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AbstratInherent Q-swithing as a soure of intra-avity pulse energy modulations,i.e. unwanted amplitude noise, is still a hallenging task in order to fabriatemonolithi mode-loked semiondutor lasers in view of di�erent ommerialappliations. In this paper, the results of experimental investigations on thein�uene of the quantum well number on the ourrene and suppression of Q-swithing in 40 GHz mode-loked multiple quantum well buried heterostru-ture lasers are presented. Improved mode-loked lasers emit short optialpulses (� 1.6 ps) with very low amplitude noise (1 � 2 %) and timing jitter(50 - 100 fs).Mode-loked lasers have been designed for a number of appliations (e.g. [1℄). Inpartiular, monolithially integrated mode-loked semiondutor lasers are very at-trative as optial pulse soures due to their advantages in terms of ompatness,handling, stability, robustness, and ost savings (e.g. within future Optial TimeDivision Multiplexing (OTDM) teleommuniation networks [2℄ or measurementequipments based on high speed optial sampling tehniques). For ertain applia-tions the pulse soures have to meet tight performane spei�ations on generatedpulse width�t, amplitude noise AN , and timing jitter �t, (e.g. �t � 2 ps, AN < 3 %,and �t < 300 fs in 160 Gbit/s OTDM systems). But it is still a hallenging task tomeet all predetermined requirements simultaneously. Espeially, the onomitaneof Q-swithing in mode-loked semiondutor lasers with an integrated saturable ab-sorber (Fig. 1), generates so-alled Q-swithed mode-loking (QML), i.e. unwantedamplitude noise (e.g. [3, 4, 5, 6℄). This e�et beomes even stronger if very shortpulses (< 2 ps) have to be ahieved.In this paper experimental investigations on the ourrene of amplitude noiseaused by Q-swithing and its redution by hanging the number of quantum wells(QW) in the pulse amplifying setion of monolithially integrated, InP-based 40 GHzmode-loked multi-quantum well (MQW) distributed Bragg re�etor (DBR) lasers(Fig. 1) are presented. Based on the ahieved results improved monolithi lasershave been fabriated and pakaged into �ber pigtailed modules, whih already meetperformane spei�ations on pulse width and noise.The monolithi pulse soures are multi-setion DBR lasers, fabriated as a semi-insulating planar buried heterostruture (SIPBH) in an extended avity on�gu-ration (f. Fig. 1). The integrated ative and passive laser waveguide onsists ofa strained MQW and a GaInAsP bulk material, respetively. The ative waveg-uide region integrates a gain setion (length: 660 �m) and a 55 �m long saturable1



absorber. The extended bulk avity onsists of three tunable phase setions for addi-tional repetition rate �ne tuning, and a DBR grating in order to meet predeterminedwavelength alloations. More details on the laser arhiteture have been already re-ported elsewhere [7℄. Lasers with di�erent numbers of quantum wells (NQW : 1, 2, 3and 6) in the ative devie setion were fabriated and experimentally investigatedin order to ahieve short optial pulses with low amplitude noise.

Figure 1: Top view photo of a monolithi mode-loked 40 GHz MQW DBR laser(SA: Saturable absorber, DBR: Distributed Bragg Re�etor).Q-swithing or intra-avity pulse energy modulation as a soure for amplitude noiseis aused by gain saturation. It follows the time behavior of arrier relaxationosillations and orresponds to frequenies in the range of 1 � 5 GHz. The appearaneof relaxation osillations and the resulting modulation of the pulse amplitudes anbe learly seen from measurements taken with a radio frequeny (RF) spetrumanalyzer (f. RF spetrum of laser with 6 QW in Fig. 2). QML has been suppressedin hybrid solid-state lasers in reent years by optimizing the saturation behavior ofthe integrated saturable absorber (e.g. [4℄), but was not yet su�iently ahievedfor monolithi mode-loked semiondutor lasers. Only some theoretial studies onsemiondutor devies and laser design riteria have been published up to date [3, 5℄,whih indiate the importane of non-resonant optial avity losses and saturationenergies.Aording to a reent theoretial investigation [5℄, strong QML suppression is ex-peted by ahieving large produts of the parameters � and s. The parameters represents the ratio of the saturation energies in the gain and absorber setion(s = Esat;gain=Esat;SA), while � is an optial attenuation fator for the non-resonantavity loss per round trip (� = 1: no losses, � = 0: total absorption). Hene,QML an be suppressed by minimizing the optial losses within the avity and/orby maximizing the s parameter. We followed the route to inrease the parameters, i.e. to inrease Esat;gain by reduing the number of quantum wells (QW) in theative laser waveguide (Esat;gain depends inversely proportional to the di�erentialgain oe�ient, whih dereases with the NQW ). Thus, in our fabriated lasers withNQW = 1, 2, 3 and 6, the s parameter hanges roughly by a fator of 50, 15, 5and 1 with respet to the devie with six QW (6-QW). Furthermore, a pulse widthredution is expeted by reduing the quantum well number (e.g. [1℄).2



Figure 2: Eletrial RF spetrum of a 6-QW and 3-QW mode-loked 40 GHz MQWDBR laser with strong and suppressed QML, respetively (RO: relaxation osilla-tions peak).The lasers were investigated under hybrid mode-loking by applying an eletrial RFsignal onto the saturable absorber for synhronization. A very low RF power of only12 dBm was neessary due to the implementation of an advaned eletrial narrow-band RF impedane-mathing iruit within the haraterized modules, similar tothe iruit design desribed in Ref. [8℄. The external RF frequeny was mathed tothe internal round trip frequeny of the laser for eah bias ondition.Only unstable or almost no mode-loking was ahievable with the 1- and 2-QWdevies, due to the rather low net modal gain in the gain setion with a �xed lengthof 660 �m on one hand, and the existing optial losses in the avity on the other.The obtained results on pulse width and amplitude noise of 6-QW and 3-QW deviesare shown in Fig. 3 and Fig. 4 for a large range of absorber and gain bias onditions.Mode-loking ould be ahieved for gain urrents between 60 mA and 140 mA andreverse absorber voltages between 0.5 V and 4 V (3-QW) or 2.5 V (6-QW).In omparison with the 6-QW laser, a muh larger area of appliable bias onditionsfor mode-loking is ahievable in ase of the 3-QW devies (Fig. 4b). As expeted,the 3-QW devie has lower amplitude noise ompared with the 6-QW (Fig. 4a),even for shorter pulse widths. The evidene for amplitude noise redution due tostronger Q-swithing suppression in the 3-QW laser was further proven by measure-ments with an eletrial spetrum analyzer. The reorded spetra show almost norelaxation osillation peaks, and therefore no side bands around the mode-lokedpulse frequeny (f. 3-QW devie in Fig. 2). Fig. 5, whih shows the ahievedpulse width and amplitude noise level for eah pair of applied gain urrent and ab-sorber voltage, illustrates learly the general trade-o� of amplitude noise and pulsewidth [3, 4, 5℄ and its dependeny on NQW : The amplitude noise is almost onstant3



Figure 3: Pulse width as a funtion of gain urrent and absorber voltage for a 3-QWlaser.with dereasing pulse width down to a ertain width and experienes abruptly avery strong inrease up to > 10 % below this value. This behavior is qualitativelythe same for the 3-QW laser but signi�antly shifted towards shorter pulse widths(� 1.2 - 1.6 ps) and lower amplitude noise data (� 1 - 1.5 %). Fig. 5 demonstrateslearly the importane of QW design for a omprehensive optimization of monolithisemiondutor mode-loked lasers.The ahieved improvements on minimum pulse width and amplitude noise by redu-ing the number of QW from six down to three are summarized in Tab. 1 togetherwith other important performane data measured from �ber pigtailed pulse lasermodules. The timing jitter improvement, as published by Yvind [9℄ for a ridgewaveguide struture, was not yet observable within the experimental investigationson our buried heterostruture lasers.In onlusion amplitude noise aused by Q-swithing instabilities of mode-loked40 GHz SIPBH MQW DBR lasers ould be suppressed by a proper hoie of theQW design. For this purpose the in�uene of QW number on amplitude noisewas experimentally investigated. Improved monolithi 3-QW devies have beenpresented, whih emit 1.2 - 1.6 ps short optial pulses with very low amplitude noise(1 � 2 %) and phase noise levels (50 - 100 fs) within a large range of bias onditions.Fiber pigtailed pulse laser modules, whih onsist of a 3-QW laser and an optimizedeletrial RF mathing iruit, meet already most of given performane spei�ationswith the need of only 12 dBm eletrial RF power for external synhronization.Suessful system tests within 160 Gb/s RZ-DPSK transmission experiments havebeen demonstrated very reently [10℄. 4
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Figure 4: Amplitude noise vs. gain urrent and absorber voltage for 6-QW (a) and3-QW laser (b).
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