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Abstra
tWhen a thin vis
ous liquid �lm dewets, it typi
ally forms a rim whi
hspreads outwards, leaving behind a growing dry region. We 
onsider thedewetting behaviour of a �lm, when there is strong slip at a liquid-substrateinterfa
e. The �lm 
an be modelled by two 
oupled partial di�erential equa-tions (PDEs) des
ribing the �lm thi
kness and velo
ity. Using asymptoti
methods, we des
ribe the stru
ture of the rim as it evolves in time, and therate of dewetting, in the limit of large slip lengths. An inner region emerges,
losest to the dewetted region, where surfa
e tension is important; in an outerregion, three subregions develop. This asymptoti
 des
ription is 
omparedwith numeri
al solutions of the full system of PDEs.1 Introdu
tionRe
ently the dewetting behaviour of a thin liquid �lm on a solid substrate hasre
eived 
onsiderable attention. Su
h behaviour is important for the preparation ofpolymer �lms, for mi
ro�uidi
 devi
es, and for other appli
ations.Experiments by Reiter and others [1, 13, 14℄ involving dewetting �lms of polystyreneon polydimethylsiloxane-
oated sili
on show an asymmetri
 rim shape, and dewet-ting at various rates. E�orts to explain these observations have fo
ussed on non-Newtonian rheology, su
h as vis
oelasti
ity, and on slip at the liquid-solid interfa
e.For example, Vilmin and Raphaël [15℄ invoke vis
oelasti
ity and �residual stresses�to obtain models whi
h predi
t slower-than-linear dewetting rates. More re
entexperiments [2, 3℄ involving varying the surfa
e at the substrate-liquid interfa
e,without 
hanging the wetting properties. Fetzer and 
o-workers observed di�erent�lm pro�les: with one substrate there was a very asymmetri
 ridge (in parti
u-lar at early stages of the rim retra
tion) de
aying slowly and monotoni
ally on itsouter part onto the undisturbed thi
kness, while for another substrate, the ridgewas more symmetri
 and the de
ay be
ame os
illatory as the ridge grew. Fetzer etal. [2℄ explained the 
hange in ridge stru
ture using a lubri
ation model (the strongslip lubri
ation model of Mün
h et al. [12℄) with di�erent amounts of slip at thisinterfa
e for the two �lms. The o

uren
e of slip, or apparent slip, in mi
ro�uidi
swas surveyed by Lauga et al. [9℄.Here we study the behaviour of a mathemati
al model for the �lm whi
h assumesstrong slip at the substrate. The model des
ribes the �lm after rupture has o

urred,as the �lm retra
ts and the 
onta
t line re
edes outwards. Mün
h et al. [12℄ deriveda family of model equations governing the �lm behaviour as the e�e
ts of slip are1
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Figure 1: S
hemati
 of the dewetting rim.in
reased. The model is restri
ted to one spa
e dimension. (The issue of transverseinstability on a ridge with slippage has been 
onsidered by Mü and 
o-workers [7, 11℄and referen
es therein.) The present work is 
on
erned with the strong slip limit,for whi
h the 
ondition imposed at the substrate is not that the velo
ity is zerothere, but rather a relation involving the velo
ity gradient. An identi
al model forthe strong slip limit, in
luding inertial e�e
ts, was obtained by Flitton [4℄ (who alsoin
luded gravity) and by Kargupta et al. [5℄. The 
orresponding regime was alsoidenti�ed in a more 
ompli
ated (porovis
ous) 
ontext by King and Oliver [8℄. (Notethat a term −Σs
z is omitted from the right-hand side of (A.9) there.)Previous numeri
al simulations by Mün
h et al. [12℄ have revealed some features ofthe behaviour of solutions for this model, based on a large but �nite slip parameter,

β, whi
h suggest the behaviour expe
ted when ε = 1/β → 0. Figure 1 shows atypi
al �lm pro�le during dewetting.This paper begins by presenting the equations des
ribing the evolution of the �lm(Se
tion 2). We then argue in Se
tion 3 that the �lm develops into an inner andan outer region, and state the inner and outer problems in Se
tions 3.1 and 3.2.The outer region is somewhat 
ompli
ated, and at large times 
an be subdividedinto three subregions. This is explored in Se
tion 4. We are able to 
on�rm thisasymptoti
 stru
ture through numeri
al simulations of the original system of PDEs(Se
tion 4.3).At su�
iently large times the above asymptoti
 des
ription fails, be
ause the innerregion �gobbles up� one of the subregions of the outer. This leads to a new asymptoti
stru
ture (Se
tion 5). Further 
hanges in stru
ture o

ur at still larger times. Thesewill form the subje
t of a follow-on paper 
urrently in preparation.2 Thin-�lm modelHere we only brie�y summarise the model, as a detailed derivation has previouslyappeared [12℄. The �lm thi
kness may vary with position x and time t, and is2



denoted by h(x, t). Its evolution is governed by the Navier-Stokes equations formomentum and mass 
onservation of a vis
ous in
ompressible liquid, and the stress-strain relationship is assumed to be Newtonian. At the impermeable substrate, theNavier slip boundary 
ondition,
u = B

∂u

∂yis imposed for the 
omponent of velo
ity tangential to the substrate, u, while thenormal 
omponent is set to zero. The quantity B is a slip length, with B = 0representing the no-slip 
ase, while B → ∞ represents the limit of perfe
t slip,where the substrate has no retarding e�e
t on the �ow of liquid in the �lm. Thefree surfa
e is assumed to be free of tangential stresses, while normal stresses arisefrom 
apillarity.The model is based on the lubri
ation approximation, whi
h involves expansion ina parameter 
orresponding to the s
ale of the free surfa
e slope H/L, (where Hand L are typi
al s
ales for the �lm thi
kness and distan
e along the substrate,respe
tively) whi
h is assumed to be small. Negle
ting inertia terms, we arrive atthe strong-slip model proposed by Mün
h et al. [12℄, Flitton [4℄ and Kargupta et al.[5℄,
∂h

∂t
+

∂

∂x
(uh) = 0 , (2.1a)

4
∂

∂x

(

h
∂u

∂x

)

+ h
∂3h

∂x3
= εu . (2.1b)Here we have introdu
ed ε = 1/β where β = (HB)/L2 is the dimensionless slipparameter. We 
onsider the strong-slip limit, that is 0 < ε ≪ 1. (It is also possibleto add a term δ̃h2hxxx to (2.1b), where δ̃ = (H/L)2ε, to give a �uniformly valid�equation whi
h in
ludes the weak slip limit, in whi
h ε is not small.)We are 
on
erned with the situation in whi
h the �lm has already nu
leated adewetted region, so that the free surfa
e meets the substrate at a �
onta
t line�,and denote its position by x = s(t). Here s(t) is an unknown fun
tion whi
h is tobe determined. Equations 2.1 represent dewetting in one dimension, su
h as whennu
leation has o

urred along a straight edge, as in experiments by Reiter et al. [14℄.For 
ir
ular dewetting from a hole, they should also be appropriate at su�
ientlylarge dewetted radii. Appropriate boundary 
onditions for (2.1) at the 
onta
t lineare

h = 0,
∂h

∂x
= λ, h

∂u

∂x
= 0, and u = ṡ(t). (2.2)These represent a requirement for the �lm to meet the 
onta
t line with a 
onta
tangle given by arctanλ. The third 
ondition 
orresponds simply to there being nosour
e or sink of momentum at the 
onta
t line, other than the net surfa
e tensionfor
e at the triple point. The fourth states that the liquid is at rest in a framemoving with the 
onta
t line. We remark that the 
ondition u = ṡ(t) in fa
t readilyfollows from the other 
onditions. The issue of appropriate boundary 
onditions3



for thin �lms with moving 
onta
t lines is 
onsidered by King and Bowen [6℄ andFlitton [4℄.In the undisturbed region we impose
h → 1, u → 0 as x → ∞. (2.3)Equations (2.2) and (2.3) provide a total of six boundary 
onditions.In the following se
tions, we will 
onsider the governing equations mostly in a frameof referen
e that moves with the retra
ting ridge, that is, in the positive x dire
tion.It is therefore 
onvenient to transform the above equations to a frame of referen
ehaving its origin �xed at the 
onta
t line, by letting x = s(t)+xc and u = ṡ(t)+uc.This yields, after dropping the subs
ript �c�,

∂h

∂t
+

∂

∂x
(uh) = 0 , (2.4a)

4
∂

∂x

(

h
∂u

∂x

)

+ h
∂3h

∂x3
= ε(ṡ + u) . (2.4b)and the boundary 
onditions

h = 0,
∂h

∂x
= λ, h

∂u

∂x
= 0, u = 0 at x = 0, (2.5a)

h → 1, u → −ṡ as x → ∞. (2.5b)As initial data for (2.1), we set
s(0) = 0 and h(x, 0) = hinit(x) for x ≥ 0, (2.6)where hinit(x) is smooth and positive for x > 0 and satis�es the boundary 
onditionsfor h in (2.5). Furthermore, we suppose that hinit(x) is a fun
tion whi
h makes thetransition from h = 0 at the 
onta
t line to h ≈ 1 over a region of width O(1). Forexample, in some of our numeri
al simulations we have used the fun
tion

hinit(x) =

{

1 − (1 − λ
p
x)p 0 < x < p

λ

1 x > p
λ

(2.7)for small values of p, along with other similar initial 
onditions. The long-timebehaviour was not found to depend signi�
antly on the details of hinit. No initial
ondition is needed for u as it may be determined from (2.1b) if h is known.For future referen
e, we re
ord here the following mass 
onservation relation whi
his obtained by integrating (2.4a) by parts and using the boundary and initial 
on-ditions,
∫

∞

0

[h(x, t) − hinit(x)] dx = s(t). (2.8)
4
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Figure 2: Our analysis des
ribes the �lm as an inner region and an outer region.3 Ridge dynami
s and pro�le for t = O(1), ε → 0In the limit ε → 0 with t = O(1) the asymptoti
 stru
ture 
omprises two regions.These are an inner region, 
lose to the 
onta
t line, and an outer region (Figure 2).These are 
onsidered in turn in the following two se
tions.3.1 Inner regionIt turns out that in (2.4)�(2.5), the spatial variable x as well as h and u are alreadys
aled appropriately for the inner region. Assuming that εṡ ≪ 1 for t �xed and
ε → 0 (the exa
t behavior for s(t) = s(t; ε) will be determined in the dis
ussion ofthe outer region), and expanding h = h0 +O

(

ε1/2
) and u = u0 +O

(

ε1/2
) in powersof ε1/2, the right hand side of (2.4b) drops out to leading order. The remainingequation 
an be integrated on
e with respe
t to x, leading to:

∂h0

∂t
+

∂

∂x
(u0h0) = 0 , (3.1a)

4h0
∂u0

∂x
+ h0

∂2h0

∂x2
− 1

2

(

∂h0

∂x

)2

= −1

2
λ2. (3.1b)These evolution equations are supplemented by initial 
onditions and boundary
onditions at x = 0,

h0(x, 0) = hinit(x) (3.2)
h0 = 0,

∂h0

∂x
= λ, h0

∂u0

∂x
= 0, and u0 = 0 at x = 0 (3.3)with (3.3) being used to �x the 
onstant of integration in (2.5a)1.1We also require that h0h0xx → 0 as x → 0, i.e., that h0xx be well-behaved near x = 0; sin
e

h0 ∼ λx here, that is indeed the 
ase. 5



For later mat
hing to the outer solution, we need the behaviour of h0 and u0 forlarge x. Probing (3.1) with power law behaviour of the form h0 ∼ H∞(t)xnh and
u0 ∼ U∞(t)xnu , we �nd that nh = 0 and nu = 1, and hen
e the far-�eld behaviourof h0 and u0 is

h0 ∼ H∞(t) , u0 ∼ U∞(t)x as x → ∞, (3.4a)This form is obtained by seeking self-similar pro�les whi
h have h0 bounded andnonzero for large x. We must therefore have H∞(t) and U∞(t) satisfy
dH∞

dt
+ U∞H∞ = 0 , 4H∞U∞ = −1

2
λ2.The behaviour of hinit at x → ∞ provides us with the initial value H∞(0) = 1, hen
ethe far-�eld behaviour of h0 and u0 is

H∞(t) = 1 +
λ2

8
t, (3.4b)

U∞(t) = − (λ2/8)

1 + (λ2/8)t
. (3.4
)The inner problem may be res
aled to remove the parameter λ. This is a
hievedusing the s
aling

h = λ2h′ u = λu′ x = λx′ S(t; ε) = λS ′(t; ε)so that the above equations (3.1) and the boundary 
onditions at x = 0 be
omeindependent of λ, with the slope boundary 
ondition there be
oming ∂h/∂x = 1.Thus we 
an 
onsider the 
ase λ = 1 without loss of generality.3.2 Outer regionAway from the 
onta
t line, we anti
ipate that the e�e
ts of surfa
e tension areunimportant, while the e�e
ts of the shear stress at the substrate due to �niteslip, i.e., the terms on the right hand side of (2.4b), enter the dominant balan
e.A

ordingly we de�ne outer variables X and U as follows:
x = ε−1/2X , h = H , u = ε−1/2U , (3.5)and also

s(t; ε) = ε−1/2S(t; ε), (3.6)where we assume that U , h and S are O(1) for ε → 0 with t and X �xed. We expand
H = H0 + o(1), U = U0 + o(1). The fun
tion S = S0(t) + o(1) will be obtained aspart of the solution of this outer problem. To leading order, (2.4) be
omes

∂H0

∂t
+

∂

∂X
(U0H0) = 0 , (3.7a)6



4
∂

∂X

(

H0
∂U0

∂X

)

= Ṡ0 + U0 . (3.7b)for X > 0.This is subje
t to 
onditions at X = S0 whi
h are derived from mat
hing to theinner solution. Rewriting (3.4a) in outer variables,
H0 ∼ H∞(t) , U0 ∼ V∞(t)X as X → 0,one obtains the boundary 
onditions

4H0
∂U0

∂X
= −1

2
λ2 , U0 = 0 (3.8a)at X = 0. The outer problem also needs the far-�eld boundary 
onditions derivedfrom (2.5b), namely

H0 → 1 , U0 → −Ṡ0 as X → ∞. (3.8b)Initial 
onditions for H0 follow by 
onsidering the limit of hinit in outer variables,and turn out to be trivial, while the initial value for S0 is just that for s given in(2.6). Summarizing both 
onditions, we get:
S0(0) = 0, H0(X, 0) = 1 for X ≥ 0. (3.9)Integrating (3.7a) by parts yields the 
onstraint

∫

∞

0

(H0 − 1) dX = S0, (3.10)whi
h represents 
onservation of mass. It 
ould have also been obtained dire
tlyfrom (2.8).3.3 Composite solution and numeri
al validationEquipped with inner and outer solutions, a multipli
ative 
omposite solution, uni-formly valid in both the inner and outer regions, 
an be 
onstru
ted by de�ning
h(c)(x, t) = h0(x, t)H0(ε

1/2x, t)/(1 + λ2t/8), (3.11a)
u(c)(x, t) = −u0(x, t)U0(ε

1/2x, t)/(x/(8/λ2 + t)), (3.11b)where the denominators are the �
ommon parts� given by Equation (3.4).Next we 
ompare the full lubri
ation model solutions to numeri
al solutions for theinner and outer problems, and to a 
omposite expansion. Throughout, we �x λ = 1.Details of the Matlab routines used are given in the appendix.Numeri
al solutions to the outer problem, (3.7)�(3.9), have been produ
ed. Therewere 1000 grid points, with a 
omputational domain 0 < X < 50. Typi
al thi
knesspro�les are shown in Figure 3. 7
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Figure 3: Solutions of the outer problem (3.7)�(3.8) at t = 5, 100, 103, 104 and 105.Similarly, numeri
al solutions to the inner problem, (3.1)�(3.3) and ∂h/∂x = 0 at
x = 20, starting from (2.7) with p = 2 have been 
omputed. These used 200 gridpoints, with 0 < x < 20. Figure 4 shows pro�les at various times, together with theinitial 
ondition used. It 
an be seen that the rim height in
reases approximatelylinearly with time, while the inner part of the rim grows in a way whi
h suggests aself-similar form. This idea will be developed in Se
tion 4.1.Finally, solutions to the full strong slip lubri
ation problem (2.4)�(2.5) have alsobeen 
omputed, also using initial 
ondition (2.7). Here a mu
h longer 
omputationaldomain, 0 < x < 200, is ne
essary, requiring 2000 grid points. In Figure 5 we
ompare the solution at t = 5, for ε = 0.002, to the inner and outer solutions. The
omposite solution (3.11), 
onstru
ted from the numeri
al data for the inner andouter solutions is also shown. It is seen to be a good approximation to the fullsolution.4 Large-time behaviour: t → ∞While the derivations in the previous se
tion were 
arried out for t = O(1), we 
anhope that the basi
 distin
tion of the inner and outer region and that the leadingorder asymptoti
s remain valid even for large, but not too large, t. We will thereforeinvestigate the large-time limit

t = τ/δ, τ �xed, δ → 0, (4.1)separately for the leading order inner and outer problems. As one might expe
t forinitial boundary value problems, the long-time inner and outer solutions approa
ha form that 
an be des
ribed by one or (in the 
ase of the outer problem) severalsimple solutions that are largely independent of the initial data. Inspe
tion of thesubregions of the outer problem reveals that the result in fa
t approximates the fullproblem (2.4)�(2.6) as long as δ ≫ ε1/2(log(1/ε))1/2. For δ on the order of this lower8
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bound, one of the subregions of the outer region merges with the inner region (seeSe
tion 5).4.1 Inner problemFirst, note that (3.4) implies that u0 ∼ U∞x ∼ −x/t as t → ∞. Guided by (3.4),we postulate that at large times the behaviour of the inner problem (3.1) takes theself-similar form
h0 ∼ tη(ξ) = δ−1τη(ξ) , u0 ∼ ν(ξ)where ξ = x/t. Equations (3.1) then be
ome

η − ξηξ + (νη)ξ = 0 (4.2a)
4ηνξ + ηηξξ −

1

2
(ηξ)

2 = −1

2
λ2 . (4.2b)These are subje
t to the boundary 
onditions (obtained from (3.3)) at ξ = 0,

η(0) = 0 , ηξ(0) = λ , ηνξ(0) = 0. (4.3)We require that as ξ → ∞ (a) η → λ2/8, and (b) ν ∼ −ξ, in agreement with (3.4).Numeri
al solutions to this problem have been obtained using a shooting method.By obtaining an expression for ηνξ from (4.2b), and substituting this into (4.2a), anexpression for ν may be found:
ν = ξ − 1

4ηξ

(

4η +
η2

ξ

2
− ηηξξ −

λ2

2

) (4.4)The velo
ity blows up where η = 0, ex
ept for the spe
ial 
ase η = λξ, whi
h yields
ν = 0. Di�erentiating to obtain νξ, ν may be eliminated from (4.2b), yielding athird order autonomous ODE for η:

ηξξξ =
λ2

2

(

ηξξ

ηηξ

− ηξ

η2

)

− 3

2

ηξηξξ

η
+

η2
ξξ

ηξ

+
1

2

η3
ξ

η2
− 4

ηξξ

ηξ

(4.5)Note that λ 
an be eliminated by res
aling.Given the boundary 
onditions (4.3), ξ = 0 is a singular point. We obtain solutionsto (4.5) by integrating from ξ = ξs for some small ξs, where we assume that thesolution lo
ally has the form
η(ξ) = λξ + c1ξ

2 + . . . .Using a shooting method, c1 is varied until ηξ = 0 is satis�ed at some point ξesu�
iently far from the rim. Taking ξs = 10−4 and ξe = 5 is su�
ient to obtain well-
onverged pro�les. Figure 6 shows the resulting pro�les of η(ξ) and ν(ξ), the latterbeing found from η(ξ) using the relation (4.4) above. The �lm thi
kness approa
hes10
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∆0Figure 7: At long times (t → ∞), the outer region divides into three subregions.1/8 at large ξ, while ν(ξ) ∼ 0.1977 − ξ, as expe
ted. For these parameters, therequired solution has c1 = −2.796. The same solution has been re
overed usinga boundary value problem solver [10℄, by imposing η(ξ1) = 0, ηξ(ξ1) = 1, and
ηξ(ξ2) = 0, and then allowing ξ1 → 0 and ξ2 → ∞.As seen in Figure 4, the �lm thi
kness in the inner region rapidly approa
hes thesimilarity solution, for initial 
onditions similar to (2.7).4.2 Outer problemNow we examine the outer region, where a more 
omplex stru
ture arises. Westudy the outer region in three distin
t subregions, as shown in Figure 7. Theasymptoti
 behaviour of S0(t) remains to be determined from the outer problem,whi
h subdivides into these subregions in the limit t → ∞. Closest to the positionof the 
onta
t line, we �nd a solution in a frame moving with the 
onta
t line speed,11



Ṡ0, denoted the outer left (O1) solution. Most distant from the 
onta
t line, atravelling wave solution may be found, whi
h moves with a speed ∆̇0 relative to the
onta
t line. This is denoted the outer right (O3) solution. An expression for ∆0(t),whi
h measures the growing width of the ridge, will be obtained below. Mün
h and
o-workers [2, 12℄ have shown that the outermost part of the rim is non-os
illatoryfor small ε (large β) if Ṡ ex
eeds an ε-dependent threshold. Finally, between thesetwo �inner� subregions there lies one in whi
h a WKBJ ansatz applies. We refer tothis as the O2 subregion. Ea
h of these subregions is des
ribed in more detail below.In the derivations below, we will res
ale S0 and ∆0 a

ording to
S0 =

1

δµ
S∗, ∆0 = µ∆∗, (4.6)with

µ = log1/2(1/δ), (4.7)and assume that S∗ and ∆∗ are O(1) for τ �xed and δ → 0+. As µ only in
reasesslowly as δ → 0, this implies a near-linear dependen
e of S0 on t and a very slowgrowth of ∆0(t) with t. The justi�
ation for these assumptions follows a posteriorifrom the fa
t that these s
alings are those for whi
h the mat
hing of the threesubregions su

eeds. For a more systemati
 approa
h, one 
ould start with a moregeneral ansatz for the s
aling fa
tors in (4.6) and then derive the form 
hosen abovein the 
ourse of the mat
hing; the 
urrent approa
h bene�ts from the 
on
isenesswith whi
h it 
an be presented.4.2.1 Outer right subregion O3We now 
onsider a �right inner� subregion (most distant from the 
onta
t line), inwhi
h the pro�le eventually 
onne
ts with the unperturbed �lm, where a travellingwave ansatz is valid. Sin
e we require h → 1 at in�nity, a similarity solution for thissubregion is unlikely. We introdu
e a se
ond 
onta
t line at X = ∆0(t) where the�lm thi
kness be
omes O(1). Thus ∆0 serves as a measure of the width of the rim.(Contrast (3.4), in whi
h H∞ blows up as t → ∞.) In this subregion, 
lose to ∆0,we de�ne a new 
oordinate X∗

3 and a new velo
ity U∗

3 by
X = ∆0 + X∗

3 and U0 = ∆̇0 +
1

µ
U∗

3 , (4.8)respe
tively. Indi
es 1, 2 and 3 refer to the subregion (in this 
ase, O3) to whi
h avariable pertains. After introdu
ing the slow time variable τ and using (4.6), (3.7)reads:
δ
∂H0

∂τ
+

1

µ

∂

∂X∗
3

(U∗

3 H0) = 0, (4.9a)
4

∂

∂X∗

3

(

H0
∂U∗

3

∂X∗

3

)

= S∗

τ + δµ∆∗

τ + U∗

3 , (4.9b)12



and the boundary 
onditions (3.8b) be
ome
H0 → 1 , U∗

3 → − (S∗

τ + µδ∆∗

τ ) as X∗

3 → ∞. (4.10)After allowing δ → 0, so that δ(∂H0/∂τ) and µδ∆∗

τ may be dropped to leading orderfrom (4.9)�(4.10), (4.9a) may be integrated in X∗

3 , yielding
U∗

3 H0 = −S∗

τ , (4.11)after using the boundary 
onditions (4.10). (Here we make no e�ort to introdu
eadditional indi
es for the solution of the leading order problem for (4.9)�(4.10).)Introdu
ing σ(X∗

3 ) = log H0(X
∗

3 ), the above equation be
omes
U∗

3 = −S∗

τ e−σ. (4.12)Eliminating U∗

3 from (4.9b), multiplying by dσ/dX∗

3 , and integrating results in the�rst-order ODE
2

(

dσ

dX∗

3

)2

= σ + e−σ − 1 (4.13)whi
h 
an be redu
ed to a quadrature, with the solution satisfying
σ → 0 as X∗

3 → +∞. (4.14)This O3 solution is shown in Figure 9. This solution blows up as X∗

3 → −∞, asexpe
ted if it is to mat
h into a distin
t subregion on the left, with
σ ∼ 1

8
(−X∗

3 )2 + 1 as X∗

3 → −∞, (4.15)up to translations in X∗

3 whi
h we absorb into the de�nition of ∆0. The quantity
∆0 will be �xed by mat
hing to O2.However, as it stands, this solution 
annot mat
h to the inner solution (3.4b)�(3.4
)as it is a travelling wave, with an amplitude whi
h does not in
rease with time.Therefore at least one intermediate subregion is needed for mat
hing.4.2.2 Outer left subregion, O1Another �inner� subregion (the �outer left� subregion) arises su�
iently 
lose to
X = S0. Here we swit
h to a moving frame with its origin at S0(t), de�ning innervariables X∗

1 and U∗

1 . We use (4.1), (4.6) and the following s
alings:
X =

1

µ
X∗

1 , H0 =
1

δ
h∗, U0 =

δ

µ
U∗

1 , (4.16)where the starred quantities are all assumed to be O(1). Res
aling (3.7) gives
∂h∗

∂τ
+

∂

∂X∗

1

(U∗

1 h∗) = 0 , (4.17a)
4µ

∂

∂X∗
1

(

h∗
∂U∗

1

∂X∗
1

)

=
δ

µ
U∗

1 +
1

µ
S∗

τ . (4.17b)13



The boundary 
onditions (3.8a) that arose from mat
hing the inner and outerregions in Se
tion 3 be
ome
4h∗

∂U∗

1

∂X∗

1

= −1

2
λ2 , U∗

1 = 0 . (4.18)To leading order, the right-hand side of (4.17b) drops out, allowing the resultingequation to be integrated with respe
t to X∗

1 to give
4h∗

∂U∗

1

∂X∗

1

= −1

2
λ2 . (4.19)We use a self-similar ansatz, writing

h∗ ∼ τĤ(X∗

1 ) , U∗

1 ∼ 1

τ
V̂ (X∗

1 ) (4.20)and obtain
Ĥ +

(

V̂ Ĥ
)

X∗

1

= 0 ,

4ĤV̂X∗

1
= −1

2
λ2 .The solution of these, subje
t to the boundary 
ondition V̂ = 0 at X∗

1 = 0 thatfollows from (4.18), is
Ĥ =

1

8
λ2e−AX∗

1 , V̂ = − 1

A

(

eAX∗

1 − 1
)

, (4.21)whi
h mat
hes with the inner solution (3.4) in the limit X∗

1 → 0 (ex
ept for the
onstant term in (3.4b), whi
h be
omes insigni�
ant at large t). The new parameter
A is �xed by the mass 
onservation requirement

V̂ Ĥ → −S∗

τ as X∗

1 → ∞ . (4.22)(A 
ould also be obtained from the mat
hing pro
ess to follow.) Thus, if A > 0, sothat exp(−AX∗

1 ) → 0, then
A =

λ2

8S∗
τ

; (4.23)this will prove to depend on t only logarithmi
ally.4.2.3 Outer subregion O2Finally, to join the two �inner� subregions, we �nd a solution in the subregion be-tween them. Here we adopt a di�erent s
aling, namely
X = µX∗

2 , U0 =
1

µ
U∗

2 , (4.24)14



while H0 is not res
aled. Now (3.7) reads
δ
∂H0

∂τ
+

1

µ2

∂

∂X∗

2

(U∗

2 H0) = 0 , (4.25a)
4

µ3

∂

∂X∗

2

(

H0
∂U∗

2

∂X∗

2

)

=
1

µ
U∗

2 +
1

µ
S∗

τ . (4.25b)In this subregion, we seek a WKBJ-style approximation via the ansatz
H0 = a1 exp

(

µ2

∞
∑

n=0

µ−2nGn(X∗

2 )

)

,

U∗

2 = − exp

(

−µ2

∞
∑

n=0

µ−2nGn(X∗

2 )

)

,whi
h turns out to be appropriate even though (4.25) is nonlinear. Inserting thisansatz into (4.25) we �nd that the 
hoi
e of dominant terms is between the left-hand side of (4.25b) and the se
ond right-hand side term; the term in U∗

2 drops outtogether with the time derivative in (4.25a). Determining the �rst two terms of theexpansion we obtain
H0 = a1 exp

(

µ2S∗

τ

8a1

X∗

2
2 − a2

a1

X∗

2 − a3

a1

) (4.27a)
U∗

2 = − exp

(

−µ2S∗

τ

8a1

X∗

2
2 +

a2

a1

X∗

2 +
a3

a1

) (4.27b)The 
onstants a1, a2 and a3 must be found by mat
hing.4.2.4 Mat
hingWe �rst mat
h O1 and O2, and then mat
h O2 and O3. The leading terms in theexpansion of the O2 solution as X∗

2 → 0 are
H0 ∼ a1 exp

(

−a3

a1
− a2

a1
X∗

2

)

,

U∗

2 ∼ − exp

(

a3

a1

+
a2

a1

X∗

2

)

.The expansion of the O1 solution as X∗

1 → ∞ is, when rewritten in O2 variables,
h∗(µ2X∗

2 ) =
λ2τ

8
exp

(

−Aµ2X∗

2

)

,

U∗

1 (µ2X∗

2 ) ∼ − 1

Aτ
exp

(

Aµ2X∗

2

)

.Mat
hing O2 with O1 therefore requires
a1 =

λ2

8A
,

a2

a1
= µ2A ,

a3

a1
= log

(

δ

Aτ

)

,15



and so in the O2 subregion we have from (4.27), and using (4.23),
H0 =

λ2 τ

8δ
exp

(

µ2X∗

2
2

8
− µ2λ2

8S∗
τ

X∗

2

)

, (4.28a)
U∗

2 = −8S∗

τ δ

λ2 τ
exp

(

−µ2X∗

2
2

8
+

µ2λ2

8S∗
τ

X∗

2

)

. (4.28b)It remains to mat
h (4.28) with the solution from the O3 subregion. From (4.8),(4.6), and (4.24) we obtain
X∗

3 = µ(X∗

2 − ∆∗),whi
h we insert into (4.15) to express in O2 variables the X∗

3 → −∞ limit of theO3 solution for H0. We obtain
H0 ∼ exp

(

µ2

8
(X∗

2 − ∆∗)2 + 1

)

.Comparison of the above with (4.28a) immediately implies
∆∗ =

λ2

2S∗
τ

, (4.29)and
λ2 τ

8δ
= exp

(

µ2(∆∗)2

8
+ 1

)

, (4.30)to mat
h H . Mat
hing U∗

2 with U∗

1 yields the same 
onditions as equations (4.29)and (4.30).Inserting (4.29) into (4.30) and solving for S∗

τ yields
S∗

τ =
µλ2

4
√

2

(

log

(

λ2τ

8δ

)

− 1

)−1/2

. (4.31)In terms of the variables S0, ∆0 and t, the expressions (4.29) and (4.31) be
ome
Ṡ0 =

λ2

4
√

2

(

log(λ2t/8) − 1
)−1/2 and ∆0 =

λ2

2Ṡ0

, (4.32)for t → ∞. The expression for Ṡ0 is not integrable dire
tly but sin
e Ṡ0 ∼ log−1/2 tit follows that
S0 ∼

λ2t

4
√

2 log1/2 t
and ∆0 ∼ 2

√
2 log1/2 t . (4.33)Thus, as is to be expe
ted, the dewetting rate in
reases with the 
onta
t angle λ;the manner in whi
h this rate is sele
ted by the asymptoti
s is somewhat subtle.16



4.3 Composite solution and numeri
al veri�
ationWe �rst 
ompare the solutions for the subregions with numeri
al simulations forthe outer solution H0(x, t) of (3.7)�(3.9), obtaining good agreement as t → ∞.Numeri
al simulations for the outer problem were 
arried out to large times. Thespeed of the 
onta
t line Ṡ0 obtained from the outer solution is 
ompared to theasymptoti
 expression (4.32) in Figure 8 (line labelled �Outer�). At relatively largetimes, the outer solution demonstrates a dewetting rate 
lose to that predi
ted fromasymptoti
 mat
hing. Pro�les of the outer solution are shown at various times inFigure 3, revealing the in
reasingly-
urved stru
ture whi
h develops at large times,as expe
ted from the theory of Se
tion 4.2. Pro�les at t = 100 and t = 10000 areshown again in Figure 9, together with the velo
ity, where they are 
ompared tothe O1 solution and the O3 travelling wave solution. The O3 solution is a 
redibleapproximation to the outer pro�le at these times for large X, but as expe
ted itsa

ura
y diminishes for small X. Similarly, the O1 solution approximates the outerpro�le adequately for small X. To see the separation of the outer solution des
ribedin Se
tion 4.2 takes quite long times, of order 1/δ ∼ exp(µ2). However, in long-time simulations of the outer problem this separation does appear to be visible. (Inpreparing Figure 9, the value of Ṡ used is taken from the outer simulation, so thatthis is not a 
ompletely independent 
he
k of the results.) In prin
iple, a 
ompositeapproximation to the outer solution 
ould be 
onstru
ted from the asymptoti
 resultsfor the three subregions. However we do not attempt to do this here.We also 
ompare Ṡ obtained from solutions of the full lubri
ation model (2.4)�(2.6) with the outer solution. Figure 8 shows Ṡ from simulations for several valuesof ε, 
on�rming that as ε is redu
ed, the dewetting rate of the outer solution isapproa
hed. However at larger times, the full lubri
ation model dewetting ratesdeviate due to the presen
e of the inner region. This transition to a new time regimeis dis
ussed further in the following se
tion. Evidently, at large times (4.32) onlyapproximates the dewetting rates obtained from the full model well for ε even smallerthan shown here. For solutions of the full lubri
ation model to 
learly display theseparation of the outer region into subregions, this separation must happen beforethe expanding inner region overtakes the shrinking O1 one and we arrive in Phase 2,dis
ussed below. Finally, we note that a 
omposite of the inner and outer solutionsmay be 
onstru
ted using Equations (3.11) just as in Se
tion 3.5 The next time s
ale, t = O
(

ε−1/2 log(1/ε)−1/2
)In the above, the inner region length s
ale is x = O(t), whereas the O1 subregionhas x = O

(

ε−1/2/ log1/2 t
). Thus we expe
t the next time s
ale to have

t = O
(

ε−1/2/ log1/2(1/ε)
)

17
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Figure 8: Speed Ṡ0(t) as predi
ted using numeri
al simulations of the outer problem,equations (3.7), labelled �Outer�, and as obtained from the full lubri
ation model(2.4) with ε = 0.05, ε = 0.01, and ε = 0.002. These are 
ompared to the large-timepredi
tion from mat
hing the outer subregions, (4.32), shown by a dotted line.
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Figure 10: Solution of (2.4) for ε = 0.002 at moderately large times. The rim beginsto adopt a more symmetri
 shape.(for small ε) this being the one on whi
h these two length s
ales merge. In this times
ale, we expe
t that the old O1 and inner regions have merged, to form a singlenew inner region. This inner region 
oexists with the old O2 and O3 subregions, atleast until, on an even longer times
ale, further 
hanges o

ur. In this paper, weshall not, however, dis
uss this time regime, or the ones that follow it, in detail.Figure 10 shows the solutions of (2.4) for ε = 0.002 at relatively large times, 30 <
t < 1000. The �rst of these is a su�
iently late time that the �lm has entered these
ond time regime. These rim pro�les are in sharp 
ontrast to those found for theouter problem (Figure 3), whi
h la
k any inner region, and those found at earliertimes for the same ε (Figure 5).It is striking that the rim pro�le on this time s
ale is of the same paraboli
 form as thevery weak slip one, but the de
ay towards the pre
ursor �lm thi
kness is monotoni
in this 
ase but os
illatory (asso
iated with 
apillary ripples) in the latter.Here ε = 0.002, so that t2 = ε−1/2 log−1/2 (1/ε) = 8.97. For the small values of
ε en
ountered in previous numeri
al studies [12℄, smaller values of ε are used, andthe time required to enter the se
ond phase in
reases only slowly with ε, rea
hing
t2 = 290 for ε = 8.3× 10−7. Thus study of the later time regimes will be importantfor understanding of physi
al experiments, whi
h 
ontinue to even larger times.6 SummaryWe have shown how the evolution of a dewetting rim with strong slip features a
ompli
ated stru
ture, whi
h evolves to form an inner and an outer region. Only inthe inner region is surfa
e tension of signi�
an
e. We found the (su�
iently-) long-time limit of the inner region is des
ribed by a self-similar pro�le. We 
omputed theevolution of the outer region, and demonstrated that, at su�
iently-long times, a19



three-fold stru
ture emerges. At longer times, the growing inner region will modifythe spatial stru
ture des
ribed here. A detailed dis
ussion of this pro
ess will be thesubje
t of future work.The model dis
ussed here has been limited to one-dimensional dewetting. The issueof transverse instability (or azimuthal instability for 
ir
ular holes) for the strongslip model would be of interest in the future. The axisymmetri
 
ase should also beinvestigated for possible di�eren
es in behaviour at relatively early times.We 
on
lude by remarking that this evolution through a variety of distin
t times
alesresults in the presen
e of a number of distin
t intermediate-asymptoti
 des
riptionsof the evolution, one of whi
h (
omprising four regions) we have elaborated uponhere. As is typi
al, these intermediate-asymptoti
 
hara
terisations manifest them-selves only over suitable windows in time and are a

ordingly di�
ult to 
apturenumeri
ally; the agreement that we have obtained between numeri
s and asymp-toti
s is therefore en
ouraging.A
knowledgementsPE and AM are supported by Proje
t C10 of the Matheon DFG resear
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h improved the organisation of the paper.A Computing the full and outer solutionsHere we outline the method used to 
ompute solutions to the full strong slip lubri-
ation model problem (2.1), in a front-moving frame where z = x − ṡ, i.e., (2.4).This is very similar to that used for the outer problem, (3.7)�(3.8), in a front-movingframe; where the outer solution 
omputation di�ers, we point this out below.We de�ne a mesh zi with N − 1 interior points, so 0 = z1 < z2 < . . . < zN <
zN+1 = Ze. Here Ze is some large number, whi
h may be in
reased as the pro�lebroadens. Approximations ĥi and ûi to the true solution at ea
h mesh point arede�ned, together with an additional unknown ṡ. These are 2N + 3 unknowns; thene
essary equations are obtained as follows:

• Dis
retise the 
ontinuity equation (2.4a) at grid points i = 2 . . . N and time
t = tk+1 , using a ba
kward di�eren
e for ∂h/∂t and 
entred di�eren
es in
x. (N − 1 equations.) ĥ0 = 0 is �xed. For the outer problem, ĥ0 is free,but di�eren
ing (3.7a) at the leftmost grid point (i = 1) gives one additionalequation. For the outer problem, forward di�eren
es in X are used, as U isnegative everywhere. 20



• Dis
retise (2.4b) or (3.7b) at grid points i = 2 . . . N , using 
entred di�eren
esin x. For hxxx, average estimates at zi±1/2. (N − 1 equations; solving these,imposing û1 = 0 and ûN+1 = −ṡ, gives û2 . . . ûN .) For the outer problem, anestimate of hxxx is not needed.
• Impose ĥN+1 = 1 and ûN+1 = −ṡ (for the outer problem, ûN+1 = −Ṡ) at theright-hand boundary zN+1.
• Impose ĥ1 = 0, dh/dx = λ and û1 = 0 at the 
onta
t line, z1. For the outerproblem, impose û1 = 0, and 4

(

h ∂U
∂X

)

= −λ2/2 at z1 instead.This yields 2N+1 (2N+3 for the outer problem) nonlinear equations. Noti
e that H0is still free in the outer problem. Of these equations, (N−1) of the velo
ity unknownsfrom the interior grid points may be eliminated, and the remaining equations aresolved using Matlab's FSOLVE [10℄.Mass 
onservation was 
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