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Abstract

We investigate a semiconductor laser with delayed optical feedback due to
an external cavity formed by a regular mirror. We discuss similarities and dif-
ferences of the well-known Lang-Kobayashi delay differential equation model
and the traveling wave partial differential equation model. For comparison we
locate the continuous wave states in both models and analyze their stability.

1 Introduction

In this paper we compare two approaches to modeling a semiconductor laser with
conventional optical feedback (COF), where the laser is subject to delayed optical
feedback due to an external cavity (EC) that is formed by a regular mirror at a fixed
distance from the laser. The first approach is to model the system with the Lang-
Kobayashi (LK) rate equations [1], which are delay differential equations (DDEs)
for the electric field and the inversion inside the laser. The second approach is to
use a traveling wave (TW) model [2, 3], where the system is described by partial
differential equations (PDEs) for the optical waves that counter-propagate along the
longitudinal axis of the laser.

Delay differential equation models, such as the LK equations have been shown to be
powerful tools for simulation and analysis of the dynamics of lasers with different
kinds of optical feedback. In addition to the case of COF considered here, lasers with
filtered feedback, phase-conjugate feedback, and two lasers with a delayed coupling
have recently been investigated by means of LK-type models [4]. In such DDE
models the optical field is described by a complex amplitude, which means that
the laser’s length and the spatial distribution of the fields within the laser are not
resolved. The influence of the delayed feedback is modeled by a driving force on the
optical field in the lasing section.

For the COF laser this force is given by the delayed field multiplied by a complex
feedback rate that describes the amplitude and phase of the light that re-enters
the laser. Originally the LK equations were developed for the case of large delays
and weak feedback. For shorter delay times and higher coupling strengths [5], the
question arises whether this modeling approach is still justified.

The alternative is to describe a laser with optical feedback with a travelling wave
PDE model that includes the spatial (longitudinal) distribution of the fields. This
approach is more frequently used to describe the dynamics of integrated multisec-
tion lasers, where the sections are short (on the order of the length of the laser).
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The complex amplitudes of the counter-propagating waves can be mutually coupled
by Bragg gratings (if present). The TW model is then completed by reflectivity
conditions at the edges of the laser. The counter-propagating waves are coupled
through the standard carrier rate equation in the active section.

For the COF laser as discussed here (see Fig. 1) the TW model[6, 7] has the following
properties. In the passive EC the optical fields remain uncoupled, which allows one
to calculate the fields in the EC explicitly. The influence of the EC on the laser then
enters as a delayed feedback term in the boundary condition of the laser section.
There is an associated complex feedback strength, which is defined by the field losses
and the phase shift within the EC, as well as by the field reflectivity at the outer
EC facet.
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Figure 1: Scheme of a semiconductor
laser with conventional optical feedback
from an external cavity.

We present here a direct comparison of the continuous wave solutions and their
stability properties, which are referred to in the LK model as the external cavity
modes (ECMs) and in the TW model as the compound cavity modes (CCMs). After
a suitable normalization, we are able to show that the equations determining the
ECMs in the LK model can be understood as a local approximation for similar, but
more complicated equations for the CCMs in the TW model. In particular, this
allows us to relate the feedback rate of the LK model to the feedback strength used
in the TW model.

2 Mathematical Models

In this section we give the formulations of the LK and the TW models for the COF
laser device in Fig. 1.

2.1 Lang-Kobayashi model

Lang and Kobayashi have suggested[1] that single-mode lasers with weak feedback
from a long external cavity can be modeled by modified rate equations. Here the
laser length can be neglected and the optical fields are represented by the complex
function E(t). In dimensionless form the LK model can be written as

Ė(t) − (1 + iαH)NE(t) = ηeiψE(t− τc),

Ṅ(t) = ε (J −N(t) − (2N(t) + 1)|E(t)|2) .
(1)

Here N is the dimensionless excess carrier number (inversion), αH is the linewidth
enhancement (or Henry) factor, ε represents the ratio of photon and carrier life
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times, and J is the excess pumping rate. The feedback term contains the delay time
τc, the (real) feedback rate η, and the feedback phase ψ.

2.2 Traveling wave model

We take into account the spatio-temporal distributions of the electrical field, both
in the laser and in the external cavity. Throughout we assume that the solitary
laser is operating at single mode, that is, all other longitudinal modes remain well
suppressed even in the presence of optical feedback. In this case we can neglect gain
dispersion[3]. Under these assumptions the TW model[2] can be used to describe
the dynamics of our laser device.

The TW model considers the evolution of the pair of slowly varying complex counter-
propagating optical fields Ψ(z̃, t̃) = (Ψ+,Ψ−)T and the spatially averaged carrier
density n(t̃). By proper scaling, |Ψ(z̃, t̃)|2 = |Ψ+|2+|Ψ−|2 and 〈|Ψ(t̃)|2〉L are the local
and the spatially averaged photon densities in the laser. Taking into account the
loss and the phase shift of the fields in the external cavity, we can write the TW
model for our laser as

−i
vg

∂
∂t̃

Ψ±(z̃, t̃) =
(
±i ∂

∂z̃
− β(n)

)
Ψ±(z̃, t̃)− κ̄Ψ∓(z̃, t̃), z̃ ∈ [−l̄, 0],

β(n) = i−αH
2
g′(n(t̃)−ntr) + δ− iα

2
;

Ψ+(−l̄, t̃) = 0, Ψ−(0, t̃) = rKeiϕΨ+(0, t̃− τ̄c),
d
dt̃
n(t̃) = I

el̄σ
− n(t̃)

τ
− vgg

′(n(t̃) − ntr)〈|Ψ(t̃)|2〉L.

(2)

The real parameters vg, g
′, ntr, and α are the group velocity, the differential gain,

the transparency carrier density, and the internal absorption of the fields in the
laser, respectively. The complex factor κ̄ allows us to model distributed feedback
(DFB) lasers; it represents the index (�eκ̄) and the loss (�mκ̄) coupling of the
fields. The selection of the wavelength detuning factor δ allows us to shift the
operation wavelength (frequency) with respect to the central wavelength λ0

1. The
parameters ϕ and K denote the 2π-periodic field phase shift and the field amplitude
transmission factor during the field roundtrip in the EC. The complex number r is
the non-vanishing reflectivity of the field amplitude at the outer edge of the EC. The
parameters l̄ and τ̄c denote the laser length and the field roundtrip time in the EC
in the nonscaled model. Finally, I , σ, e, τ are the injected current, the crossection
area of the active zone, the electron charge, and the carrier life time, respectively.

We normalize the TW model (2) by scaling the coordinates and the functions ac-
cording to

z := g′(nref−ntr) z̃, t := vgg
′(nref−ntr) t̃,

N(t) := n(t̃)−nref

2(nref−ntr)
, E(z, t) :=

√
vgg′τ

2
Ψ(z̃, t̃),

and by introducing the dimensionless parameters

l = g′(nref−ntr) l̄, τc=vgg
′(nref−ntr) τ̄c, ε

def
= 1

vgτg′(nref−ntr)
,

1The related optical frequency is 2πc0/λ0, where c0 denotes the speed of light in vacuum.

3



Table 1: Parameters and their values.

nonscaled parameters dimensionless and scaled parameters

central wavelength λ0 1.57 μm group velocity factor c0/vg 3.6
effective differential gain g′ 9 10−17cm2 Henry factor αH 4
length of DFB section l̄ 200 μm scaled length of DFB section l 1.8
roundtrip time in EC τ̄c 12 ps scaled roundtrip time in EC τc 9
index coupling coefficient �e κ̄ 130 cm−1 scaled index coupling �e κ 2.6
loss coupling coefficient �mκ̄ 5 cm−1 scaled loss coupling �mκ 0.1
inverse carrier life time τ 4/3 ps photon / carrier life time ratio ε 0.001
current injection I 43.26 mA excess pumping rate J 1
cross-section area of AZ σ 0.45 μm2 facet reflectivity amplitude |r| 0.978
transparency carrier density ntr 1 1018cm−3 facet reflectivity argument arg(r) 1.248π
reference carrier density nref 2 1018cm−3 transmission amplitude in TW K 2η
wavelength detuning δ -10 cm−1 feedback rate amplitude in LK η K/2
internal absorption α 23.8 cm−1 feedback phases φ=ϕ

κ
def
= κ̄l̄, ξ0

def
=

(
1+iαH

2
g′(nref−ntr) − α

2
− iδ

)
l̄,

J
def
= I−Iref

2(Iref−Itr)
, where Ij

def
=

el̄σnj

τ
, j = ref, tr.

Now the TW model can be written in dimensionless form as

∂
∂t

(
E+

E−

)
(z, t) = H(N)

(
E+

E−

)
, z ∈ (−l, 0),

E+(−l, t) = 0, E−(0, t) = rKeiϕE+(0, t−τc),

H(N)
def
=

(−∂z+(1 + iαH)N + ξ0/l −iκ/l
−iκ/l ∂z+(1 + iαH)N + ξ0/l

)
,

d
dt
N(t) = ε (J −N − (2N + 1)〈|E|2〉L) .

(3)

In the following, we focus on the comparison between the nondimensional equations
(1) and (3) of the Lang-Kobayashi and TW models, respectively. For notational
simplicity, E(z, t) will be used to represent the optical amplitudes in both cases.
However, it is important to keep in mind that the E(z, t) is actually independent
of z in the Lang-Kobayashi model, while it represents the two component vector
(E+(z, t), E−(z, t))T in the TW model.

3 Cavity modes

A cavity mode (CM) or a continuous wave (CW) state of the COF laser device is a
solution of the model equations given by

(E(z, t), N(t)) =
(
Es(z)e

iωst, Ns

)
, (4)

where Es(z) and Ns represent a time-independent complex optical field and a real
carrier number, and the real constant ωs is an angular frequency. In both of our
models the field equations are linear in the laser with respect to the field function
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E. This means that the field equations determine the real pairs (ωs, Ns), while the
amplitude of Es can be found later from the balance of the carrier rate equation.

In order to determine the possible CMs, ansatz (4) is inserted into the respective
model equations. Following [6], the result is written as

G(ω,N) = ζeiφe−iωτc (5)

in both cases. Here, G(ω,N) and the right-hand side of Eq. (5) represent the response
of the laser and of the EC to the same monochromatic field. The complex function
G(ω,N), the effective coupling parameter ζ and phase φ depend on the model.
Before specifying them, we first discuss this equation in general.

In the absence of the feedback (ζ = 0) the roots (ω0, N0) of the function G(ω,N) de-
termine the CW states of the solitary laser. For nonzero feedback, Eq. (5) suggests
an easy way to locate the CMs, or branches of CMs when the feedback parame-
ters ζ or φ are changed. Namely, these branches in the (ω,N)-projection can be
represented by level curves of the functions2

ζ̃(ω,N) = |G(ω,N)|, φ̃(ω,N) = arg (G(ω,N)) + ωτc (mod 2π). (6)

After defining the complex function G(ω,N) and fixing the parameters ζ and φ, one
can trace these level curves numerically3 (see, e.g., the solid and dashed curves in
Fig. 2). The CMs of our system are then given by the intersection points (ω,N) of
the level curves of both these functions (the black dots in Fig. 2).

Any pair (ω,N) corresponds to some CM of the laser with the feedback amplitude
ζ̃(ω,N) and phase φ̃(ω,N). Without additional efforts we record changes of the
amplitude ζ = ζ̃(ω,N) (or phase φ = φ̃(ω,N)) when we tune (ω,N) along the com-
puted level curve of φ̃ (or ζ̃) in the (ω,N)-projection. We distinguish possibly stable
node (mode) CMs and unstable saddle-type (antimode) CMs. Pairs of modes and
antimodes are created or destroyed at folds of branches (saddle-node bifurcations).
This creation or disappearance of pairs of CMs can be recognized in the (ω,N)-
projection: it happens at those (ω,N), where level curves of ζ̃(ω,N) and φ̃(ω,N)
are touching each other. That is, the real equation

∂ωφ̃∂N ζ̃ = ∂ωζ̃∂N φ̃ ⇔ 0 = F(ω,N)
def
= �e (∂NG∗ (τcG − i∂ωG)) /|G| (7)

defines the locations of saddle-node bifurcations in the (ω,N)-projection. The cor-
responding curves can again be traced numerically (dotted curves in Fig. 2). They
separate the (ω,N)-projection into regions of unstable antimodes (grey shaded areas
of Fig. 2) and possibly stable modes.

The saddle-node bifurcation curves determine possible boundaries of the CM stabil-
ity region, even though they are independent of the carrier rate equation parameters.

2φ̃(ω, N) is defined for a non-vanishing |G|, i.e., for those (ω, N) that are not the CW states of
the solitary laser.

3To trace these curves one needs to find initial points (ω, N), which we obtain by root finding
by inposing that ζ̃ and φ̃ are satisfied at some fixed N but for a variable ω.
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To complete the stability analysis one needs to check also the appearance of Hopf
bifurcations. Now the parameters ε and J in the carrier rate equation are playing
a role. However, for small ε and for moderate or high feedback the location of the
most important Hopf bifurcation branches can be approximated by the positions in
the (ω,N)-projection (or the (φ, ζ)-plane ) at which a pair of CMs has the same
threshold N ; see Refs. [7, 8, 9]. In the vicinity of these locations one of the CMs
involved gains and another loses stability. The beating-type periodic orbits result-
ing from these bifurcations form connecting branches between both CMs, which are
known as bridges between cavity modes in the LK system[10].

The condition of equal threshold is again independent of the carrier rate equation
parameters and is given by two complex (four real) equations

0 = T (ω,N,Δ, ζ, φ)
def
=

{
G(ω,N) − ζeiϕe−iωτc

G(ω + Δ, N) − ζeiϕe−i(ω+Δ)τc
(8)

relating the real factors N , ω, ζ, φ and the mode frequency difference Δ. Thus,
solutions with equal threshold form curves in the (ω,N)-projection (dash-dotted
curves in Figs. 2 and 4). Accordingly, in the (ω,N)-projection they (approximately)
distinguish the regions of unstable (hatched area in Fig. 2) and stable modes. The
(ω,N, ζ, φ)-location at which the mode separation vanishes (Δ = 0) is determined
by the pair of complex equations

G(ω,N) = ζeiϕe−iωτc , ∂ωG(ω,N) = −iτcζeiϕe−iωτc .

In the TW model it is known as a mode degeneracy point.

Up to now we have considered an abstract laser response function G. In the re-
mainder of this section we derive the expressions for the response function G and
the factors ζ, φ for the LK model and for the TW model, respectively, which we
distinguish by subscripts.

3.1 External cavity modes of the LK model

In the well-investigated LK model the CMs are better known as external cavity
modes (ECMs). The function G and the feedback factors ζ, φ from Eq. (5) can be
defined by

GLK(ω,N)
def
= iω − (1 + iαH)N, ζLK

def
= η, φLK

def
= ψ . (9)

These expressions can be obtained after inserting ansatz (4) into (1). A unique root
(ω,N) = (0, 0) of the function GLK defines the CW state of the solitary laser, which
has the field intensity |E|2 = J .

Some level curves of the functions ζ̃LK and φ̃LK defined by Eq. (6) are represented
by the solid and the dashed curves in Fig. 2(a). Open circles and black dots in
this figure show modes and antimodes of the LK model for η = 0.2 and ψ = 0.
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The dotted saddle-node curve separates the regions of modes and antimodes; it was
found from condition (7). The dash-dotted curve is the equal-threshold curve that
approximates Hopf bifurcations and, therefore, restricts the mode stability region
(white area in Fig. 2(a)). The level curves of ζ̃LK(ω,N) (ellipses of ECMs), as well
as solutions of Eqs. (7,8), can be given by the explicite expressions

ζ̃LK(ω,N) = η ⇔
{
ω = η(αH sin(t) + cos(t))
N = η sin(t)

,

FLK(ω,N) = 0 ⇔ N =
αHω + 1/τc

1 + α2
H

,

TLK(ω,N,Δ, η, ψ) = 0 ⇔

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ω = Δ
2

(
αHctg

(
Δτc
2

)
− 1

)
N = Δ

2
ctg

(
Δτc
2

)
η =

∣∣∣Δ
2
sin−1

(
Δτc
2

)∣∣∣
ψ = αHΔτc

2
ctg

(
Δτc
2

)
+π ceil

(∣∣∣Δτc
2π

∣∣∣) (mod 2π)

.

The field intensity of each ECM is given by |Es|2 = (J − Ns)/(2Ns + 1). It must
be positive, so that only the ECMs with Ns ≤ J are physically relevant; see also
Ref. [11].
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Figure 2: CMs in (ω,N)-projection for the LK model (a) and for the TW model
(b). Solid curves: level curves of ζ̃(ω,N) for ζ = 0.2 (thick), 0.05 and 0.1 (thin
inner), or 0.4 (thin outer). Dashed curves:level curves of φ̃(ω,N) for φ = 0. Dotted
curves: saddle-node bifurcation curves. Dash-dotted curves: equal-threshold curves.
Black dots and open circles: modes and antimodes at φ = 0 and ζ = 0.2. Squares:
CW states of the solitary laser. Grey shading: regions of antimodes. Hatching:
approximate region of unstable modes.
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3.2 Compound cavity modes of the TW model

The TW model was used intensively to model the dynamics of multisection lasers
with comparable lengths of the sections. The CMs are characterized by spatial
distributions of the fields in all parts of the device. Thus, the CMs in the TW
model case are due to both the internal laser cavity and the EC, and this is why
they are called compound cavity modes (CCMs).

In the present case, the continuous wave amplitude Es from Eq. (4) is given by a
pair of complex time-independent functions E±

s (z) representing spatial distributions
of the counterpropagating fields. The insertion of ansatz (4) into the boundary
conditions and into the field equations of the TW model (3) yields

E+
s (−l) = 0, E−

s (0) = rKeiϕE+
s (0)e−iωsτc, (10)

and the linear system of ODE’s

d
dz

(
E+
s

E−
s

)
(z) = 1

l

(−(ξs−ξ0) −iκ
iκ (ξs−ξ0)

)(
E+
s

E−
s

)
, z ∈ (−l, 0), which implies

(
E+
s

E−
s

)
(0) = sinh(χs)

χs

(
χs coth(χs)−(ξs−ξ0) −iκ

iκ χs coth(χs)+(ξs−ξ0)

)(
E+
s

E−
s

)
(−l),

ξs = ξ(ωs, Ns), χs =
√

(ξs−ξ0)2 + κ2,

ξ(ω.N)
def
= l (iω − (1+iαH)N) = lGLK(ω,N).

(11)

The EC and the laser response functions can now be defined by the relations between
the amplitudes E±

s (z)|z=0 ( i.e., the amplitudes for z = 0) that describe fields that
are incoming into (or outgoing from) the EC and laser, respectively:

EC: E−
s (0) = γ ζTWe

iφTW e−iωsτcE+
s (0),

ζTW
def
= |r|K/|γ|, φTW

def
= ϕ+ arg(r/γ),

laser: E−
s (0) = γGTW (ωs, Ns)E

+
s (0),

GTW (ξ(ω,N))
def
= i

γκ

⎛
⎝ √

(ξ−ξ0)2+κ2

tanh

(√
(ξ−ξ0)2+κ2

) + (ξ−ξ0)
⎞
⎠ ,

where γ
def
= iκl(1 − ξ0)/(ξ

2
0 + κ2).

(12)

For all CW states (ω,N) of the solitary DFB laser with antireflection coatings
the condition γGTW (ω,N) = 0 holds4. By a proper selection of the detuning and
the reference carrier density factors δ and nref

5 we can always achieve that a pair
(ω,N) = (0, 0) is a root of the function GTW , while |GTW (ω,N)| is strictly positive

4Only a finite number of the CCMs is given by roots (ω, N) of the function GTW satisfy the
necessary condition N < J , which is implied by the non-negativeness of the mean photon number
〈|Es|2〉L.

5In our example we have chosen a nice value of nref and adjusted the absorption α instead (see
Table 1).
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for all N < 0. The complex factor γ defined in Eq. (12) scales the function GTW (ξ),
so that ∂ξGTW |ξ=0 = 1/l. This will be used when comparing the LK and the TW
models in the next section.

We use the laser response function GTW from Eq. (12) to build the functions ζ̃TW
and φ̃TW of Eq. (6), as well as the saddle-node function FTW of Eq. (7) and the
equal-threshold function TTW of Eq. (8). The numerical continuation of the saddle-
node condition, of the equal-threshold curves and of the level curves of ζ̃TW and
φ̃TW is represented in Fig. 2(b). One can recognize the multimode nature of the
TW model for the solitary laser in this figure. With decreasing feedback amplitude,
the level curves of ζ̃TW (ω,N) are forming shrinking loops, which collapse at the CW
states of the solitary laser. Each such set of closed loops should be compared with
ECM ellipses of the LK model. Note also that the centers of these closed loops are
not exactly at the solitary laser CW states. With an increase of the feedback these
loops grow and collide with each other6, forming larger curves that bypass multiple
CW states of the solitary laser. Thus, when tuning the feedback phase at larger
feedback levels, one must expect an increasing difference between the ECMs of the
LK model and the CCMs of the TW models.

4 Comparison between ECMs and CCMs

We now concentrate on the ECMs and CCMs that are located close to the CW
state (ω,N) = (0, 0) of the solitary laser. In this case |GLK(ω,N)| is small and the
function GTW can be given by its Taylor expansion

GTW (ξ(ω,N)) = GTW |ξ=0 + ∂ξGTW |ξ=0 ξ + 1
2
∂ξξGTW |ξ=0 ξ

2 + O(ξ3)

= GLK(ω,N) + γ2G2
LK(ω,N) + O(G3

LK),

where γ2
def
= l2

2
∂ξξGTW |ξ=0.

(13)

Accordingly, we obtain the following expressions for the functions ζ̃ and φ̃ from
Eq. (6) in the TW and the LK models:

ζ̃TW (ω,N) = ζ̃LK(ω,N) · [|1 + γ2GLK(ω,N)| + O(|GLK|2)] ,
φ̃TW (ω,N) = φ̃LK(ω,N) + arg (1 + γ2GLK(ω,N)) + O(|GLK |2).

(14)

The laser response (GTW ,GLK), as well as the feedback amplitude (ζ̃TW , ζ̃LK) or
phase (φ̃TW , φ̃LK) functions, coincide to first order. Thus, we should relate the
feedback amplitude and phase parameters in the LK and the TW models as follows:

η = ζLK ≈ ζTW = |r|K/|γ|, ψ = φLK ≈ φTW = ϕ+ arg(r/γ). (15)

To have simple expressions between the feedback amplitudes (K = 2η) and between
the feedback phases (ϕ = ψ), we have adjusted the amplitude and the argument of
the facet reflectivity factor r in our example; see Table 1.

6The collision points (ω, N) can be found by solving the equations ∂ξGTW (ξ̄) = 0, ξ(ω, N) = ξ̄.
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(moderate) and 0.6π (thin). Triangles
and rhombs: functions φ̃, ζ̃ in the TW
and the LK models have a higher order
coincidence. Cavity modes at fixed ζ and
φ are given by the intersections of the cor-
responding solid and dashed curves.
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Figure 4: Bifurcations in the vicinity of
(ω,N) = (0, 0) in the LK model (black
curves) and in the TW model (grey
curves). Thick dashed curve: saddle-
node bifurcation. Thick solid curve:
Hopf bifurcation. Dash-dotted curve:
equal-threshold condition. Thin solid
and dashed curve: some fixed feedback
amplitude and fixed-phase curves as in
Fig. 3. Slanted hatching: regions of
antimodes (saddles). Vertical (horizon-
tal) hatching: regions of unstable modes
(nodes).

To compare different level curves of the two different models we plotted them both
in Fig 3. We actually plot these curves as a function of ω − αHN to make the
CM ellipses more visible. It can be checked that this representation transforms
the ECM ellipses of the LK system into circles (black solid curves in Fig. 3). For
smaller feedback amplitudes (ζ = 0.01 or 0.02) the corresponding ellipses, as well as
the fixed-phase curves (dashed curves), of both models are in rather good agreement.
However, with an increase of ζ, the ECM loops (grey solid) as well as the fixed-phase
curves (grey dashed) of the TW model are slightly out of place. The loops are shifted
upwards, while the fixed-phase curves are slightly rotated clockwise. These changes
are due to non-vanishing higher-order terms in Eq. (14). If the conditions

|1+γ2GLK| = 1 ⇔
{
ω = �m [(iαH − 1)(1 − eit)/γ2]
N = �e [(1 − eit)/γ2]

, or

arg(1 + γ2GLK) = 0 ⇔ N =
�e[γ2]ω

�m[γ2(1 + iαH)]

are satisfied then the next higher-order term of the function ζ̃TW or φ̃TW in Eq. (14)
vanishes as well. The locations where this happens are indicated in Fig. 3 by filled
rhombs and open triangles, respectively. The interpretation is that the correspond-
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ing fixed CM ellipses (or the fixed-phase curves) of the TW and LK models cross
each other approximately at these positions.

In Fig. 4 we also compared the saddle-node conditions and the equal-threshold
curves defined by Eqs. (7) and (8). The saddle-node curve of the TW model (grey
dashed) is rotated slighly as we have seen before for the fixed-phase curves. At the
same time, the equal-threshold curve (grey dash-dotted) is shifted downwards, i.e.,
in the opposite direction of the shift of the CM loops. The Hopf bifurcation curves,
computed with the continuation package AUTO from the characteristic equation
[12, 13], (thick solid) are also indicated, as are stability regions of the CMs (white
areas).

5 Conclusions

We have compared the cavity modes of the laser with conventional optical feedback
as modelled by the Lang-Kobayashi equations and by a traveling wave model. By
deriving the scaling factor that relates the two models we showed good qualitative
agreement, even at the moderate levels of feedback, between the external cavity
modes of the LK model and the compound cavity modes of the TW model. For low
levels of feedback we even found quantitative agreement.

Future work will include a more detailed comparison between the LK and TW
models on the level of one-parameter and two-parameter bifurcation diagrams.
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[11] V. Rottschäfer and B. Krauskopf, “The ECM-backbone of the Lang-Kobayashi
equations: a geometric picture”, Applied Nonlinear Mathematics Research Re-
port 2005.20, University of Bristol.

[12] E.J. Doedel, A.R. Champneys, T.F. Fairgrieve, Yu.A. Kuznetsov, B. Sandstede,
and X. Wang, “AUTO97: Continuation and bifurcation software for ordinary
differential equations (with HomCont)”, Technical report, Concordia University,
1997.

[13] M. Radziunas, “Numerical bifurcation analysis of the traveling wave model of
multisection semiconductor lasers”, Physica D, 213, pp. 98–112, 2006.

12


