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Abstract

When a thin viscous liquid film dewets, it typically forms a rim which
spreads outwards, leaving behind a growing dry region. We consider the
dewetting behaviour of a film, when there is strong slip at a liquid-substrate
interface. The film can be modelled by two coupled partial differential equa-
tions (PDEs) describing the film thickness and velocity. Using asymptotic
methods, we describe the structure of the rim as it evolves in time, and the
rate of dewetting, in the limit of large slip lengths. An inner region emerges,
closest to the dewetted region, where surface tension is important; in an outer
region, three subregions develop. This asymptotic description is compared
with numerical solutions of the full system of PDEs.

1 Introduction

Recently the dewetting behaviour of a thin liquid film on a solid substrate has
received considerable attention. Such behaviour is important for the preparation of
polymer films, for microfluidic devices, and for other applications.

Experiments by Reiter and others [1, 13, 14] involving dewetting films of polystyrene
on polydimethylsiloxane-coated silicon show an asymmetric rim shape, and dewet-
ting at various rates. Efforts to explain these observations have focussed on non-
Newtonian rheology, such as viscoelasticity, and on slip at the liquid-solid interface.
For example, Vilmin and Raphaél [15] invoke viscoelasticity and “residual stresses”
to obtain models which predict slower-than-linear dewetting rates. More recent
experiments |2, 3| involving varying the surface at the substrate-liquid interface,
without changing the wetting properties. Fetzer and co-workers observed different
film profiles: with one substrate there was a very asymmetric ridge (in particu-
lar at early stages of the rim retraction) decaying slowly and monotonically on its
outer part onto the undisturbed thickness, while for another substrate, the ridge
was more symmetric and the decay became oscillatory as the ridge grew. Fetzer et
al. |2] explained the change in ridge structure using a lubrication model (the strong
slip lubrication model of Miinch et al. [12|) with different amounts of slip at this
interface for the two films. The occurence of slip, or apparent slip, in microfluidics
was surveyed by Lauga et al. [|9].

Here we study the behaviour of a mathematical model for the film which assumes
strong slip at the substrate. The model describes the film after rupture has occurred,
as the film retracts and the contact line recedes outwards. Miinch et al. [12] derived
a family of model equations governing the film behaviour as the effects of slip are
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Figure 1: Schematic of the dewetting rim.

increased. The model is restricted to one space dimension. (The issue of transverse
instability on a ridge with slippage has been considered by Mii and co-workers |7, 11|
and references therein.) The present work is concerned with the strong slip limit,
for which the condition imposed at the substrate is not that the velocity is zero
there, but rather a relation involving the velocity gradient. An identical model for
the strong slip limit, including inertial effects, was obtained by Flitton [4] (who also
included gravity) and by Kargupta et al. |[5|. The corresponding regime was also
identified in a more complicated (poroviscous) context by King and Oliver [8]. (Note
that a term —>? is omitted from the right-hand side of (A.9) there.)

Previous numerical simulations by Miinch et al. [12] have revealed some features of
the behaviour of solutions for this model, based on a large but finite slip parameter,
B3, which suggest the behaviour expected when ¢ = 1/ — 0. Figure 1 shows a
typical film profile during dewetting.

This paper begins by presenting the equations describing the evolution of the film
(Section 2). We then argue in Section 3 that the film develops into an inner and
an outer region, and state the inner and outer problems in Sections 3.1 and 3.2.
The outer region is somewhat complicated, and at large times can be subdivided
into three subregions. This is explored in Section 4. We are able to confirm this
asymptotic structure through numerical simulations of the original system of PDEs
(Section 4.3).

At sufficiently large times the above asymptotic description fails, because the inner
region “gobbles up” one of the subregions of the outer. This leads to a new asymptotic
structure (Section 5). Further changes in structure occur at still larger times. These
will form the subject of a follow-on paper currently in preparation.

2 Thin-film model

Here we only briefly summarise the model, as a detailed derivation has previously
appeared [12]. The film thickness may vary with position x and time ¢, and is



denoted by h(x,t). Its evolution is governed by the Navier-Stokes equations for
momentum and mass conservation of a viscous incompressible liquid, and the stress-
strain relationship is assumed to be Newtonian. At the impermeable substrate, the
Navier slip boundary condition,

is imposed for the component of velocity tangential to the substrate, u, while the
normal component is set to zero. The quantity B is a slip length, with B = 0
representing the no-slip case, while B — oo represents the limit of perfect slip,
where the substrate has no retarding effect on the flow of liquid in the film. The
free surface is assumed to be free of tangential stresses, while normal stresses arise
from capillarity.

The model is based on the lubrication approximation, which involves expansion in
a parameter corresponding to the scale of the free surface slope H/L, (where H
and L are typical scales for the film thickness and distance along the substrate,
respectively) which is assumed to be small. Neglecting inertia terms, we arrive at
the strong-slip model proposed by Miinch et al. |12|, Flitton [4] and Kargupta et al.

151,

oh 0

oy = 2.1

(k) = 0, (2.12)
0 ou Ph

Here we have introduced ¢ = 1/8 where 3 = (HB)/L? is the dimensionless slip
parameter. We consider the strong-slip limit, that is 0 < ¢ < 1. (It is also possible
to add a term 0h2h,y, to (2.1b), where § = (H/L)%, to give a “uniformly valid”
equation which includes the weak slip limit, in which ¢ is not small.)

We are concerned with the situation in which the film has already nucleated a
dewetted region, so that the free surface meets the substrate at a “contact line”,
and denote its position by x = s(t). Here s(t) is an unknown function which is to
be determined. Equations 2.1 represent dewetting in one dimension, such as when
nucleation has occurred along a straight edge, as in experiments by Reiter et al. [14].
For circular dewetting from a hole, they should also be appropriate at sufficiently
large dewetted radii. Appropriate boundary conditions for (2.1) at the contact line

are 5 9
a—z =\, hﬁ_z =0, and u=3t). (2.2)
These represent a requirement for the film to meet the contact line with a contact
angle given by arctan A\. The third condition corresponds simply to there being no
source or sink of momentum at the contact line, other than the net surface tension
force at the triple point. The fourth states that the liquid is at rest in a frame
moving with the contact line. We remark that the condition v = $(¢) in fact readily
follows from the other conditions. The issue of appropriate boundary conditions

h =0,



for thin films with moving contact lines is considered by King and Bowen [6] and
Flitton [4].

In the undisturbed region we impose
h—1 u—0 asx— oo. (2.3)

Equations (2.2) and (2.3) provide a total of six boundary conditions.

In the following sections, we will consider the governing equations mostly in a frame
of reference that moves with the retracting ridge, that is, in the positive = direction.
It is therefore convenient to transform the above equations to a frame of reference
having its origin fixed at the contact line, by letting x = s(t) + z. and u = 5(t) + u...
This yields, after dropping the subscript “c”,

oh 0

E + % (Uh) = O, (2.4&)

0 ([, 0u O*h
4— [ h— h— = &($ : 2.4b
oz ( 81’) * 0z3 #(8+u) (2.4b)

and the boundary conditions
Oh ou

h =0, e A, h@x 0, u=0 atxz=0, (2.5a)
h—1, uw——§ asx— 0. (2.5b)

As initial data for (2.1), we set
s(0)=0 and h(z,0) = hpt(z) foraz >0, (2.6)

where Ayt () is smooth and positive for > 0 and satisfies the boundary conditions
for h in (2.5). Furthermore, we suppose that hi,(z) is a function which makes the
transition from h = 0 at the contact line to A ~ 1 over a region of width O(1). For
example, in some of our numerical simulations we have used the function

1—(1-22)P 0<a<?
O R 21
A

for small values of p, along with other similar initial conditions. The long-time
behaviour was not found to depend significantly on the details of hi,;;. No initial
condition is needed for u as it may be determined from (2.1b) if A is known.

For future reference, we record here the following mass conservation relation which
is obtained by integrating (2.4a) by parts and using the boundary and initial con-
ditions,

/000 [h(z,t) — hinit(2)] dz = s(t). (2.8)
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Figure 2: Our analysis describes the film as an inner region and an outer region.

3 Ridge dynamics and profile for t = O(1), ¢ — 0

In the limit ¢ — 0 with ¢t = O(1) the asymptotic structure comprises two regions.
These are an inner region, close to the contact line, and an outer region (Figure 2).
These are considered in turn in the following two sections.

3.1 Inner region

It turns out that in (2.4) (2.5), the spatial variable x as well as h and u are already
scaled appropriately for the inner region. Assuming that s < 1 for ¢ fixed and
e — 0 (the exact behavior for s(t) = s(;¢) will be determined in the discussion of
the outer region), and expanding h = hg + O(c/?) and u = uy + O(e'/?) in powers
of €!/2, the right hand side of (2.4b) drops out to leading order. The remaining
equation can be integrated once with respect to x, leading to:

ohy O B
—8t + % (Uoho) = 0, (31&)

8U0 82}1,0 1 8}1,0 2 . 1 2
oGy Thogee ~ 3 (a—x = % (3.1b)

These evolution equations are supplemented by initial conditions and boundary
conditions at x = 0,

ho(,0) = hii () (3.2)

h
9ho h%zo, and wy=0 atx=0 (3.3)

ho =0, 200 _ )
0 07 or ) 08(1}'

with (3.3) being used to fix the constant of integration in (2.5a)'.

'We also require that hohgye — 0 as & — 0, i.e., that hg., be well-behaved near x = 0; since
ho ~ Az here, that is indeed the case.



For later matching to the outer solution, we need the behaviour of hy and ug for
large x. Probing (3.1) with power law behaviour of the form hg ~ H(t)z™ and
up ~ Ux(t)z™, we find that n, = 0 and n, = 1, and hence the far-field behaviour
of hg and wug is

ho ~ Hoo(t), ug~Ux(t)r asz — oo, (3.4a)

This form is obtained by seeking self-similar profiles which have hg bounded and
nonzero for large . We must therefore have H(t) and U, (t) satisfy

dH 1
— 2 4 Uy Ho =0, 4H, U, = —=)°
dt + 2

The behaviour of hy,;; at © — oo provides us with the initial value H,(0) = 1, hence
the far-field behaviour of hy and ug is

2

Holt) = 1451, (3.4b)
SR p— L 40

The inner problem may be rescaled to remove the parameter A. This is achieved
using the scaling

h=XNhN u=XM x=X' S(te)=\S(te)

so that the above equations (3.1) and the boundary conditions at * = 0 become
independent of A, with the slope boundary condition there becoming 0h/dz = 1.
Thus we can consider the case A = 1 without loss of generality.

3.2 Outer region

Away from the contact line, we anticipate that the effects of surface tension are
unimportant, while the effects of the shear stress at the substrate due to finite
slip, i.e., the terms on the right hand side of (2.4b), enter the dominant balance.
Accordingly we define outer variables X and U as follows:

r=c"2X, h=H, u=ec"?U, (3.5)
and also

s(t;e) = e V2S(t;¢), (3.6)
where we assume that U, h and S are O(1) for ¢ — 0 with ¢ and X fixed. We expand
H = Hy+o(1), U= U+ o(1). The function S = Sy(t) + o(1) will be obtained as

part of the solution of this outer problem. To leading order, (2.4) becomes

0H, 0

g ax
6

U()Ho) == 0, (37&)
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for X > 0.

This is subject to conditions at X = Sy which are derived from matching to the
inner solution. Rewriting (3.4a) in outer variables,

Ho~ Holt), Up~Vu(t)X as X —0,

one obtains the boundary conditions

ovy 1, B
4H08—X = —5)\ y U() =0 (38&)

at X = 0. The outer problem also needs the far-field boundary conditions derived
from (2.5b), namely

Hy—1, Uy— —S; as X — oo. (3.8b)

Initial conditions for Hy follow by considering the limit of h;,; in outer variables,
and turn out to be trivial, while the initial value for Sy is just that for s given in
(2.6). Summarizing both conditions, we get:

So(0) =0, Hy(X,0)=1 for X > 0. (3.9)
Integrating (3.7a) by parts yields the constraint

/OO(HO ~1)dX = S, (3.10)

which represents conservation of mass. It could have also been obtained directly
from (2.8).

3.3 Composite solution and numerical validation

Equipped with inner and outer solutions, a multiplicative composite solution, uni-
formly valid in both the inner and outer regions, can be constructed by defining

WO (z,t) = holx,t)Ho(e %2, 1) /(1 + \?t/8), (3.11a)
u(z,t) = —ug(z, )Us(eY%x,t)/(x/(8/X2 + 1)), (3.11b)

where the denominators are the “common parts” given by Equation (3.4).

Next we compare the full lubrication model solutions to numerical solutions for the
inner and outer problems, and to a composite expansion. Throughout, we fix A = 1.
Details of the Matlab routines used are given in the appendix.

Numerical solutions to the outer problem, (3.7) (3.9), have been produced. There
were 1000 grid points, with a computational domain 0 < X < 50. Typical thickness
profiles are shown in Figure 3.
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Figure 3: Solutions of the outer problem (3.7)-(3.8) at ¢ = 5, 100, 10, 10* and 10°.

Similarly, numerical solutions to the inner problem, (3.1) (3.3) and 0h/0x = 0 at
x = 20, starting from (2.7) with p = 2 have been computed. These used 200 grid
points, with 0 < x < 20. Figure 4 shows profiles at various times, together with the
initial condition used. It can be seen that the rim height increases approximately
linearly with time, while the inner part of the rim grows in a way which suggests a
self-similar form. This idea will be developed in Section 4.1.

Finally, solutions to the full strong slip lubrication problem (2.4) (2.5) have also
been computed, also using initial condition (2.7). Here a much longer computational
domain, 0 < z < 200, is necessary, requiring 2000 grid points. In Figure 5 we
compare the solution at ¢t = 5, for ¢ = 0.002, to the inner and outer solutions. The
composite solution (3.11), constructed from the numerical data for the inner and
outer solutions is also shown. It is seen to be a good approximation to the full
solution.

4 Large-time behaviour: ¢t — oo

While the derivations in the previous section were carried out for t = O(1), we can
hope that the basic distinction of the inner and outer region and that the leading
order asymptotics remain valid even for large, but not too large, t. We will therefore
investigate the large-time limit

t=r7/d, 7fixed, & —0, (4.1)

separately for the leading order inner and outer problems. As one might expect for
initial boundary value problems, the long-time inner and outer solutions approach
a form that can be described by one or (in the case of the outer problem) several
simple solutions that are largely independent of the initial data. Inspection of the
subregions of the outer problem reveals that the result in fact approximates the full
problem (2.4) (2.6) as long as 6 > £'/2(log(1/¢))"/2. For § on the order of this lower

8
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Figure 4: Approach of time-dependent solutions of the inner problem (3.1) to the
similarity solution for the inner region which is valid at large times. The initial
condition is (2.7) with p = 2. The similarity solution profile, scaled for t = 10, is
shown for comparison.
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Figure 5: Solution to (2.4) at t = 5 for ¢ = 0.002. (a) h and (b) u. This is compared
with the inner solution obtained by integrating (3.1), the outer solution obtained by
integrating (3.7), and a composite solution given by (3.11).



bound, one of the subregions of the outer region merges with the inner region (see
Section 5).

4.1 Inner problem

First, note that (3.4) implies that uy ~ Uyx ~ —x/t as t — oo. Guided by (3.4),
we postulate that at large times the behaviour of the inner problem (3.1) takes the
self-similar form

ho ~tn(€) = 67'mn(€), o ~ v(§)
where ¢ = z/t. Equations (3.1) then become

n—~&ne+wn)e = 0 (4.2a)
1 1
4”7V£+7777§£—§(775)2 = 5\ (4.2b)

These are subject to the boundary conditions (obtained from (3.3)) at £ =0,

n(0) =0, n:(0) =A, nre(0) = 0. (4.3)
We require that as & — oo (a) n — A?/8, and (b) v ~ —¢, in agreement with (3.4).

Numerical solutions to this problem have been obtained using a shooting method.
By obtaining an expression for nve from (4.2b), and substituting this into (4.2a), an
expression for v may be found:

1 e A2
—¢c—— |4p+ 2 — - 4.4
v=¢ 4n£<77+2 Mee = (4.4)
The velocity blows up where n = 0, except for the special case n = A\, which yields
v = 0. Differentiating to obtain v, v may be eliminated from (4.2b), yielding a
third order autonomous ODE for n:

2
A2 (B B &) _ 3nenee | Mee

Lng e
e =5 e 2 tos 4>

X (4.5)
2 7 ne  2n? Ne

Note that A can be eliminated by rescaling.

Given the boundary conditions (4.3), £ = 0 is a singular point. We obtain solutions
to (4.5) by integrating from £ = £, for some small &, where we assume that the
solution locally has the form

nE) =X+ +....

Using a shooting method, ¢; is varied until 7, = 0 is satisfied at some point &,
sufficiently far from the rim. Taking &, = 107% and &, = 5 is sufficient to obtain well-
converged profiles. Figure 6 shows the resulting profiles of n(¢) and v(§), the latter
being found from () using the relation (4.4) above. The film thickness approaches

10
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Figure 6: The self-similar inner solution found by solving (4.2a) and (4.2b), for
A = 1. The dashed straight line through the origin has slope A.
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Figure 7: At long times (¢ — 00), the outer region divides into three subregions.

1/8 at large &, while v(§) ~ 0.1977 — £, as expected. For these parameters, the
required solution has ¢; = —2.796. The same solution has been recovered using
a boundary value problem solver [10|, by imposing n(&) = 0, n¢(&) = 1, and
ne(&2) = 0, and then allowing & — 0 and & — oo.

As seen in Figure 4, the film thickness in the inner region rapidly approaches the
similarity solution, for initial conditions similar to (2.7).

4.2 Outer problem

Now we examine the outer region, where a more complex structure arises. We
study the outer region in three distinct subregions, as shown in Figure 7. The
asymptotic behaviour of Sy(t) remains to be determined from the outer problem,
which subdivides into these subregions in the limit ¢ — oo. Closest to the position
of the contact line, we find a solution in a frame moving with the contact line speed,

11



So, denoted the outer left (O1) solution. Most distant from the contact line, a
travelling wave solution may be found, which moves with a speed Ay relative to the
contact line. This is denoted the outer right (O3) solution. An expression for Ay (),
which measures the growing width of the ridge, will be obtained below. Miinch and
co-workers |2, 12| have shown that the outermost part of the rim is non-oscillatory
for small e (large 3) if S exceeds an e-dependent threshold. Finally, between these
two “inner” subregions there lies one in which a WKBJ ansatz applies. We refer to
this as the O2 subregion. Each of these subregions is described in more detail below.

In the derivations below, we will rescale Sy and Ay according to

S() = %S*, AO = ,LLA*, (46)
with
p = log'?(1/9), (4.7)

and assume that S* and A* are O(1) for 7 fixed and § — 0. As p only increases
slowly as 6 — 0, this implies a near-linear dependence of Sy on ¢ and a very slow
growth of Ag(t) with ¢. The justification for these assumptions follows a posteriori
from the fact that these scalings are those for which the matching of the three
subregions succeeds. For a more systematic approach, one could start with a more
general ansatz for the scaling factors in (4.6) and then derive the form chosen above
in the course of the matching; the current approach benefits from the conciseness
with which it can be presented.

4.2.1 Outer right subregion O3

We now consider a “right inner” subregion (most distant from the contact line), in
which the profile eventually connects with the unperturbed film, where a travelling
wave ansatz is valid. Since we require h — 1 at infinity, a similarity solution for this
subregion is unlikely. We introduce a second contact line at X = Ay(¢) where the
film thickness becomes O(1). Thus Ay serves as a measure of the width of the rim.
(Contrast (3.4), in which H,, blows up as ¢ — oo.) In this subregion, close to Ay,
we define a new coordinate X3 and a new velocity U; by

. 1
X = AO—FX; and UO :AO—F—U;, (48)
il
respectively. Indices 1, 2 and 3 refer to the subregion (in this case, O3) to which a

variable pertains. After introducing the slow time variable 7 and using (4.6), (3.7)
reads:

OHy 1 0
—__— _(U*H,) = 4.
0 or + 1 OX; (Us Ho) 0, (4.9a)
9, oU;
— * * * 4-
e (HO . X;;) S* 4 OuAt + UL, (4.9b)

12



and the boundary conditions (3.8b) become
Hy—1, U;— —(S;+pdAr) as Xi— oo. (4.10)

After allowing 6 — 0, so that §(0Hy/07) and pdA* may be dropped to leading order
from (4.9) (4.10), (4.9a) may be integrated in X}, yielding

Ui Hy = —S°, (4.11)

after using the boundary conditions (4.10). (Here we make no effort to introduce
additional indices for the solution of the leading order problem for (4.9)-(4.10).)
Introducing o(X3) = log Ho(X3), the above equation becomes

U =—Ste™. (4.12)

T

Eliminating U5 from (4.9b), multiplying by do/d X}, and integrating results in the

first-order ODE )
do
2 = A 4.13
(ng) o+e ( )

which can be reduced to a quadrature, with the solution satisfying

oc—0 as Xj— 4o0. (4.14)

This O3 solution is shown in Figure 9. This solution blows up as X3 — —oo, as
expected if it is to match into a distinct subregion on the left, with

1
o~ g(—Xg)z +1 as Xj — —oo, (4.15)
up to translations in X3 which we absorb into the definition of Ay. The quantity

Ay will be fixed by matching to O2.

However, as it stands, this solution cannot match to the inner solution (3.4b)—(3.4c)
as it is a travelling wave, with an amplitude which does not increase with time.
Therefore at least one intermediate subregion is needed for matching.

4.2.2 Outer left subregion, O1

Another “inner” subregion (the “outer left” subregion) arises sufficiently close to
X = Sp. Here we switch to a moving frame with its origin at Sy(t), defining inner
variables X7 and Uy. We use (4.1), (4.6) and the following scalings:

1 1 )
X =2X!, Hy==h", Uy=-Up, (4.16)
p 0 p
where the starred quantities are all assumed to be O(1). Rescaling (3.7) gives
oh* 0
— (U7R") = 0 4.17
87— + 8Xik( 1 ) ’ ( a‘)
0 ouy o 1
4 W= = —U+-5;. 4.17b
MaXf( 8Xf) P (4.170)

13



The boundary conditions (3.8a) that arose from matching the inner and outer
regions in Section 3 become

Uy
Xy

1
4h = —5)\2, Uy =0. (4.18)

To leading order, the right-hand side of (4.17b) drops out, allowing the resulting
equation to be integrated with respect to X7 to give

LoUr 1

4h = —-\. 4.19
0X7 2 (4.19)
We use a self-similar ansatz, writing
. 1~
W ~7TH(XT), Uf~-V(X]) (4.20)
T

and obtain
H+ <VH) = 0,
X7
~ A 1 9
4HVX; = —5)\ .

The solution of these, subject to the boundary condition V =0 at X7 = 0 that
follows from (4.18), is

1 . - 1 .

H= NN V=——(eM-1), (4.21)
8 A

which matches with the inner solution (3.4) in the limit X; — 0 (except for the

constant term in (3.4b), which becomes insignificant at large t). The new parameter

A is fixed by the mass conservation requirement

VH — -8 as X — oc. (4.22)

(A could also be obtained from the matching process to follow.) Thus, if A > 0, so
that exp(—AX}) — 0, then
)\2
= S—ij :
this will prove to depend on ¢ only logarithmically.

A (4.23)

4.2.3 Outer subregion O2

Finally, to join the two “inner” subregions, we find a solution in the subregion be-
tween them. Here we adopt a different scaling, namely

1
X =puX;, Uy=-U;, (4.24)
W
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while Hj is not rescaled. Now (3.7) reads

OHy, 1 0 . B

o T AN (UsHy) = 0, (4.252)
4 0 oU: 1 1
— Hy—2 = U4+ =S5*. 4.25h
/ﬂaxs( °8X5) PR (4:250)

In this subregion, we seek a WKBJ-style approximation via the ansatz

Hy = ajexp (/f Zu‘znGn(X§)> :
n=0

Uy = —exp <—M2Zu‘2"Gn(X§)> :
n=0

which turns out to be appropriate even though (4.25) is nonlinear. Inserting this
ansatz into (4.25) we find that the choice of dominant terms is between the left-
hand side of (4.25b) and the second right-hand side term; the term in Uy drops out
together with the time derivative in (4.25a). Determining the first two terms of the
expansion we obtain

2 Q%
H ST *2 a2 o « as
Hy = X, — =X, —— 4.27
0 ay exp ( 8a; 2 a2 al) ( a)
U; e IE5E 2y @2 x| O (4.27b)
= —exp|—-T —= — )
2 P 8ay 2 a1 2 a1

The constants aq, as and az must be found by matching.

4.2.4 Matching

We first match O1 and O2, and then match O2 and O3. The leading terms in the
expansion of the O2 solution as X; — 0 are

a a
Hy ~ ajexp (——3——2X§),

a1 ay

Q a
Uy ~ —exp <—3+—2X§) :
aq aq

The expansion of the O1 solution as X] — oo is, when rewritten in O2 variables,
W (uX5) = % exp (—Ap*X3)
UHUX;) ~ —exp (ARX;)

Matching O2 with O1 therefore requires

S Zoiea Zo(4),
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and so in the O2 subregion we have from (4.27), and using (4.23),

)\2 T IU2X*2 ,u2)\2
H, = 2 _ X 4.98
0 85 eXp ( 8 85: 2) ) ( a)
. 8516 X N
U2 = — 2, exp (— 3 + 85: X2 . (428b)

It remains to match (4.28) with the solution from the O3 subregion. From (4.8),
(4.6), and (4.24) we obtain
Xy = p(X; =A%),

which we insert into (4.15) to express in O2 variables the X} — —oo limit of the
03 solution for Hy. We obtain

12
Hy ~ exp (g(Xg —A*)? + 1) .

Comparison of the above with (4.28a) immediately implies

>\2
= 4.2
and
)\2 T N2(A*)2
— L S 4.
o5 = OXp ( S + 1) : (4.30)

to match H. Matching Uy with U yields the same conditions as equations (4.29)
and (4.30).

Inserting (4.29) into (4.30) and solving for S* yields

2 AT e
St = fﬁ (log (g) . 1) . (4.31)

In terms of the variables Sy, Ag and ¢, the expressions (4.29) and (4.31) become

. )\2 _1/2 )\2
Sy = ——= (log(A\?*t/8) — 1 d Ayg=-—, 4.32
0 4\/§(Og( /8) 1) eS0T og, (4.32)

for t — oo. The expression for Sy is not integrable directly but since Sy ~ log_l/zt
it follows that
Nt
So ~ 1/2
44/2 log/ t

Thus, as is to be expected, the dewetting rate increases with the contact angle \;
the manner in which this rate is selected by the asymptotics is somewhat subtle.

and Ay ~ 2v2log"?t. (4.33)
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4.3 Composite solution and numerical verification

We first compare the solutions for the subregions with numerical simulations for
the outer solution Hy(z,t) of (3.7) (3.9), obtaining good agreement as t — oo.
Numerical simulations for the outer problem were carried out to large times. The
speed of the contact line SO obtained from the outer solution is compared to the
asymptotic expression (4.32) in Figure 8 (line labelled “Outer”). At relatively large
times, the outer solution demonstrates a dewetting rate close to that predicted from
asymptotic matching. Profiles of the outer solution are shown at various times in
Figure 3, revealing the increasingly-curved structure which develops at large times,
as expected from the theory of Section 4.2. Profiles at ¢ = 100 and ¢ = 10000 are
shown again in Figure 9, together with the velocity, where they are compared to
the O1 solution and the O3 travelling wave solution. The O3 solution is a credible
approximation to the outer profile at these times for large X, but as expected its
accuracy diminishes for small X. Similarly, the O1 solution approximates the outer
profile adequately for small X. To see the separation of the outer solution described
in Section 4.2 takes quite long times, of order 1/6 ~ exp(u?). However, in long-
time simulations of the outer problem this separation does appear to be visible. (In
preparing Figure 9, the value of S used is taken from the outer simulation, so that
this is not a completely independent check of the results.) In principle, a composite
approximation to the outer solution could be constructed from the asymptotic results
for the three subregions. However we do not attempt to do this here.

We also compare S obtained from solutions of the full lubrication model (2.4)
(2.6) with the outer solution. Figure 8 shows S from simulations for several values
of e, confirming that as ¢ is reduced, the dewetting rate of the outer solution is
approached. However at larger times, the full lubrication model dewetting rates
deviate due to the presence of the inner region. This transition to a new time regime
is discussed further in the following section. Evidently, at large times (4.32) only
approximates the dewetting rates obtained from the full model well for € even smaller
than shown here. For solutions of the full lubrication model to clearly display the
separation of the outer region into subregions, this separation must happen before
the expanding inner region overtakes the shrinking O1 one and we arrive in Phase 2,
discussed below. Finally, we note that a composite of the inner and outer solutions
may be constructed using Equations (3.11) just as in Section 3.

5 The next time scale, t = O<€_1/2 1og(1/s)_1/2)

In the above, the inner region length scale is z = O(t), whereas the O1 subregion
has x = (9(5_1/2/ log!/? t). Thus we expect the next time scale to have

t= 0(5‘1/2/10g1/2(1/5)>
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Asymptotic 1

0.05

Outer

Figure 8: Speed Sy(t) as predicted using numerical simulations of the outer problem,
equations (3.7), labelled “Outer”, and as obtained from the full lubrication model
(2.4) with ¢ = 0.05, € = 0.01, and € = 0.002. These are compared to the large-time
prediction from matching the outer subregions, (4.32), shown by a dotted line.

(a) (b)

Outer, t=100 —— | " Outer, =100 ——
03 wereree o
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Figure 9: Comparison of outer solution (a) thickness profile H (X, ¢;) and (b) velocity
u(X, tx) at tp = 100 and 10000. These are compared to the O1 outer left and O3
outer right solutions at these times, using the value of Sy obtained from the outer
solution simulation.
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Figure 10: Solution of (2.4) for € = 0.002 at moderately large times. The rim begins
to adopt a more symmetric shape.

(for small ) this being the one on which these two length scales merge. In this time
scale, we expect that the old Ol and inner regions have merged, to form a single
new inner region. This inner region coexists with the old O2 and O3 subregions, at
least until, on an even longer timescale, further changes occur. In this paper, we
shall not, however, discuss this time regime, or the ones that follow it, in detail.

Figure 10 shows the solutions of (2.4) for ¢ = 0.002 at relatively large times, 30 <
t < 1000. The first of these is a sufficiently late time that the film has entered the
second time regime. These rim profiles are in sharp contrast to those found for the
outer problem (Figure 3), which lack any inner region, and those found at earlier
times for the same ¢ (Figure 5).

It is striking that the rim profile on this time scale is of the same parabolic form as the
very weak slip one, but the decay towards the precursor film thickness is monotonic
in this case but oscillatory (associated with capillary ripples) in the latter.

Here ¢ = 0.002, so that t, = e /2log™"/?(1/e) = 8.97. For the small values of
e encountered in previous numerical studies |12|, smaller values of ¢ are used, and
the time required to enter the second phase increases only slowly with ¢, reaching
ty = 290 for € = 8.3 x 10~". Thus study of the later time regimes will be important
for understanding of physical experiments, which continue to even larger times.

6 Summary

We have shown how the evolution of a dewetting rim with strong slip features a
complicated structure, which evolves to form an inner and an outer region. Only in
the inner region is surface tension of significance. We found the (sufficiently-) long-
time limit of the inner region is described by a self-similar profile. We computed the
evolution of the outer region, and demonstrated that, at sufficiently-long times, a
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three-fold structure emerges. At longer times, the growing inner region will modify
the spatial structure described here. A detailed discussion of this process will be the
subject of future work.

The model discussed here has been limited to one-dimensional dewetting. The issue
of transverse instability (or azimuthal instability for circular holes) for the strong
slip model would be of interest in the future. The axisymmetric case should also be
investigated for possible differences in behaviour at relatively early times.

We conclude by remarking that this evolution through a variety of distinct timescales
results in the presence of a number of distinct intermediate-asymptotic descriptions
of the evolution, one of which (comprising four regions) we have elaborated upon
here. As is typical, these intermediate-asymptotic characterisations manifest them-
selves only over suitable windows in time and are accordingly difficult to capture
numerically; the agreement that we have obtained between numerics and asymp-
totics is therefore encouraging.
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A Computing the full and outer solutions

Here we outline the method used to compute solutions to the full strong slip lubri-
cation model problem (2.1), in a front-moving frame where z = = — 3, i.e., (2.4).
This is very similar to that used for the outer problem, (3.7) (3.8), in a front-moving
frame; where the outer solution computation differs, we point this out below.

We define a mesh z; with N — 1 interior points, so 0 = 21 < 20 < ... < 2y <
ZN+1 = Ze. Here Z, is some large number, which may be increased as the profile
broadens. Approximations h; and ; to the true solution at each mesh point are
defined, together with an additional unknown $. These are 2N + 3 unknowns; the
necessary equations are obtained as follows:

e Discretise the continuity equation (2.4a) at grid points @ = 2... N and time
t = tgr1 , using a backward difference for Oh/0t and centred differences in
xz. (N — 1 equations.) ho = 0 is fixed. For the outer problem, hg is free,
but differencing (3.7a) at the leftmost grid point (i = 1) gives one additional
equation. For the outer problem, forward differences in X are used, as U is
negative everywhere.
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e Discretise (2.4b) or (3.7b) at grid points ¢ = 2... N, using centred differences
in z. For hg,,, average estimates at 2;1q/s. (N — 1 equations; solving these,
imposing 4; = 0 and ux41 = —3, gives Uy ...Uy.) For the outer problem, an
estimate of h,,, is not needed.

e Impose fALNH =1 and ay,1 = —$ (for the outer problem, uy = —S) at the
right-hand boundary zy,1.

e Impose hy = 0, dh/dx = X\ and @; = 0 at the contact line, z;. For the outer
problem, impose @; = 0, and 4 (h5%) = —A?/2 at 2 instead.

This yields 2N +1 (2N +3 for the outer problem) nonlinear equations. Notice that H,
is still free in the outer problem. Of these equations, (N—1) of the velocity unknowns

from the interior grid points may be eliminated, and the remaining equations are
solved using Matlab’s FSOLVE [10].

Mass conservation was checked by evaluating both sides of Equation (3.10) and was
found to be acceptable.
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