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AbstratWhen a thin visous liquid �lm dewets, it typially forms a rim whihspreads outwards, leaving behind a growing dry region. We onsider thedewetting behaviour of a �lm, when there is strong slip at a liquid-substrateinterfae. The �lm an be modelled by two oupled partial di�erential equa-tions (PDEs) desribing the �lm thikness and veloity. Using asymptotimethods, we desribe the struture of the rim as it evolves in time, and therate of dewetting, in the limit of large slip lengths. An inner region emerges,losest to the dewetted region, where surfae tension is important; in an outerregion, three subregions develop. This asymptoti desription is omparedwith numerial solutions of the full system of PDEs.1 IntrodutionReently the dewetting behaviour of a thin liquid �lm on a solid substrate hasreeived onsiderable attention. Suh behaviour is important for the preparation ofpolymer �lms, for miro�uidi devies, and for other appliations.Experiments by Reiter and others [1, 13, 14℄ involving dewetting �lms of polystyreneon polydimethylsiloxane-oated silion show an asymmetri rim shape, and dewet-ting at various rates. E�orts to explain these observations have foussed on non-Newtonian rheology, suh as visoelastiity, and on slip at the liquid-solid interfae.For example, Vilmin and Raphaël [15℄ invoke visoelastiity and �residual stresses�to obtain models whih predit slower-than-linear dewetting rates. More reentexperiments [2, 3℄ involving varying the surfae at the substrate-liquid interfae,without hanging the wetting properties. Fetzer and o-workers observed di�erent�lm pro�les: with one substrate there was a very asymmetri ridge (in partiu-lar at early stages of the rim retration) deaying slowly and monotonially on itsouter part onto the undisturbed thikness, while for another substrate, the ridgewas more symmetri and the deay beame osillatory as the ridge grew. Fetzer etal. [2℄ explained the hange in ridge struture using a lubriation model (the strongslip lubriation model of Münh et al. [12℄) with di�erent amounts of slip at thisinterfae for the two �lms. The ourene of slip, or apparent slip, in miro�uidiswas surveyed by Lauga et al. [9℄.Here we study the behaviour of a mathematial model for the �lm whih assumesstrong slip at the substrate. The model desribes the �lm after rupture has ourred,as the �lm retrats and the ontat line reedes outwards. Münh et al. [12℄ deriveda family of model equations governing the �lm behaviour as the e�ets of slip are1



x

h

λ
s(t)

Undisturbed filmDewetted

Retracting rim

region

Figure 1: Shemati of the dewetting rim.inreased. The model is restrited to one spae dimension. (The issue of transverseinstability on a ridge with slippage has been onsidered by Mü and o-workers [7, 11℄and referenes therein.) The present work is onerned with the strong slip limit,for whih the ondition imposed at the substrate is not that the veloity is zerothere, but rather a relation involving the veloity gradient. An idential model forthe strong slip limit, inluding inertial e�ets, was obtained by Flitton [4℄ (who alsoinluded gravity) and by Kargupta et al. [5℄. The orresponding regime was alsoidenti�ed in a more ompliated (porovisous) ontext by King and Oliver [8℄. (Notethat a term −Σs
z is omitted from the right-hand side of (A.9) there.)Previous numerial simulations by Münh et al. [12℄ have revealed some features ofthe behaviour of solutions for this model, based on a large but �nite slip parameter,

β, whih suggest the behaviour expeted when ε = 1/β → 0. Figure 1 shows atypial �lm pro�le during dewetting.This paper begins by presenting the equations desribing the evolution of the �lm(Setion 2). We then argue in Setion 3 that the �lm develops into an inner andan outer region, and state the inner and outer problems in Setions 3.1 and 3.2.The outer region is somewhat ompliated, and at large times an be subdividedinto three subregions. This is explored in Setion 4. We are able to on�rm thisasymptoti struture through numerial simulations of the original system of PDEs(Setion 4.3).At su�iently large times the above asymptoti desription fails, beause the innerregion �gobbles up� one of the subregions of the outer. This leads to a new asymptotistruture (Setion 5). Further hanges in struture our at still larger times. Thesewill form the subjet of a follow-on paper urrently in preparation.2 Thin-�lm modelHere we only brie�y summarise the model, as a detailed derivation has previouslyappeared [12℄. The �lm thikness may vary with position x and time t, and is2



denoted by h(x, t). Its evolution is governed by the Navier-Stokes equations formomentum and mass onservation of a visous inompressible liquid, and the stress-strain relationship is assumed to be Newtonian. At the impermeable substrate, theNavier slip boundary ondition,
u = B

∂u

∂yis imposed for the omponent of veloity tangential to the substrate, u, while thenormal omponent is set to zero. The quantity B is a slip length, with B = 0representing the no-slip ase, while B → ∞ represents the limit of perfet slip,where the substrate has no retarding e�et on the �ow of liquid in the �lm. Thefree surfae is assumed to be free of tangential stresses, while normal stresses arisefrom apillarity.The model is based on the lubriation approximation, whih involves expansion ina parameter orresponding to the sale of the free surfae slope H/L, (where Hand L are typial sales for the �lm thikness and distane along the substrate,respetively) whih is assumed to be small. Negleting inertia terms, we arrive atthe strong-slip model proposed by Münh et al. [12℄, Flitton [4℄ and Kargupta et al.[5℄,
∂h

∂t
+

∂

∂x
(uh) = 0 , (2.1a)

4
∂

∂x

(

h
∂u

∂x

)

+ h
∂3h

∂x3
= εu . (2.1b)Here we have introdued ε = 1/β where β = (HB)/L2 is the dimensionless slipparameter. We onsider the strong-slip limit, that is 0 < ε ≪ 1. (It is also possibleto add a term δ̃h2hxxx to (2.1b), where δ̃ = (H/L)2ε, to give a �uniformly valid�equation whih inludes the weak slip limit, in whih ε is not small.)We are onerned with the situation in whih the �lm has already nuleated adewetted region, so that the free surfae meets the substrate at a �ontat line�,and denote its position by x = s(t). Here s(t) is an unknown funtion whih is tobe determined. Equations 2.1 represent dewetting in one dimension, suh as whennuleation has ourred along a straight edge, as in experiments by Reiter et al. [14℄.For irular dewetting from a hole, they should also be appropriate at su�ientlylarge dewetted radii. Appropriate boundary onditions for (2.1) at the ontat lineare

h = 0,
∂h

∂x
= λ, h

∂u

∂x
= 0, and u = ṡ(t). (2.2)These represent a requirement for the �lm to meet the ontat line with a ontatangle given by arctanλ. The third ondition orresponds simply to there being nosoure or sink of momentum at the ontat line, other than the net surfae tensionfore at the triple point. The fourth states that the liquid is at rest in a framemoving with the ontat line. We remark that the ondition u = ṡ(t) in fat readilyfollows from the other onditions. The issue of appropriate boundary onditions3



for thin �lms with moving ontat lines is onsidered by King and Bowen [6℄ andFlitton [4℄.In the undisturbed region we impose
h → 1, u → 0 as x → ∞. (2.3)Equations (2.2) and (2.3) provide a total of six boundary onditions.In the following setions, we will onsider the governing equations mostly in a frameof referene that moves with the retrating ridge, that is, in the positive x diretion.It is therefore onvenient to transform the above equations to a frame of referenehaving its origin �xed at the ontat line, by letting x = s(t)+xc and u = ṡ(t)+uc.This yields, after dropping the subsript �c�,

∂h

∂t
+

∂

∂x
(uh) = 0 , (2.4a)

4
∂

∂x

(

h
∂u

∂x

)

+ h
∂3h

∂x3
= ε(ṡ + u) . (2.4b)and the boundary onditions

h = 0,
∂h

∂x
= λ, h

∂u

∂x
= 0, u = 0 at x = 0, (2.5a)

h → 1, u → −ṡ as x → ∞. (2.5b)As initial data for (2.1), we set
s(0) = 0 and h(x, 0) = hinit(x) for x ≥ 0, (2.6)where hinit(x) is smooth and positive for x > 0 and satis�es the boundary onditionsfor h in (2.5). Furthermore, we suppose that hinit(x) is a funtion whih makes thetransition from h = 0 at the ontat line to h ≈ 1 over a region of width O(1). Forexample, in some of our numerial simulations we have used the funtion

hinit(x) =

{

1 − (1 − λ
p
x)p 0 < x < p

λ

1 x > p
λ

(2.7)for small values of p, along with other similar initial onditions. The long-timebehaviour was not found to depend signi�antly on the details of hinit. No initialondition is needed for u as it may be determined from (2.1b) if h is known.For future referene, we reord here the following mass onservation relation whihis obtained by integrating (2.4a) by parts and using the boundary and initial on-ditions,
∫

∞

0

[h(x, t) − hinit(x)] dx = s(t). (2.8)
4
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Figure 2: Our analysis desribes the �lm as an inner region and an outer region.3 Ridge dynamis and pro�le for t = O(1), ε → 0In the limit ε → 0 with t = O(1) the asymptoti struture omprises two regions.These are an inner region, lose to the ontat line, and an outer region (Figure 2).These are onsidered in turn in the following two setions.3.1 Inner regionIt turns out that in (2.4)�(2.5), the spatial variable x as well as h and u are alreadysaled appropriately for the inner region. Assuming that εṡ ≪ 1 for t �xed and
ε → 0 (the exat behavior for s(t) = s(t; ε) will be determined in the disussion ofthe outer region), and expanding h = h0 +O

(

ε1/2
) and u = u0 +O

(

ε1/2
) in powersof ε1/2, the right hand side of (2.4b) drops out to leading order. The remainingequation an be integrated one with respet to x, leading to:

∂h0

∂t
+

∂

∂x
(u0h0) = 0 , (3.1a)

4h0
∂u0

∂x
+ h0

∂2h0

∂x2
− 1

2

(

∂h0

∂x

)2

= −1

2
λ2. (3.1b)These evolution equations are supplemented by initial onditions and boundaryonditions at x = 0,

h0(x, 0) = hinit(x) (3.2)
h0 = 0,

∂h0

∂x
= λ, h0

∂u0

∂x
= 0, and u0 = 0 at x = 0 (3.3)with (3.3) being used to �x the onstant of integration in (2.5a)1.1We also require that h0h0xx → 0 as x → 0, i.e., that h0xx be well-behaved near x = 0; sine

h0 ∼ λx here, that is indeed the ase. 5



For later mathing to the outer solution, we need the behaviour of h0 and u0 forlarge x. Probing (3.1) with power law behaviour of the form h0 ∼ H∞(t)xnh and
u0 ∼ U∞(t)xnu , we �nd that nh = 0 and nu = 1, and hene the far-�eld behaviourof h0 and u0 is

h0 ∼ H∞(t) , u0 ∼ U∞(t)x as x → ∞, (3.4a)This form is obtained by seeking self-similar pro�les whih have h0 bounded andnonzero for large x. We must therefore have H∞(t) and U∞(t) satisfy
dH∞

dt
+ U∞H∞ = 0 , 4H∞U∞ = −1

2
λ2.The behaviour of hinit at x → ∞ provides us with the initial value H∞(0) = 1, henethe far-�eld behaviour of h0 and u0 is

H∞(t) = 1 +
λ2

8
t, (3.4b)

U∞(t) = − (λ2/8)

1 + (λ2/8)t
. (3.4)The inner problem may be resaled to remove the parameter λ. This is ahievedusing the saling

h = λ2h′ u = λu′ x = λx′ S(t; ε) = λS ′(t; ε)so that the above equations (3.1) and the boundary onditions at x = 0 beomeindependent of λ, with the slope boundary ondition there beoming ∂h/∂x = 1.Thus we an onsider the ase λ = 1 without loss of generality.3.2 Outer regionAway from the ontat line, we antiipate that the e�ets of surfae tension areunimportant, while the e�ets of the shear stress at the substrate due to �niteslip, i.e., the terms on the right hand side of (2.4b), enter the dominant balane.Aordingly we de�ne outer variables X and U as follows:
x = ε−1/2X , h = H , u = ε−1/2U , (3.5)and also

s(t; ε) = ε−1/2S(t; ε), (3.6)where we assume that U , h and S are O(1) for ε → 0 with t and X �xed. We expand
H = H0 + o(1), U = U0 + o(1). The funtion S = S0(t) + o(1) will be obtained aspart of the solution of this outer problem. To leading order, (2.4) beomes

∂H0

∂t
+

∂

∂X
(U0H0) = 0 , (3.7a)6



4
∂

∂X

(

H0
∂U0

∂X

)

= Ṡ0 + U0 . (3.7b)for X > 0.This is subjet to onditions at X = S0 whih are derived from mathing to theinner solution. Rewriting (3.4a) in outer variables,
H0 ∼ H∞(t) , U0 ∼ V∞(t)X as X → 0,one obtains the boundary onditions

4H0
∂U0

∂X
= −1

2
λ2 , U0 = 0 (3.8a)at X = 0. The outer problem also needs the far-�eld boundary onditions derivedfrom (2.5b), namely

H0 → 1 , U0 → −Ṡ0 as X → ∞. (3.8b)Initial onditions for H0 follow by onsidering the limit of hinit in outer variables,and turn out to be trivial, while the initial value for S0 is just that for s given in(2.6). Summarizing both onditions, we get:
S0(0) = 0, H0(X, 0) = 1 for X ≥ 0. (3.9)Integrating (3.7a) by parts yields the onstraint

∫

∞

0

(H0 − 1) dX = S0, (3.10)whih represents onservation of mass. It ould have also been obtained diretlyfrom (2.8).3.3 Composite solution and numerial validationEquipped with inner and outer solutions, a multipliative omposite solution, uni-formly valid in both the inner and outer regions, an be onstruted by de�ning
h(c)(x, t) = h0(x, t)H0(ε

1/2x, t)/(1 + λ2t/8), (3.11a)
u(c)(x, t) = −u0(x, t)U0(ε

1/2x, t)/(x/(8/λ2 + t)), (3.11b)where the denominators are the �ommon parts� given by Equation (3.4).Next we ompare the full lubriation model solutions to numerial solutions for theinner and outer problems, and to a omposite expansion. Throughout, we �x λ = 1.Details of the Matlab routines used are given in the appendix.Numerial solutions to the outer problem, (3.7)�(3.9), have been produed. Therewere 1000 grid points, with a omputational domain 0 < X < 50. Typial thiknesspro�les are shown in Figure 3. 7
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Figure 3: Solutions of the outer problem (3.7)�(3.8) at t = 5, 100, 103, 104 and 105.Similarly, numerial solutions to the inner problem, (3.1)�(3.3) and ∂h/∂x = 0 at
x = 20, starting from (2.7) with p = 2 have been omputed. These used 200 gridpoints, with 0 < x < 20. Figure 4 shows pro�les at various times, together with theinitial ondition used. It an be seen that the rim height inreases approximatelylinearly with time, while the inner part of the rim grows in a way whih suggests aself-similar form. This idea will be developed in Setion 4.1.Finally, solutions to the full strong slip lubriation problem (2.4)�(2.5) have alsobeen omputed, also using initial ondition (2.7). Here a muh longer omputationaldomain, 0 < x < 200, is neessary, requiring 2000 grid points. In Figure 5 weompare the solution at t = 5, for ε = 0.002, to the inner and outer solutions. Theomposite solution (3.11), onstruted from the numerial data for the inner andouter solutions is also shown. It is seen to be a good approximation to the fullsolution.4 Large-time behaviour: t → ∞While the derivations in the previous setion were arried out for t = O(1), we anhope that the basi distintion of the inner and outer region and that the leadingorder asymptotis remain valid even for large, but not too large, t. We will thereforeinvestigate the large-time limit

t = τ/δ, τ �xed, δ → 0, (4.1)separately for the leading order inner and outer problems. As one might expet forinitial boundary value problems, the long-time inner and outer solutions approaha form that an be desribed by one or (in the ase of the outer problem) severalsimple solutions that are largely independent of the initial data. Inspetion of thesubregions of the outer problem reveals that the result in fat approximates the fullproblem (2.4)�(2.6) as long as δ ≫ ε1/2(log(1/ε))1/2. For δ on the order of this lower8
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bound, one of the subregions of the outer region merges with the inner region (seeSetion 5).4.1 Inner problemFirst, note that (3.4) implies that u0 ∼ U∞x ∼ −x/t as t → ∞. Guided by (3.4),we postulate that at large times the behaviour of the inner problem (3.1) takes theself-similar form
h0 ∼ tη(ξ) = δ−1τη(ξ) , u0 ∼ ν(ξ)where ξ = x/t. Equations (3.1) then beome

η − ξηξ + (νη)ξ = 0 (4.2a)
4ηνξ + ηηξξ −

1

2
(ηξ)

2 = −1

2
λ2 . (4.2b)These are subjet to the boundary onditions (obtained from (3.3)) at ξ = 0,

η(0) = 0 , ηξ(0) = λ , ηνξ(0) = 0. (4.3)We require that as ξ → ∞ (a) η → λ2/8, and (b) ν ∼ −ξ, in agreement with (3.4).Numerial solutions to this problem have been obtained using a shooting method.By obtaining an expression for ηνξ from (4.2b), and substituting this into (4.2a), anexpression for ν may be found:
ν = ξ − 1

4ηξ

(

4η +
η2

ξ

2
− ηηξξ −

λ2

2

) (4.4)The veloity blows up where η = 0, exept for the speial ase η = λξ, whih yields
ν = 0. Di�erentiating to obtain νξ, ν may be eliminated from (4.2b), yielding athird order autonomous ODE for η:

ηξξξ =
λ2

2

(

ηξξ

ηηξ

− ηξ

η2

)

− 3

2

ηξηξξ

η
+

η2
ξξ

ηξ

+
1

2

η3
ξ

η2
− 4

ηξξ

ηξ

(4.5)Note that λ an be eliminated by resaling.Given the boundary onditions (4.3), ξ = 0 is a singular point. We obtain solutionsto (4.5) by integrating from ξ = ξs for some small ξs, where we assume that thesolution loally has the form
η(ξ) = λξ + c1ξ

2 + . . . .Using a shooting method, c1 is varied until ηξ = 0 is satis�ed at some point ξesu�iently far from the rim. Taking ξs = 10−4 and ξe = 5 is su�ient to obtain well-onverged pro�les. Figure 6 shows the resulting pro�les of η(ξ) and ν(ξ), the latterbeing found from η(ξ) using the relation (4.4) above. The �lm thikness approahes10
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∆0Figure 7: At long times (t → ∞), the outer region divides into three subregions.1/8 at large ξ, while ν(ξ) ∼ 0.1977 − ξ, as expeted. For these parameters, therequired solution has c1 = −2.796. The same solution has been reovered usinga boundary value problem solver [10℄, by imposing η(ξ1) = 0, ηξ(ξ1) = 1, and
ηξ(ξ2) = 0, and then allowing ξ1 → 0 and ξ2 → ∞.As seen in Figure 4, the �lm thikness in the inner region rapidly approahes thesimilarity solution, for initial onditions similar to (2.7).4.2 Outer problemNow we examine the outer region, where a more omplex struture arises. Westudy the outer region in three distint subregions, as shown in Figure 7. Theasymptoti behaviour of S0(t) remains to be determined from the outer problem,whih subdivides into these subregions in the limit t → ∞. Closest to the positionof the ontat line, we �nd a solution in a frame moving with the ontat line speed,11



Ṡ0, denoted the outer left (O1) solution. Most distant from the ontat line, atravelling wave solution may be found, whih moves with a speed ∆̇0 relative to theontat line. This is denoted the outer right (O3) solution. An expression for ∆0(t),whih measures the growing width of the ridge, will be obtained below. Münh ando-workers [2, 12℄ have shown that the outermost part of the rim is non-osillatoryfor small ε (large β) if Ṡ exeeds an ε-dependent threshold. Finally, between thesetwo �inner� subregions there lies one in whih a WKBJ ansatz applies. We refer tothis as the O2 subregion. Eah of these subregions is desribed in more detail below.In the derivations below, we will resale S0 and ∆0 aording to
S0 =

1

δµ
S∗, ∆0 = µ∆∗, (4.6)with

µ = log1/2(1/δ), (4.7)and assume that S∗ and ∆∗ are O(1) for τ �xed and δ → 0+. As µ only inreasesslowly as δ → 0, this implies a near-linear dependene of S0 on t and a very slowgrowth of ∆0(t) with t. The justi�ation for these assumptions follows a posteriorifrom the fat that these salings are those for whih the mathing of the threesubregions sueeds. For a more systemati approah, one ould start with a moregeneral ansatz for the saling fators in (4.6) and then derive the form hosen abovein the ourse of the mathing; the urrent approah bene�ts from the onisenesswith whih it an be presented.4.2.1 Outer right subregion O3We now onsider a �right inner� subregion (most distant from the ontat line), inwhih the pro�le eventually onnets with the unperturbed �lm, where a travellingwave ansatz is valid. Sine we require h → 1 at in�nity, a similarity solution for thissubregion is unlikely. We introdue a seond ontat line at X = ∆0(t) where the�lm thikness beomes O(1). Thus ∆0 serves as a measure of the width of the rim.(Contrast (3.4), in whih H∞ blows up as t → ∞.) In this subregion, lose to ∆0,we de�ne a new oordinate X∗

3 and a new veloity U∗

3 by
X = ∆0 + X∗

3 and U0 = ∆̇0 +
1

µ
U∗

3 , (4.8)respetively. Indies 1, 2 and 3 refer to the subregion (in this ase, O3) to whih avariable pertains. After introduing the slow time variable τ and using (4.6), (3.7)reads:
δ
∂H0

∂τ
+

1

µ

∂

∂X∗
3

(U∗

3 H0) = 0, (4.9a)
4

∂

∂X∗

3

(

H0
∂U∗

3

∂X∗

3

)

= S∗

τ + δµ∆∗

τ + U∗

3 , (4.9b)12



and the boundary onditions (3.8b) beome
H0 → 1 , U∗

3 → − (S∗

τ + µδ∆∗

τ ) as X∗

3 → ∞. (4.10)After allowing δ → 0, so that δ(∂H0/∂τ) and µδ∆∗

τ may be dropped to leading orderfrom (4.9)�(4.10), (4.9a) may be integrated in X∗

3 , yielding
U∗

3 H0 = −S∗

τ , (4.11)after using the boundary onditions (4.10). (Here we make no e�ort to introdueadditional indies for the solution of the leading order problem for (4.9)�(4.10).)Introduing σ(X∗

3 ) = log H0(X
∗

3 ), the above equation beomes
U∗

3 = −S∗

τ e−σ. (4.12)Eliminating U∗

3 from (4.9b), multiplying by dσ/dX∗

3 , and integrating results in the�rst-order ODE
2

(

dσ

dX∗

3

)2

= σ + e−σ − 1 (4.13)whih an be redued to a quadrature, with the solution satisfying
σ → 0 as X∗

3 → +∞. (4.14)This O3 solution is shown in Figure 9. This solution blows up as X∗

3 → −∞, asexpeted if it is to math into a distint subregion on the left, with
σ ∼ 1

8
(−X∗

3 )2 + 1 as X∗

3 → −∞, (4.15)up to translations in X∗

3 whih we absorb into the de�nition of ∆0. The quantity
∆0 will be �xed by mathing to O2.However, as it stands, this solution annot math to the inner solution (3.4b)�(3.4)as it is a travelling wave, with an amplitude whih does not inrease with time.Therefore at least one intermediate subregion is needed for mathing.4.2.2 Outer left subregion, O1Another �inner� subregion (the �outer left� subregion) arises su�iently lose to
X = S0. Here we swith to a moving frame with its origin at S0(t), de�ning innervariables X∗

1 and U∗

1 . We use (4.1), (4.6) and the following salings:
X =

1

µ
X∗

1 , H0 =
1

δ
h∗, U0 =

δ

µ
U∗

1 , (4.16)where the starred quantities are all assumed to be O(1). Resaling (3.7) gives
∂h∗

∂τ
+

∂

∂X∗

1

(U∗

1 h∗) = 0 , (4.17a)
4µ

∂

∂X∗
1

(

h∗
∂U∗

1

∂X∗
1

)

=
δ

µ
U∗

1 +
1

µ
S∗

τ . (4.17b)13



The boundary onditions (3.8a) that arose from mathing the inner and outerregions in Setion 3 beome
4h∗

∂U∗

1

∂X∗

1

= −1

2
λ2 , U∗

1 = 0 . (4.18)To leading order, the right-hand side of (4.17b) drops out, allowing the resultingequation to be integrated with respet to X∗

1 to give
4h∗

∂U∗

1

∂X∗

1

= −1

2
λ2 . (4.19)We use a self-similar ansatz, writing

h∗ ∼ τĤ(X∗

1 ) , U∗

1 ∼ 1

τ
V̂ (X∗

1 ) (4.20)and obtain
Ĥ +

(

V̂ Ĥ
)

X∗

1

= 0 ,

4ĤV̂X∗

1
= −1

2
λ2 .The solution of these, subjet to the boundary ondition V̂ = 0 at X∗

1 = 0 thatfollows from (4.18), is
Ĥ =

1

8
λ2e−AX∗

1 , V̂ = − 1

A

(

eAX∗

1 − 1
)

, (4.21)whih mathes with the inner solution (3.4) in the limit X∗

1 → 0 (exept for theonstant term in (3.4b), whih beomes insigni�ant at large t). The new parameter
A is �xed by the mass onservation requirement

V̂ Ĥ → −S∗

τ as X∗

1 → ∞ . (4.22)(A ould also be obtained from the mathing proess to follow.) Thus, if A > 0, sothat exp(−AX∗

1 ) → 0, then
A =

λ2

8S∗
τ

; (4.23)this will prove to depend on t only logarithmially.4.2.3 Outer subregion O2Finally, to join the two �inner� subregions, we �nd a solution in the subregion be-tween them. Here we adopt a di�erent saling, namely
X = µX∗

2 , U0 =
1

µ
U∗

2 , (4.24)14



while H0 is not resaled. Now (3.7) reads
δ
∂H0

∂τ
+

1

µ2

∂

∂X∗

2

(U∗

2 H0) = 0 , (4.25a)
4

µ3

∂

∂X∗

2

(

H0
∂U∗

2

∂X∗

2

)

=
1

µ
U∗

2 +
1

µ
S∗

τ . (4.25b)In this subregion, we seek a WKBJ-style approximation via the ansatz
H0 = a1 exp

(

µ2

∞
∑

n=0

µ−2nGn(X∗

2 )

)

,

U∗

2 = − exp

(

−µ2

∞
∑

n=0

µ−2nGn(X∗

2 )

)

,whih turns out to be appropriate even though (4.25) is nonlinear. Inserting thisansatz into (4.25) we �nd that the hoie of dominant terms is between the left-hand side of (4.25b) and the seond right-hand side term; the term in U∗

2 drops outtogether with the time derivative in (4.25a). Determining the �rst two terms of theexpansion we obtain
H0 = a1 exp

(

µ2S∗

τ

8a1

X∗

2
2 − a2

a1

X∗

2 − a3

a1

) (4.27a)
U∗

2 = − exp

(

−µ2S∗

τ

8a1

X∗

2
2 +

a2

a1

X∗

2 +
a3

a1

) (4.27b)The onstants a1, a2 and a3 must be found by mathing.4.2.4 MathingWe �rst math O1 and O2, and then math O2 and O3. The leading terms in theexpansion of the O2 solution as X∗

2 → 0 are
H0 ∼ a1 exp

(

−a3

a1
− a2

a1
X∗

2

)

,

U∗

2 ∼ − exp

(

a3

a1

+
a2

a1

X∗

2

)

.The expansion of the O1 solution as X∗

1 → ∞ is, when rewritten in O2 variables,
h∗(µ2X∗

2 ) =
λ2τ

8
exp

(

−Aµ2X∗

2

)

,

U∗

1 (µ2X∗

2 ) ∼ − 1

Aτ
exp

(

Aµ2X∗

2

)

.Mathing O2 with O1 therefore requires
a1 =

λ2

8A
,

a2

a1
= µ2A ,

a3

a1
= log

(

δ

Aτ

)

,15



and so in the O2 subregion we have from (4.27), and using (4.23),
H0 =

λ2 τ

8δ
exp

(

µ2X∗

2
2

8
− µ2λ2

8S∗
τ

X∗

2

)

, (4.28a)
U∗

2 = −8S∗

τ δ

λ2 τ
exp

(

−µ2X∗

2
2

8
+

µ2λ2

8S∗
τ

X∗

2

)

. (4.28b)It remains to math (4.28) with the solution from the O3 subregion. From (4.8),(4.6), and (4.24) we obtain
X∗

3 = µ(X∗

2 − ∆∗),whih we insert into (4.15) to express in O2 variables the X∗

3 → −∞ limit of theO3 solution for H0. We obtain
H0 ∼ exp

(

µ2

8
(X∗

2 − ∆∗)2 + 1

)

.Comparison of the above with (4.28a) immediately implies
∆∗ =

λ2

2S∗
τ

, (4.29)and
λ2 τ

8δ
= exp

(

µ2(∆∗)2

8
+ 1

)

, (4.30)to math H . Mathing U∗

2 with U∗

1 yields the same onditions as equations (4.29)and (4.30).Inserting (4.29) into (4.30) and solving for S∗

τ yields
S∗

τ =
µλ2

4
√

2

(

log

(

λ2τ

8δ

)

− 1

)−1/2

. (4.31)In terms of the variables S0, ∆0 and t, the expressions (4.29) and (4.31) beome
Ṡ0 =

λ2

4
√

2

(

log(λ2t/8) − 1
)−1/2 and ∆0 =

λ2

2Ṡ0

, (4.32)for t → ∞. The expression for Ṡ0 is not integrable diretly but sine Ṡ0 ∼ log−1/2 tit follows that
S0 ∼

λ2t

4
√

2 log1/2 t
and ∆0 ∼ 2

√
2 log1/2 t . (4.33)Thus, as is to be expeted, the dewetting rate inreases with the ontat angle λ;the manner in whih this rate is seleted by the asymptotis is somewhat subtle.16



4.3 Composite solution and numerial veri�ationWe �rst ompare the solutions for the subregions with numerial simulations forthe outer solution H0(x, t) of (3.7)�(3.9), obtaining good agreement as t → ∞.Numerial simulations for the outer problem were arried out to large times. Thespeed of the ontat line Ṡ0 obtained from the outer solution is ompared to theasymptoti expression (4.32) in Figure 8 (line labelled �Outer�). At relatively largetimes, the outer solution demonstrates a dewetting rate lose to that predited fromasymptoti mathing. Pro�les of the outer solution are shown at various times inFigure 3, revealing the inreasingly-urved struture whih develops at large times,as expeted from the theory of Setion 4.2. Pro�les at t = 100 and t = 10000 areshown again in Figure 9, together with the veloity, where they are ompared tothe O1 solution and the O3 travelling wave solution. The O3 solution is a redibleapproximation to the outer pro�le at these times for large X, but as expeted itsauray diminishes for small X. Similarly, the O1 solution approximates the outerpro�le adequately for small X. To see the separation of the outer solution desribedin Setion 4.2 takes quite long times, of order 1/δ ∼ exp(µ2). However, in long-time simulations of the outer problem this separation does appear to be visible. (Inpreparing Figure 9, the value of Ṡ used is taken from the outer simulation, so thatthis is not a ompletely independent hek of the results.) In priniple, a ompositeapproximation to the outer solution ould be onstruted from the asymptoti resultsfor the three subregions. However we do not attempt to do this here.We also ompare Ṡ obtained from solutions of the full lubriation model (2.4)�(2.6) with the outer solution. Figure 8 shows Ṡ from simulations for several valuesof ε, on�rming that as ε is redued, the dewetting rate of the outer solution isapproahed. However at larger times, the full lubriation model dewetting ratesdeviate due to the presene of the inner region. This transition to a new time regimeis disussed further in the following setion. Evidently, at large times (4.32) onlyapproximates the dewetting rates obtained from the full model well for ε even smallerthan shown here. For solutions of the full lubriation model to learly display theseparation of the outer region into subregions, this separation must happen beforethe expanding inner region overtakes the shrinking O1 one and we arrive in Phase 2,disussed below. Finally, we note that a omposite of the inner and outer solutionsmay be onstruted using Equations (3.11) just as in Setion 3.5 The next time sale, t = O
(

ε−1/2 log(1/ε)−1/2
)In the above, the inner region length sale is x = O(t), whereas the O1 subregionhas x = O

(

ε−1/2/ log1/2 t
). Thus we expet the next time sale to have

t = O
(

ε−1/2/ log1/2(1/ε)
)
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ε enountered in previous numerial studies [12℄, smaller values of ε are used, andthe time required to enter the seond phase inreases only slowly with ε, reahing
t2 = 290 for ε = 8.3× 10−7. Thus study of the later time regimes will be importantfor understanding of physial experiments, whih ontinue to even larger times.6 SummaryWe have shown how the evolution of a dewetting rim with strong slip features aompliated struture, whih evolves to form an inner and an outer region. Only inthe inner region is surfae tension of signi�ane. We found the (su�iently-) long-time limit of the inner region is desribed by a self-similar pro�le. We omputed theevolution of the outer region, and demonstrated that, at su�iently-long times, a19



three-fold struture emerges. At longer times, the growing inner region will modifythe spatial struture desribed here. A detailed disussion of this proess will be thesubjet of future work.The model disussed here has been limited to one-dimensional dewetting. The issueof transverse instability (or azimuthal instability for irular holes) for the strongslip model would be of interest in the future. The axisymmetri ase should also beinvestigated for possible di�erenes in behaviour at relatively early times.We onlude by remarking that this evolution through a variety of distint timesalesresults in the presene of a number of distint intermediate-asymptoti desriptionsof the evolution, one of whih (omprising four regions) we have elaborated uponhere. As is typial, these intermediate-asymptoti haraterisations manifest them-selves only over suitable windows in time and are aordingly di�ult to apturenumerially; the agreement that we have obtained between numeris and asymp-totis is therefore enouraging.AknowledgementsPE and AM are supported by Projet C10 of the Matheon DFG researh entre, and,for AM, a DFG Heisenberg Fellowship, grant number MU 1626/3-1. JK thanks theWeierstrass Institute for Applied Analysis and Stohastis (WIAS) for hospitalityduring a visit to Berlin while this paper was prepared. We thank an anonymousreferee for suggestions whih improved the organisation of the paper.A Computing the full and outer solutionsHere we outline the method used to ompute solutions to the full strong slip lubri-ation model problem (2.1), in a front-moving frame where z = x − ṡ, i.e., (2.4).This is very similar to that used for the outer problem, (3.7)�(3.8), in a front-movingframe; where the outer solution omputation di�ers, we point this out below.We de�ne a mesh zi with N − 1 interior points, so 0 = z1 < z2 < . . . < zN <
zN+1 = Ze. Here Ze is some large number, whih may be inreased as the pro�lebroadens. Approximations ĥi and ûi to the true solution at eah mesh point arede�ned, together with an additional unknown ṡ. These are 2N + 3 unknowns; theneessary equations are obtained as follows:

• Disretise the ontinuity equation (2.4a) at grid points i = 2 . . . N and time
t = tk+1 , using a bakward di�erene for ∂h/∂t and entred di�erenes in
x. (N − 1 equations.) ĥ0 = 0 is �xed. For the outer problem, ĥ0 is free,but di�erening (3.7a) at the leftmost grid point (i = 1) gives one additionalequation. For the outer problem, forward di�erenes in X are used, as U isnegative everywhere. 20



• Disretise (2.4b) or (3.7b) at grid points i = 2 . . . N , using entred di�erenesin x. For hxxx, average estimates at zi±1/2. (N − 1 equations; solving these,imposing û1 = 0 and ûN+1 = −ṡ, gives û2 . . . ûN .) For the outer problem, anestimate of hxxx is not needed.
• Impose ĥN+1 = 1 and ûN+1 = −ṡ (for the outer problem, ûN+1 = −Ṡ) at theright-hand boundary zN+1.
• Impose ĥ1 = 0, dh/dx = λ and û1 = 0 at the ontat line, z1. For the outerproblem, impose û1 = 0, and 4

(

h ∂U
∂X

)

= −λ2/2 at z1 instead.This yields 2N+1 (2N+3 for the outer problem) nonlinear equations. Notie that H0is still free in the outer problem. Of these equations, (N−1) of the veloity unknownsfrom the interior grid points may be eliminated, and the remaining equations aresolved using Matlab's FSOLVE [10℄.Mass onservation was heked by evaluating both sides of Equation (3.10) and wasfound to be aeptable.Referenes[1℄ P. Damman, N. Baudelet, and G. Reiter. Dewetting near the glass transition:Transition from a apillary fore dominated to a dissipation dominated regime.Phys. Rev. Lett., 91(21):216101, 2003.[2℄ R. Fetzer, K. Jaobs, A. Münh, B. Wagner, and T. P. Witelski. Newslip regimes and the shape of dewetting thin liquid �lms. Phys. Rev. Lett.,95(12):127801, 2005.[3℄ R. Fetzer, M. Rausher, A. Münh, B. Wagner, and K. Jaobs. Slip-ontrolledthin �lm dynamis. Europhys. Lett., 75(4):638�644, 2006.[4℄ J. C. Flitton. Inertia dominated spreading of thin �lms. PhD thesis, Universityof Nottingham, 2001.[5℄ K. Kargupta, A. Sharma, and R. Khanna. Instability, dynamis, and morphol-ogy of thin slipping �lms. Langmuir, 20(1):244�253, 2004.[6℄ J. R. King and M. Bowen. Moving boundary problems and non-uniqueness forthe thin �lm equation. European J. Appl. Math., 12(3):321�356, June 2001.[7℄ J. R. King, A. Münh, and B. Wagner. Linear stability of a ridge. Nonlinearity,2006. To appear.[8℄ J. R. King and J. M. Oliver. Thin-�lm modelling of porovisous free surfae�ows. European J. Appl. Math., 16(4):519�553, August 2005.21



[9℄ E. Lauga, M. P. Brenner, and H. A. Stone. Miro�uidis: The no-slip boundaryondition. arXiv:ond-mat, (0501557), 2005. Aessed on the WWW at http://arxiv.org/abs/ond-mat/0501557. [To appear in �Handbook of ExperimentalFluid Dynamis� edited by Tropea C., Foss J and Yarin A. (Springer, New York)2006, in press℄.[10℄ The MathWorks In., Natik, Massahusetts. MATLAB version 7.0.0.19901(omputer software), 2004.[11℄ A. Münh and B. Wagner. Contat-line instability of dewetting thin �lms.Phys. D, 209:178�190, 2005.[12℄ A. Münh, B. A. Wagner, and T. P. Witelski. Lubriation models with smallto large slip lengths. J. Engrg. Math., 53(3�4):359�383, 2006.[13℄ G. Reiter. Dewetting of highly elasti thin polymer �lms. Phys. Rev. Lett.,87(18):186101, 2001.[14℄ G. Reiter, M. Sferrazza, and P. Damman. Dewetting of thin polymer �lms attemperatures lose to the glass transition. European Phys. J. E, 12:133�138,2003.[15℄ T. Vilmin and E. Raphaël. Dewetting of thin visoelasti polymer �lms onslippery substrates. Europhys. Lett., 72(5):781�787, 2005.

22


