TE resp. TM polarization the electric
resp. magnetic part of the incoming wave is parallel to the z-axis and the underlying time-harmonic
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Maxwell system can be reduced to the Helmholtz equation for the z-component u of the total electric
resp. magnetic field

∆uj + k2
j uj = 0 , in Gj , j = 0, 1, 2 . (2.1)

Additionally, the uj satisfy transmission conditions on the interfaces γj = Gj−1 ∩Gj , j = 1, 2,

uj−1|γj = uj |γj , ∂nuj−1|γj = qj∂nuj |γj , (2.2)

with the constants

qj =
{

1 , TE polarization,
k2

j−1/k2
j , TM polarization.

Here and in the following the normal n to the interface γj is pointing into Gj and ∂n denotes differentiation
in the direction of n. Further, we assume that the coated layer domain G1 is simply connected, i.e. the
two profile curves γ1 and γ2 have a positive distance.

The wave numbers kj in (2.1) are given by

kj =
d

λ
νj , νj := c

√
µεj (2.3)

where c is the speed of light and where the complex-valued material parameter νj is the optical index of
the material in Gj . For dielectric materials there holds ν > 0, in particular in vacuum ν = 1, whereas
the case Im ν > 0 accounts for materials absorbing energy. In the following we suppose

ν2 > 0 , Re νj > 0 , Im νj ≥ 0 , j = 0, 1 , (2.4)

which is satisfied by all relevant materials.

The incoming plane wave is a solution of equation (2.1) in G2 and therefore of the form

ui(x, y) = p ei(αx−βy) , (α, β) := k2(sin θ, cos θ)

with the angle of incidence θ, |θ| < π/2, and with a given amplitude factor p > 0. By physical consider-
ations the functions uj are supposed to be α quasiperiodic, i.e.

uj(x + 2π, y) = uj(x, y) eiα2π .

Above and below the grating structure the outgoing wave condition is required

u2 − ui =
∑
n∈Z

A+
n eiαnx+iβ+

n y , y > max{y : (x, y) ∈ γ2} ,

u0 =
∑
n∈Z

A−
n eiαnx−iβ−n y , y < min{y : (x, y) ∈ γ1} .

(2.5)

where A±
n ∈ C are the Rayleigh coefficients of u2 and u0, αn := α+n, and the complex values β±n = β±n (α)

are defined as
β+

n :=
√

k2
2 − α2

n , β−n :=
√

k2
0 − α2

n (2.6)

with Im β±n ≥ 0. Since the β±n are real for at most finitely many n, there is only a finite number of
propagating plane waves in the sums of (2.5).

Under the assumption that the two curves γj = Gj−1 ∩ Gj , j = 1, 2, are Lipschitz, the following
existence and uniqueness results for the diffraction problem (2.1), (2.2), (2.5) are valid (cf. [1], [2], [3],
[8]):

- In both cases, TE and TM polarization, the diffraction problem has at least one solution which is
smooth outside the surface profiles and belongs to the Sobolev space H2

loc for TE resp. H1
loc for TM

polarization.
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- In both cases, TE and TM polarization, the solution set is an at most finite dimensional affine
space.

- If Im νj > 0 for j = 2 or 3, then the solution of (2.1), (2.2), (2.5) is unique.

- The TE problem has a unique solution if the y components ny
j of the normal vectors nj to the

curves γj satisfy ny
j ≥ 0 and if the refractive indices νj satisfy ν1 ≤ ν2 ≤ ν3.

The integral equation approach of the present paper, which has been introduced in [19], transforms
the problem (2.1), (2.2), (2.5) into a system of two integral equations over the profile curves (cf. the
subsequent Equation (2.20)).

2.2 Integral formulation

The integral representations for α quasi–periodic solutions of the Helmholtz equation are based on po-
tentials including quasi–periodic fundamental solutions as kernel functions. We suppose k 6= 0 is one of
the wave numbers kj , j = 0, 1, 2, from (2.3), and set α = k2 sin θ, αn := α + n, and βn :=

√
k2 − α2

n,
n ∈ Z with Im βn ≥ 0. The α quasi–periodic solution of the equation

−(∆ + k2)Ψk(x, y) =
∑
n∈Z

δ(x− 2πn, y)

is given by

Ψk(x, y) :=
i

4

∑
n∈Z

H
(1)
0

(
k
√

(x− 2πn)2 + y2
)
e2πinα =

i

4π

∑
n∈Z

eiαnx+iβn|y|

βn
, (2.7)

where H
(1)
0 is the first Hankel function of order zero. If one of the denominators βn in (2.7) is zero, then

the corresponding term in the last series must be replaced by ieinx(C + |y|), where C is an arbitrary
constant. In the following we will always assume that βn 6= 0. Then the series in (2.7) converges uniformly
over compact subsets of the set {(x, y) : |x| ≤ π}\{(0, 0)} and the difference Ψk(x, y)− log(x2 +y2)/2π is
smooth. More precisely, the difference is twice continuously differentiable for x2 + y2 > 0 and the second
order derivatives are bounded by constant times log(x2 + y2) for x and y tending to zero (cf. [6], Section
3.5).

The profile curves γj , j = 1, 2, are supposed to be continuous, piecewise differentiable and without
cusps, i.e. the angle between adjacent tangents at corner points of γj is strictly between 0◦ and 360◦. We
denote the restriction of γj to the strip {(x, y) : 0 ≤ x ≤ 2π} by Γj . By assumption Γ1 ∩ Γ2 = ∅. The
single and double layer potentials over Γj are the contour integrals

VΓj ,kϕ(P ) := −
∫
Γj

Ψk(P −Q) ϕ(Q) dsQ , KΓj ,kϕ(P ) :=
∫
Γj

∂nQ
Ψk(P −Q) ϕ(Q)dsQ .

Like above ∂n is the differentiation in the direction of the normal to Γj pointing into Gj . The additional
index Q in ∂nQ

indicates the normal derivative with respect to the point Q.

In accordance with the classical potential formulas for solutions of the Helmholtz equation satisfying
the outgoing wave conditions, the quasi–periodic solutions u0 and u2−ui can be represented in the form

u0(P ) = −VΓ1,k0

(
∂nu0|Γ1

)
(P )−KΓ1,k0

(
u0|Γ1

)
(P ) , P ∈ G0 , (2.8)[

u2 − ui
]
(P ) = VΓ2,k2

(
∂n

[
u2 − ui

]
|Γ2
)
(P ) + KΓ2,k2

( [
u2 − ui

]
|Γ2
)
(P ) , P ∈ G2 . (2.9)

For the quasi–periodic solution u1 to the Helmholtz equations in G1, we choose the potential representa-
tion

u1(P ) = VΓ1,k1w1(P ) + VΓ2,k1w2(P ) , P ∈ G1 , (2.10)
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with yet unknown densities w1 and w2. Taking the limits as the point P tends to the curves Γj , the well
known jump relations for potentials provide us with two integral equations on Γj .

Indeed, if we indicate the limits for P ∈ Gj−1 resp. P ∈ Gj tending to a boundary point at Γj in
normal direction by the upper index + resp. −, then(

VΓj ,kϕ
)+(P ) =

(
VΓj ,kϕ

)−(P ) = Vjj,kϕ(P ) ,

where we denote

Vjm,kϕ(P ) := −
∫
Γm

Ψk(P −Q) ϕ(Q) dsQ , P ∈ Γj . (2.11)

The boundary limits of the double layer potential from the two sides of Γj take the values(
KΓj ,kϕ

)+(P ) = Kjj,kϕ(P ) +
(
1− δj(P )

)
ϕ(P ) ,

(
KΓj ,kϕ

)−(P ) = Kjj,kϕ(P )− δj(P )ϕ(P ) ,

where the function δj(P ) ∈ (0, 1) denotes the normalized interior angle of Gj at the boundary point
P ∈ Γj , i.e., δj(P ) is the interior angle of Gj measured in arc length divided by 2π. Obviously, δj(P ) = 1/2
if P ∈ Γj is not a corner point. The integral operator Kjm,k is defined by

Kjm,kϕ(P ) :=
∫
Γm

∂nQ
Ψk(P −Q) ϕ(Q) dsQ , P ∈ Γj .

Finally, for P ∈ Γj not a corner, the normal derivative of the single layer potential has the limits(
∂nVΓj ,kϕ

)+(P ) = −Ljj,kϕ(P ) +
1
2
ϕ(P ) ,

(
∂nVΓj ,kϕ

)−(P ) = −Ljj,kϕ(P )− 1
2
ϕ(P ) ,

where we use the notation

Ljm,kϕ(P ) :=
∫
Γm

∂nP
Ψkj (P −Q) ϕ(Q) dsQ , P ∈ Γj .

Thus we obtain the relations

u0|Γ1 = −V11,k0

(
∂nu0|Γ1

)
−
(
K11,k0 − δ1

)(
u0|Γ1

)
, (2.12)

u1|Γ1 = V11,k1w1 + V12,k1w2 , (2.13)

∂nu1|Γ1 =
(
1/2− L11,k1

)
w1 − L12,k1w2 , (2.14)

u1|Γ2 = V21,k1w1 + V22,k1w2 , (2.15)

∂nu1|Γ2 = −L21,k1w1 −
(
1/2 + L22,k1

)
w2 , (2.16)[

u2 − ui
]
|Γ2 = V22,k2

(
∂n

[
u2 − ui

]
|Γ2
)

+
(
K22,k2 + (1− δ2)

)( [
u2 − ui

]
|Γ2
)
. (2.17)

Equation (2.12) can be written in the form

V11,k0

(
∂nu0|Γ1

)
+
(
K11,k0 + (1− δ1)

)(
u0|Γ1

)
= 0 .

Applying the transmission conditions u0 = u1 and ∂nu0 = q1∂nu1 over Γ1 and substituting (2.13) and
(2.14), we arrive at

q1V11,k0

(
(1/2− L11,k1)w1 − L12,k1w2

)
+
(
K11,k0 + (1− δ1)

)(
V11,k1w1 + V12,k1w2

)
= 0 . (2.18)
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On the other hand, from (2.17) we derive the relation

V22,k2

(
∂nu2|Γ2

)
+
(
K22,k2 − δ2

)(
u2|Γ2

)
= V22,k2

(
∂nui|Γ2

)
+
(
K22,k2 − δ2

)(
ui|Γ2

)
= −ui ,

which together with the transmission conditions u1 = u2 and ∂nu1 = q2∂nu2 on Γ2 and with the help of
(2.15), (2.16) implies the equation

1
q2

V22,k2

(
− L21,k1w1 − (1/2 + L22,k1)w2

)
+
(
K22,k2 − δ2

)(
V21,k1w1 + V22,k1w2

)
= −ui . (2.19)

Hence, we obtain the system (2.18), (2.19) of integral equations for the unknown densities wj which can
be written as (

A1,1 A1,2

A2,1 A2,2

)(
w1

w2

)
=
(

0
ui

)
(2.20)

with the operators

A1,1 := q1V11,k0

(
1/2− L11,k1

)
+
(
K11,k0 + (1− δ1)

)
V11,k1 ,

A1,2 := −q1V11,k0L12,k1 +
(
K11,k0 + (1− δ1)

)
V12,k1 ,

A2,1 :=
1
q2

V22,k2L21,k1 −
(
K22,k2 − δ2

)
V21,k1 ,

A2,2 :=
1
q2

V22,k2

(
1/2 + L22,k1

)
−
(
K22,k2 − δ2

)
V22,k1 .

(2.21)

Note that system (2.20) has first been obtained in [19] and is more efficient than other integral
formulations proposed, e.g., in [17, 21], where the computation of the inverse of certain integral operators
is required.

2.3 Periodic integral operators

For the implementation it is convenient to use a periodic setting of the integral equations. We choose
2π-periodic parametrizations of the curves Γj , j = 1, 2,

γj(t) :=
(
Xj(t), Yj(t)

)
, Xj(t + 2π) = Xj(t) + 2π, Yj(t + 2π) = Yj(t) , (2.22)

and denote σj(t) :=
√

X ′
j(t)2 + Y ′

j (t)2. We introduce the periodic unknown functions

ϕj(t) := e−αXj(t)wj

(
Xj(t), Yj(t)

)
,

and, for P = (Xj(t), Yj(t)) ∈ Γj and Q = (Xm(s), Ym(s)) ∈ Γm, we set

ên,k(t, s) := en,k

(
Xj(t)−Xm(s), Yj(t)− Ym(s)

)
,

where

en,k(x, y) := einx+iβn|y| , βn :=
√

k2 − (n + α)2 .
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Then we have to solve the system (2.20) with the integral operators Vjm,k, Kjm,k, and Ljm,k, defining
Aj,k in (2.21), replaced by their periodic counterparts

Ṽjm,k ϕ(t) :=
1

4πi

2π∫
0

∑
n∈Z

ên,k(t, s)
βn

σm(s) ϕ(s) ds ,

K̃jm,k ϕ(t) :=
1
4π

2π∫
0

∑
n∈Z

(
n + α

βn
Y ′

m(s)−X ′
m(s) sign

(
Yj(t)− Ym(s)

))
ên,k(t, s) ϕ(s) ds ,

L̃jm,k ϕ(t) := − 1
4π

2π∫
0

∑
n∈Z

(
n + α

βn
Y ′

j (t)−X ′
j(t) sign

(
Yj(t)− Ym(s)

))
ên,k(t, s) ϕ(s) ds .

2.4 Numerical scheme of discretization

As usual in boundary element methods, there exist several choices for the discretization scheme. The
trial space XN of finite dimension N , where the approximate solution ϕN ∈ XN to the exact solution
ϕ = ϕj , j = 1, 2 is sought, can be the space of trigonometric functions or a space of spline functions.
If the unknown solution is known to be smooth, than the trigonometric space exhibits higher order
approximation rates. Unfortunately, the basis functions spanning the trigonometric space have global
supports. Applying the integral operators to such basis functions results in global integrals. In contrast
to this, applying the integral operators to a local basis of spline functions results in local integrals and
leads to faster algorithms. In other words, spline methods are often faster.

Aside from the choice of trial functions, the discretization schemes differ also in the way in which
the continuous integral equation is converted into a finite dimensional equation. Galerkin methods first
restrict the integral operator to the trial space. Then, after applying the operator to a general trial
function, they project the resulting function to its best approximation in the trial space. This way the
integral operator is replaced by a finite dimensional operator acting in the finite dimensional trial space.
Let us denote by B one of the integral operators Ṽjm,k, K̃jm,k, L̃jm,k. If PN is the orthogonal projection
of L2 onto the trial space XN , then the discretized operator [B]N of the Galerkin method is defined as

[B]N := PNB|XN
: XN −→ XN .

The collocation method applies the integral operator to a general trial function ϕN but, in contrast
to Galerkin’s method, the result is computed on a finite set of so-called collocation points {scol

k : k =
1, . . . , N}, only. Usually, these collocation points scol

k are the points of a uniform grid. Again a finite
dimensional operator results mapping the trial space functions to the integral operator images restricted
to the collocation points. The discretized operator [B]N of the collocation is defined as

[B]N : XN 3 ϕN 7→
(
B(ϕN )(scol

k )
)N
k=1

.

Supposing that for each sequence of function values (f(scol
k ))N

k=1 there is exactly one function fN ∈ XN

with fN (scol
k ) = f(scol

k ), we can identify the sequence (f(scol
k ))N

k=1 with fN ∈ XN . This way [B]N maps
XN into XN and the image of ϕN is the unique function in XN satisfying(

[B]NϕN

)
(scol

k ) = B(ϕN )(scol
k ), k = 1, . . . , N .

In general, collocation methods are faster but the convergence rate for Galerkin methods is higher.
We note, however, that Galerkin’s method and collocation are so-called semi-discrete schemes. The
entries of the matrix equations corresponding to the discretized operators still have entries containing
analytic integrals. E.g. the collocation discretization of B requires the computation of the integrals
B(ϕN )(scol

k ). Hence, Galerkin’s method and collocation must be combined with a quadrature algorithm
for the computation of these integrals (cf. Section 3.2).
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The fastest and fully discrete numerical scheme, however, is the Nyström method where again the
integral equations are considered at a set of collocation points, only, and where the integral in the integral
operators is approximated by a quadrature rule with the collocation points used as quadrature knots.
The Nyström method works well for integral operators with smooth kernel functions.

The first version of the package IESMP (cf. [19, 12]) is based on a hybrid discretization scheme. This
so-called method of mechanical quadratures is very fast for smooth curves and thick layers. In this case
the integral operators except the single layer operators Ṽjj,k have smooth kernels. The operators Ṽjj,k

are split into the single layer operator over the unit circle corresponding to the Laplace operator and
a remainder. Since the action of the single layer operator on the trigonometric trial space is known
explicitly, the single layer part is easily discretized by a trigonometric Galerkin scheme. The remainder
and all other operators are discretized by a fast Nyström approximation. Unfortunately, the convergence
properties deteriorate if corner singularities appear in the solutions of the integral equations and if the
Nyström quadrature rules over the uniform collocation points are inaccurate due to thin layers.

To deal with corners in the profile curves, we have introduced meshes of collocation points graded
towards the corner points. The grading is defined simply by changing the parametrization in the formulas
of Section 2.3. For instance, if γj : R → C is a smooth parametrization of curve γj such that |∂tγj(t)| > 0
for all points γj(t) except the corners and if |∂tγj(t)| = |∂2

t γj(t)| = 0 holds at all the corner points, then
the corresponding collocation points {γj(2πk/N) : k = 1, . . . , N} are graded towards the corners. The
improved discretization scheme for corners is just the collocation method based on these collocation nodes
and on spline functions subordinate to this mesh. The splines subordinate to this mesh are piecewise
polynomials equal to cubic polynomials between consecutive collocation nodes. Of course, to compute
the action of the integral operator on basis spline functions, a clever quadrature rule is needed (cf. Section
3.2). In contrast to the Nyström method, the quadrature rule must depend on the collocation point. Even
thin layers can be treated by the same spline collocation if the quadrature rules are adapted (cf. Section
3.2).

As a simple example, we consider a triangular grating of period 1 µm with an apex angle of 120◦ and
a side angle of 40◦. The grating consists of a substrate material with refractive index equal to 1.5 and
is coated by a layer of uniform thickness equal to 1 nm with index ν = 1.2 + i 0.2. The echelle grating is
illuminated in TM polarization by light of the wavelength 633 nm under an incidence angle of 60◦. We
have applied the collocation method with N = 8, 16, 32, 64, 128, 256, 512, and 1 024 collocation points
at each curve. Hence, the dimension of the system of linear equations to be solved is 2N . By Effictr

0 we
denote the transmitted zero order efficiency (angle of radiation 35.26◦) and by Total Energy the total rate
of transmitted and reflected energy. Table 1 exhibits the convergence of the integral equation method.
Moreover, an essential improvement of the convergence for graded meshes can be observed.

graded mesh uniform mesh
N

Effictr
0 Total Energy Effictr

0 Total Energy
8 79.5335 116.80585 70.1237 98.87362

16 91.1789 99.75135 84.1812 92.76585
32 90.4132 99.43106 88.6170 97.57554
64 90.3557 99.39309 89.7681 98.76689

128 90.3555 99.39521 90.1993 99.22791
256 90.3562 99.39616 90.3350 99.37354
512 90.3564 99.39640 90.3588 99.39901

1024 90.3565 99.39646 90.3580 99.39819

Table 1: Convergence of efficiencies simulating a simple echelle grating
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3 Computation of integrals

3.1 Ewald’s method for the kernel computation

In the old IESMP program package a sophisticated summation method of 5-th order is implemented
to accelerate the computation of the integral kernels (cf. [12] and compare [24]). Unfortunately, it has
turned out that this approach is not efficient for the second argument y with small modulus |y| (cf. (2.7)),
which frequently occur in the quadrature of integrals for graded meshes near corners or for thin layers,
i.e., for thin domains G1. In this case we use the following summation algorithm for the integral kernel
which is based on Ewald’s method (cf. [14] and [27]).

Consider the infinite series

Ψ(x, y) =
i

4π

∑
n∈Z

einx+iβn|y|

βn
(3.1)

with βn :=
√

k2 − α2
n and αn := n + α. Note that Re βn, Im βn ≥ 0. Ewald’s method is based on the

relation

ieiβn|y|

βn
=

a2∫
0

exp
(
β2

nt− y2

4t

) dt√
πt

+
i

2βn

(
e−iyβn erfc

(
− iaβn +

y

2a

)
+ eiyβn erfc

(
− iaβn −

y

2a

))
,

which is valid for any a > 0 and βn 6= 0. Here

erfc(z) :=
2√
π

∞∫
z

e−t2 dt

is the complementary error function. Thus we have Ψ = Ψe + Ψw with the two sums

Ψe(x, y) =
1
4π

∑
n∈Z

einx

a2∫
0

e β2
nt−y2/4t dt√

πt
, (3.2)

Ψw(x, y) =
i

8π

∑
n∈Z

einx

βn

(
e−iyβnerfc

(
− iaβn +

y

2a

)
+ eiyβnerfc

(
− iaβn −

y

2a

))
. (3.3)

Since β2
n = k2 − α2

n, the first sum (3.2) takes the form

Ψe(x, y) =
1
4π

∑
n∈Z

einx

a2∫
0

e(k2−α2
n)t−y2/4t dt√

πt
=

1
4π

a2∫
0

ek2t−y2/4t
∑
n∈Z

e−α2
nteinx dt√

πt
.

Poisson’s summation formula gives∑
n∈Z

e−(α+n)2teinx =
√

π

t
e−iαx−x2/4t

∑
m∈Z

e−π2m2/t eπmx/t e 2πimα ,

which leads to

Ψe(x, y) =
e−iαx

4π

∑
m∈Z

e2πimα

a2∫
0

ek2te−((x−2πm)2+y2)/4t dt

t
. (3.4)

Denoting r2
m := (x− 2πm)2 + y2 and using the series expansion of e k2t gives

a2∫
0

e k2te−r2
m/4t dt

t
=

∞∑
j=0

k2j

j!

a2∫
0

tj−1 e−r2
m/4t dt =

∞∑
j=0

(ak)2j

j!
Ej+1

( r2
m

4a2

)
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with the exponential integral function Ej of degree j

Ej(z) :=

∞∫
1

e−zt

t j
dt .

Thus we obtain the representation

Ψe(x, y) =
e−iαx

4π

∑
m∈Z

e2πimα
∞∑

j=0

(ak)2j

j!
Ej+1

( r2
m

4a2

)
. (3.5)

The function Ψw can be transformed to a computationally suitable form by using the scaled complemen-
tary error function

w(z) := e−z2
erfc(−iz) = e−z2 2√

π

∞∫
−iz

e−t2 dt =
2√
π

∞∫
0

e−t2 e2izt dt , (3.6)

which has the properties

w(−z) = w(z) , w(−z) = 2e−z2
− w(z) , |w(z)| ≤ 1 for Im z ≥ 0 . (3.7)

Using
e∓iyβnerfc

(
− iaβn ±

y

2a

)
= ea2k2

e−a2α2
n e−y2/4a2

w
(
aβn ± i

y

2a

)
,

we can write (3.3) in the form

Ψw(x, y) =
i e−y2/4a2

ea2k2

8π

∑
n∈Z

einx e−a2α2
n

βn

(
w
(
aβn + i

y

2a

)
+ w

(
aβn − i

y

2a

))
. (3.8)

From (3.7) it can be seen that |w(z)| = O(e (Im z)2−(Re z)2) if Im z < −|Re z|. To avoid numerical overflow
problems, which may occur if |y|/a is large, we use the relation

w
(
aβn − i

|y|
2a

)
= 2 ey2/4a2

e−a2(k2−α2
n)ei|y|βn − w

(
− aβn + i

|y|
2a

)
(3.9)

obtained from (3.7), which gives

i e−y2/4a2
ea2k2

8π

e−a2α2
n

βn

(
w
(
aβn − i

|y|
2a

)
+ w

(
− aβn + i

|y|
2a

))
=

i

4π

ei|y|βn

βn
.

Introducing the finite set P := {n ∈ Z : Im βn + Re βn < |y|/[2a2]}, the function Ψw is decomposed into
an exponentially converging series and two finite sums

Ψw(x, y) =
i e−y2/4a2

ea2k2

8π

 ∑
n∈Z\P

einx e−a2α2
n

βn

(
w
(
aβn + i

y

2a

)
+ w

(
aβn − i

y

2a

))

+
∑
n∈P

einx e−a2α2
n

βn

(
w
(
aβn + i

|y|
2a

)
− w

(
− aβn + i

|y|
2a

))}
+

i

4π

∑
n∈P

einxei|y|βn

βn
.

(3.10)

Note that, in the case y = 0 which occurs frequently for binary gratings, we obtain the exponentially
converging series

Ψw(x, 0) =
i ea2k2

4π

∑
n∈Z

einx e−a2α2
n

βn
w
(
aβn

)
.
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The representation Ψ = Ψe + Ψw is also used for the computation of the gradient of Ψ

(∂x + iα)Ψ(x, y) = − 1
4π

∑
n∈Z

αneinx+iβn|y|

βn
, ∂yΨ(x, y) = − 1

4π

∑
n∈Z

sign(y)einx+iβn|y| .

which is needed to compute the kernels of the operators K̃ and L̃. Since ∂zEj(z) = −Ej−1(z) with
E0(z) := e−z/z, the derivatives of Ψe are

(∂x + iα)Ψe(x, y) = −e−iαx

2π

∑
m∈Z

(x− 2πm) e2πimα

(
e−r2

m/4a2

r2
m

+
∞∑

j=1

(ak)2j

4a2j!
Ej

( r2
m

4a2

))
,

∂yΨe(x, y) = −y e−iαx

2π

∑
m∈Z

e2πimα

(
e−r2

m/4a2

r2
m

+
∞∑

j=1

(ak)2j

4a2j!
Ej

( r2
m

4a2

))
.

(3.11)

The derivatives of Ψw are given by

(∂x + iα)Ψw(x, y) = −e−y2/4a2
ea2k2

8π

{ ∑
n∈Z\P

αneinx e−a2α2
n

βn

(
w
(
aβn + i

y

2a

)
+ w

(
aβn − i

y

2a

))

+
∑
n∈P

αneinx e−a2α2
n

βn

(
w
(
aβn + i

|y|
2a

)
− w

(
− aβn + i

|y|
2a

))}
− 1

4π

∑
n∈P

αneinxei|y|βn

βn
,

(3.12)

and

∂yΨw(x) =
e−y2/4a2

ea2k2

8π
sign(y)

{ ∑
n∈Z\P

einx e−a2α2
n

(
w
(
aβn + i

|y|
2a

)
− w

(
aβn − i

|y|
2a

))

+
∑
n∈P

einx e−a2α2
n

(
w
(
aβn + i

|y|
2a

)
+ w

(
− aβn + i

|y|
2a

))}
− sign(y)

1
4π

∑
n∈P

einxei|y|βn ,

(3.13)

where we use the relation

∂y

(
e−y2/4a2

(
w
(
aβn + i

y

2a

)
+ w

(
aβn − i

y

2a

)))

= iβne−y2/4a2
(

w
(
aβn − i

y

2a

)
− w

(
aβn + i

y

2a

))
.

The numerical calculation of the exponential integral Ej and its derivatives present no problem using
a standard routine for E1 and the known recurrence relations. The scaled complementary error function
w(z) is computed using two different algorithms depending on the value of z, the algorithm 680 from
ACM ([20]) and the summation algorithm of [16]. The value of the parameter a should be chosen small
enough to ensure the rapid convergence of the series for Ψe and its derivatives and large enough to ensure
the rapid convergence of the series representations for Ψw and its derivatives. After numerical tests we
found that the choice a|k| = 6 is a good compromise.

3.2 Quadrature algorithm

The concept for the quadrature rules is simple and well known (cf. [25]). Suppose we have to evaluate
one of the integrals Ṽjmkϕ(t), K̃jmkϕ(t), or L̃jmkϕ(t), from Section 2.3 with a spline basis function ϕ.
We write this integral in the form

I :=

2π∫
0

k(t, s)ϕ(s)ds =
∫

{s∈[0,2π]: ϕ(s) 6=0}

k(t, s)ϕ(s)ds.
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Of course, the functions k and ϕ are periodic with period 2π. The function ϕ is a piecewise polynomial
spline function subordinate to a mesh of collocation points {scol

n : n = 1, . . . , N}. The kernel function k
is either weakly singular with singularity for s tending to t or almost singular for s tending to t. Weakly
singular means |k(t, s)| ≤ c log(t − s) and almost singular means either |k(t, s)| ≤ cmin{|t − s|−1, ε−1}
or |k(t, s)| ≤ cmin{log(|t − s|−1), log(ε−1)}, where c is an appropriate positive constant and where ε is
a fixed small positive number. The weakly singular case occurs if the single layer integral I = Ṽjjkϕ(t)
is computed over the curve Γj and if the collocation point corresponding to parameter value t is located
on the same curve Γj . The almost singular case appears if an integral I is computed over a curve Γj

and if the collocation point γm(t′) is located on a neighbor curve Γm, but extremely close to the support
{γj(s) ∈ [0, 2π] : ϕ(s) 6= 0} of ϕ. In this case the almost singular point t is the parameter of the point
γj(t) ∈ γj closest to the collocation point γm(t′), and ε is the distance between γj(t′) and γj(t). A second
case of an almost singular integrand appears if the curve of integration Γj has corners, if I is the double
layer integral K̃jjkϕ(t) or the adjoint double layer integral L̃jjkϕ(t), if the collocation point γj(t) ∈ Γj is
located in a vicinity of a corner point, and if the support of ϕ contains points of Γj from the other side
of the corner. In this case ε is the distance of γj(t) to the corner point.

To compute the integral I by quadrature, we introduce a quadrature mesh which is geometrically
graded towards t, i.e., a mesh {sgeo

m : n = 1, . . . , M} such that{
sgeo

m : m = 1, . . . , M
}

:=
{

t
}

∪
{

s = t± ql : l = 1, . . . , L, s ∈ [0, 2π]
}

∪
{

s = t± ql ± 2π : l = 1, . . . , L, s ∈ [0, 2π]
}

,

with an exponent q ≤ 1 (q = 0.2 or q = 0.3) and a suitable refinement number L. In the almost singular
case, L must be chosen such that qL ≤ ε. For the weakly singular case, L must be determined by numerical
tests and depends on the desired accuracy. The geometrically graded mesh {scol

n : n = 1, . . . , N} is a
good mesh for the quadrature of the piecewise polynomial ϕ and {sgeo

m : n = 1, . . . , M} a good choice to
treat the singularity inherent in the kernel function k. Consequently, we form the quadrature mesh by
joining the two.{

squa
n : n = 1, . . . , Ñ

}
:=
{

sgeo
m : m = 1, . . . , M

}
∪
{

scol
n : n = 1, . . . , N

}
.

Now the quadrature rule for the computation of I is the composite rule

I =
Ñ∑

n=1

squa
n+1∫

squa
n

k(t, s)ϕ(s)ds ∼
Ñ∑

n=1

ln∑
l=1

k
(
t, squa

n + τ ln
l 4sn

)
ϕ
(
squa

n + τ ln
l 4sn

)
wln

l 4sn,

4sn := [squa
n+1 − squa

n ],

where
∫ 1

0
f(s)ds ∼

∑ln
l=1 f(τ ln

l )wln
l is the Gauss-Legendre rule of order ln. The orders ln are chosen

between a minimal value lmin = 2 or 3 and a maximal value lmax = c1 + 2 log N with a suitable constant
c1. Most of the the intervals [squa

n , squa
n+1] are far from the singularity point t of function k, and we can

choose ln = lmin. On the other hand, for the intervals [squa
n , squa

n+1] ⊆ [scol
n′ , scol

n′+1] with t ∈ [scol
n′ , scol

n′+1], we
choose the maximal ln = lmax. On intervals [squa

n , squa
n+1] ⊆ [scol

n′′ , s
col
n′′+1] with [scol

n′′ , s
col
n′′+1] adjacent or close

to [scol
n′ , scol

n′+1], we reduce ln linearly with the distance to [scol
n′ , scol

n′+1], i.e., we set ln := max{lmin, lmax −
2|n′′ − n′|}.

4 Preconditioning of the system of linear equations

For a very accurate determination of the grating efficiencies or for problems with large ratios period over
wavelength, a fine discretization is needed. Hence, large systems of linear equations must be solved.
Moreover, in contrast to the sparse matrices of the finite element methods, the matrices in the systems
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of linear equations of boundary element methods are densely populated. Special techniques for sparse
systems do not apply. Consequently, the use of direct solvers requires huge amounts of computing time.
Alternatively, iterative solvers like, e.g., the GMRES method [23] converge slowly for ill-conditioned
matrix equations or even diverge. Unfortunately, the boundary element matrices are ill-conditioned. The
large condition numbers are attributed, on the one hand, to the non-zero orders of the integral operators
(order of pseudodifferential operators acting in the scale of Sobolev spaces) and, on the other hand, to
the high wave numbers, i.e., to the oscillatory behavior of the kernel functions and solutions. Especially,
the high wave numbers cause serious troubles.

Clearly, to accelerate the convergence of the iterative solvers for the discretization of (2.20), a good
preconditioner is needed. We denote the discretized functions, i.e., the vector of coefficients with respect
to a trial space basis, by adding the lower index N to the symbols of the original functions. Recall that
N is the number of collocation points at the curves Γj . Similarly, we denote the discretized operators,
i.e., the matrices of the finite dimensional operators with respect to a trial space basis, by adding the
lower index N to the operator symbols. In other words, the matrix equation corresponding to (2.20) is(

A1,1,N A1,2,N

A2,1,N A2,2,N

)(
w1,N

w2,N

)
=
(

0
ui

N

)
. (4.1)

Instead of (4.1) we solve the preconditioned equation(
B1,1,N B1,2,N

B2,1,N B2,2,N

)(
A1,1,N A1,2,N

A2,1,N A2,2,N

)(
w1,N

w2,N

)
=
(

B1,1,N B1,2,N

B2,1,N B2,2,N

)(
0

ui
N

)
(4.2)

iteratively, e.g., by GMRES. Clearly, (4.2) is equivalent to (4.1) if the preconditioner (Bi,j,N )2i,j=1 is
invertible. In order to guarantee a faster convergence of GMRES for (4.2), the entries Bi,j,N must be
chosen such that the product matrix on the left-hand side of (4.2) is better conditioned than the matrix of
(4.1). Sometimes an ILU type inverse of the matrix in (4.1) is a good choice for a preconditioner. However,
we have used the following preconditioner. We denote the matrix of the discrete Fourier transform FFT
in the N -dimensional Euclidean space by FN . For any N ×N matrix M = (mk,l)N

k,l=1 and any integer
d ≥ 0, we define [M ]d by setting to zero all the entries except those of the d diagonals around the main
diagonal and of the d diagonals in the left lower resp. right upper corner.

[M ]d :=
(
mk,l,d

)N

k,l=1
, mk,l,d :=

{
mk,l if |k − l| ≤ d or |k − l ±N | ≤ d .
0 else

Then our preconditioner is defined by(
B1,1,N B1,2,N

B2,1,N B2,2,N

)
:=(

F−1
N 0

0 F−1
N

)(
[FNA1,1,NF−1

N ]d [FNA1,2,NF−1
N ]d

[FNA2,1,NF−1
N ]d [FNA2,2,NF−1

N ]d

)−1(
FN 0
0 FN

)
,

i.e., we take the Fourier transform of the matrices Ai,j,N , we truncate upto d diagonals around the main
diagonal and close to the matrix corners, and finally we choose the inverse of the truncated block matrix
as a preconditioner for the Fourier transformed equation (4.1). To compute the preconditioner, we can
use the Fast Fourier Transform algorithm for FN and F−1

N and fast direct solvers for matrices with only
a few number of non-zero diagonals adjacent to the main diagonal.

In Table 2 we present the number of preconditioned GMRES iterations for the example introduced at
the end of Section 2.4. Here the preconditioner is constructed with the parameter d = 12. The GMRES
iteration is interrupted if the residual error is less than 10−14. Table 2 shows that the iteration count
remains almost bounded. For TE polarization, the corresponding number of iterations is even smaller.
However, for a difficult problem with large ratio period over wavelength, more iterations are needed.
Nevertheless, preconditioned GMRES is still much faster than Gaussian elimination. For instance, the
echelle grating with a grating frequency of 83 periods per mm and illuminated with a wavelength equal
to 180 nm (cf. [21]) requires 292 iterations to reduce the residual error of a 2 · 4 096 dimensional system



14

graded mesh uniform mesh
N

Number of Iterations Number of Iterations
64 26 15

128 32 18
256 35 19
512 38 19

1024 40 19
2048 42 19
4096 45 20

Table 2: Number of preconditioned GMRES iterations in case of a simple echelle grating

to 10−8. Note that this example is computed over uniform meshes of collocation points. All the degrees
of freedom are needed to resolve the oscillations of the solution. Mesh refinement at corners reduces the
error only for more than 4 096 collocation points per curve.

5 Simulation of coated echelles

A useful and demanding application is the simulation of coated echelle gratings employed in a Littrow
reflection configuration which has been investigated in detail e.g. in [13].

Echelle gratings are blazed gratings possessing an asymmetrical triangular groove shape with an apex
angle of 90◦. They are coarse, but precisely manufactured gratings used only at high spectral orders (50
to 2500) and high angles of diffraction between 63◦ and 80◦. The small, steep facets of the triangular
profile are used as working facets. In reflection they act as micro-mirrors so that when incident light is
close to the direction normal to the facets, almost all of it is reflected into a direction almost opposite to
that of the incidence. Under a suitable choice of grating period and wavelength this is also the direction of
a diffraction order, and blazing occurs in that order. This grating configuration is called Littrow mount,
and the corresponding angle of incidence is the Littrow angle θL characterized by the condition

sin θL =
pλ

2d

with wavelength λ, grating period d, and diffraction order p. The configuration is schematically depicted
in Fig. 2.  

 

b

TM
Lα θ

 

Figure 2: Echelle grating in Littrow mount: blaze angle αb ≥ 60◦, apex angle equal to 90◦.

A salient feature of echelles is a high angular dispersion and, possibly, a high resolution. The dispersion
of echelle gratings can be as high as that of gratings with fine pitch, but, because of the low ratio λ/d,
polarization effects play a minor role. Hence, these gratings are the main tools for applications with
demanding spectral resolution (cf. e.g. [15]). Echelles are also employed as external resonator cavity
diffraction gratings in high power laser applications. Because of the high angular dispersion, they are the
main components for narrowing the desired laser line. Due to the high power density, the gratings are
prone to damage and the extension of lifetime is an important issue. One way to improve lifetime is to
minimize energy absorption in the grating while preserving a maximal efficiency in the working order. To
realize this, aluminium echelles coated with dielectric protective layers of different thickness over the two
facets (cf. Fig. 3) have been proposed and optimized in [13]. Of course, the optimization has been based
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on a rigorous electromagnetic simulation. By Cb we denote the coating thickness on the blaze facet and
by Cl that on the long facet which is the anti-blaze facet. Both thicknesses are measured perpendicular
to the facet planes.

 

C l Cb

Figure 3: Coated echelle grating: different thickness of coating over the two facets of the profile.

While in both cases, TE and TM polarization, the thickness Cb can be optimal with respect to a
maximal efficiency and with respect to minimal absorption at the same time, this is not the case for the
optimization of Cl. This can be seen in Figs. 4 and 5 for TE and TM polarization, respectively. In other
words, it is only possible to optimize the pair of coating thicknesses of the layer with respect to one of
the two objectives.
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Figure 4: TE efficiency (TE coated) in the −122nd diffraction order and TE absorption (aTE coated)
depending on Cl: MgF2 coated aluminium echelle grating, Cb = 60 nm. For comparison: TE
efficiency (TE uc) and TE absorption (aTE uc) for uncoated grating.

A further important observation is that a wrong choice of coating thickness on the anti-blaze facet can
significantly reduce efficiency and increase absorption due to a resonance anomaly. The grazing incidence
to the metallic anti-blaze facet together with a specific thickness of the dielectric coating couples guided
waves into the coated grating. The coating thickness for which the resonance anomaly occurs can be
deduced by e.g. rigorous calculations (see Fig. 4 for a coating thickness of 37 nm on the anti-blaze facet
and Fig. 5 for a coating thickness of 73 nm on the anti-blaze facet). Now the coating can be adjusted to
avoid these critical values. Moreover, coatings thinner than the resonance values by only a few nanometers
maximize the efficiency. If the coating deposition process is technologically highly developed, the efficiency
can be improved by up to 20 basis points compared to a simple coating. So, the protective layer improves
the properties of the bare echelle.

For the numerical evaluation, we compare the spline collocation method (SC) described in the present
publication with the method of the first version of the package IESMP (cf. [19], [12]) which is based on
the hybrid discretization scheme (H) described in Section 2.4.

The blaze angle αb, which is also the Littrow angle θL, is 78.7◦. Hence, the incidence is normal to
the small, steep echelle facets so that they can act as micro-mirrors. Our calculations are performed for
the excimer laser wavelength λ = 193.35 nm and grating period d = 12.0285 µm corresponding to 83.136
lines/mm. In this case, the working order is the −122nd diffraction order, which is diffracted backward
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Figure 5: TM efficiency (TM coated) in the −122nd diffraction order and TM absorption (aTM coated)
depending on Cl: MgF2 coated aluminium echelle grating, Cb= 60 nm. For comparison: TM
efficiency (TM uc) and TM absorption (aTM uc) for uncoated grating.

to the direction of incidence. Due to a ratio of d/λ = 62 and the fact that profile edges and small coating
thicknesses have to be treated, the example is quite demanding. Aluminium is used as the reflecting
material of the grating [15] due to the high reflectivity for the given wavelength. Indeed, it has a complex
refractive index of ν = 0.113 + i2.208 for the above given wavelength. Since aluminium creates a natural
protection layer of Al2O3, the fast-fired aluminium layer is immediately coated by an MgF2 layer to
prevent oxidization (cf. [15]). Often the laser source is linearly polarized, so that either TE polarization
or TM polarization is considered here. As done in [13] for the first time, we also consider an independent
choice of the coating thickness Cb on the blaze facet and of the thickness Cl on the long facet of the
echelle grating. The refractive index of the dielectric coating material MgF2 is ν = 1.44.
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Figure 6: Relative error of polarization dependent efficiency and absorption: Cb = 60 nm, small Cl, MgF2

coated aluminium echelle grating. The error is deviation of approximate efficiencies with N =
1024 and N = 2048 discretization points of the (SC) method.

Fixing the coating thickness Cb to 60 nm, we let Cl vary between 3 nm and 90 nm to study the
resonance effects. The results presented in Figs. 4 and 5 are calculated with method (SC) using N = 2048
discretization points without mesh refinement at the edges because of the large ratio d/λ. A comparison
of the same method with only N = 1024 discretization points in Fig. 6 shows deviations smaller than
1-2% which is sufficient for practical requirements. Similar calculations with the older method (H) using
N = 1024 result in deviations smaller than 1% for the efficiency and smaller than 5% for the absorption
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as long as the coating thickness Cl is larger than 5 nm. For e.g. Cl = 3 nm, the deviation of the TM
efficiency is 12% and the absorption could not be determined because the sum of efficiencies is larger
than 1. Nevertheless, the results of method (H) with N = 2048 discretization points differ from those of
method (SC) with N = 2048 by less than 3% for Cl = 3 nm and less than 1% for larger thicknesses.

Hence, in this application with a relatively large value Cb, method (SC) can be used with N = 1024
discretization points and satisfies the practical requirements. Also method (H) can be used with N = 1024
discretization points resulting in an accuracy sufficient for practical use. Only for thicknesses smaller than
Cl = 6 nm, N = 2048 discretization points are needed.
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Figure 7: Polarization dependent efficiency in the −122nd diffraction order and absorption (a TE, a TM):
Cb = Cl, Al2O3 coated aluminium echelle grating, natural protection layer.

Now, using the new method (SC), the effects of the natural protection layer of Al2O3 with the refractive
index ν = 1.78 + i0.001 on top of the above grating type can be investigated. The coating thicknesses Cl

as well as Cb are chosen from the set 3, 6, 10, 15, 20, 25 so that calculations for 36 combinations are to be
performed. A typical result with equal thicknesses on both facets using N = 2048 discretization points is
given in Fig. 7. A comparison with results of the same method (SC) using only N = 1024 discretization
points in Fig. 8 shows deviations smaller than 5% which would be sufficient for practical use. Similar
results hold for all other combinations of coating thicknesses independently on whether the values of Cb

or Cl are small or large.
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Figure 8: Relative error of the polarization dependent efficiency and absorption (a TE, a TM): Cb = Cl,
Al2O3 coated aluminium echelle grating, natural protection layer. The error is between N = 1024
and N = 2048 discretization points of the (SC) method.
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A comparison using N = 1024 discretization points for the older method (H) and N = 2048 dis-
cretization points of the (SC) method results in relatively large deviations. For the example with equal
thicknesses on both facets, the deviation plots of these calculations can be found in Fig. 9, the relative
errors are up to 20% if the coating thicknesses are 15 nm and they grow significantly if the thicknesses
shrink. In particular, if one of the coating thicknesses is 10 nm or less, then the efficiency error grows
from 15% to 60% and the accuracy of the approximate absorption values is not acceptable. In general,
the simulation for a small thickness on the blaze facet is more challenging than a small thickness of the
same size on the anti-blaze facet.

Spline 2048 - Trigonometric 1024

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25
Coating thickness on blaze + anti-blaze facet / nm

R
el

at
iv

e 
Er

ro
r

TE
TM
a_TE
a_TM

Figure 9: Relative error of the polarization dependent efficiency and absorption (a TE, a TM): Cb = Cl.
Al2O3 coated aluminium echelle grating. The error is between N = 1024 discretization points of
the (H) method and N = 2048 points of the (SC) method.

Hence, for this second application, method (SC) can be used with N = 1024 discretization points
in all practical cases and yields an accuracy sufficient for practical requirements. In contrast to this,
method (H) cannot be used with N = 1024 discretization points since most of the approximate values
are inaccurate and not acceptable. However, with N = 2048 method (H) can be used safely under the
restrictions that either Cb ≥ 15 nm or Cl > 25 nm. Otherwise one has to check whether, for the actual
pair of thicknesses, the approximation is acceptable or not.

Now let us compare the computation times of the considered methods (SC) and (H) based on the same
kernel function evaluations and on GMRES iterations upto an accuracy of 10−10. Setting the computation
time for method (SC) with N = 1024 to 100%, method (SC) with N = 2048 is accomplished in 340%
of the time, while (H) with N = 1024 and N = 2048 requires 40% and 170% of the time, respectively.
We recommend the following rule for switching between (SC) and (H) and for choosing N the number of
discretization points. If possible, use method (H) with N = 1024. This is the fastest choice, and often
the results are sufficiently accurate from the practical point of view. If this is not the case, then switch
to (SC) but retain N . This costs a factor 2.5 in computation time, only. In the case that the results
are still not sufficiently accurate, switch back to method (H), but now double the number N . Finally, in
the rare case of inaccurate results for method (H) and doubled N , method (SC) with doubled N is to be
chosen. In any case, for small Cb and Cl, method (SC) is to be used right from the start.

Our next remark concerns the iteration scheme GMRES. With the preconditioning described in Section
4, we are now in the position to solve the equations arising from coated gratings iteratively. This was, for a
long time, not possible because of the ill-conditioned matrices. The implementation of the preconditioned
GMRES reduces the solution time of the 1024×1024 linear system to 1/6 of the time needed with Gaussian
elimination. For N > 1024, this reduction is even more pronounced.

Already the old IESMP ([19],[12]) has been applied to design, development, and quality control in the
grating production at Carl Zeiss Jena since 1985. The new IESMP is more flexible, more accurate, more
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stable and, for most applications, even faster than the old one. Again, the application of the method will
be design, research, development, and quality control.
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