metadata, citation similar papers core.ac.uk brought t&:COREou

provided Publications Server Weierst

Weierstrals-Institut
fiir Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 — 8633

Sensitivity Analysis for Indirect Measurement in
Scatterometry and the Reconstruction of Periodic

Grating Structures

Hermann Gross' and Andreas Rathsfeld?

L' Department 8./ of Mathematical Modelling and Data Analysis,
Physikalisch-Technische Bundesanstalt
Abbestr. 2—-12, 10587 Berlin, Germany
E-mail: Hermann.Gross@ptb.de

Weierstrass Institute for Applied Analysis and Stochastics,
Mohrenstr. 39, 10117 Berlin, Germany
E-mail: rathsfeld@Quwias-berlin.de

submitted: September 18, 2006

No. 1164
Berlin 2006

wiilals

1991 Mathematics Subject Classification. T8A46, 65N30, 65K05.

Key words and phrases. diffraction gratings, inverse problems, sensitivity analysis.


https://core.ac.uk/display/289298249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Edited by

Weierstrafi-Institut fiir Angewandte Analysis und Stochastik (WIAS)
Mohrenstrafe 39

10117 Berlin

Germany
Fax: + 49 30 2044975
E-Mail: preprint@wias-berlin.de

World Wide Web:  http://www.wias-berlin.de/



1 INTRODUCTION 1

Abstract

In this work, we discuss some aspects of numerical algorithms for the determination of periodic
surface structures (gratings) from light diffraction patterns. With decreasing structure details of
lithography masks, increasing demands on suitable metrology techniques arise. Methods like scat-
terometry as a non-imaging indirect optical method are applied to simple periodic line structures
in order to evaluate the quality of the manufacturing process. Using scatterometry, geometrical pa-
rameters of periodic structures including period (pitch), side-wall angles, heights, top and bottom
widths of trapezoid shaped bridges can be determined. The mathematical model for the scattering
is based on the time-harmonic Maxwell’s equations and reduces in case of grating structures to the
Helmholtz equation. For the numerical simulation, e.g. finite element methods can be applied to
solve the corresponding boundary value problems. More challenging is the inverse problem, where
the grating geometry is to be reconstructed from the measured diffraction patterns. Restricting the
class of gratings and the set of measurements, the inverse problem can be reformulated as a non-linear
operator equation in Euclidean spaces. The operator maps the parameters describing the grating to
special efficiencies of plane wave modes diffracted by the grating. We employ a Newton type itera-
tive method to solve this operator equation. The reconstruction properties and the convergence of
the numerical algorithm, however, is controlled by the local conditioning of the non-linear mapping,
i.e. by the condition numbers of its Jacobian matrix. To improve the convergence of the iteration and
the accuracy of the reconstruction, we determine optimal sets of efficiencies for the measurements by
optimizing the condition numbers of the corresponding Jacobians. Numerical examples for a chrome-
glass mask and for an inspecting light of wave length 632.8 nm confirm that an optimization of the
measurement data results in better solutions.

1 Introduction

The investigation of micro- or nano-structured surfaces regarding their structure geometries and dimen-
sions can be performed in a rapid and non-destructive way by the measurement and analysis of light
diffraction by the structured surfaces. Non-imaging metrology methods like scatterometry are in con-
trast to optical microscopy non diffraction limited and they grant access to the geometrical parameters
of periodic structures (cf. Figure 1) like structure width (critical dimension CD), period (pitch), side-
wall angle or height of trapezoidal bridges (lines) [23, 15]. An important application of scatterometric
metrology is the evaluation of structure dimensions on photo-masks and wafers in lithography [30, 29].
In particular in the semiconductor industry both the feature sizes and the required limit of measurement
uncertainty decrease continuously. Besides conventional microscopical metrology techniques like atomic
force, electron and optical microscopy, scatterometry is an important tool for the characterization of such
structures (cf. e.g. [35, 13]). However, scatterometric methods require a-priori information. Typically,
the surface structure is sought in a certain class of gratings described by a finite number of parameters,
and these parameters are confined to certain intervals.

The conversion of measurement data into the desired geometrical parameters depends crucially on a
high precision rigorous modelling of the light-structure interaction, which includes the vectorial and the 3D
character of light and structure, respectively. More precisely, the mathematical modelling of scatterometry
requires the computation of the relation between the input (the incoming wave) and output (diffraction
efficiencies, phase shifts). These quantities are described by Maxwell’s equations [27, 4, 7] which reduce
to the two-dimensional Helmholtz equation since geometry and material properties are invariant in one
direction. The typical transmission conditions of electro-magnetic fields turn into continuity and jump
conditions for the transverse field components, and the radiation conditions at infinity are well established.



For the numerical solution of the Helmholtz equation there exists a whole variety of different methods.
We mention here the rigorous coupled wave analysis (cf. [24, 32, 25, 20, 21]), the so-called C method
(cf. [6]), and the boundary element method (cf. the references in [18]). On the other hand, the most
popular method to solve boundary value problems for elliptic partial differential equations is the finite
element method (FEM). The truncation of the infinite domain to a finite domain of computation can be
accomplished by coupling with boundary elements. FEM has been applied to gratings e.g. by Urbach [34],
Bao [3], and Elschner et al [10]. We refer also to the alternative FEM approach proposed for the Maxwell
system by Schaedle, Zschiedrich, Burger, Klose, and Schmidt [31] which includes absorbing boundary
conditions (perfectly matched layers) and domain decomposition techniques. To improve the computation
of highly oscillatory fields, generalized finite element methods are available (cf. e.g. [16, 22, 5, 9]).

Apart from the forward computations of the Helmholtz equation, the solution of the inverse problem,
i.e. the reconstruction of the grating profiles and interfaces from measured or simulated diffraction data,
is the essential task of the indirect measurements in scatterometry. This problem is strongly related to
optimization problems for the design of diffractive optics (cf. [33]). Our approach here employs:

- FEM computation of efficiencies corresponding to a given grating (cf. [12])

- FEM computation for the derivatives of the efficiencies with respect to geometry
parameters of the grating (cf. [11])

- Iterative algorithm of Newton type proposed by Al-Assaad and Byrne [1]
modified for box constraints

It is well known that the solution of the inverse problem might fail if it is based on insufficient or improper
input data. Studies with simulated data for a typical grating representing a photolithograhic mask [13]
show a strong dependence of the reconstruction result on the subset of efficiencies chosen from the set
of all available efficiencies. Based on a sensitivity analysis, we propose an algorithm for finding sets of
efficiency data suitable for the inverse problem. Indeed, high local sensibility of the geometry parameters
with respect to the measured efficiency values is expressed by the well conditioning of the Jacobi matrix
of the mapping efficiency values to geometry parameters. Equivalently, high sensibility means small
condition numbers for the Jacobian of the mapping geometry parameters to efficiency values. Hence,
we choose our optimal measurement set of efficiency values by minimizing the condition numbers of the
corresponding Jacobians.

This paper is organized as follows: In Section 2 the mathematical formulation of the scattering
problem and the numerical algorithms for solving the inverse problem are discussed. An FEM-based
Newton type method to solve the reconstruction problem is described and the convergence properties
are indicated. Section 3 presents a sensitivity analysis for the indirect measurements in scatterometry
which enables an optimal choice for the set of measurement values, i.e. an algorithm for optimizing the
reconstruction setting is proposed. In Section 4 we employ the FEM package DIPOG (cf. [9]) and recover
lithographic masks from scatterometric data. In particular, we consider periodic chrome-glass gratings
with coated trapezoidal bridges and a period of 1120 nm. We simulate diffracted efficiency measurements
under inspecting light of a wavelength of 632.8 nm. From a huge set of measurement data we choose a
subset optimal for the reconstruction, i.e. with minimal condition numbers of the Jacobians. Using this
we are able to reconstruct a given grating with high accuracy. In particular we investigate the bias of
different initial solutions and perturbed efficiencies on the accuracy of the reconstruction. We end up in
a discussion of further research and open questions.

2 Mathematical Formulation of the Scattering Problem

2.1 Electro-Magnetic Fields Scattered by a periodic grating structure

We consider the diffraction by a periodic surface structure like in Figure 1 which is called grating. In order
to describe the mathematical model (cf. e.g. the monographs [27, 33]), we choose a rectangular coordinate
system such that the z-axis shows in the direction of the grooves and that the y-axis is orthogonal to
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Figure 1: Periodic grating structure.

the surface plane containing the grooves. Hence, the geometric and material properties are constant
in the z direction and periodic in the direction of . The width of groove and bridge in x direction is
the periodicity d (pitch) of the grating. The refractive index of the cover material is n™, that of the
substrate under the grating surface structure n—. The grating part consists of several grating materials
with different refractive indices (e.g. the two materials photoresist and chrome in Figure 1). Below the
grating structure there may exist some coated layers, again, with different refractive indices (no layers
in Figure 1). For simplicity sake, we consider classical diffraction, i.e. we suppose that a plane wave is
incident from above with a direction located in the = — y plane, i.e. in the plane perpendicular to the
grooves. The angle of incidence 6 is the angle between y-axis and direction of incidence. The wave length
of the light in air is A and we start with the case of TE polarization where the electric field vector is
parallel to the grooves, i.e. it shows in the z direction. Hence, if p is the magnetic permeability of
vacuum and c the speed of light, then the transverse z-coordinate of the electric field is given as

2
x,y,z) exp(—iwt), w o= % ) (2.1)
x,Y, 2) ‘= exp (i(kJr sinf x — k™ cosf y)) , kT = wympeo nt.

incident L incident
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incident
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The light is diffracted by the grating structure. Besides some evanescent part the diffracted light splits into
a finite number of reflected and transmitted TE polarized plane wave modes, the propagation directions
of which are independent of the grating geometry and the grating materials. Simulating the diffraction
means to determine the amplitude and the phase of the reflected and transmitted modes.

In the case of fields invariant in the z-direction the full system of Maxwell’s equations reduces to
a boundary value problem for the Helmholtz equation. More precisely, the transverse component F,
satisfies the scalar two-dimensional Helmholtz equation {A + k?}E, = 0 in any domain of the cross
section plane (z-y plane) with constant material as well as some transmission conditions on the interfaces
between materials of different refractive indices. The wave number k is equal to w/c times the refractive
index of the material. Thus we can determine E, numerically by approximate methods for elliptic partial
differential equations, e.g. by the finite element method (cf. e.g. [34, 3, 10]).



Above the grating (y > Ymaz) resp. beneath the grating structure (y < y:n) the component E,
admits an expansion into the Rayleigh series of the form

E.(z,y) = Z At exp (i(anx + B:{y)) + A" exp (i(ax — Bgy)) , Y > Ymaa (2.2)
E.(v,y) = Z A, exp (i(anx - B’r?y)) ity < Ymin (2.3)
2 (4)1’1i :
BE = \J[FE]2 = ), k= > Afre =1
2
a = ktsind, oy = kT sinf + gn .

Here d is the period of the grating and the complex constants A are the so-called Rayleigh coefficients.
The exclusions of incoming plane waves resp. of exponentially growing waves exp(i(a,z— 3 y)) from (2.2)
means that the Rayleigh expansion satisfies the outgoing wave (radiation) condition above the grating
structure. Similarly, the exclusion of exp(i(anx + 3;, v)) from (2.3) implies the radiation condition below
the structure. Note that the Rayleigh series expansions (2.2) and (2.3) are used also to define non-local
boundary conditions at the upper and lower boundaries of the rectangular domain for the finite element
computation when the infinite domain is restricted to a finite section. The interesting Rayleigh coefficients
are those with n € U=,

{neZ:|an <k*} if Smk* =0
u*r =
0 if Smk* >0
Indeed, these coefficients A% describe magnitude and phase shift of the propagating plane waves. More
precisely, the modulus |Aff| is the amplitude of the nth reflected resp. transmitted wave mode and

arg[AX /|AX|] the phase shift in comparison to the phase of the incoming wave. The terms with n & U
lead to evanescent waves, only. The optical efficiencies of the grating are defined by

LB AR ; -
¢ = sl eoefoninewfo{ninen) ey

which is the ratio of energy of the incident wave entailed to the nth propagating mode. Note that these
efficiencies of propagating modes exist for non-absorbing materials, i.e. for Sm k* = 0.

The case of TM polarization is quite similar to TE. Indeed, this time the vector of the magnetic field
‘H points into the direction of the grooves, i.e. in the direction of the z axis. Analogously to formula (2.1)
given above for the incident electric field, we get
HIeent (2 1) o= HITOHE (3, 2) exp(—iwt) (2.5)
Himedent (4 2) ‘= exp (i(kJr sinf x — k™ cosf y)) , kT = wymeo nt,

for the z component of the incident magnetic field H"¢?den*  This » component of the complete field
H, satisfies the Helmholtz equation {A + k*}H, = 0 in any domain of the cross section plane with
constant materials. In comparison to the TE case, the transmission conditions on the interfaces are
different. We can solve the transmission problem of the Helmholtz equation by the finite element method
(cf. e.g. [34, 3, 10]). Again we have a finite number of transmitted and reflected modes and the Rayleigh
expansions hold for E, replaced by H,. More precisely, the Rayleigh coefficients are the B of the
expansions

o0
H.(z,y) = > Bfexp(i(ans +By)) + Bi'exp (ilax — Bfy)) , iy > ymar . B°:=1, (2.6)

n——oo

HZ({E, y) = Z Br? exp (i(anx - ﬂ'r?y)) ) if Y < Ymin (27)

n=-—oo
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The objective is to compute the Rayleigh coefficients. They result from the finite element solution of
the new transmission problems and from the Fourier series expansion (2.6) and (2.7). The efficiencies
(compare (2.4)) are computed by

+ [1.+]2 +|2
¢ - Bihpn eoel{mniaeutfo{eineu ) ey

The surface geometry of the periodic grating structure is determined by one period of the cross section
in the z — y plane. If the domains of different materials are separated by polyhedral interfaces, then the
corresponding interface profile curves of the cross section are polygonal. In other words, the geometry is
determined by the z- and y-coordinates of the polygonal corners which can be considered as parameters
in a polygonal representation of a class of geometries. Additional parameters are the refractive indices of
the grating materials. Now we fix the state of polarization to TE or TM, the wave length, and the angle of
incidence. Then the efficiencies e, the phase shifts arg[A* /|AF|] and arg[B;" /|B|] are functions of the
geometric and material parameters. The gradients of these functions with respect to the parameter set
can be computed by approximate methods, e.g. by the finite element method (cf. [11] for the derivatives
w.r.t. the points and derive similar formulas for the derivatives w.r.t. the refractive indices).

2.2 Inverse Problem of Scatterometry

In scatterometry, we need to solve the inverse problem corresponding to the computation described in the
last section. In other words, we suppose the efficiencies e of the propagating reflected and transmitted
plane wave modes (cf. (2.4) and (2.8)) and the phase shift differences arg[AF /|Af|] — arg[BE /|BE|] are
measured for a fixed finite set of wave lengths and a fixed finite set of incidence angles and polarization
states. From all these data or from a certain part of it, we try to determine the periodic grating structure
corresponding to the data. Unfortunately, this inverse problem is, from the mathematical point of view, a
severely ill-posed problem. Consequently, the determination of the geometry and the refractive indices is
extremely difficult. Tiny errors in the measurement data usually result in huge errors of the reconstructed
grating structure. Applying regularization techniques the solution of inverse problems improve. Never-
theless the accuracy is much less than that of well posed problems. A better reconstruction is possible
only if more a-priori knowledge is used. This can be realized by restricting the search to a smaller class
of grating structures determined by a small number of parameters. Thus the ill-posed inverse problem is
reduced to a well-posed problem of parameter reconstruction.

We consider a fixed class of gratings which can be described by the parameter vector h = (hy,)nenr of
real parameters h,, depending on a complex index n € N of a finite index set A/ of cardinality N. These
parameters can be e.g.:

- geometry parameters like heights, widths or corner coordinates of triangular resp.
trapezoidal domains occupied by certain material components
- the real or imaginary part of the refractive indices of certain material components

We suppose that the grating depends on the geometry parameters in such a way that the efficiencies
and phase shifts depend smoothly on these parameters. The dependence on the refractive indices is
smooth if the substrate and cover materials are fixed since the corresponding partial differential opera-
tors are analytic functions with respect to the constant coefficients of the Helmholtz equation and the
transmission conditions. If the geometry parameters describe a polygonal structure and if each change
in the parameters results in a homeomorphic change of the geometry only, then the dependence on the
geometry parameters is smooth, too (cf. [11], where the derivative w.r.t. the geometry parameters is rep-
resented as a derivative of a fixed differential operator composed by an analytic family of isomorphisms
of the underlying domain). Besides the smooth dependence, we suppose that the set of admissible (fea-
sible) parameters is defined by lower and upper bounds k! and h¥?, i.e., that the parameters satisfy the
constraints

hlo < h, <h' neN. (2.9)



Clearly, for each fixed class of geometries a lot of parametric descriptions are possible. To simplify the
numerical optimization algorithm for the reconstruction problem, we recommend to choose the parameter
set such that the constraints (feasibility conditions) for a meaningful parameter set are simple. Indeed we
shall assume that the only restrictions are the upper and lower bounds given in (2.9) for all parameters.
On the other hand, each parameter can be multiplied by a normalization factor. We suppose that these
normalization factors are defined such that the desired accuracy tolerances for all parameters coincide.

We denote the efficiency and the phase shift difference values forming the data of measurement, from
which the grating structure is to be reconstructed, by (Ey,)mem,- More precisely, for each parameter
set b = (hyn)nenr, there corresponds a set of efficiency and phase shift difference values (E2, (h))mem, -
The measured values corresponding to the exact solution which is to be reconstructed are denoted by
(EZ)mem,- Hence, the inverse problem is to find the parameter set h? = (h%),en which satisfies (2.9)
and

(Em () ents = (Brt) e (2.10)

2.3 Numerical Algorithms for the Inverse Problem of Scatterometry

If the measurement values are not accurate, then the existence of a solution for (2.10) cannot be guaran-
teed. In this case the difference of the left and right-hand side in (2.10) should be kept minimal. In other
words, the inverse problem can be reformulated as the following optimization problem: Find a parameter
vector h? = (h%)pen such that

F(hr) = min  f(h), (2.11)
h:(hn)nej\/i
hle<h,<huP
2
F) = B ent = B mens | = D0 1ES() - B[

meMo

To (2.11) we can apply any of the known optimization methods. A first algorithm is to simulate the
diffraction for all gratings with parameters h from a fine grid of the box defined by the constraints (2.9)
and to determine that set of parameters i from this grid for which the functional value f(h) is minimal.
This algorithm of best fitting (cf. e.g. [28]) requires a huge amount of work for the precomputation of the
data E9 (h) for h from the grid of parameter sets. The subsequent determination of the minimum over
the grid can be fast. Alternatively, stochastic global algorithms like e.g. simulated annealing (cf. [19])
or genetic algorithms (cf. [2]) render the solution of (2.11) with high probability. Gradient based local
methods like e.g. conjugate gradient method (cf. e.g. [26]) or interior point method (cf. e.g. [17]) render
at least so-called local solutions. Recall that a local solution of (2.11) is a solution hlo¢P = (plocor),
for which the constraints hlo < hlocor < puP n € N are satisfied and for which there exists a small ¢ > 0
such that f(h'c°P) < f(h) holds at least for all h = (hy,)nen With ||h°°P — h|| < e and (2.9). In contrast
to local solutions, the solution of (2.11) is called global. If a local method is applied, then a clever guess
of the initial solution or a certain number of restarts from different initial solutions can help to find the
global solution.

Unfortunately, the efficiency of the optimization algorithm depends strongly on the right scaling of
the objective function. Locally, the objective function is like

F) = ||(BS. (), ey + ARt b= 1) = (E52) i (2.12)

OE?
exr - m ex Mox N
MoN - — (ahn (h )) meMo eR .
neN

The gradient of this quadratic approximate functional is 2[AF N]TA%IO P plus some constant vector.
Consequently, neglecting the constraints, the minimization of the quadratic functional is equivalent to
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finding the zero of its gradient, i.e., to solving a matrix equation with the matrix [A?AON]TA%ON. Hence,
the condition number cond([AS r]" A%, A7) controls the conditioning of f.

Recall that the condition number of a selfadjoint matrix C'is defined as cond(C) = ||C||-||C~!||, where
[|C|| is the operator norm of C acting as a linear mapping in the Euclidean space RY. In other words,
cond(C) is the ratio of the largest eigenvalue of C' divided by the smallest eigenvalue. It is well known
that the condition number of a matrix cond(C) is a measure for the solvability properties of the matrix
equation Cz = y with 2,y € RY. A minimal value cond(C) = 1 implies that C is the identity matrix
with perfect solvability properties, whereas equations Cx = y with large cond(C) are difficult to solve.
Matrices with small condition number are called well conditioned.

An alternative to the optimization methods for the objective functional f from (2.11) is to apply a
Newton type method directly to the operator equation (2.10). Similarly to (2.12), we conclude

() mers = (BB, o = (BU0),epe, + Anton (B — ) (213)
9ED
A = (m)
neN

AMO/\/’(hw - h) ~ (Eranx)meMo o (Egﬂ(h»me./\/lo
The least square solution of the last non-quadratic linear system is given by
-1
e e (AT Anon] ™ Avon]” (B ety = (BSH) ene,| -
In view of this formula Drége, Al-Assaad, and Byrne [8] have suggested the following iterative scheme.

Choose an initial solution h® = (h?),cn and, for any iterative solution h! = (hl)nenr, [ > 0, define a
new iterate h't! = (hLF1),cn by

—1
P = (AT A T AT [(B ) mert, — (B (Y) cne,] - (2.14)
DD,
Al = (—ahn <hl>) .
neN

If the iterative solution of (2.14) does not satisfy the constraints h’® < hitl < hUP| then we define
R+ = (hEH1Y, o to be the solution of the following optimization problem of a convex quadratic functional
defined over a box domain.

2

Ji (hlJrl) = . (an)n Ji (h) ) fl(h) = H (Egn(hl))me/\/lo + A.l/\/lo./\/'(h - hl) - (ng)me/\/lo : (215)
=(hn)nen:
bl <<

Clearly, any solution of (2.15) satisfying the constraint conditions (2.9) strictly, i.e. h!® < h,, < h¥P,
n € N, solves the equation (2.14).

In some cases this Newton type method converges quite fast although only first order derivatives are
used. The number of iterations is less than those for the conjugate gradient and interior point methods
applied to (2.11). The iteration steps are even faster for the Newton type method (2.15) since no line
search with time consuming function evaluations is needed. However, similarly as for the gradient based
methods applied to (2.11), the conditioning of the matrices [A’ \]" Al nr Plays a crucial role (cf. (2.14)
or look at the gradient of f;).

The theoretical convergence properties of the Newton type method are, roughly speaking, as follows.
If the equation (2.10) has a solution, then the iteration converges very fast (quadratically). If (2.10)
has no exact solution but a generalized solution is defined by (2.11) and if the efficiency values for the
generalized solution are close to the measured data (deviation ||(E2,(h%))memo — (B )menr, || less than
a certain problem dependent small €), then the iteration still converges fast (linearly) to the generalized



approximate solution. Finally, if the efficiency values for the generalized solution are not close to the
measured data, then the iteration need not to be convergent. After sufficiently large iteration steps,
however, the deviation of the iterative solutions from the generalized solution is less than a certain
constant times the deviation |[(E2,(A%))mer, — (B )mems, || of the efficiency values for the generalized
solution from the measured data.

To prepare the precise formulation of convergence properties for the method (2.15), we recall the follow-
ing condition and definition. Any local minimum h°° satisfies the necessary KKT conditions (cf. e.g. [26])
for a minimum of the functional f if, for any 1 <n < N, one of the following alternatives is satisfied:

either hlo < h® < h* and Of /Oh,(h>) =0
or hl = h and f/Oh,(h>) > 0
or hy? = h¥*P and 0f /Oh,(h™) <0

If the inequalities for the cases hl® = hS® and h3° = h¥P are strict, then the KKT conditions are said to
be satisfied with strict complementarity. We have the following local convergence results.

Lemma 2.1. i) If the sequence of iterative solutions of (2.15) converges to a limit h®>, then this
limit satisfies the constraints (2.9) and at least the necessary optimality conditions, i.e. the KKT
conditions.

ii) Suppose hP is the optimal solution of (2.11). Hence the KK T conditions hold. However, we suppose
a little bit more. Namely the KKT conditions should hold with strict complementarity. Moreover,
we assume that the prescribed values are attained, i.e. (E2,(hP))memo, = (B )merm,- Finally, we
assume that the chosen set of measurements is large enough such that the matriz [A%ONM]TA%ONM
is invertible and that the kernel of the matriz A;'&ON is trivial, where

OE° OE?
op ._ m (1,0p op o m (pop
AMON"“ T <8hn (h )> meMy AMON T <8hn (h )) meMg
nEN neN

and Ny = {n € N : hlo < h® < h'} is the set of non-active indices. Then, for any initial
solution h° sufficiently close to h°P, the iteration (2.15) converges quadratically, i.e. |h! —hP| — 0
for 1 — oo and ||h+! — hP|| < comst. |h! — hoP||%.

iii) Suppose the assumptions of ii) are satisfied with the exception that the prescribed values are not
attained. Instead suppose that the difference norm ||(E2 (hP))memo — (B ) mem, || is sufficiently
small. Then, for any initial solution h° sufficiently close to hP, the iteration (2.15) converges
linearly, i.e. we get the estimate |h!Tt — hoP|| < q||h! — hP|| with a constant 0 < q < 1.

i) Suppose the assumptions of iii) are satisfied with the exception that |(ES, (h))me o — (B ) me s ||
is not sufficiently small. Additionally, suppose [Anmon,, |7 Armon,, is invertible and the inverse is
uniformly bounded for all h satisfying (2.9), where

OEQ.
ahn (h)) meMog

n€ENnq

AMONna = (

Then there is a constant ¢ > 0 and a small constant § > 0 such that: For all sequences of iterative
solutions defined by (2.15) with

IR = heP| <6,
Vn e N : hl = h'P < h% = hup | (2.16)
VneN: hl, =hle e hoP = hlo (2.17)

the iterative solutions of (2.15) satisfy the estimate |h' — hP| < ¢||[(E2, (h))memo — (B ) mems, ||
provided | is sufficiently large.
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Proof. i) If the sequence of iterative solutions converges, we can consider the limit [ — oo in the
optimality relations f;(h) > f;(h!*1). For any h € RY, the limit point h* satisfies

2 2
| B0 0)) ety + ATiane (= 1) = B s, | 2 (| (B ity = Bienn, |
OFY,
Ao = (G 07)

neN
|0 enay — B mens|| + 0 U =12 = (B0, — B,

Obviously, the last equation implies that h> satisfies the necessary KKT conditions.

ii) The gradient of f at h° is equal to 2[Aj'&0N]T((E9n(h°p))meMo — (ES)meMm,)). Due to the KKT
conditions we have

2

[ARon " ((Egl(hop))meMo_(E:;f)meMo)) = 0. (2.18)

We denote the orthogonal projection of RY onto the vectors with non-zero components only for index in
Nyo by P and set Q = I — P. Using the Taylor series expansion of EO at h', we conclude from (2.18)
that

(B9 enty + Abtore 0 = 1)+ 0 (17 = w![[*) = BS, (n7) |
L (9B
e = (52 0) o

neN

A%in) " | B mert, = (B (WD) ey
Al Q™ = 1] +0 ([ = 1||*)

o] At | PO =10] = [Aon, )" (B ety = (BRD) enn, (2.19)
— Al QR — 1]

(%] = [Ahion] | (B merts = (B D) e, )

+ o ([l =nt]*) -

[[4%ux] " At | [P — 1]

On the other hand, if we try to solve the optimization problem (2.15) under the only restrictions Qh!*! =
Qh%, then the iteration vector h'*! is the solution of

| Atona] " At [PE =] = [Aion ] [(B)mem, = (B () cps,  (220)
Al i QA — )]

If we compare the right-hand sides of (2.20) and (2.19) and if we take into account that by assumption the
second term on the right-hand side of (2.19) vanishes, then we conclude ||h'*1 — hP|| < const. ||t — hP||2.
In other words, if A'*! from (2.20) is really the minimal solution of (2.15), then the quadratic convergence
follows. However, if h' and therewith h'T! is close to h%, then (2.20), the continuity of the mappings,
and the complementarity of the KKT condition for h°? imply that the solution h'*! of (2.20) satisfies
the KKT conditions for f;, too. This condition, however, is sufficient for A'*! to be the minimal solution
since the functional f; is quadratic and, due to the triviality of the kernel AlM0 A Strictly convex.

iii) If the prescribed value is not attained, but the difference norm [|(E2, (h%))mert, — (ES)mes,||
is smaller than a small ¢, then the second term on the right-hand side of (2.19) is less than a constant
times ¢ ||h! — h°||. Consequently, comparing (2.19) and (2.20), we arrive at the estimate

[WY = heP|| < const.e ||B! — h|| + const. ||kt — hP|? (2.21)
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which proves the linear rate of convergence if const.e < ¢ < 1.

iv) The last assertion follows from (2.21) which holds with € equal to ||(E2, (h))merty — (B ) mems, |-
However, since a convergence of the iterative solutions cannot be proved anymore, the derivation of (2.21)
requires the uniform bound of the {[A vy 17 Aronr,, } 1 for all h. Moreover, the limit argument showing
that a vector h'T! with Qh!T! = QA is really the next iterate does not work either. Consequently, we
have to assume the a-priori restriction (2.16) and (2.17) for the iterative solutions. [J

3 Sensitivity Analysis of Geometric Parameters with respect to
Measurement Data

3.1 Measured Data

We introduce a “complete” set of all possible measurements. From this set, we have to extract a smaller
set of measurements which is optimal for the reconstruction of the geometry and material composition of
the grating. Here, optimality will be a compromise between high accuracy of the reconstructed data on
the one hand and the fast access to measurement data as well its fast processing in a numerical algorithm
on the other hand.

The complete data of measurement is a vector (E,)meam of real values E,, € R with m running over
a general finite index set M of M indices. For a given optical grating, F,, can be either the efficiency of
a given reflected resp. transmitted mode under TE resp. TM polarization or the phase difference between
the TE and the TM polarized modes for a given order of reflection resp. transmission. The efficiencies
and phase differences can even be multiplied by a normalization factor. All together, the complex index
m comprises the following information:

type of measurement, i.e. efficiency or phase difference

- angle of incidence of the plane wave inciting the mode

- wave length of the incident light

- order of the reflected resp. transmitted mode

- polarization type TE or TM of the inciting plane wave if E,, is an efficiency’
normalization factor of the measurement value

Of course, we must be careful joining completely different entities F,, into one vector. Should the
efficiency numbers be given in per cent or should they be normalized to one? Should the angles of phase
shift differences be given in degrees or in radians? All these normalization factors surely have a great
influence on the sensitivity and on the inverse problems. We suggest that the measurement entities should
be normalized such that the expected average measurement errors coincide for all E,,, m € M.

A simple example for such an (E,,)nenm can be the vector of all reflected and transmitted efficiencies
corresponding to the propagating modes obtained for the incidence angles # = —85°, —80°,... ,85° and
for the polarization states TE and TM. From M, we shall extract a subset My C M of cardinality My,
and the reconstruction of the grating will be based on the data (E,, )mea,. The task is to find an optimal
subset M to guarantee a fast and accurate reconstruction.

3.2 Completion of the Set of Parameters

So far, for each parameter vector h = (hy,,)nen, there exists a unique grating in the grating class, and thus
a unique set of data (E,, )meam corresponding to this grating. This data can be obtained by measurement.
We suppose that the noise of the measured data is negligible. In other words, we have a vector valued

Mn case of phase shifts, the phase difference between TE and TM polarization is meant and no polarization type is to
be fixed.
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function
RY 5 h=(ho)nen — (Bn)mem €ERM B =E% (... hy,...) (3.1)

defining a smooth N-dimensional submanifold of the Euclidean space R

For the next section, we need a one-to-one correspondence between parameters and complete data of
measurement. Therefore, we introduce a supplement vector of parameters (h‘”)ne 5 Oof N:= M — N real
numbers such that the mapping

RM 3 ((hn)neN,(iLn)neﬁ) s (Bo)memt €ERM. By = Eoy(ovo By ey s ) (3.2)

is one-to-one at least between a neighborhood of the point ((h5")nen; (0),,c5) and a neighborhood of the
image point. The functions of (3.2) are extension of those in (3.1) satisfying

ES(.cihn,o..)=Ep(...; by, 0,...,0).

Moreover, the extensions can be chosen such that the new tangent vectors at ((hy")nen, (0),.5) are

orthogonal to the old ones, i.e.

O ) ers” \ O ) e 2 Ol O

where the arguments of the functions in (3.3) are the parameters h, = h®*, n € N and h,, =0, n € N.

Due to the one-to-one correspondence of the mapping in (3.2), we may consider the parameters as a
function of the measured data, i.e.

RM > (Em)mEM = ((hn)nENv(iLn)ne_/\T) € RM; hy, = hn(a Em7~")7 (34)

Clearly, these functions are the inverse functions of (3.2), i.e.

E, = Em( e By ) aees (e B e ),meM, (3.5)
hy = hn( By b e B ), ),neN,
A hn( By e By, ),ne./\~f

3.3 Derivatives of Parameters with respect to Measurement Data

The numerical expression of the sensitivity of the reconstructed parameter h,, with respect to the mea-
surement data value E,, is the partial derivative dh,,/OFE,,. Unfortunately, this derivative cannot be
computed directly. However, we can easily determine the derivatives 0F,,/0h,, of the inverse functions
(cf. [11] and derive similar variational formulas for the derivatives w.r.t. the refractive indices) and get
Ohy, /OE,, from these. To this end we derive the subsequent Equation (3.7).

Applying the chain rule to (3.5), we arrive at

5 0B, OB, Oh, 3 OE,, Oh,
" . & Ohy OE Oy OB

n

nEJ\7
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This is equivalent to the system of matrix equations

em' = By + By, m eM (3.6)
B = O eRMXN B .= —8l?m e RM*N
Ohy, meM Oh,, meM
nenN neN

Oh ~ oh M
m’ = En RY m’ = En RN m’ = (Om,m’ R™.
E (8 m’)neNE ’ E <a m') © 7 ‘ (5 7 )WLEM ©

neN
Now we observe that the columns of the matrices B and B are the tangent vectors satisfying the orthog-
onality relations (3.3). Consequently, the image space of B is orthogonal to the image space of B, and
(3.6) implies that the vectors &, are the solutions of the optimization problems

2
min HBgm/ e, m e M,
Epmr ERN
including the Euclidean norm || - ||. In other words, the vectors &,/ of partial derivatives dh,,/OE,, are

the zeros of the gradient of the quadratic functional, i.e., the solutions of the linear systems

[BYB) ¢, = BTe,, m' € M. (3.7)

3.4 Optimizing the Reconstruction by a Good Choice of Measurements

Suppose a grating determined by the “exact” parameter values (h&),cn is given. For this grating,
we measure the data (Ep,)mem, and denote the corresponding values by (ES),eca,. Using these,
we try to reconstruct the exact parameter values (h%),enr. Clearly, the efficiency and accuracy of the
reconstruction will depend on the choice of M. Moreover, reconstruction is meaningful only if the number
N of values to be reconstructed is less or equal to the number M, of known data. A reconstruction from
less data is possible only in rare cases of degenerate mappings from parameter data to measurements.
Hence, we always suppose N < M.

We introduce the Jacobi matrix Apqn and its submatrix A, by the formulae

RMXN A R 8E’9ﬂ RMOXN
meM € ’ MoN = Oh,, ) meM, € '

neN neN

OED,
Ohy,

AmN = (

Here the derivatives in the matrix entries are taken at the parameter vector h*. Reconstructing the
parameter values hS® from the measured values E,,, m € M, means to solve the non-linear equations
(2.10). Locally, this mapping behaves like the linear mapping represented by its Jacobian matrix Aq,n
(cf. (2.13)). In other words, (2.10) is a system which is easy to solve locally for values h close to the
solution h* if the condition number cond([Aaa]? Apmonr) of the product of A, a and its transposed
[Apon] T is small.

Now a good choice of a set My C M is that index set for which cond([Amon]T Argnr) is small.
Suppose we have a huge finite sequence My ;, j = 1,...,J of subsets of M such that the cardinality
My ; of My is greater or equal to N the number of parameters. These are the index sets of admissible
measurement data (Ep,)mem,; from which we may choose Mo = M, ; for the reconstruction task.
Admissible means acceptable from the view point of technical or algorithmic restrictions fixed by the
user. For the simplest case, the sequence of Mg ; could be the sequence of all subsets My C M of a
fixed cardinality My ; = Mo > N. In this sequence of index sets we choose the best Mg, 1 <k < J for
the reconstruction (2.10) by solving

cond ([Ape N Arg,n) = qulin J cond ([Ante ) Arte ) - (3.8)
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Unfortunately, this is a discrete optimization problem which requires the test of the condition number
for ( 1\1‘4/[0 ) submatrices. To avoid this huge amount of computation we propose the following algorithm to
determine a suboptimal solution of the problem (3.8). The main idea is not to choose the best submatrix

at once, but to determine this submatrix by choosing its rows step by step.

The optimality of the solution of (3.8) is of local nature since the Jacobi matrix Ay is defined for
the fixed parameter set h“*. In order to make the notion of optimality more stable, we recommend to
compute Ay at A and at a few small perturbations of h**. For the optimization the single condition
numbers in (3.8) can be replaced by the maximum of the condition numbers taken over h* and its
perturbations.

3.5 Fast Choice of a Suboptimal Set of Measurement Data

We denote the jth row vector of Ayar by a; := (8E§)/8hn)neN. Here j is an index from the index set
M which we identify with the set M ={j: 1 <j < M}. Our task is to choose indices j1, j2, ---, Jn,
with My > N such that the condition number cond([Aaoa]T Apon) With Aagoa, consisting of the My
TOWS aj, J = J1, ,J2, --- » JM,, is small.

We choose an integer parameter M which is larger than M the desired number of measurements but
less than M such that the computer capacity allows to determine the optimal submatrix of My rows a;
with a; chosen from a set of M¢ rows a;. Now we take the first Mc rows a; with j € Moo :={1,...,Mc}
and determine the index set My C My of optimal rows a;, j € M; such that

cond ([AMlN]TAMlN) = cond ([AM/N]TAM/N) )

min
M'={j1,....imy }SMoo

Next we form the new subset My as the union of M; with {M¢c + 1,... ,Mc + (Mo — M)} and
determine the index set My C My of optimal rows a;, j € My such that

cond ([Aron]" Aran) = MI={j miﬁu }C Mo cond ([Aaeat" Apew)
={J1,--5Imp E 1

Then we form the subset M2 as the union of My with {Mc + (Mc — Mo) +1,... ,Mc+2(Mc — M)}
and determine the index set M3 C Moy of optimal rows a;, j € Ms such that

cond ([Apen]T A = min cond ([Apen]T Appn) -
([Amsn]" Aran) T ATV ([Amn]" Aren)
We continue this way for further k& — 3 steps until M¢ + (k — 1) - (M¢c — Mp) + 1 > M and the set of all
indices {1,2,... , M} is exhausted. With the last optimal set of indices M}, we form the almost optimal
set of measurements {E;, j € My}.

3.6 Scaling of the Reconstruction Algorithm for a Fixed Set of Measurements

To improve the function f, we can scale the parameters replacing h,, by h# /r, with real scaling factors
rn > 0. Moreover, we can introduce positive weights w,,, for the terms in the objective functional of
(2.11). Together, we end up with the optimization problem

f#(...,hﬁop,...) - (h%iiNf#<...,hf,...), (3.9)
f#(...,hf,...> = Z wm|Em(...,h#/rn,...)—Ef,ﬂQ.
meMo

From this, the solution of the original problem is obtained by the backward substitution h% = h¥P /r,,.
The local conditioning of the scaled optimization problem (3.9) is characterized by the condition number
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cond([AjtoN]TAﬁoN) of the corresponding Jacobi matrix AthN corresponding to functional f# given
as

O/
Aj%\é/loj\f = (,/wm 6m,,m/> AMoN <_n,n > .
m,m’ €My T'n n,n’eN

Clearly, the conditioning can be improved if we find scaling factors r?? > 0 and weights w? such that

the corresponding matrix Aﬁ"fj\, satisfies

cond ([AﬁipN]TAﬁofN) = Omin N cond ([AthN]TAthN) . (3.10)
Tn: 0<ry, n€
Wyt 0O< Wy, MEMg

Since a solution of the last optimization problem is not so easy, we recommend to apply heuristic rules.
For instance, the scaling factors r,, should be chosen such that the Euclidean norm of the rows in the
matrix Ajto v are almost of modulus equal to one. This corresponds to a preconditioning of AJT\AO NAMN

such that the preconditioned matrix [Af,[O N]TAjtto - has diagonal entries of size one. Alternatively, the
LAPACK routine DGEEQU can be applied to Aq,nr, which determines scaling factors R(m), m =1,..., My
and C(n), n=1,..., N such that the condition number of A, is reduced by scaling the matrix from
the right by the R(m) and from the left by the C(n). Hence, we can choose r,, =1/C(n), n=1,... N
and w,, := R(m)%>,m =1,..., M.

Note that the last scaling is done to improve the convergence of numerical schemes after the normal-
ization factors for the parameters (cf. Subsection 2.2) and the optimal set of measurements with their
normalization factors (cf. Sect. 3.4 and 3.5) have been chosen. In other words, a first scaling by nor-
malization factors is done to adapt the setting to the intrinsic requirements of the application and to
enhance the accuracy of the reconstruction. The scaling of this section is not meant to improve accuracy,
but only to improve the convergence of the numerical optimization algorithms. Indeed, in some of our
numerical experiments the scaling has been important. Namely, if one or two components of the gra-
dients of the objective functional (2.11) taken at the iterative solutions are ten or hundred times larger
in magnitude than the others, then the iterative approximate solution is changed w.r.t. the components
of large magnitude until the large components of the gradients are reduced to almost zero. Practically,
however, they are reduced to the numerical error of the gradient computation. If these errors are still
larger in magnitude than the remaining small gradient components, then the local optimization relies on
false gradients and convergence breaks down.

4 Numerical Reconstruction of Periodic Chrome on Glass Masks

4.1 General Class of Gratings in the Numerical Experiments

As an example (cf. the mask CoG1 in [35]) we consider gratings with a cross-section shown in Figure 2
illuminated by plane waves with the fixed wave length A = 632.8 nm. The period can simply be determined
from the measured directions of the diffracted modes and the formulae (2.2) and (2.3). Therefore, we
may suppose that the period d is known. The material properties are fixed by the refractive index which
is 1.4571 for the silicon oxide in the substrate, 3.7329 4 i 3.8113 for the chrome in the trapezoidal bridge,
and 3.1185 4 ¢0.3802 for the oxide layer covering the bridge. The geometry of the grating structure
is determined by the eight parameters p; defined in Figure 2. Since we wish to recover the geometry
data from the diffraction efficiencies and since these efficiencies are independent of a shift of the grating
structure into the direction of the x-axis, we always fix at least one of the parameters p; and ps. In
order to avoid extra constraints like 0 < ps < p2 < d in the optimization algorithm, we switch to relative
z-coordinates and choose the internal parameters of optimization by
hi=ps, i=1,4, h:=Y i=257  hi=-L i=3.86,s.
d Pi—1
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0 reflected
y ﬁ M’ modes

P5
Cr
p7
x
SiO,-substrate
period d
,/YA transmitted

modes

Figure 2: Scheme of the periodic grating structure chrome on glass (CoG) and its geometrical parameters:
p1 - height of Cr layer; ps,ps - = coordinates of the upper right and left corners of the Cr layer, py -
height of CrO layer; ps, pg - © coordinates of the upper right and left corners of the CrO layer; p7,ps - =
coordinates of the the lower right and left corners of the bridge.

The aim of all calculations is to recover the grating of Figure 2 determined by a bridge height of p; = 50
nm, a layer width of py = 23 nm, a top CD of ps — pg = 580 nm, and side-wall angles of 73° on all
lateral sides of the chrome and the oxide layer trapezoid. All measurement data in the present paper
are simulated using the FEM package DIPOG (cf. [9]). However, using the same numerical method
for simulation and reconstruction often yields too optimistic reconstruction results. Consequently, we
performed the simulation over different types of FEM-grids and on much higher levels of discretization.

4.2 Local Minimum for the Two Parameter Case

In our first test we fix all parameters except ps and pg. The measurement data are the three phase shift dif-
ferences arg[A; /| Ay [|—arg By /|By |l arglAg /| A || - arg[By /| By |], and arg[A; /| Ay [| - axg[By /1By I,
corresponding to plane wave illumination under an angle 6 of —20°, 40°, and 40°, respectively. Note
that this set of measurement data is the optimal subset (cf. Subsection 3.4) of all phase shift differences
for all angles 8 = —80°,—70°,...,80°. Plots of the objective function f from (2.11) are presented in
Figure 3 for the arguments in [0.575,0.875] x [0.225,0.525] and in [0.70,0.81] x [0.24, 0.35], respectively.
Besides the global minimum for hs = hg" = 0.73007 and hs = h§® = 0.29068, there appears an additional
local minimum for hs = 0.793 and hg = 0.265 with a value of the objective functional quite close to that
of the global optimum. If the initial values of the optimization algorithm are chosen on the side of the
additional local minimum, then the local algorithm converges to this. The global minimum A is not
reconstructed. In general, we have observed that an increase of My, i.e. of data in the measurement set,
is helpful to overcome this problem. Though, especially for large number of parameters NV, the existence
of additional minimal solutions cannot be excluded, their distance to the global solution is larger and
their attained functional value is larger than for the case of small M.

In our further tests we restrict the measurement data to sets of efficiency values. Indeed, our numerical
experience has revealed that excluding phase shift differences from the optimal measurement data can
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Figure 3: Objective functional depending on two parameters indicated by isolines. The functional is
defined by an optimal choice of measurement set consisting of three phase shift differences. The arrows
indicate approximate gradients computed by the FEM. Two local minima appear.

double the optimal condition numbers in (3.8). However, performance and reconstruction properties of
the optimization algorithms for optimal measurement data with and without phase shift differences are
almost comparable.

4.3 Reconstruction of Three Parameters

For the second test, we reconstruct three geometry parameters. The other parameters are fixed. A
good reconstruction is possible for the parameters p1, ps, and p7. However, the class of corresponding
gratings consists of convex bridges, only. Since the results for the reconstruction of pi, ps, and p7 are
similar to those for the non-convex case of ps3, pg, and pg, we present the results for the last case, only.
We consider the complete data set (Fy,)menm of all reflected and transmitted efficiencies (i.e. all indices
n € UT = U*(0) with plus and minus sign in upper index of (2.4)) corresponding to the incident angles
6 = —80°,—70°,...,80° and to both classical states of polarization (TE and TM). From these M = 300
measurement values the optimal set of three, four, and five values can be determined in accordance with
(3.8) by computing the condition numbers for all possible subsets of three, four, and five values. The
best choices are given in Table 1. We do not know of any different way to construct measurement data,
and the results of Table 1 seem not to suggest any simple algorithm.

For the reconstruction, we have introduced the upper and lower bounds 0 < h; < 0.4, k = 3,6,8
to prescribe the box constraints (2.9). At first we consider the optimal three measured efficiencies.
The corresponding global minimum of f from (2.11) is attained for hy’ = 0.2797, h¢® = 0.2907, and
hy = 0.2564, i.e. the optimal solution h% coincides with the exact solution h** to be reconstructed.
Two further local minima can be observed for hy = 0.2344, hg = 0.3474, and hg = 0.1540 as well as
for hy = 0.2623, hg = 0.2670, and hg = 0.2037. The local optimization algorithm (2.15) starting from
different initial solutions converges to either of these three minima. If eight different initial solutions
with values for hY € {0.1,0.3}, k = 3,6,8 are chosen, then algorithm (2.15) converges twice to the
optimal solution and six times to a local minimum. To improve the reconstruction more measurement
data should be used. Thus, at second we consider the optimal five measured efficiencies. In this case,
besides the optimal h° there appears an additional local minimum for f from (2.11) at the boundary
of the admissibility domain, namely hs = 0.2381, hg = 0.4, and hg = 0.3003. Starting the optimization
algorithm (2.15) from the eight initial solutions with A € {0.1,0.3}, the optimal solution is recovered
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number M) polarization angle of reflected or order n of
of measurement values state incidence 6 | transmitted mode | diffracted mode
3 TE 20° transmitted -1
™ 20° reflected -1
™ 40° reflected -1
4 TE —60° transmitted -1
™ —10° reflected -2
TE 20° transmitted -1
TE 30° transmitted -1
5 TE —60° transmitted -1
™ —10° reflected -2
TE 20° transmitted -1
TE 30° transmitted -1
TE 80° reflected -1

Table 1: Optimal measurement data to reconstruct the parameters ps, pg, and ps, i.e. corresponding
local mapping has smallest condition numbers (cf. (3.8)). Optimality is defined via the Jacobian taken
at parameter set h®.

| level of discretization || hs | he | hs |
3 0.28663 | 0.29082 | 0.24794
4 0.28276 | 0.29047 | 0.25248
5 0.28092 | 0.29075 | 0.25491
6 0.28010 | 0.29064 | 0.25580
7 0.27983 | 0.29068 | 0.25618
exact values 0.27967 | 0.29068 | 0.25638

Table 2: Reconstruction of the parameters hs, hg, and hg from almost optimal ten measurement values by
the optimization algorithm (2.15) computed over several discretization levels. Initial solution is 3 = 0.2,
h = 0.4, and h = 0.2.

already six times. Finally, we consider an almost optimal measurement set of ten measured efficiencies
produced by the algorithm of Subsection 3.5 setting My = 10 and M¢c = 40. Using this and taking
initial solutions with h{ € {0.1,0.3} or even h{ € {0.,0.4}, the algorithm (2.15) converges always to the
global optimum, i.e. the solution is recovered. The convergence of the recovered solution depending on
the discretization level is recorded in Table 2. Note that a discretization level increased by one means
that the meshsize of the underlying FEM grid is halved. Seems as if the solution can be computed upto
any prescribed accuracy. Of course, in applications measurement uncertainties and a restricted validity
of the mathematical model (i.e. the periodicity assumption and the idealized trapezoidal structure) limit
the accuracy of reconstruction.

In our last numerical test with three parameters, we have taken the same angles of incidence 6 €
{-40,-30,0, 20, 30, 40,60, 70} as for the almost optimal choice of ten measurement values. This time,
however, we have included the efficiencies of all 136 propagating TE and TM modes into the measurement
set. Taking the eight initial solutions with hg € {0,0.4}, k = 3,6, 8, the Newton method converges always
to a good approximation of the exact parameter set. However, in comparison to the almost optimal set
of ten measurement values, the reconstruction errors are slightly larger. For instance, the approximate
values at level seven are hy = 0.27984, hg = 0.29037, and hg = 0.25617 (cf. Table 2).

As mentioned at the end of Subsection 3.3 the optimality of the measurement set is of local nature.
To underline this fact we list the condition numbers cond([Ar,a7]7 Apon) computed at A and at small
perturbations of this parameter set in Table 3. A small perturbation of the parameter set can spoil
the conditioning essentially. Fortunately, the deterioration is not so drastic for larger numbers M, of
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number M() of hg = hgx hg =1.05- hgz h3 = hgz hg = hgx hg =1.05- hgz
measurement hg = hgx hg = hgx h6 =0.95- hgx hg = hgx hg =0.95- hgx
values hg = hgx hg = hgx hg = hgx hg =1.05- hgx hg =1.05- hgx

3 1.50 495.75 11.39 6.31 8.97

4 1.11 6.72 3.16 3.60 3.44

5 1.06 6.29 3.11 3.45 3.49

Table 3: Condition numbers for Jacobians of the mapping geometry parameters to measurement data.
Varying parameters are hs, hg, and hg. Measurement sets (cf. Table 1) are optimal at parameter set h.
Condition numbers are computed at h* and at slightly perturbed parameter sets.

measurement, values. To obtain measurement sets which are almost optimal in a larger neighborhood of
the exact parameter set, we recommend to optimize the condition numbers of the Jacobian simultaneously
at h® and at small perturbations of this parameter set (cf. the end of Subsection 3.4). On the other
hand, the optimized condition numbers are sufficiently small such that a further reduction in the sense
of Subsection 3.6 is not needed.

4.4 Reconstruction of Seven Parameters

Now we reconstruct the seven parameters hy, k = 1,...,6,8. Clearly, the more parameters are to be
reconstructed the closer is the parameter reconstruction problem to a discretization of the ill-posed inverse
problem of reconstructing the grating geometry without any a-priori knowledge. Thus the parameter
determination becomes more difficult. Larger condition numbers and more local minima will complicate
our reconstruction. Similarly, to the three parameter case we can compute almost optimal measurement,
data using the setting of Subsection 3.4 and the algorithm of Subsection 3.5 this time for M, measurement
values with My = 7,10,18. In accordance with the comment at the end of Subsection 3.4, we replace
cond([Amon]T Aponr) for the Jacobian at h® with the maximum of cond([Ar,n]T Aron) taken over
the Jacobians computed at ten parameter sets

hi =h$, k=1,2,3,4,5,6,8,

hi =h, k=2,3,4,568, hy=105-h,
hi=h, k=1,3,4,5,6,8, hy=1.05-hS",

hi =k, k=1,2,4,5,6,8, hs=1.05-hS,

hi =h, k=1,2,3,5,6,8, hy=0.95-hS",

hi =h$, k=1,2,3,4,6,8, hs=1.05-he,

hi =h, k=1,2,3,4,5,8, hg=1.05-h,

hie =R, k=1,2,3,4,5,6, hg=1.05-h<,
hp=h{ k=256, hy=105-h{ k=1,34,8,
hi =1.05-h, k=1,2,3,4,5,6,8.

For instance, applying the algorithm of Subsection 3.5 with My = 18 and Mg = 27 and with the
above mentioned ten Jacobians, we get the optimal choice of eighteen measurement values given in Table
4. The condition numbers of the corresponding Jacobians at A" and some of the perturbed measurement
sets are listed in Table 5 for different numbers M, of measurement values. As expected the condition
numbers are larger than for the three parameter case in Table 3 but they decrease with increasing M.
Moreover, similarly to Subsection 4.3, seven measurement values are not sufficient for a reconstruction of
the parameters if their initial values are not close enough to the expected values.

Even for larger values of M| the advantage of the optimal choice compared to a naive or guideless choice
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polarization angle of reflected or order n of efficiencies in per cent
state incidence # | transmitted mode | diffracted mode || at exact set of parameters
TE —80° reflected 1 0.769504
™ —80° reflected 2 0.550241
TE -30° transmitted -1 8.438866
TE —20° reflected 2 0.286397
TE 30° reflected -2 0.396901
TE 30° transmitted 1 8.438866
TE 40° transmitted -3 0.978679
TE 50° reflected -2 0.303465
TE 50° transmitted -3 1.133749
TE 60° reflected -3 0.331527
TE 60° transmitted -3 1.038697
TE 60° transmitted -2 0.709608
™ 60° reflected -2 0.502725
™ 60° transmitted -2 0.509878
TE 70° reflected -3 0.287705
TE 70° reflected -2 0.224387
TE 70° transmitted -3 0.777185
TE 80° transmitted -3 0.428565

Table 4: Optimal measurement data consisting of eighteen efficiency values to reconstruct the parameters
p1, P2, ..., P, and pg. Optimality is defined via the Jacobians taken at parameter set h® and nine
perturbations. Additional we list the corresponding efficiencies.

of measurements can be demonstrated. For example, we can take the eighteen reflected efficiency values of
polarization state TE at the orders 0, 1,2 resp. -2,-1,0 and at the incident angles § = —80°, —50°, —20°
resp. 10°, 40°, 70° for a naive choice. Starting from the same initial values h) = 0.8 - h{®, k # 4
and h} = 1.95 - h§", quite different reconstruction results emerge for the optimal and the naive subset,
respectively. This is illustrated in Figure 4. Obviously the naive choice of a subset does not yield an
acceptable reconstruction (see lower profile in Figure 4). The corresponding optimal value of the objective
functional f (cf. Equation (2.11)) is 2.65 which is relatively large compared to the 1.6 - 1075 in the case
of the optimal subset. In particular, the heights and the side wall angles of the Cr0 and the Cr layers
are extremely far from the expected values for the naive choice. In order to find an explanation for the
different, behaviour, we compare the shapes of the corresponding objective functionals f. Figure 5 shows
the shapes of f if the two parameters hy and hy, i.e. the heights of the Cr and the CrO layers, vary and
if the remaining five parameters are fixed to the corresponding expected values. Surely, mountain areas
like that in the middle of the graph on the right-hand side will prevent the iterative solution to move
from the side with only local minima to the side with the global one.

Furthermore, for the optimal set of eighteen parameters (cf. Table 4) the optimization algorithm (2.15)
converges to the exact solution for all initial vectors h° chosen such that h) € {0.8 - h{",1.2- h§"}. The
convergence for the initial value h = 0.8 - h{” is presented in Table 6. Figure 6 shows the details of
the convergence for all 27 = 128 initial vectors. The deviations of the optimized parameters from their
expected values are presented in this figure. The optimizations were excuted at discretization level 5 and
were started with the different initial solutions. The parameter specific differences in the deviations are
clearly displayed. Only the deviations of the parameters i1 = p; and hy = pg (cf. Figure 2) are almost 0 at
this discretization level. However, the lower and upper quartiles? are very close to the medians® (shown
as boxes around the medians in Figure 6(b)) for all seven parameters confirming a good convergence

2Recall that the lower quartile of a finite sequence of numbers is the threshold such that one fourth of the numbers is
less and three fourth greater than the treshold. Similarly, the upper quartile is the threshold such that one fourth of the
numbers is greater and three fourth less than the treshold.

3Recall that the median of a finite sequence of numbers is the number in the middle if the sequence is sorted with respect
to magnitude.
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number My of || hy =h{" | hy = 1.05- A" | hy = h{" hi = h{* h1 =1.05- h{*
measurement hg = hgx hg = hgx hg = hgx hg = hgx hg = Sf
values h3 = h? hg = hgvc hg = h? h3 =1.05- hgvc hg =1.05- hgvc
hy=h§ | hy=h§ hy =0.95-h$ | hy = h§" hy = 1.05- h§*
hs = he | hy = he® hs = he hs = he hs = he
he = h§" | he = h§" he = hg’ he = hg’ he = hg’
hs = h&® | hg = h$* hs = h§ hs = h$ hs = 1.05 - h&®
7 239.52 255.52 239.23 264.36 666.03
10 142.31 194.80 137.86 236.47 169.41
18 89.12 124.02 102.74 153.00 158.60

Table 5: Condition numbers for Jacobians of the mapping geometry parameters to measurement data.
Varying parameters are hy, k = 1,2,3,4,5,6,8. Measurement sets (cf. Table 4 for My = 18) are almost
optimal. Condition numbers are computed at h** and at slightly perturbed parameter sets.

| level of discretization || hy | ha | hs | hy | hs | hg | hs |
3 0.04719 | 0.74705 | 0.26449 | 0.02184 | 0.73551 | 0.32085 | 0.27829
4 0.04939 | 0.73908 | 0.27645 | 0.02276 | 0.73134 | 0.29526 | 0.26069
5 0.04988 | 0.73720 | 0.27897 | 0.02295 | 0.73035 | 0.29177 | 0.25755
6 0.04997 | 0.73665 | 0.27954 | 0.02299 | 0.73016 | 0.29099 | 0.25674
exact values 0.05000 | 0.73635 | 0.27967 | 0.02300 | 0.73007 | 0.29068 | 0.25638

Table 6: Reconstruction of the parameters hyg, k& = 1,2,3,4,5,6,8 from almost optimal eighteen mea-
surement values by the optimization algorithm (2.15) computed over several discretization levels. Initial
solution is h% =0.8-h{¥, k=1,2,3,4,5,6,8.

behaviour for all initial vectors with h9 € {0.8 - h$* 1.2 h{}.

Typically, the accuracy of the reconstructed parameters is not uniform if the parameters are of different
nature. In our example the heights h; = p; and hy = py seem to have a much stronger impact on the
efficiencies than the lateral dimensions. Consequently, the accuracy of the reconstruction should be higher
for the heights than for the remaining parameters. Note, however, that the scaling of the parameters
(r, =1 with r,, defined in Subsection 3.6) is chosen such that a change in each of the parameters by say
0.01 corresponds, roughly speaking, to a change of a geometric dimension like height, diameter or shift
in position by 0.01 gm. In other words, a uniform accuracy for all parameters would have been desirable.

4.5 Noisy Data for the Measurement

In order to study the influence of measurement uncertainties on the accuracy of the reconstruction we
repeat the test calculations of the previous Subsection with perturbed sets of efficiencies. The optimal set
of eighteen efficiency values from the last column of Table 4 is superimposed by a normally distributed
noise signal. The signal to noise ratio of the scatterometric setups available at the PTB laboratories [35]
is about 10* and, in first approximation, independant of the intensity of the incident light. Therefore, in
a first test, the efficiencies of the optimal set of Table 4 is superimposed repeatedly with a relative noise
level of 1.1 -10~* resulting in 128 perturbed sets of eighteen efficiencies. Then these perturbed sets of
simulated efficiencies are used as measurement data in convergence tests for the 128 initial vectors with
hY € {0.8- h$*,1.2- h{®}. For a second test we halve the noise level. The results for the reconstruction
of the seven unknown parameters are presented in Figure 7 as parameter specific plots of the medians
and their lower and upper quartiles. The maximal deviation over all 128 results of the optimization
algorithm is 0.01049 for the higher noise level and 0.0043 for the lower. All together these results meet
our expectations and yield a first estimate for the uncertainties of the parameters to be reconstructed.
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Figure 4: Optimization results: Upper profile - good reconstruction for the optimal subset of Table 4;
lower profile - unacceptable reconstruction for an intuitively chosen subset (see text for details).

5 Conclusions and Further Research

In scatterometry the variability of the efficiency patterns depends on the parameters of the inspecting light
and on the geometry of the scattering probe. To solve the reconstruction problem, i.e. to determine the
geometrical parameters of the inspected grating from the measured efficiency pattern, we have formulated
the inverse problem as a non-linear operator equation in Euclidean spaces. The operator maps the vector
of sought parameters to a vector of certain efficiencies of the plane wave modes diffracted by the grating.
A FEM based Newton type method has been described to solve the corresponding operator equation. The
convergence of the numerical algorithm and the quality of the reconstruction results is strongly affected
by the local conditioning of the non-linear mapping, i.e. by the condition number of the Jacobian matrix
for parameter sets close to the solution vector. As a consequence, for a fixed positive integer My, we
have presented an algorithm to determine almost optimal sets of M| efficiencies for the measurements
by optimizing the condition numbers of the corresponding Jacobians. These Jacobians are taken at
the expected set of parameters h°” and, in order to improve the stability of the almost optimal set of
measurements, at some small perturbations.

As numerical examples we have considered a periodic chrome-glass grating of periodically allocated Cr
bridges with a height of 50 nm coated by a CrO layer with a width of 23 nm. The period has been fixed to
1120 nm. Reflected and transmitted efficiency measurements have been simulated under inspecting light
of a wavelength of 632.8 nm and for the polarization types TE and TM. The angle of the incident wave
has been varied in the set {—80°,—70°, ... ,80°}. From this set of all simulated efficiency measurements,
we have determined almost optimal subsets of measurements with different sizes My. We have presented
the convergence properties and the reconstruction quality of the proposed algorithm applying them to the
almost optimal maesurement sets. Additionally, we have investigated the bias of different initial solutions
hY and perturbed efficiencies values on the reconstruction results. We have observed the following:

- Good reconstruction results are possible using mesurement data consisting only of efficiency mea-
surements but not of phase shift differences.
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Figure 5: Objective functional depending on hy and hy (a) for the optimal subset of Table 4; (b) for an
intuitively chosen subset (see text for details).

- The measurement data for the reconstruction must be chosen carefully. For some sets of measure-
ment reconstruction is not possible. We recommend to determine the measurement data optimizing
the local conditioning of the mapping parameters to efficiencies.

- The number of measurement values M, should be chosen sufficiently large in order to avoid false
solutions of the local optimization algorithms.

- A fast convergence of the algorithm and an accurate reconstruction is possible even for seven
parameters. According to our numerical tests, the reconstruction is independent of the initial
solution at least if the last deviates from the exact solution by no more than 20%.

- The reconstruction algorithms yield parameter specific differences in the deviations from the exact
values of the parameters of reconstruction.

- The algorithm converges even if the optimal subset of measurement data is superimposed with noise
of different levels.

Clearly, reconstructing a large number of parameters is like solving the complete ill-posed inverse
problem. So it remains an interesting question, how many parameters can be reconstructed and whether it
is possible to adopt regularization procedures for ill-posed problems. We have restricted our considerations
so far to chrome on glass masks inspected under the wave length of 632.8 nm. Our next task will be to
apply the presented techniques to EUV masks inspected under 13.6 nm (cf. [35]). Finally, our tests with
simulated data have demonstrated that the grating structures can be determined from the mathematical
point of view. To see what happens in real life, we still have to apply our techniques to measured data.
We are planning to do this in the next future both for the 632.8 nm case treated above and for the EUV
case.
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Figure 6: Deviations from the expected parameter values for different initial vectors (a) as a mesh plot
of the first 32 optimizations and (b) as a plot of the medians including the lower and upper quartiles as
boxes around the medians. The whiskers extending from each end of the boxes indicate the extent of the
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Figure 7: Deviations from the expected parameter values for perturbed efficiencies and for different initial
vectors (a) for a noise level of 1.1-107% and (b) for a noise level of 0.55 - 10~%.
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