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Abstract

For a scattering system {AΘ, A0} consisting of selfadjoint extensions AΘ and A0 of a
symmetric operator A with finite deficiency indices, the scattering matrix {SΘ(λ)} and a
spectral shift function ξΘ are calculated in terms of the Weyl function associated with the
boundary triplet for A∗ and a simple proof of the Krein-Birman formula is given. The
results are applied to singular Sturm-Liouville operators with scalar and matrix potentials,
to Dirac operators and to Schrödinger operators with point interactions.
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1 Introduction 2

1 Introduction

Let q ∈ L1
loc(R+) be a real function and consider the singular Sturm-Liouville differential

expression − d2

dx2 + q on R+. We assume that − d2

dx2 + q is in the limit point case at ∞, i.e.
the corresponding minimal operator L,

Lf = −f ′′ + qf, dom (L) =
{
f ∈ Dmax : f(0) = f ′(0) = 0

}
, (1.1)

in L2(R+) has deficiency indices (1, 1). Here Dmax denotes the usual maximal domain
consisting of all functions f ∈ L2(R+) such that f and f ′ are locally absolutely continuous
and −f ′′ + qf belongs to L2(R+). It is well-known that the maximal operator is given by
L∗f = −f ′′+ qf , dom (L∗) = Dmax, and that all selfadjoint extensions of L in L2(R+) can
be parametrized in the form

LΘ = L∗ � dom (LΘ), dom (LΘ) =
{
f ∈ Dmax : f ′(0) = Θf(0)

}
, Θ ∈ R,

where Θ = ∞ corresponds to the Dirichlet boundary condition f(0) = 0.

Since the deficiency indices of L are (1, 1) the pair {LΘ, L∞}, Θ ∈ R, performs a complete
scattering system, that is, the wave operators

W±(LΘ, L∞) = s− lim
t→±∞

eitLΘe−itL∞P ac(L∞)

exist and their ranges coincide with the absolutely continuous subspace ran (P ac(LΘ)) of
LΘ, cf. [6, 25, 34, 38]. Here P ac(L∞) and P ac(LΘ) denote the orthogonal projections
onto the absolutely continuous subspace of L∞ and LΘ, respectively. The scattering op-
erator SΘ = W+(LΘ, L∞)∗W−(LΘ, L∞) commutes with L∞ and therefore SΘ is unitarily
equivalent to a multiplication operator induced by a family {SΘ(λ)} of unitary operators
in the spectral representation of L∞. This family is usually called the scattering matrix
of the scattering system {LΘ, L∞} and is the most important quantity in the analysis of
scattering processes.

A spectral representation of the selfadjoint realizations of − d2

dx2 + q and in particular of
L∞ has been obtained by H. Weyl in [35, 36, 37], see also [29, 30]. More precisely, if ϕ(·, λ)
and ψ(·, λ) are the fundamental solutions of −u′′ + qu = λu satisfying

ϕ(0, λ) = 1, ϕ′(0, λ) = 0 and ψ(0, λ) = 0, ψ′(0, λ) = 1,

then there exists a scalar function m such that for each λ ∈ C\R the function x 7→
ϕ(x, λ) +m(λ)ψ(x, λ) belongs to L2(R+). This so-called Titchmarsh-Weyl function m is a
Nevanlinna function which admits an integral representation

m(λ) = α+
∫ ∞

−∞

(
1

t− λ
− t

1 + t2

)
dρ(t) (1.2)

with a measure ρ satisfying
∫

(1 + t2)−1dρ(t) < ∞. Since L∞ is unitarily equivalent to
the multiplication operator in L2(R, dρ) the spectral properties of L∞ can be completely
described with the help of the Borel measure ρ, i.e. L∞ is absolutely continuous, singular,
continuous or pure point if and only if ρ is so.
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It turns out that the scattering matrix {SΘ(λ)} of the scattering system {LΘ, L∞} and the
Titchmarsh-Weyl function m are connected via

SΘ(λ) =
Θ−m(λ+ i0)
Θ−m(λ+ i0)

(1.3)

for a.e. λ ∈ R with =m (m(λ+ i0)) 6= 0, cf. Section 5.1. For the special case q = 0 in (1.1)
the Titchmarsh-Weyl function is given by m(λ) = i

√
λ, where

√
· is defined on C with a

cut along R+ and fixed by =m
√
λ > 0 for λ 6∈ R+ and by

√
λ ≥ 0 for λ ∈ R+. In this case

formula (1.3) reduces to

SΘ(λ) =
Θ + i

√
λ

Θ− i
√
λ

for a.e. λ ∈ R+ (1.4)

and was obtained in e.g. [38, §3].

The basic aim of the present paper is to generalize the correspondence (1.3) between the
scattering matrix {SΘ(λ)} of {LΘ, L∞} and the Titchmarsh-Weyl function m from above
to scattering systems consisting of a pair of selfadjoint operators, which both are assumed
to be extensions of a symmetric operator with finite deficiency indices, and an abstract
analogon of the function m.

For this we use the concept of boundary triplets and associated Weyl functions developed in
[13, 14]. Namely, if A is a densely defined closed symmetric operator with equal deficiency
indices n±(A) < ∞ in a Hilbert space H and Π = {H,Γ0,Γ1} is a boundary triplet for
A∗, then all selfadjoint extensions AΘ of A in H are labeled by the selfadjoint relations Θ
in H, cf. Section 2.1. The analogon of the Sturm-Liouville operator L∞ from above here
is the selfadjoint extension A0 := A∗ � ker(Γ0) corresponding to the selfadjoint relation
{( 0

h ) : h ∈ H}. To the boundary triplet Π one associates an operator-valued Nevanlinna
function M holomorphic on ρ(A0) which admits an integral representation of the form
(1.2) with an operator-valued measure closely connected with the spectral measure of A0,
see e.g. [2]. This function M is the abstract analogon of the Titchmarsh-Weyl function m
from above and is called the Weyl function corresponding to the boundary triplet Π, cf.
Section 2.2.

Since A is assumed to be a symmetric operator with finite deficiency indices the pair
{AΘ, A0}, where Θ is an arbitrary selfadjoint relation in H, is a complete scattering sys-
tem with a corresponding scattering matrix {SΘ(λ)}. Our main result is Theorem 3.8,
which states that the direct integral L2(R, µL,Hλ) performs a spectral representation of
the absolutely continuous part Aac

0 of A0 such that the scattering matrix {SΘ(λ)} of the
scattering system {AΘ, A0} has the form

SΘ(λ) = IHλ
+ 2i

√
=m (M(λ))

(
Θ−M(λ)

)−1√=m (M(λ)) (1.5)

for a.e. λ ∈ R, where M(λ) := M(λ + i0), µL is the Lebesgue measure and Hλ :=
ran (=m (M(λ))). If the Weyl function scalar, i.e. the deficiency indices of A are (1, 1),
then we immediately restore (1.3) from (1.5), see also Corollary 3.10. We note that in [1]
(see also [4]) V.M. Adamyan and B.S. Pavlov have already obtained a different (unitarily
equivalent) expression for the scattering matrix of a pair of selfadjoint extensions of a
symmetric operator with finite deficiency indices.
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We emphasize that the representation (1.5) in terms of the Weyl function of a fixed bound-
ary triplet has several advantages, e.g. for Sturm-Liouville operators with matrix poten-
tials, Schrödinger operators with point interactions and Dirac operators the high energy
asymptotic of the scattering matrices can be calculated and explicit formulas can be given
(see Section 5). Furthermore, since the difference of the resolvents of AΘ and A0 is a finite
rank operator, the complete scattering system {AΘ, A0} admits a so-called spectral shift
function ξΘ, cf. [27] and e.g. [9, 10]. Recall that ξΘ is a real function summable with
weight (1 + λ2)−1 such that the trace formula

tr
(
(AΘ − z)−1 − (A0 − z)−1

)
= −

∫
R

1
(λ− z)2

ξΘ(λ) dλ

is valid for z ∈ C\R. The spectral shift function is determined by the trace formula up to
a real constant. Under the assumption that Θ is a selfadjoint matrix, we show that the
spectral shift function of {AΘ, A0} is given (up to a real constant) by

ξΘ(λ) =
1
π
=m

(
tr (log(M(λ+ i0)−Θ))

)
for a.e. λ ∈ R, (1.6)

see Theorem 4.1 and [28] for the case n = 1. With this choice of ξΘ and the representation
(1.5) of the scattering matrix {SΘ(λ)} it is easy to prove an analogue of the Birman-Krein
formula (see [8])

det(SΘ(λ)) = exp
(
−2πiξΘ(λ)

)
for a.e. λ ∈ R

for scattering systems {AΘ, A0} consisting of selfadjoint extensions of a symmetric operator
with finite deficiency indices. Finally we mention that with the help of the representation
(1.5) in a forthcoming paper the classical Lax-Phillips scattering theory will be extended
and newly interpreted.

The paper is organized as follows. In Section 2 we briefly recall the notion of boundary
triplets and associated Weyl functions and review some standard facts. Section 3 is devoted
to the study of scattering systems {AΘ, A0} consisting of selfadjoint operators which are
extension of a densely defined closed simple symmetric operator A with finite deficiency
indices. After some preparations we proof the representation (1.5) of the scattering matrix
{SΘ(λ)} in Theorem 3.8. Section 4 is concerned with the spectral shift function and
the Birman-Krein formula. In Section 5 we apply our general result to singular Sturm-
Liouville operators with scalar and matrix potentials, to Dirac operators and to Schrödinger
operators with point interactions. Finally, for the convenience of the reader we repeat some
basic facts on direct integrals and spectral representations in the appendix, thus making
our exposition self-contained.

Notations. Throughout the paper H and H denote separable Hilbert spaces with scalar
product (·, ·). The linear space of bounded linear operators defined from H to H is denoted
by [H,H]. For brevity we write [H] instead of [H,H]. The set of closed operators in H

is denoted by C(H). By C̃(H) we denote the set of closed linear relations in H. Notice
that C(H) ⊆ C̃(H). The resolvent set and the spectrum of a linear operator or relation are
denoted by ρ(·) and σ(·), respectively. The domain, kernel and range of a linear operator
or relation are denoted by dom (·), ker(·) and ran (·), respectively. By B(R) we denote the
Borel sets of R. The Lebesgue measure on B(R) is denoted by µL(·).
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2 Extension theory of symmetric operators

2.1 Boundary triplets and closed extensions

Let A be a densely defined closed symmetric operator with equal deficiency indices n±(A) =
dim ker(A∗ ∓ i) ≤ ∞ in the separable Hilbert space H. We use the concept of boundary
triplets for the description of the closed extensions AΘ ⊂ A∗ of A in H, see [12, 13, 14, 24].

Definition 2.1 A triplet Π = {H,Γ0,Γ1} is called boundary triplet for the adjoint op-
erator A∗ if H is a Hilbert space and Γ0,Γ1 : dom (A∗) → H are linear mappings such
that

(i) the abstract second Green’s identity,

(A∗f, g)− (f,A∗g) = (Γ1f,Γ0g)− (Γ0f,Γ1g),

holds for all f, g ∈ dom (A∗) and

(ii) the mapping Γ := (Γ0,Γ1)> : dom (A∗) −→ H×H is surjective.

We refer to [13] and [14] for a detailed study of boundary triplets and recall only some
important facts. First of all a boundary triplet Π = {H,Γ0,Γ1} for A∗ exists since the
deficiency indices n±(A) of A are assumed to be equal. Then n±(A) = dimH holds. We
note that a boundary triplet for A∗ is not unique.

An operator Ã is called a proper extension of A if Ã is closed and satisfies A ⊆ Ã ⊆ A∗. Note
that here A is a proper extension of itself. In order to describe the set of proper extensions
of A with the help of a boundary triplet Π = {H,Γ0,Γ1} for A∗ we have to consider the
set C̃(H) of closed linear relations in H, that is, the set of closed linear subspaces of H⊕H.
A closed linear operator in H is identified with its graph, so that the set C(H) of closed
linear operators in H is viewed as a subset of C̃(H). For the usual definitions of the linear
operations with linear relations, the inverse, the resolvent set and the spectrum we refer
to [15]. Recall that the adjoint relation Θ∗ ∈ C̃(H) of a linear relation Θ in H is defined as

Θ∗ :=
{(

k
k′

)
: (k, h′) = (k′, h) for all

(
h
h′

)
∈ Θ

}
(2.1)

and Θ is said to be symmetric (selfadjoint) if Θ ⊆ Θ∗ (resp. Θ = Θ∗). Note that definition
(2.1) extends the definition of the adjoint operator.

With a boundary triplet Π = {H,Γ0,Γ1} for A∗ one associates two selfadjoint extensions
of A defined by

A0 := A∗ � ker(Γ0) and A1 := A∗ � ker(Γ1).

A description of all proper (closed symmetric, selfadjoint) extensions of A is given in the
next proposition. Note also that the selfadjointness of A0 and A1 is a consequence of
Proposition 2.2 (ii).

Proposition 2.2 Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗. Then the mapping

Θ 7→ AΘ := Γ−1Θ =
{
f ∈ dom (A∗) : Γf = (Γ0f,Γ1f)> ∈ Θ

}
(2.2)
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establishes a bijective correspondence between the set C̃(H) and the set of proper extensions
of A. Moreover, for Θ ∈ C̃(H) the following assertions hold.

(i) (AΘ)∗ = AΘ∗ .

(ii) AΘ is symmetric (selfadjoint) if and only if Θ is symmetric (resp. selfadjoint).

(iii) AΘ is disjoint with A0, that is dom (AΘ) ∩ dom (A0) = dom (A), if and only if Θ ∈
C(H). In this case the extension AΘ in (2.2) is given by

AΘ = A∗ � ker
(
Γ1 −ΘΓ0

)
.

In the following we shall often be concerned with simple symmetric operators. Recall that
a symmetric operator is said to be simple if there is no nontrivial subspace which reduces
it to a selfadjoint operator. By [26] each symmetric operator A in H can be written as the
direct orthogonal sum Â⊕As of a simple symmetric operator Â in the Hilbert space

Ĥ = clospan
{
ker(A∗ − λ) : λ ∈ C\R

}
and a selfadjoint operator As in H	 Ĥ. Here clospan{·} denotes the closed linear span of
a set. Obviously A is simple if and only if Ĥ coincides with H.

2.2 Weyl functions and resolvents of extensions

Let, as in Section 2.1, A be a densely defined closed symmetric operator in H with equal
deficiency indices. If λ ∈ C is a point of regular type of A, i.e. (A − λ)−1 is bounded,
we denote the defect subspace of A by Nλ = ker(A∗ − λ). The following definition can be
found in [12, 13, 14].

Definition 2.3 Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗ and let A0 = A∗ �
ker(Γ0). The operator valued functions γ(·) : ρ(A0) −→ [H,H] and M(·) : ρ(A0) −→ [H]
defined by

γ(λ) :=
(
Γ0 � Nλ

)−1 and M(λ) := Γ1γ(λ), λ ∈ ρ(A0), (2.3)

are called the γ-field and the Weyl function, respectively, corresponding to the boundary
triplet Π.

It follows from the identity dom (A∗) = ker(Γ0) +̇Nλ, λ ∈ ρ(A0), where as above A0 =
A∗ � ker(Γ0), that the γ-field γ(·) in (2.3) is well defined. It is easily seen that both γ(·)
and M(·) are holomorphic on ρ(A0). Moreover, the relations

γ(µ) =
(
I + (µ− λ)(A0 − µ)−1

)
γ(λ), λ, µ ∈ ρ(A0), (2.4)

and
M(λ)−M(µ)∗ = (λ− µ)γ(µ)∗γ(λ), λ, µ ∈ ρ(A0), (2.5)

are valid (see [13]). The identity (2.5) yields that M(·) is a Nevanlinna function, that is,
M(·) is holomorphic on C\R and takes values in [H], M(λ) = M(λ)∗ for all λ ∈ C\R and
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=m (M(λ)) is a nonnegative operator for all λ in the upper half plane C+ = {λ ∈ C :
=mλ > 0}. Moreover, it follows from (2.5) that 0 ∈ ρ(=m (M(λ))) holds. It is important
to note that if the operator A is simple, then the Weyl function M(·) determines the pair
{A,A0} uniquely up to unitary equivalence, cf. [12, 13].

In the case that the deficiency indices n+(A) = n−(A) are finite the Weyl function M
corresponding to Π = {H,Γ0,Γ1} is a matrix-valued Nevanlinna function in the finite
dimensional space H. From [16, 18] one gets the existence of the (strong) limit

M(λ+ i0) = lim
ε→+0

M(λ+ iε)

from the upper half-plane for a.e. λ ∈ R.

Let now Π = {H,Γ0,Γ1} be a boundary triplet for A∗ with γ-field γ(·) and Weyl function
M(·). The spectrum and the resolvent set of a proper (not necessarily selfadjoint) extension
of A can be described with the help of the Weyl function. If AΘ ⊆ A∗ is the extension
corresponding to Θ ∈ C̃(H) via (2.2), then a point λ ∈ ρ(A0) (λ ∈ σi(A0), i = p, c, r)
belongs to ρ(AΘ) if and only if 0 ∈ ρ(Θ −M(λ)) (resp. 0 ∈ σi(Θ −M(λ)), i = p, c, r).
Moreover, for λ ∈ ρ(A0) ∩ ρ(AΘ) the well-known resolvent formula

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ−M(λ)

)−1
γ(λ)∗ (2.6)

holds. Formula (2.6) is a generalization of the known Krein formula for canonical resolvents.
We emphasize that it is valid for any proper extension of A with a nonempty resolvent set.
It is worth to note that the Weyl function can also be used to investigate the absolutely
continuous and singular continuous spectrum of extensions of A, cf. [11].

3 Scattering matrix and Weyl function

Throughout this section let A be a densely defined closed symmetric operator with equal
deficiency indices n+(A) = n−(A) in the separable Hilbert space H. Let Π = {H,Γ0,Γ1}
be a boundary triplet for A∗ and let γ(·) and M(·) be the corresponding γ-field and Weyl
function, respectively. The selfadjoint extension A∗ � ker(Γ0) of A is denoted by A0. Let
AΘ be an arbitrary selfadjoint extension of A in H corresponding to the selfadjoint relation
Θ ∈ C̃(H) via (2.2), AΘ = A∗ � Γ−1Θ.

Later in this section we will assume that the deficiency indices of A are finite. In this case
the wave operators

W±(AΘ, A0) := s- lim
t→±∞

eitAΘe−itA0P ac(A0),

exist and are complete, where P ac(A0) denotes the orthogonal projection onto the ab-
solutely continuous subspace Hac(A0) of A0. Completeness means that the ranges
of W±(AΘ, A0) coincide with the absolutely continuous subspace Hac(AΘ) of AΘ, cf.
[6, 25, 34, 38]. The scattering operator SΘ of the scattering system {AΘ, A0} is then
defined by

SΘ := W+(AΘ, A0)∗W−(AΘ, A0). (3.1)

Since the scattering operator commutes with A0 it follows that it is unitarily equivalent to
a multiplication operator induced by a family {SΘ(λ)} of unitary operators in a spectral
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representation of Aac
0 := A0 � dom (A0) ∩ Hac(A0). The aim of this section is to compute

this so-called scattering matrix {SΘ(λ)} of the complete scattering system {AΘ, A0} in a
suitable chosen spectral representation of Aac

0 in terms of the Weyl function M(·) and the
extension parameter Θ, see Theorem 3.8.

For this purpose we introduce the identification operator

J := −(AΘ − i)−1(A0 − i)−1 ∈ [H] (3.2)

and we set
B := Γ0(AΘ + i)−1 and C := Γ1(A0 − i)−1. (3.3)

Lemma 3.1 Let A be a densely defined closed symmetric operator in the separable Hilbert
space H and let Π = {H,Γ0,Γ1} be a boundary triplet for A∗. Let A0 = A∗ � ker(Γ0) and
let AΘ = A∗ � Γ−1Θ, Θ ∈ C̃(H), be a selfadjoint extension of A. Then we have

AΘJf − JA0f = (AΘ − i)−1f − (A0 − i)−1f, f ∈ dom (A0),

and the factorization
(AΘ − i)−1 − (A0 − i)−1 = B∗C (3.4)

holds, where B and C are given by (3.3).

Proof. The first assertion follows immediately. Let us prove the factorization (3.4). If
γ(·) and M(·) denote the γ-field and Weyl function, respectively, corresponding to the
boundary triplet Π, then the resolvent formula

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ−M(λ)

)−1
γ(λ)∗ (3.5)

holds for all λ ∈ ρ(AΘ) ∩ ρ(A0), cf. (2.6). Applying the operator Γ0 to (3.5), using (3.3),
A0 = A∗ � ker(Γ0) and the relation Γ0γ(−i) = IH we obtain

B = Γ0(AΘ + i)−1 = Γ0(A0 + i)−1 + Γ0γ(−i)
(
Θ−M(−i)

)−1
γ(i)∗

=
(
Θ−M(−i)

)−1
γ(i)∗.

Hence Θ = Θ∗ and M(−i)∗ = M(i) imply

B∗ = γ(i)
(
Θ−M(i)

)−1
. (3.6)

Similarly, setting A1 := A∗ � ker(Γ1) we get from the resolvent formula (3.5)

(A1 − i)−1 = (A0 − i)−1 − γ(i)M(i)−1γ(−i)∗.

On the other hand, by the definition of the Weyl function Γ1γ(i) = M(i) holds. Therefore
we obtain

C = Γ1(A0 − i)−1 = γ(−i)∗ and C∗ = γ(−i). (3.7)

Combining (3.5) with (3.6) and (3.7) we arrive at the factorization (3.4). �
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Lemma 3.2 Let A be a densely defined closed symmetric operator in the separable Hilbert
space H, let Π = {H,Γ0,Γ1} be a boundary triplet for A∗ and let M(·) be the corresponding
Weyl function. Further, let A0 = A∗ � ker(Γ0) and let AΘ = A∗ � Γ−1Θ, Θ ∈ C̃(H), be a
selfadjoint extension of A. Then the relation

B(AΘ − λ)−1B∗ =
1

1 + λ2

((
Θ−M(λ)

)−1 −
(
Θ−M(i)

)−1)
− 1
λ+ i

=m
(
Θ−M(i)

)−1

holds for all λ ∈ C\{R ∪ ±i}, where B is given by (3.3).

Proof. By (3.3) we have

B(AΘ − λ)−1B∗ = Γ0

{
Γ0(AΘ + i)−1(AΘ − λ)−1(AΘ − i)−1

}∗
.

It follows from the resolvent formula (3.5) that

Γ0(AΘ − µ)−1 =
(
(Θ−M(µ)

)−1
γ(µ)∗

holds for all µ ∈ C\R. Combining this formula with the identity

(AΘ + i)−1(AΘ − λ)−1(AΘ − i)−1 =
1

λ2 + 1

{
(AΘ − λ)−1 − (AΘ + i)−1

}
− 1

2i(λ− i)

{
(AΘ − i)−1 − (AΘ + i)−1

}
we obtain

B(AΘ − λ)−1B∗ = Γ0

{
1

λ2 + 1

((
Θ−M(λ)

)−1
γ(λ)∗ −

(
Θ−M(−i)

)−1
γ(i)∗

)
− 1

2i(λ− i)

((
Θ−M(i)

)−1
γ(−i)∗ −

(
Θ−M(−i)

)−1
γ(i)∗

)}∗
.

Calculating the adjoint and making use of Γ0γ(µ) = IH, µ ∈ C\R, and the symmetry
property M(λ) = M(λ)∗ the assertion of Lemma 3.2 follows. �

From now on for the rest of this section we will assume that the deficiency indices n+(A) =
n−(A) of the symmetric operator A are finite, n±(A) < ∞. In this case the dimension of
the Hilbert space H in the boundary triplet Π = {H,Γ0,Γ1} is also finite and coincides
with the number n±(A). Let again A0 = A∗ � ker(Γ0) and J , B and C as in (3.2) and
(3.3), respectively. Then the operators BJ and C are finite dimensional and hence the
linear manifold

M := span
{
ran (P ac(A0)J∗B∗), ran (P ac(A0)C∗)

}
⊆ Hac(A0) (3.8)

is finite dimensional. Therefore there is a spectral core ∆0 ⊆ σac(A0) of the operator
Aac

0 := A0 � Hac(A0) such that M is a spectral manifold, cf. Appendix A. The spectral
measure of A0 will be denoted by E0. We equip M with the semi-scalar products

(f, g)E0,λ =
d

dλ
(E0(λ)f, g), λ ∈ ∆0, f, g ∈M,
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and define the finite dimensional Hilbert spaces M̂λ by

M̂λ := M/ ker(‖ · ‖E0,λ), λ ∈ ∆0, (3.9)

where ‖ ·‖E0,λ is the semi-norm induced by the semi-scalar product (·, ·)E0,λ, see Appendix
A. Further, in accordance with Appendix A we introduce the linear subset Dλ ⊆ Hac(A0),
λ ∈ R, with the semi-norm [·]E0,λ given by (A.2). By factorization and completion of Dλ

with respect to the semi-norm [·]E0,λ we obtain the Banach space

D̂λ := clo[·]E0,λ

(
Dλ/ ker([·]E0,λ)

)
, λ ∈ R,

where clo[·]E0,λ
denotes the completion with respect to [·]E0,λ. By Dλ : Dλ → D̂λ we

denote the canonical embedding operator. From M ⊆ Dλ, λ ∈ ∆0, we have DλM ⊆ D̂λ.
Moreover, since M is a spectral manifold DλM coincides with the Hilbert space M̂λ for
every λ ∈ ∆0, cf. Appendix A.

Following [6, §18.1.4] we introduce the linear operators FBJ(λ) and FC(λ) for every λ ∈ ∆0

by
FBJ(λ) := DλP

ac(A0)J∗B∗ ∈ [H,M̂λ] (3.10)

and
FC(λ) := DλP

ac(A0)C∗ ∈ [H,M̂λ].

Lemma 3.3 Let A be a densely defined closed symmetric operator with finite deficiency
indices in the separable Hilbert space H, let Π = {H,Γ0,Γ1} be a boundary triplet for A∗

and let M(·) be the corresponding Weyl function. Further, let A0 = A∗ � ker(Γ0) and let
AΘ = A∗ � Γ−1Θ, Θ ∈ C̃(H), be a selfadjoint extension of A. Then

FBJ(λ) = −FC(λ)
{

1
λ+ i

=m
(
Θ−M(i)

)−1 +
1

1 + λ2

(
Θ−M(i)

)−1
}

and M̂λ = ranFC(λ) holds for all λ ∈ ∆0.

Proof. Inserting J from (3.2) into (3.10) we find

FBJ(λ) = −DλP
ac(A0)(A0 + i)−1(AΘ + i)−1B∗.

For f ∈ Hac(A0) Lemma A.3 implies Dλ(A0 + i)−1f = (λ+ i)−1Dλf and therefore

FBJ(λ) =− (λ+ i)−1DλP
ac(A0)(AΘ + i)−1B∗

=− (λ+ i)−1DλP
ac(A0)

(
(AΘ + i)−1 − (A0 + i)−1

)
B∗

− (λ+ i)−1DλP
ac(A0)(A0 + i)−1B∗.

(3.11)

By (2.5) we have 2iγ(i)∗γ(i) = M(i)−M(−i). Taking this identity into account we obtain
from (3.5), (3.6) and (3.7)(

(AΘ + i)−1 − (A0 + i)−1
)
B∗

= γ(−i)
(
Θ−M(−i)

)−1
γ(i)∗γ(i)

(
Θ−M(i)

)−1

= C∗
(
Θ−M(−i)

)−1=m (M(i))
(
Θ−M(i)

)−1

= C∗ =m
(
Θ−M(i)

)−1
.

(3.12)



3 Scattering matrix and Weyl function 11

On the other hand, by (2.4) we have γ(i) = (A0 + i)(A0 − i)−1γ(−i) and this identity
combined with (3.7) and (3.6) yields

B∗ = (A0 + i)(A0 − i)−1C∗
(
Θ−M(i)

)−1
. (3.13)

Inserting (3.12) and (3.13) into (3.11) and making use of (3.7), Lemma A.3 and the defi-
nition of FC(λ) we obtain

FBJ(λ) =− (λ+ i)−1DλP
ac(A0)C∗ =m

(
Θ−M(i)

)−1

− (λ2 + 1)−1DλP
ac(A0)C∗

(
Θ−M(i)

)−1

=− FC(λ)
{

1
λ+ i

=m
(
Θ−M(i)

)−1 +
1

1 + λ2

(
Θ−M(i)

)−1
}

for all λ ∈ ∆0. Therefore ranFBJ(λ) ⊆ ranFC(λ) and it follows that M̂λ coincides with
ranFC(λ), λ ∈ ∆0. This completes the proof of Lemma 3.3. �

In the next lemma we show that the spectral manifold M defined by (3.8) is generating
with respect to Aac

0 if the symmetric operator A is assumed to be simple (cf. Section 2.1
and (A.1)). The set of all Borel subsets of the real axis is denoted by B(R).

Lemma 3.4 Let A be a densely defined closed symmetric operator in the separable Hilbert
space H and let A0 be a selfadjoint extension of A with spectral measure E0(·). If A is
simple, then the condition

Hac(A0) = clospan
{
E0(∆)f : ∆ ∈ B(R), f ∈M

}
(3.14)

is satisfied.

Proof. Since A is assumed to be simple we have H = clospan{Nλ : λ ∈ C\R}, where
Nλ = ker(A∗ − λ). Hence Hac(A0) = clospan{P ac(A0)Nλ : λ ∈ C\R}. From C∗ = γ(−i)
we find P ac(A0)N−i ⊂M and by (2.4) we have

Nλ = (A0 + i)(A0 − λ)−1N−i

which yields
Nλ ⊆ clospan

{
E0(∆)ran (C∗) : ∆ ∈ B(R)

}
for λ ∈ C\R. Therefore

P ac(A0)Nλ ⊆ clospan
{
E0(∆)P ac(A0)ran (C∗) : ∆ ∈ B(R)

}
⊆ Hac(A0)

for λ ∈ C\R. Since Hac(A0) = clospan{P ac(A0)Nλ : λ ∈ C\R} holds we find

Hac(A0) = clospan{E0(∆)P ac(A0)ran (C∗) : ∆ ∈ B(R)}

which proves relation (3.14). �

In accordance with Appendix A we can perform a direct integral representation
L2(∆0, µL,M̂λ,SM) of Hac(A0) with respect to the absolutely continuous part Aac

0 of
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A0, where M̂λ, λ ∈ ∆0, is defined by (3.9), µL is the Lebesgue measure and SM is the
admissible system from Lemma A.2. We recall that in this representation Aac

0 is unitarily
equivalent to the multiplication operator M ,

(Mf̂)(λ) := λf̂(λ), f̂ ∈ dom (M),

where

dom (M) :=
{
f̂ ∈ L2(∆0, µL,M̂λ,SM) : λ 7→ λf̂(λ) ∈ L2(∆0, µL,M̂λ,SM)

}
.

Since the scattering operator SΘ (see (3.1)) of the scattering system {AΘ, A0} commutes
with A0 and Aac

0 Proposition 9.57 of [6] implies that there exists a family {ŜΘ(λ)}λ∈∆0

of unitary operators in {M̂λ}λ∈∆0 such that the scattering operator SΘ is unitarily
equivalent to the multiplication operator ŜΘ induced by this family in the Hilbert space
L2(∆0, µL,M̂λ,SM). We note that this family is determined up to a set of Lebesgue mea-
sure zero and is called the scattering matrix. The scattering matrix defines the scattering
amplitude {T̂Θ(λ)}λ∈∆0 by

T̂Θ(λ) := ŜΘ(λ)− IcMλ
, λ ∈ ∆0.

Obviously, the scattering amplitude induces a multiplication operator T̂Θ in the Hilbert
space L2(∆0, µL,M̂λ,SM) which is unitarily equivalent to the T -operator

TΘ := SΘ − P ac(A0). (3.15)

The scattering amplitude is also determined up to a set of Lebesgue measure zero. Making
use of results from [6, §18] we calculate the scattering amplitude of {AΘ, A0} in terms of
the Weyl function M(·) and the parameter Θ. Recall that the limit M(λ + i0) exists for
a.e. λ ∈ R, cf. Section 2.2.

Theorem 3.5 Let A be a densely defined closed simple symmetric operator with finite defi-
ciency indices in the separable Hilbert space H, let Π = {H,Γ0,Γ1} be a boundary triplet for
A∗ and let M(·) be the corresponding Weyl function. Further, let A0 = A∗ � ker(Γ0) and let
AΘ = A∗ � Γ−1Θ, Θ ∈ C̃(H), be a selfadjoint extension of A. Then L2(∆0, µL,M̂λ, SM)
is a spectral representation of Aac

0 such that scattering amplitude {T̂Θ(λ)}λ∈∆0 of the scat-
tering system {AΘ, A0} admits the representation

T̂Θ(λ) = 2πi(1 + λ2)FC(λ)
(
Θ−M(λ+ i0)

)−1
FC(λ)∗ ∈ [M̂λ]

for a.e. λ ∈ ∆0.

Proof. Besides the scattering system {AΘ, A0} and the corresponding scattering operator
SΘ and T -operator TΘ defined in (3.1) and (3.15), respectively, we consider the scattering
system {AΘ, A0, J}, where J is defined by (3.2). The wave operators of {AΘ, A0, J} are
defined by

W±(AΘ, A0; J) := s- lim
t→±∞

eitAΘJe−itA0P ac(A0);

they exist and are complete since A has finite deficiency indices. Note that

W±(AΘ, A0; J) = −(AΘ − i)−1W±(AΘ, A0)(A0 − i)−1

= −W±(AΘ, A0)(A0 − i)−2
(3.16)
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holds. The scattering operator SJ and the T -operator TJ of the scattering system
{AΘ, A0; J} are defined by

SJ := W+(AΘ, A0; J)∗W−(AΘ, A0; J)

and
TJ : = SJ −W+(AΘ, A0; J)∗W+(AΘ, A0; J)

= SJ − (I +A2
0)
−2P ac(A0),

(3.17)

respectively. The second equality in (3.17) follows from (3.16). Since the scattering oper-
ator SΘ commutes with A0 we obtain

SJ = (I +A2
0)
−2SΘ (3.18)

from (3.16). Note that SJ and TJ both commute with A0 and therefore by [6, Proposi-
tion 9.57] there are families {ŜJ(λ)}λ∈∆0 and {T̂J(λ)}λ∈∆0 such that the operators SJ and
TJ are unitarily equivalent to the multiplication operators ŜJ and T̂J induced by these
families in L2(∆0, µL,M̂λ,SM). From (3.1) and (3.17) we obtain

T̂Θ(λ) = ŜΘ(λ)− IcMλ
and T̂J(λ) = ŜJ(λ)− 1

(1 + λ2)2
IcMλ

for λ ∈ ∆0. As (3.18) implies ŜJ(λ) = (1 + λ2)−2ŜΘ(λ), λ ∈ ∆0, we conclude

T̂J(λ) =
1

(1 + λ2)2
T̂Θ(λ), λ ∈ ∆0. (3.19)

In order to apply [6, Corollary 18.9] we have to verify that

lim
ε→+0

B(AΘ − λ− iε)−1B∗ (3.20)

exists for a.e. λ ∈ ∆0 in the operator norm and that

s- lim
δ→+0

C
(
(A0 − λ− iδ)−1 − (A0 − λ+ iδ)−1

)
f (3.21)

exist for a.e. λ ∈ ∆0 and all f ∈ M, cf. [6, Theorem 18.7 and Remark 18.8], where C
is given by (3.3). Since H is a finite dimensional space it follows from [16, 18] that the
(strong) limit

lim
ε→+0

(
−
(
Θ−M(λ+ iε)

)−1
)

=: −
(
Θ−M(λ+ i0)

)−1

of the [H]-valued Nevanlinna function λ 7→ −(Θ −M(λ))−1 exists for a.e. λ ∈ ∆0, cf.
Section 2.2. Combining this fact with Lemma 3.2 we obtain that (3.20) holds. Condition
(3.21) is fulfilled since C is a finite dimensional operator and M is a finite dimensional
linear manifold. Hence, by [6, Corollary 18.9] we have

T̂J(λ) = 2πi
{
−FBJ(λ)FC(λ)∗ + FC(λ)B(AΘ − λ− i0)−1B∗FC(λ)∗

}
for a.e. λ ∈ ∆0. Making use of Lemma 3.3 and Lemma 3.2 we obtain

T̂J(λ) = 2πiFC(λ)

{
1

λ+ i
=m
(
Θ−M(i)

)−1 +
1

1 + λ2

(
Θ−M(i)

)−1

+
1

1 + λ2

((
Θ−M(λ+ i0)

)−1 −
(
Θ−M(i)

)−1)
− 1
λ+ i

=m
(
Θ−M(i)

)−1

}
FC(λ)∗.
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Combining this relation with (3.19) we conclude

1
1 + λ2

T̂Θ(λ) = 2πiFC(λ)
(
Θ−M(λ+ i0)

)−1
FC(λ)∗

for a.e. λ ∈ ∆0 which completes the proof. �

In the following we are going to replace the direct integral L2(∆0, µL,M̂λ,SM) by a more
convenient one. To this end we prove the following lemma.

Lemma 3.6 Let A be a densely defined closed simple symmetric operator with finite de-
ficiency indices in the separable Hilbert space H and let Π = {H,Γ0,Γ1} be a boundary
triplet for A∗ with corresponding Weyl function M(·). Further, let A0 = A∗ � ker(Γ0), let
AΘ = A∗ � Γ−1Θ, Θ ∈ C̃(H), be a selfadjoint extension of A and let ∆0 be a spectral core
of Aac

0 such that M in (3.8) is a spectral manifold. Then

FC(λ)∗FC(λ) =
1

π(1 + λ2)
=m (M(λ+ i0)) (3.22)

holds for a.e. λ ∈ ∆0.

Proof. Let B and C be as in (3.3) and let ∆0 be a spectral core for Aac
0 such that M

defined by (3.8) is a spectral manifold. By definition of the operator Dλ we have

(FC(λ)∗FC(λ)u, v) =
d

dλ
(E0(λ)C∗u, P ac(A0)C∗v), u, v ∈ H,

for λ ∈ ∆0. It is not difficult to see that

(E0(δ)C∗u, P ac(A0)C∗v) =
∫

δ

d

dλ
(E0(λ)C∗u, P ac(A0)C∗v) dµL(λ)

=
∫

δ

d

dλ
(E0(λ)C∗u,C∗v) dµL(λ)

holds for all u, v ∈ H and any Borel set δ ⊆ R. Hence, we find

d

dλ
(E0(λ)C∗u, P ac(A0)C∗v) =

d

dλ
(E0(λ)C∗u,C∗v)

for a.e. λ ∈ ∆0 and u, v ∈ H, which yields

(FC(λ)∗FC(λ)u, v)

= lim
δ→+0

1
2πi

({
(A0 − λ− iδ)−1 − (A0 − λ+ iδ)−1

}
C∗u,C∗v

)
for a.e. λ ∈ ∆0 and u, v ∈ H. From C = Γ1(A0 − i)−1 = γ(−i)∗ (see (3.3) and (3.7)) and
the relation Γ1(A0 − λ)−1 = γ(λ)∗, λ ∈ C\R, we obtain

C
{
(A0−λ− iδ)−1 − (A0 − λ+ iδ)−1

}
C∗

=
1

i− λ− iδ

{
γ(−i)∗γ(−i)− γ(λ− iδ)∗γ(−i)

}
− 1
i− λ+ iδ

{
γ(−i)∗γ(−i)− γ(λ+ iδ)∗γ(−i)

}
.
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With the help of (2.5) it follows that the right hand side can be written as

1
i− λ− iδ

{
=m (M(i)) +

M(−i)−M(λ+ iδ)
i+ λ+ iδ

}
− 1
i− λ+ iδ

{
=m (M(i)) +

M(−i)−M(λ− iδ)
i+ λ− iδ

}
and we conclude

(FC(λ)∗FC(λ)u, v) =
1

2πi
1

1 + λ2

(
(M(λ+ i0)−M(λ− i0))u, v

)
for a.e. λ ∈ ∆0 and u, v ∈ H which immediately yields (3.22). �

In order to formulate the main result we introduce the usual Hilbert spaces L2(∆0, µL,H)
and L2(R, µL,H) of square integrable H-valued functions on the spectral core ∆0 of Aac

0

and on R, respectively. Note that L2(∆0, µL,H) is subspace of L2(R, µL,H). Let us define
the family {Hλ}λ∈ΛM of Hilbert spaces Hλ by

Hλ := ran
(
=m (M(λ+ i0))

)
⊆ H, λ ∈ ΛM ,

where M(λ+ i0) = limε→0M(λ+ iε) and

ΛM :=
{
λ ∈ R : M(λ+ i0) exists

}
.

We note that Hλ = {0} is quite possible and we recall that R\ΛM has Lebesgue measure
zero. By {Q(λ)}λ∈ΛM we denote the family of orthogonal projections from H onto Hλ.
One easily verifies that the family {Q(λ)}λ∈ΛM is measurable. This family induces an
orthogonal projection Q0,

(Q0f)(λ) := Q(λ)f(λ), for a.e. λ ∈ ∆0, f ∈ L2(∆0, µL,H),

in L2(∆0, µL,H). The range of the projection Q0 is denoted by L2(∆0, µL,Hλ). Similarly,
the family {Q(λ)}λ∈ΛM induces an orthogonal projection Q in L2(R, µL,H), the range of
Q is denoted by L2(R, µL,Hλ). We note that L2(∆0, µL,Hλ) ⊆ L2(R, µL,Hλ) holds.

Lemma 3.7 Let A be a densely defined closed simple symmetric operator with finite defi-
ciency indices in the separable Hilbert space H, let Π = {H,Γ0,Γ1} be a boundary triplet
for A∗, A0 = A∗ � ker(Γ0), and let M(·) be the corresponding Weyl function. If the Borel
set ∆0 ⊆ σac(A0) is a spectral core of Aac

0 , then L2(∆0, µL,Hλ) = L2(R, µL,Hλ).

Proof. Define the set ΛM
0 by

ΛM
0 :=

{
λ ∈ ΛM : Hλ 6= {0}

}
. (3.23)

Then we have to verify that µL(ΛM
0 \∆0) = 0 holds. From (2.5) we obtain

=m (M(λ)) = =m (λ)γ(λ)∗γ(λ), λ ∈ C+.

and from (2.4) we conclude that =m (M(λ)) coincides with

=m (λ)γ(i)∗
{
I + (λ+ i)(A0 − λ)−1

}{
I + (λ− i)(A0 − λ)−1

}
γ(i).



3 Scattering matrix and Weyl function 16

Hence we have

=m (M(λ)) = =m (λ)γ(i)∗(A0 + i)(A0 − λ)−1(A0 − i)(A0 − λ)−1γ(i)

for λ ∈ C+ and if λ tends to R from the upper half-plan we get

=m (M(λ)) = π(1 + λ2)
γ(i)∗E0(dλ)γ(i)

dλ

for a.e. λ ∈ R. Here E0(·) is the spectral measure of A0. Hence for any bounded Borel set
δ ∈ B(R) we obtain ∫

δ

1
1 + λ2

=m (M(λ)) dµL(λ) = πγ(i)∗Eac
0 (δ)γ(i).

Since ∆0 is a spectral core of Aac
0 one has Eac

0 (∆0) = Eac
0 (R) which implies Eac

0 (R\∆0) = 0
and therefore ∫

R\∆0

1
1 + λ2

=m (M(λ)) dµL(λ) = 0.

Hence we have =m (M(λ)) = 0 for a.e. λ ∈ R\∆0 and thus Hλ = {0} for a.e. λ ∈ R\∆0.
Consequently µL(ΛM

0 \∆0) = 0 and Lemma 3.7 is proved. �

We note that the so-called absolutely continuous closure clac(ΛM
0 ) of the set ΛM

0 (see
(3.23)),

clac(ΛM
0 ) :=

{
x ∈ R : µL

(
(x− ε, x+ ε) ∩ ΛM

0

)
> 0 ∀ε > 0

}
,

coincides with the absolutely continuous spectrum σac(A0) of A0, cf. [11, Proposition 4.2].

The following theorem is the main result of this section, we calculate the scattering matrix
of {AΘ, A0} in terms of the Weyl function M(·) and the parameter Θ in the direct integral
L2(R, µL,Hλ).

Theorem 3.8 Let A be a densely defined closed simple symmetric operator with finite
deficiency indices in the separable Hilbert space H and let Π = {H,Γ0,Γ1} be a boundary
triplet for A∗ with corresponding Weyl function M(·). Further, let A0 = A∗ � ker(Γ0) and
let AΘ = A∗ � Γ−1Θ, Θ ∈ C̃(H), be a selfadjoint extension of A. Then L2(R, µL,Hλ)
performs a spectral representation of Aac

0 such that the scattering matrix {SΘ(λ)}λ∈R of
the scattering system {AΘ, A0} admits the representation

SΘ(λ) = IHλ
+ 2i

√
=m (M(λ))

(
Θ−M(λ)

)−1√=m (M(λ)) ∈ [Hλ] (3.24)

for a.e. λ ∈ R, where M(λ) := M(λ+ i0) and Hλ := ran (=m (M(λ))).

Proof. From the polar decomposition of FC(λ) ∈ [H,M̂λ] we obtain a family of par-
tial isometries V (λ) ∈ [M̂λ,H] defined for a.e. λ ∈ ∆0 which map M̂λ = ranFC(λ)
isometrically onto Hλ such that

V (λ)FC(λ) =
1√

π(1 + λ2)

√
=m (M(λ+ i0))
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holds for a.e. λ ∈ ∆0. Let us introduce the admissible system

S :=

{
n∑

l=1

αl(λ)V (λ)Jλfl

∣∣∣ fl ∈M, αl ∈ L∞(∆0, µL), n ∈ N

}
⊆ Xλ∈∆0Hλ.

Since V SM = S one easily verifies that the operator

V : L2(∆0, µL,M̂λ,SM) −→ L2(∆0, µL,Hλ,S),

(V f̂)(λ) := V (λ)f̂(λ), λ ∈ ∆0,

defines an isometry acting from L2(∆0, µL,M̂λ,SM) onto L2(∆0, µL,Hλ,S) such that
the multiplication operators induced by the independent variable in L2(∆0, µL,M̂λ,SM)
and L2(∆0, µL,Hλ,S) are unitarily equivalent. Hence L2(∆0, µL,Hλ,S) is a spectral rep-
resentation of Aac

0 , too. In the spectral representation L2(∆0, µL,Hλ,S) the operator
TΘ = SΘ − P ac(A0) is unitarily equivalent to the multiplication operator induced by
{TΘ(λ)}λ∈∆0 ,

TΘ(λ) = V (λ)T̂Θ(λ)V (λ)∗, λ ∈ ∆0,

in L2(∆0, µL,Hλ,S). Using Theorem 3.5 and Lemma 3.6 we find the representation

TΘ(λ) = 2i
√
=m (M(λ+ i0))

(
Θ−M(λ+ i0)

)−1√=m (M(λ+ i0))

for a.e. λ ∈ ∆0 and therefore the scattering matrix {SΘ(λ)}λ∈∆0 has the form (3.24).

A straightforward computation shows that the direct integral L2(∆0, µL,Hλ,S) is equal
to the subspace L2(∆0, µL,Hλ) ⊆ L2(∆0, µL,H). Taking into account Lemma 3.7 we find
L2(∆0, µL,Hλ,S) = L2(R, µL,Hλ) which shows that L2(R, µL,Hλ) performs a spectral
representation of Aac

0 such that the scattering matrix is given by (3.24). �

Remark 3.9 Note that the scattering matrix {SΘ(λ)} in (3.24) is defined for a.e. λ ∈ R
and not only on a spectral core of A0. In particular, if =m (M(λ)) = 0 for some λ ∈ R,
then Hλ = {0} and SΘ(λ) = I{0}. In this case we set detSΘ(λ) = 1.

Corollary 3.10 Let A, Π, A0 and AΘ be as in Theorem 3.8 and assume, in addition, that
the Weyl function M(·) is of scalar type, i.e. M(·) = m(·)IH with a scalar Nevanlinna
function m(·). Then L2(R, µL,Hλ) performs a spectral representation of Aac

0 such that the
scattering matrix {SΘ(λ)}λ∈R of the scattering system {AΘ, A0} admits the representation

SΘ(λ) = IHλ
+ 2i=m (m(λ))

(
Θ−m(λ) · IH

)−1 ∈ [Hλ]

for a.e. λ ∈ R. Here Hλ = H if =m (m(λ)) 6= 0 and Hλ = {0} otherwise. If, in addition
Θ ∈ [H], then

SΘ(λ) =
(
Θ−m(λ) · IH

)(
Θ−m(λ) · IH

)−1
. (3.25)

for a.e. λ ∈ R with =m (m(λ)) 6= 0.

Remark 3.11 It follows from (3.24) that if Θ ∈ [H], then the scattering matrix {SΘ(λ)}
admits the representation

SΘ(λ) =
(
=m (M(λ))

)−1/2
S(λ)

(
=m (M(λ))

)1/2 ∈ [Hλ] (3.26)
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for a.e. λ ∈ R with =m (M(λ)) 6= 0, where

S(λ) :=
(
Θ−M(λ− i0)

)(
Θ−M(λ+ i0)

)−1
. (3.27)

Here the operator (=m (M(λ)))−1/2 is well defined in Hλ for a.e. λ ∈ R. It is worth to
note that the first (second) factor of S(·) admits a holomorphic continuation to the lower
(resp. upper) half-plane.

If the Weyl function M(·) = m(·)IH is of scalar type and Θ ∈ [H], then we have
SΘ(λ) = S(λ) and relations (3.26) and (3.27) turn into (3.25). In this case SΘ(·) itself
can be factorized such that both factors can be continued holomorphically in C− and C+,
respectively.

4 Spectral shift function

M.G. Krein’s spectral shift function introduced in [27] is an important tool in the spectral
and perturbation theory of self-adjoint operators, in particular scattering theory. A detailed
review on the spectral shift function can be found in e.g. [9, 10]. Furthermore we mention
[20, 21, 22] as some recent papers on the spectral shift function and its various applications.

Recall that for any pair of selfadjoint operators H1,H0 in a separable Hilbert space H such
that the resolvents differ by a trace class operator,

(H1 − λ)−1 − (H0 − λ)−1 ∈ S1(H) (4.1)

for some (and hence for all) λ ∈ ρ(H1) ∩ ρ(H0), there exists a real valued function ξ(·) ∈
L1

loc(R) satisfying the conditions

tr
(
(H1 − λ)−1 − (H0 − λ)−1

)
= −

∫
R

1
(t− λ)2

ξ(t) dt, (4.2)

λ ∈ ρ(H1) ∩ ρ(H0), and ∫
R

1
1 + t2

ξ(t) dt <∞, (4.3)

cf. [9, 10, 27]. Such a function ξ is called a spectral shift function of the pair {H1,H0}.
We emphasize that ξ is not unique, since simultaneously with ξ a function ξ + c, c ∈ R,
also satisfies both conditions (4.2) and (4.3). Note that the converse also holds, namely,
any two spectral shift functions for a pair of selfadjoint operators {H1,H0} satisfying (4.1)
differ by a real constant. We remark that (4.2) is a special case of the general formula

tr (φ(H1)− φ(H0)) =
∫

R
φ′(t) ξ(t) dt, (4.4)

which is valid for a wide class of smooth functions. A very large class of such functions
φ(·) has been described in terms of the Besov classes by V.V. Peller in [31].

In Theorem 4.1 below we find a representation for the spectral shift function ξΘ of a pair
of selfadjoint operators AΘ and A0 which are both assumed to be extensions of a densely
defined closed simple symmetric operator A with finite deficiency indices. For that purpose
we use the definition

log(T ) := −i
∫ ∞

0

(
(T + it)−1 − (1 + it)−1IH

)
dt (4.5)
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for an operator T on a finite dimensional Hilbert space H satisfying =m (T ) ≥ 0 and
0 6∈ σ(T ), see e.g. [20, 32]. A straightforward calculation shows that the relation

det(T ) = exp
(
tr (log(T ))

)
(4.6)

holds. Next we choose a special spectral shift function ξΘ for the pair {AΘ, A0} in terms of
the Weyl function M and the parameter Θ, see also [28] for the case of defect one. Making
use of Theorem 3.8 we give a simple proof of the Birman-Krein formula, cf. [8].

Theorem 4.1 Let A be a densely defined closed simple symmetric operator in the separable
Hilbert space H with finite deficiency indices n±(A) = n, let Π = {H,Γ0,Γ1} be a boundary
triplet for A∗ and let M(·) be the corresponding Weyl function. Further, let A0 = A∗ �
ker(Γ0) and let AΘ = A∗ � Γ−1Θ, Θ ∈ [H], be a selfadjoint extension of A. Then the
following holds:

(i) The limit limε→+0 log(M(λ+ iε)−Θ) exists for a.e. λ ∈ R and the function

ξΘ(λ) :=
1
π
=m

(
tr(log(M(λ+ i0)−Θ))

)
for a.e. λ ∈ R (4.7)

is a spectral shift function for the pair {AΘ, A0} with 0 ≤ ξΘ(λ) ≤ n.

(ii) The scattering matrix {SΘ(λ)}λ∈R of the pair {AΘ, A0} and the spectral shift function
ξΘ in (4.7) are connected via the Birman-Krein formula

detSΘ(λ) = exp
(
−2πiξΘ(λ)

)
(4.8)

for a.e. λ ∈ R (cf. Remark 3.9).

Proof. (i) Since λ 7→ M(λ) − Θ is a Nevanlinna function with values in [H] and 0 ∈
ρ(=m (M(λ)) for all λ ∈ C+, it follows that log(M(λ) − Θ) is well-defined for all λ ∈ C+

by (4.5). According to [20, Lemma 2.8] the function λ 7→ log(M(λ) − Θ), λ ∈ C+, is a
[H]-valued Nevanlinna function such that

0 ≤ =m
(
log(M(λ)−Θ)

)
≤ πIH

holds for all λ ∈ C+. Hence the limit limε→+0 log(M(λ + iε) − Θ) exists for a.e. λ ∈ R
(see [16, 18] and Section 2.2) and λ 7→ tr(log(M(λ)−Θ)), λ ∈ C+, is a scalar Nevanlinna
function with the property

0 ≤ =m
(
tr(log(M(λ)−Θ))

)
≤ nπ, λ ∈ C+,

that is, the function ξΘ in (4.7) satisfies 0 ≤ ξΘ(λ) ≤ n for a.e. λ ∈ R.

In order to show that (4.2) holds withH1, H0 and ξ replaced byAΘ, A0 and ξΘ, respectively,
we first verify that the relation

d

dλ
tr
(
log(M(λ)−Θ)

)
= tr

(
(M(λ)−Θ)−1 d

dλ
M(λ)

)
(4.9)

is true for all λ ∈ C+. Indeed, for λ ∈ C+ we have

log(M(λ)−Θ) = −i
∫ ∞

0

(
(M(λ)−Θ + it)−1 − (1 + it)−1IH

)
dt
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by (4.5) and this yields

d

dλ
log(M(λ)−Θ) = i

∫ ∞

0

(M(λ)−Θ + it)−1
(

d
dλM(λ)

)
(M(λ)−Θ + it)−1dt.

Hence we obtain

d

dλ
tr
(
log(M(λ)−Θ)

)
= i

∫ ∞

0

tr
(
(M(λ)−Θ + it)−2 d

dλM(λ)
)
dt

and since d
dt (M(λ)−Θ + it)−1 = −i(M(λ)−Θ + it)−2 for t ∈ (0,∞) we conclude

d

dλ
tr
(
log(M(λ)−Θ)

)
= −

∫ ∞

0

d

dt
tr
(
(M(λ)−Θ + it)−1 d

dλM(λ)
)
dt

for all λ ∈ C+, that is, relation (4.9) holds.

From (2.5) we find

γ(µ)∗γ(λ) =
M(λ)−M(µ)∗

λ− µ
, λ, µ ∈ C\R, λ 6= µ, (4.10)

and passing in (4.10) to the limit µ→ λ one gets

γ(λ)∗γ(λ) =
d

dλ
M(λ).

Making use of formula (2.6) for canonical resolvents together with (4.9) this implies

tr
(
(AΘ − λ)−1 − (A0 − λ)−1

)
= −tr

(
(M(λ)−Θ)−1γ(λ)∗γ(λ)

)
= − d

dλ
tr
(
log(M(λ)−Θ)

) (4.11)

for all λ ∈ C+.

Further, by [20, Theorem 2.10] there exists a [H]-valued measurable function t 7→ ΞΘ(t),
t ∈ R, such that

ΞΘ(t) = ΞΘ(t)∗ and 0 ≤ ΞΘ(t) ≤ IH

for a.e. λ ∈ R and the representation

log(M(λ)−Θ) = C +
∫

R
ΞΘ(t)

(
(t− λ)−1 − t(1 + t2)−1

)
dt, λ ∈ C+,

holds with some bounded selfadjoint operator C. Hence

tr
(
log(M(λ)−Θ)

)
= tr(C) +

∫
R

tr (ΞΘ(t))
(
(t− λ)−1 − t(1 + t2)−1

)
dt

for λ ∈ C+ and we conclude from

ξΘ(λ) = lim
ε→+0

1
π
=m

(
tr(log(M(λ+ iε)−Θ))

)
= lim

ε→+0

1
π

∫
R

tr (ΞΘ(t)) ε
(
t− λ)2 + ε2

)−1
dt
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that ξΘ(λ) = tr(ΞΘ(λ)) is true for a.e. λ ∈ R. Therefore we have

d

dλ
tr
(
log(M(λ)−Θ)

)
=
∫

R
(t− λ)−2ξΘ(t) dt

and together with (4.11) we immediately get the trace formula

tr
(
(AΘ − λ)−1 − (A0 − λ)−1

)
= −

∫
R

1
(t− λ)2

ξΘ(t) dt.

The integrability condition (4.3) holds because of [20, Theorem 2.10]. This completes the
proof of assertion (i).

(ii) To verify the Birman-Krein formula note that by (4.6)

exp
(
−2i=m

(
tr(log(M(λ)−Θ))

))
= exp

(
−tr(log(M(λ)−Θ))

)
exp
(
tr(log(M(λ)−Θ))

)
=

det(M(λ)−Θ)
det(M(λ)−Θ)

=
det(M(λ)∗ −Θ)
det(M(λ)−Θ)

holds for all λ ∈ C+. Hence we find

exp
(
−2πiξΘ(λ)

)
=

det
(
M(λ+ i0)∗ −Θ

)
det
(
M(λ+ i0)−Θ

) (4.12)

for a.e. λ ∈ R, where M(λ + i0) := limε→+0M(λ + iε) exists for a.e. λ ∈ R. It follows
from the representation of the scattering matrix in (3.24) and the identity det(I +AB) =
det(I +BA) that

detS(λ) = det
(
IH + 2i

(
=m (M(λ+ i0))

)(
Θ−M(λ+ i0)

)−1
)

= det
(
IH +

(
M(λ+ i0)−M(λ+ i0)∗

)(
Θ−M(λ+ i0)

)−1
)

= det
((

Θ−M(λ+ i0)∗
)
·
(
Θ−M(λ+ i0)

)−1
)

=
det
(
Θ−M(λ+ i0)∗

)
det
(
Θ−M(λ+ i0)

) (4.13)

holds for a.e. λ ∈ R. Comparing (4.12) with (4.13) we obtain (4.8). �

We note that for singular Sturm-Liouville operators a definition for the spectral shift func-
tion similar to (4.7) was already used in [19].

5 Scattering systems of differential operators

In this section the results from Section 3 and Section 4 are illustrated for some differential
operators. In Section 5.1 we consider a Sturm-Liouville differential expression, in Sec-
tion 5.2 we investigate Sturm-Liouville operators with matrix potentials satisfying certain
integrability conditions and Section 5.3 deals with scattering systems consisting of Dirac
operators. Finally, Section 5.4 is devoted to Schrödinger operators with point interactions.
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5.1 Sturm-Liouville operators

Let p, q and r be real valued functions on (a, b), −∞ < a < b ≤ ∞, such that p(x) 6= 0 and
r(x) > 0 for a.e. x ∈ (a, b) and p−1, q, r ∈ L1((a, c)) for all c ∈ (a, b). Moreover we assume
that either b = ∞ or at least one of the functions p−1, q, r does not belong to L1((a, b)).
The Hilbert space of all equivalence classes of measurable functions f defined on (a, b) for
which |f |2r ∈ L1((a, b)) equipped with the usual inner product

(f, g) :=
∫ b

a

f(x)g(x)r(x) dx

will be denoted by L2
r((a, b)). By our assumptions the differential expression

1
r

(
− d

dx

(
p
d

dx

)
+ q

)
(5.1)

is regular at the left endpoint a and singular at the right endpoint b. In addition we assume
that the limit point case prevails at b, that is, the equation

−(pf ′)′ + qf = λrf, λ ∈ C,

has a unique solution φ(·, λ) (up to scalar multiples) in L2
r((a, b)). We refer to [17, 34] for

sufficient conditions on the coefficients r, p, q such that (5.1) is limit point at b.

In L2
r((a, b)) we consider the operator

(Af)(x) : =
1

r(x)
(
−(pf ′)′(x) + q(x)f(x)

)
dom (A) : =

{
f ∈ Dmax : f(a) = (pf ′)(a) = 0

}
,

where Dmax denotes the set of all f ∈ L2
r((a, b)) such that f and pf ′ are locally absolutely

continuous and 1
r (−(pf ′)′ + qf) belongs to L2

r((a, b)). It is well known that A is a densely
defined closed simple symmetric operator with deficiency indices (1, 1), see e.g. [17, 34]
and [23] for the fact that A is simple. The adjoint operator A∗ is

(A∗f)(x) =
1

r(x)
(
−(pf ′)′(x) + q(x)f(x)

)
, dom (A∗) = Dmax.

If we choose Π = {C,Γ0,Γ1},

Γ0f := f(a) and Γ1f := (pf ′)(a), f ∈ dom (A∗),

then Π is a boundary triplet for A∗ such that the corresponding Weyl function coincides
with the classical Titchmarsh-Weyl coefficient m(·), cf. [33, 35, 36, 37]. In fact, if ϕ(·, λ)
and ψ(·, λ) denote the fundamental solutions of the differential equation −(pf ′)′+qf = λrf
satisfying

ϕ(a, λ) = 1, (pϕ′)(a, λ) = 0 and ψ(a, λ) = 0, (pψ′)(a, λ) = 1,

then sp {ϕ(·, λ) +m(λ)ψ(·, λ)} = ker(A∗ − λ), λ ∈ C\R, and by applying Γ0 and Γ1 to the
defect elements it follows that m(·) is the Weyl function corresponding to the boundary
triplet Π .
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Let us consider the scattering system {AΘ, A0}, where A0 := A∗ � ker(Γ0) and

AΘ = A∗ � ker(Γ1 −ΘΓ0) = A∗ �
{
f ∈ dom (A∗) | (pf ′)(a) = Θf(a)

}
for some Θ ∈ R. By Corollary 3.10 the scattering matrix has the form

SΘ(λ) =
Θ−m(λ)
Θ−m(λ)

for a.e. λ ∈ R with =m (m(λ+ i0)) 6= 0, where m(λ) := m(λ+ i0), cf. (1.3).

Notice, that in the special case A∗ = −d2/dx2, dom (A∗) = W 2
2 (R+), i.e.

r(x) = p(x) = 1, q(x) = 0, a = 0 and b = ∞,

the defect subspaces ker(A∗ − λ), λ ∈ C\R, are spanned by x 7→ ei
√

λx, where the square
root is defined on C with a cut along [0,∞) and fixed by =m

√
λ > 0 for λ 6∈ [0,∞) and

by
√
λ ≥ 0 for λ ∈ [0,∞). Therefore the Weyl function corresponding to Π is m(λ) = i

√
λ

and hence the scattering matrix of the scattering system {AΘ, A0} is

SΘ(λ) = 1 + 2i
√
λ
(
Θ− i

√
λ
)−1 =

Θ + i
√
λ

Θ− i
√
λ
, λ ∈ R+,

where Θ ∈ R, see [38, §3] and (1.4). In this case the spectral shift function ξΘ(·) of the
pair {AΘ, A0} is given by

ξΘ(λ) =


1− χ[0,∞)(λ) 1

π arctan
(√

|λ|
Θ

)
, Θ > 0,

1− 1
2χ[0,∞), Θ = 0,

χ(−∞,−Θ2)(λ)− χ[0,∞)(λ) 1
π arctan

(√
|λ|
Θ

)
, Θ < 0,

(5.2)

for a.e. λ ∈ R.

5.2 Sturm-Liouville operators with matrix potentials

LetQ ∈ L∞(R+, [Cn]) be a matrix valued function such thatQ(·) = Q(·)∗ and the functions
x 7→ Q(x) and x 7→ xQ(x) belong to L1(R+, [Cn]). We consider the operator

A := − d2

dx2
+Q, dom (A) :=

{
f ∈W 2

2 (R+,Cn) : f(0) = f ′(0) = 0
}
,

in L2(R+,Cn). Then A is a densely defined closed simple symmetric operator with de-
ficiency indices n±(A) both equal to n and we have A∗ = −d2/dx2 + Q, dom (A∗) =
W 2

2 (R+,Cn). Setting

Γ0f = f(0), Γ1f = f ′(0), f ∈ dom (A∗) = W 2
2 (R+,Cn), (5.3)

we obtain a boundary triplet Π = {Cn,Γ0,Γ1} for A∗. Note that the extension A0 = A∗ �
ker(Γ0) corresponds to Dirichlet boundary conditions at 0,

A0 = − d2

dx2
+Q, dom (A0) =

{
f ∈W 2

2 (R+,Cn) : f(0) = 0
}
. (5.4)
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Proposition 5.1 Let A = −d2/dx2 +Q and Π be as above and denote the corresponding
Weyl function by M(·). Then the following holds.

(i) The function M(·) has poles on (−∞, 0) with zero as the only possible accumulation
point. Moreover, M(·) admits a continuous continuation from C+ onto R+ and the
asymptotic relation

M(λ+ i0) = i
√
λ ICn + o(1) as λ = λ̄→ +∞ (5.5)

holds. Here the cut of the square root
√
· is along the positive real axis as in Sec-

tion 5.1.

(ii) If Θ ∈ [Cn] is self-adjoint, then the scattering matrix {SΘ(λ)} of the scattering system
{AΘ, A0} behaves asymptotically like

SΘ(λ) = ICn + 2i
√
λ
(
Θ− i

√
λ · ICn

)−1 + o(1) (5.6)

as λ→ +∞, which yields SΘ(λ) ∼ −ICn as λ→ +∞.

Proof. (i) Since the spectrum of A0 (see (5.4)) is discrete in (−∞, 0) with zero as only
possible accumulation point (and purely absolutely continuous in (0,∞)) it follows that the
Weyl function M(·) has only poles in (−∞, 0) possibly accumulating to zero. To prove the
asymptotic properties ofM(·) we recall that under the condition x 7→ xQ(x) ∈ L1(R+, [Cn])
the equation A∗y = λy has an n × n-matrix solution E(·, λ) which solves the integral
equation

E(x, λ) = eix
√

λ ICn +
∫ ∞

x

sin(
√
λ(t− x))√
λ

Q(t)E(t, λ)dt, (5.7)

λ ∈ C+, x ∈ R+, see [5]. By [5, Theorem 1.3.1] the solution E(x, λ) is continuous and
uniformly bounded for λ ∈ C+ and x ∈ R+. Moreover, the derivative E′(x, λ) = d

dxE(x, λ)
exists, is continuous and uniformly bounded for λ ∈ C+ and x ∈ R+, too. From (5.7) we
immediately get the relation

E(0, λ) = ICn +
1√
λ
o(1) as <e (λ) → +∞, λ ∈ C+. (5.8)

Since
E′(x, λ) = i

√
λeix

√
λ ICn −

∫ ∞

x

cos(
√
λ(t− x))Q(t)E(t, λ)dt,

λ ∈ C+, x ∈ R+, we get

E′(0, λ) = i
√
λ In + o(1) as <e (λ) → +∞, λ ∈ C+. (5.9)

In particular, the asymptotic relations (5.8) and (5.9) hold as λ→ +∞ along the real axis.
Since A∗E(x, λ)ξ = λE(x, λ)ξ, ξ ∈ Cn, one gets

Nλ = ker(A∗ − λ) = {E(·, λ)ξ : ξ ∈ Cn}, λ ∈ C+.

Therefore using expressions (5.3) for Γ0 and Γ1 we obtain

M(λ) = E′(0, λ) · E(0, λ)−1, λ ∈ C+, (5.10)
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where the existence of E(0, λ)−1 for λ ∈ C+∪(0,∞) follows from the surjectivity of the map
Γ0 and the fact that the operator A0 has no eigenvalues in (0,∞). Further, by continuity
of E(0, λ) and E′(0, λ) in λ ∈ C+ we conclude that the Weyl function M(·) admits a
continuous continuation to R+. Therefore combining (5.10) with (5.8) and (5.9) we arrive
at the asymptotic relation

M(λ+ i0) = E′(0, λ+ i0) · E(0, λ+ i0)−1 = i
√
λ ICn + o(1)

as λ = λ̄→ +∞ which proves (5.5)

(ii) Let now Θ = Θ∗ ∈ [Cn] and let AΘ = A∗ � ker(Γ1 − ΘΓ0) be the corresponding
selfadjoint extension of A,

AΘ = − d2

dx2
+Q, dom (AΘ) =

{
f ∈W 2

2 (R+,Cn) : Θf(0) = f ′(0)
}
,

and consider the scattering system {AΘ, A0}, where A0 is given by (5.4). Combining the
formula for the scattering matrix {SΘ(λ)},

SΘ(λ) = ICn + 2i
√
=m (M(λ))

(
Θ−M(λ)

)−1√=m (M(λ))

for a.e. λ ∈ R+, from Theorem 3.8 with the asymptotic behaviour (5.5) of the Weyl
function M(·) a straightforward calculation implies relation (5.6) as λ → +∞. Therefore
the scattering matrix of the scattering system {AΘ, A0} satisfies SΘ(λ) ∼ −ICn as λ→ +∞.

�

We note that with the help of the asymptotic behaviour (5.5) of the Weyl function M(·)
also the asymptotic behaviour of the spectral shift function ξΘ(·) of the pair {AΘ, A0} can
be calculated. The details are left to the reader.

Remark 5.2 The high energy asymptotic (5.6) is quite different from the one for the
usually considered scattering system {A0, L0}, where A0 is as in (5.4),

L0 = − d2

dx2
, dom (L0) =

{
f ∈W 2

2 (R+,Cn) : f(0) = 0
}
,

and Q is rapidly decreasing. In this case the scattering matrix {S̃(λ)}λ∈R+ obeys the rela-
tion limλ→∞ S̃(λ) = ICn , see [5], whereas by Proposition 5.1 the scattering matrix {SΘ(λ)}
of the scattering system {AΘ, A0}, Θ ∈ [Cn] selfadjoint, satisfies limλ→+∞ SΘ(λ) = −ICn .

Let us now consider the special case Q = 0. Instead of A and A∗ we denote the minimal
and maximal operator by L and L∗ and we choose the boundary triplet Π from (5.3). Then
the defect subspace is

Nλ =
{
x 7→ ei

√
λxξ : ξ ∈ Cn, x ∈ R+

}
, λ ∈ C+ ∪ C−,

and the Weyl function M(·) is given by

M(λ) = i
√
λ · ICn , λ 6∈ R+.
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Let LΘ be the selfadjoint extension corresponding to Θ = Θ∗ ∈ C̃(Cn) and let L0 = L∗ �
ker Γ0. By Corollary 3.10 the scattering matrix {SΘ(λ)}λ∈R+ of the scattering system
{LΘ, L0} admits the representation

SΘ(λ) = ICn + 2i
√
λ
(
Θ− i

√
λ · ICn

)−1 for a.e. λ ∈ R+. (5.11)

Moreover, if Θ ∈ [Cn] formula (5.11) directly yields the asymptotic relation

lim
λ→+∞

SΘ(λ) = −ICn .

If, in particular Θ = 0, then LΘ = L∗ � ker(Γ1) is the operator −d2/dx2 subject to
Neumann boundary conditions f ′(0) = 0, and we have SΘ(λ) = −ICn , λ ∈ R+.

We note that the spectral shift function ξΘ(·) of the pair {LΘ, L0} is given by

ξΘ(λ) =
n∑

k=1

ξΘk
(λ) for a.e. λ ∈ R, (5.12)

where Θk, k = 1, 2, . . . , n, are the eigenvalues of Θ = Θ∗ ∈ [Cn] and the functions ξΘk
(·)

are defined by (5.2).

5.3 Dirac operator

Let a > 0 and let A be a symmetric Dirac operator on R defined by

Af =
(

0 −1
1 0

)
d

dx
f +

(
a 0
0 −a

)
f,

dom (A) =
{
f = (f1, f2)> ∈W 1

2 (R,C2) : f(0) = 0
}
.

The deficiency indices of A are (2, 2) and A∗ is given by

A∗f =
(

0 −1
1 0

)
d

dx
f +

(
a 0
0 −a

)
f,

dom (A∗) = W 1
2 (R−,C2)⊕W 1

2 (R+,C2).

Moreover, setting

Γ0f =
(
f2(0−)
f1(0+)

)
, Γ1f =

(
f1(0−)
f2(0+)

)
, f =

(
f1
f2

)
,

f1, f2 ∈ W 1
2 (R−,C) ⊕W 1

2 (R+,C), we obtain a boundary triplet Π = {C2,Γ0,Γ1} for A∗,
cf. [11]. Let the square root

√
· be defined as in the previous sections and let k(λ) :=√

λ− a
√
λ+ a, λ ∈ C. One verifies as in [11] that ker(A∗ − λ), λ ∈ C+, is spanned by the

functions

fλ,±(x) :=

(
∓i

√
λ+a√
λ−a

e±ik(λ)x

e±ik(λ)x

)
χR±(x), x ∈ R, λ ∈ C+,

and hence for λ ∈ C+ the Weyl function M corresponding to the boundary triplet Π is
given by

M(λ) =

i√λ+a
λ−a 0

0 i
√

λ−a
λ+a

 , λ ∈ C+. (5.13)
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If Θ = Θ∗ is a selfadjoint relation in C2 and AΘ = A∗ � Γ−1Θ is the corresponding
extension,

AΘf =
(

0 −1
1 0

)
d

dx
f +

(
a 0
0 −a

)
f,

dom (AΘ) =
{
f =

(
f1
f2

)
∈ dom (A∗) :

(
(f2(0−), f1(0+))>

(f1(0−), f2(0+))>

)
∈ Θ

}
,

then it follows from Theorem 3.8 that the scattering matrix {SΘ(λ)}λ∈Ωa
, where Ωa :=

(−∞,−a) ∪ (a,∞), of the Dirac scattering system {AΘ, A0}, A0 = A∗ � ker(Γ0), is given
by

SΘ(λ) = IC2 + 2i
√
=m (M(λ))

(
Θ−M(λ)

)−1√=m (M(λ)) (5.14)

for a.e. λ ∈ Ωa, where

=m (M(λ)) =

√|λ+a
λ−a | 0

0
√
|λ−a
λ+a |

 , λ ∈ Ωa. (5.15)

Note that for λ ∈ (−a, a) we have =m (M(λ)) = 0.

Remark 5.3 We note that the parameter Θ = Θ∗ ∈ [C2], i.e. the boundary conditions of
the perturbed Dirac operator AΘ, can be recovered from the limit of the scattering matrix
SΘ(λ), |λ| → +∞, corresponding to the scattering system {AΘ, A0}. In fact, it follows
from (5.14), (5.15) and (5.13) that

SΘ(∞) := lim
|λ|→+∞

SΘ(λ) = IC2 + 2i
(
Θ− i

)−1

holds. Therefore the extension parameter Θ is given by

Θ = i
(
SΘ(∞) + IC2

)(
SΘ(∞)− IC2

)−1
.

Assume now that Θ =
(

θ1 0
0 θ2

)
, θ1, θ2 ∈ R. Then

dom (AΘ) =
{
f =

(
f1
f2

)
∈ dom (A∗) :

θ1f2(0−) = f1(0−)
θ2f1(0+) = f2(0+)

}
and the scattering matrix {SΘ(λ)}λ∈Ωa has the form

SΘ(λ) =


θ1+i

q
| λ+a

λ−a |

θ1−i
q

λ+a
λ−a

0

0
θ2+i

q
|λ−a

λ+a |

θ2−i
q

λ−a
λ+a

 , λ ∈ Ωa.

In this case the spectral shift function ξΘ of the pair {AΘ, A0} is given by

ξΘ(λ) = ηθ1(λ) + ηθ2(λ) for a.e. λ ∈ R,
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where

ηθi
(λ) :=


1− χΩa(λ) 1

π arctan
(

1
θi

√∣∣∣λ+a
λ−a

∣∣∣) , θi > 0,

1− 1
2χΩa(λ), θi = 0,

χ(ϑi,a)(λ)− χΩa
(λ) 1

π arctan
(

1
θi

√∣∣∣λ+a
λ−a

∣∣∣) , θi < 0,

i = 1, 2, and the real constants ϑ1, ϑ2 ∈ (−a, a) are given by

ϑ1 = a
θ21 − 1
θ21 + 1

and ϑ2 = a
1− θ22
1 + θ22

.

5.4 Schrödinger operators with point interactions

As a further example we consider the matrix Schrödinger differential expression −∆ + Q
in L2(R3,Cn) with a bounded selfadjoint matrix potential Q(x) = Q(x)∗, x ∈ R3. This
expression determines a minimal symmetric operator

H := −∆ +Q, dom (H) :=
{
f ∈W 2

2 (R3,Cn) : f(0) = 0
}
, (5.16)

in L2(R3,Cn). Notice that H is closed, since for any x ∈ R3 the linear functional lx : f →
f(x) is bounded in W 2

2 (R3,Cn) due to the Sobolev embedding theorem. Moreover, it is
easily seen that the deficiency indices of H are n±(H) = n. We note that if Q = 0 the
self-adjoint extensions of H in L2(R3,Cn) are used to model so-called point interactions or
singular potentials, see e.g. [3, 4, 7].

In the next proposition we define a boundary triplet for the adjoint H∗. For x =
(x1, x2, x3)> ∈ R3 we agree to write r := |x| = (x2

1 + x2
2 + x2

3)
1/2.

Proposition 5.4 Let H be the minimal Schrödinger operator (5.16) with a matrix poten-
tial Q = Q∗ ∈ L∞(R3, [Cn]). Then the following assertions hold.

(i) The domain of H∗ = −∆ +Q is given by

dom (H∗) =
{
f ∈ L2(R3,Cn) : f = ξ0

e−r

r + ξ1 e
−r + fH ,

ξ0, ξ1 ∈ Cn, fH ∈ dom (H)

}
. (5.17)

(ii) A boundary triplet Π = {Cn,Γ0,Γ1} for H∗ is defined by

Γjf := 2
√
π ξj , f = ξ0

e−r

r
+ ξ1 e

−r + fH ∈ dom (H∗), j = 0, 1. (5.18)

(iii) The operator H0 = H∗ � ker(Γ0) is the usual selfadjoint Schrödinger operator −∆+Q
with domain W 2

2 (R3,Cn).

Proof. (i) Since Q ∈ L∞(R3, [Cn]) the domain of H∗ does not depend on Q. Therefore it
suffices to consider the case Q = 0. Here it is well-known, that

dom (H∗) =
{
f ∈ L2(R3,Cn) ∩W 2

2,loc(R3\{0},Cn) : ∆f ∈ L2(R3,Cn)
}
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holds, see e.g. [3, 4], and therefore the functions x 7→ e−r/r and x 7→ e−r, r = |x| =
(x2

1 + x2
2 + x2

3)
1/2, belong to dom (H∗). The linear span of the functions

x 7→ ξ0
e−r

r
+ ξ1e

−r ξ0, ξ1 ∈ Cn,

is a 2n-dimensional subspace in dom (H∗) and the intersection with dom (H) is trivial.
Since dim(dom (H∗)/dom (H)) = 2n it follows that dom (H∗) has the form (5.17).

(ii) Let f, g ∈ dom (H∗). By assertion (i) we have

f = h+ fH , h = ξ0
e−r

r
+ ξ1 e

−r, and g = k + gH , k = η0
e−r

r
+ η1 e

−r,

with some functions fH , gH ∈ dom (H) and ξ0, ξ1, η0, η1 ∈ Cn. Using polar coordinates we
obtain

(H∗f, g)− (f,H∗g) = (H∗h, k)− (h,H∗k)

= 4π
∫ ∞

0

h(r)
∂

∂r
r2
∂

∂r
k(r) dr − 4π

∫ ∞

0

∂

∂r
r2
∂

∂r
h(r)k(r) dr

= 4π
[
r2h(r)

∂

∂r
k(r)− r2

∂

∂r
h(r)k(r)

]∞
0

and with the help of the relations

r2
∂

∂r
k(r) = −e−r

{
(1 + r)η0 + r2η1

}
and

r2
∂

∂r
h(r) = −e−r

{
(1 + r)ξ0 + r2ξ1

}
this implies

(H∗f, g)− (f,H∗g) = 4π
[
e−2r

(
ξ0 + rξ0 + r2ξ1

)(η0
r

+ η1

)
− e−2r

(
ξ0
r

+ ξ1

)(
η0 + rη0 + r2η1

)]∞
0

.

This leads to

(H∗f, g)− (f,H∗g) = 4π(ξ1, η0)− 4π(ξ0, η1) = (Γ1f,Γ0g)− (Γ1f,Γ0g)

and therefore Green’s identity is satisfied. If follows from (5.17) that the mapping Γ =
(Γ0,Γ1)> is surjective and hence assertion (ii) is proved.

(iii) Combining (5.16) and (5.17) we see that any f ∈W 2
2 (R3,Cn) admits a representation

f = ξ1e
−r + fH with ξ1 := f(0) and fH = f − ξ1e

−r ∈ dom (H) which proves (iii). �

It is important to note that the symmetric operator H in (5.16) is in general not simple (see
e.g. [3]), hence H admits a decomposition into a simple part Ĥ and a selfadjoint part Hs,
that is, H = Ĥ⊕Hs, cf. Section 2.2. It is not difficult to see that the boundary triplet from
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Proposition 5.4 is also a boundary triplet for Ĥ∗. Then obviously the Schrödinger operator
H0 from Proposition 5.4 (iii) can be written as H0 = Ĥ0 ⊕Hs, where Ĥ0 = Ĥ∗ � ker(Γ0).

Let us now consider the case where the potential Q is spherically symmetric, that is,
Q(x) = Q(r), r = (x2

1 +x2
2 +x2

3)
1/2. In this case the simple part Ĥ of H becomes unitarily

equivalent to the symmetric Sturm-Liouville operator

A = − d2

dr2
+Q, dom (A) =

{
f ∈W 2

2 (R+,Cn) : f(0) = f ′(0) = 0
}
,

cf. Section 5.2, and the extension Ĥ0 becomes unitarily equivalent to the selfadjoint ex-
tension A0 of A subject to Dirichlet boundary conditions at 0.

Proposition 5.5 Let H be the minimal Schrödinger operator with a spherically symmetric
matrix potential Q = Q∗ ∈ L∞(R3, [Cn]) from (5.16) and assume that r 7→ Q(r) and
r 7→ rQ(r) belong to L1(R+, [Cn]). Let ΠH and ΠA be the boundary triplets for H∗ and A∗

defined by (5.18) and (5.3), respectively. Then the corresponding Weyl functions MH(·)
and MA(·) are connected via

MH(λ) = ICn +MA(λ), λ ∈ C\R, (5.19)

and the pairs {Ĥ, Ĥ0} and {A,A0} are unitarily equivalent. If, in particular, Q = 0, then
MH(λ) = (i

√
λ+ 1) · ICn .

Proof. Let E(·, λ), λ ∈ C+, be the n × n-matrix solution of the equation A∗E(r, λ) =
λE(r, λ) from Section 5.2. Since E(·, λ)ξ ∈ L2(R+, [Cn]), ξ ∈ Cn, we see that

U(x, λ) :=
1
r
E(r, λ), r = (x2

1 + x2
2 + x2

3)
1/2 6= 0,

satisfies U(x, λ)ξ ∈ L2(R3, [Cn]), ξ ∈ Cn, λ ∈ C+, and

H∗U(x, λ)ξ = −∆U(x, λ)ξ +Q(r)U(x, λ)ξ

=
1
r

(
−E′′(λ, r) +Q(r)E(r, λ)

)
ξ =

1
r
A∗E(r, λ)ξ = λU(x, λ)ξ.

Therefore ker(H∗ − λ) = {U(·, λ)ξ : ξ ∈ Cn}, λ ∈ C+. It follows from (5.18) that U(·, λ)ξ
can be decomposed in the form

U(x, λ)ξ =
1
r
E(r, λ)ξ = Ξ0(λ)ξ

e−r

r
+ Ξ1(λ)ξ e−r + UH(x, λ)ξ, (5.20)

where
Ξ0(λ) = E(0, λ), Ξ1(λ) = E(0, λ) + E′(0, λ), (5.21)

and UH(·, λ) ∈ domH.

Note that according to (5.10) the Weyl function MA(·) corresponding to ΠA is MA(λ) =
E′(0, λ) · E(0, λ)−1, λ ∈ C+ On the other hand, (5.20) and (5.21) imply

MH(λ) = Ξ1(λ) · Ξ0(λ)−1 =
(
E(0, λ) + E′(0, λ)

)
· E(0, λ)−1 = ICn +MA(λ).
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The unitary equivalence of the simple operators Ĥ and A as well as of the selfadjoint
extensions Ĥ0 and A0 is a consequence of Corollary 1 and Lemma 2 of [13]. �

Let now H = Ĥ ⊕Hs and Q be as in Proposition 5.5 and consider the scattering system
{HΘ,H0}, where HΘ = H∗ � Γ−1Θ for some selfadjoint Θ ∈ C̃(Cn). Then in fact one
considers the scattering system {ĤΘ, Ĥ0}, HΘ = ĤΘ⊕Hs. In accordance with Theorem 3.8
the scattering matrix {ŜΘ(λ)}λ∈R+ of the scattering system {ĤΘ, Ĥ0} is given by

ŜΘ(λ) = ICn + 2i
√
=m (MA(λ))

(
Θ− (MA(λ) + ICn)

)−1√=m (MA(λ))

for a.e. λ ∈ R+, where MA(·) is the Weyl function of the boundary triplet ΠA, cf. (5.10).
If, in particular Q = 0, then ŜΘ(λ) takes the form

ŜΘ(λ) = ICn + 2i
√
λ
(
Θ− (i

√
λ+ 1) · ICn

)−1
.

In this case the spectral shift function ξ̂Θ(·) of the scattering system {ĤΘ, Ĥ0} is given by

ξ̂Θ(λ) = ξΘ−I(λ) for a.e. λ ∈ R,

where ξΘ−I(·) is the spectral shift function of the scattering system {LΘ−I , L0} (see the
end of Section 5.2) defined by (5.12).

A Direct integrals and spectral representations

Following the lines of [6] we give a short introduction to direct integrals of Hilbert spaces
and to spectral representations of selfadjoint operators.

Let Λ be a Borel subset of R and let µ be a Borel measure on R. Further, let
{Hλ, (·, ·)Hλ

}λ∈Λ be a family of separable Hilbert spaces. A subset S of the Cartesian
product Xλ∈ΛHλ is called an admissible system if the following conditions are satisfied
(see [6]):

1. The set S is linear and S is closed with respect to multiplication by functions from
L∞(Λ, µ).

2. For every f ∈ S the function λ 7→ ‖f(λ)‖Hλ
is Borel measurable and∫

Λ
‖f(λ)‖2Hλ

dµ(λ) <∞.

3. span{f(λ) | f ∈ S} is dense in Hλ (mod µ).

4. If for a Borel subset ∆ ⊆ Λ one has
∫
∆
‖f(λ)‖2Hλ

dµ(λ) = 0 for all f ∈ S, then
µ(∆) = 0.

A function f ∈ Xλ∈ΛHλ is strongly measurable with respect to S if there exists a sequence
tn ∈ S such that limn→∞ ‖f(λ)− tn(λ)‖Hλ

= 0 (mod µ) is valid. On the set of all strongly
measurable functions f, g ∈ Xλ∈ΛHλ with the property∫

Λ

‖f(λ)‖2Hλ
dµ(λ) <∞ and

∫
Λ

‖g(λ)‖2Hλ
dµ(λ) <∞
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we introduce the semi-scalar product

(f, g) :=
∫

Λ

(
f(λ), g(λ)

)
Hλ
dµ(λ).

By completion of the corresponding factor space one obtains the Hilbert space
L2(Λ, µ,Hλ,S) which is called the direct integral of the family Hλ with respect to Λ, µ
and S.

Let in the following A0 be a selfadjoint operator in the separable Hilbert space H, let E0

be the orthogonal spectral measure of A0, denote the absolutely continuous subspace of
A0 by Hac(A0) and let µL be the Lebesgue measure.

Definition A.1 We call a Borel set Λ ⊆ σac(A0) a spectral core of the operator Aac
0 :=

A0 � dom (A0) ∩ Hac(A0) if E0(Λ)Hac(A0) = Hac(A0) and µL(Λ) is minimal. A linear
manifold M⊆ Hac(A0) is called a spectral manifold if there exists a spectral core Λ of Aac

0

such that the derivative d
dλ (E0(λ)f, f) exists for all f ∈M and all λ ∈ Λ.

Note that every finite dimensional linear manifold M in Hac(A0) is a spectral manifold.
Let us assume that M ⊆ Hac(A0) is a spectral manifold which is generating with respect
to Aac

0 , that is,
Hac(A0) = clospan

{
E0(∆)f : ∆ ∈ B(R), f ∈M

}
(A.1)

holds and let Λ be a corresponding spectral core of Aac
0 . We define a family of semi-scalar

products (·, ·)E0,λ by

(f, g)E0,λ :=
d

dλ
(E0(λ)f, g), λ ∈ Λ, f, g ∈M,

and denote the corresponding semi-norms by ‖ · ‖E0,λ. We remark, that the family
{(·, ·)E0,λ}λ∈Λ is an example of a so-called spectral form with respect to the spectral mea-
sure Eac

0 := E0 � Hac(A0) of Aac
0 (see [6, Section 4.5.1]). By M̂λ, λ ∈ Λ, we denote the

completion of the factor space
M
/

ker(‖ · ‖E0,λ)

with respect to ‖ · ‖E0,λ. The canonical embedding operator mapping M into the Hilbert
space M̂λ, λ ∈ Λ, is denoted by Jλ,

Jλ : M→ M̂λ, k 7→ Jλk.

Lemma A.2 The set

SM :=

{
n∑

l=1

αl(λ)Jλfl : fl ∈M, αl ∈ L∞(Λ, µ), n ∈ N

}
⊆ Xλ∈ΛM̂λ

is an admissible system.

Proof. Obviously SM is linear and closed with respect to multiplication by functions from
L∞(Λ, µ). For f(λ) = Jλf , f ∈M, λ ∈ Λ, we find from

‖f(λ)‖2cMλ
= ‖f‖2E0,λ =

d

dλ
(E0(λ)f, f)
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that λ 7→ ‖f(λ)‖cMλ
is Borel measurable and that∫
Λ

‖f(λ)‖2cMλ
dµL(λ) = (E0(Λ)f, f) = (f, f) <∞

holds. Hence it follows that condition (2) is satisfied. For each λ ∈ Λ the set {Jλf : f ∈M}
is dense in M̂λ, thus (3) holds. Finally, if for some ∆ ∈ B(Λ) and all f ∈ SM

0 =
∫

∆

‖f(λ)‖2cMλ
dµL(λ) = (E0(∆)f, f) = ‖E0(∆)f‖2

holds, the assumption that M is generating implies E0(∆)g = 0 for every g ∈ Hac(A0),
hence E0(∆) = 0. As Λ is a spectral core we conclude µL(∆) = 0. �

Then the direct integral L2(Λ, µL,M̂λ,SM) of the family M̂λ with respect to the spec-
tral core Λ, the Lebesgue measure and the admissible system SM in Lemma A.2 can
be defined. By [6, Proposition 4.21] there exists an isometric operator from Hac(A0)
onto L2(Λ, µL,M̂λ,SM) such that E0(∆) corresponds to the multiplication operator in-
duced by the characteristic function χ∆ for any ∆ ∈ B(Λ), that is, the direct integral
L2(Λ, µL,M̂λ,SM) performs a spectral representation of the spectral measure Eac

0 of Aac
0 .

According to [6, Section 3.5.5] we introduce the semi-norm [·]E0,λ,

[f ]2E0,λ := lim sup
h→0

1
h

(
E0([λ, λ+ h))f, f

)
, λ ∈ R, f ∈ Hac(A0),

and we set
Dλ :=

{
f ∈ Hac(A0) : [f ]E0,λ <∞

}
, λ ∈ R. (A.2)

If M is a spectral manifold and Λ is an associated spectral core, then M ⊆ Dλ holds for
all λ ∈ Λ. Moreover, we have

(f, f)E0,λ = [f ]2E0,λ, f ∈M, λ ∈ Λ.

By D̂λ we denote the Banach space which is obtained from Dλ by factorization and com-
pletion with respect to the semi-norm [·]E0,λ, i.e.

D̂λ := clo[·]E0,λ

(
Dλ

/
ker([·]E0,λ)

)
.

For λ ∈ Λ we will regard M̂λ as a subspace of D̂λ. By Dλ we denote the canonical
embedding operator from Dλ into D̂λ. Note that cloDλM = M̂λ, λ ∈ Λ, where the
closure is taken with respect to the topology of D̂λ.

Lemma A.3 For a continuous function ϕ on σ(A0) the relation

Dλϕ(A0)f = ϕ(λ)Dλf

holds for all λ ∈ R and all f ∈ Dλ.
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Proof. We have to check that

0 = [ϕ(A0)f − ϕ(λ)f ]2E0,λ

= lim sup
h→0

1
h

(
E0

(
[λ, λ+ h)

)(
ϕ(A0)− ϕ(λ)

)
f,
(
ϕ(A0)− ϕ(λ)

)
f
)

= lim sup
h→0

1
h

∫ λ+h

λ

d
(
E0(t)

(
ϕ(A0)− ϕ(λ)

)
f,
(
ϕ(A0)− ϕ(λ)

)
f
)

holds for λ ∈ R and f ∈ Dλ. From(
E0(t)

(
ϕ(A0)− ϕ(λ)

)
f,
(
ϕ(A0)− ϕ(λ)

)
f
)

=
∫ t

−∞
|ϕ(s)− ϕ(λ)|2d(E0(s)f, f)

we find

[ϕ(A0)f − ϕ(λ)f ]2E0,λ = lim sup
h→0

1
h

∫ λ+h

λ

|ϕ(t)− ϕ(λ)|2d(E0(t)f, f).

As f belongs to Dλ and ϕ is continuous on σ(A0) we obtain that this expression is zero.
�
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[6] Baumgärtel, H.; Wollenberg, M.: Mathematical Scattering Theory, Akademie-Verlag,
Berlin, 1983.

[7] Berezin, F.A.; Faddeev, L.D.: A remark on Schrödinger’s equation with a singular
potential, Dokl. Akad. Nauk SSSR 137 (1961), 1011–1014.

[8] Birman, M.S.; Krein, M.G.: On the theory of wave operators and scattering operators,
Dokl. Akad. Nauk SSSR 144 (1962), 475–478.



REFERENCES 35

[9] Birman, M.Sh.; Yafaev, D.R.: Spectral properties of the scattering matrix, Algebra i
Analiz 4 (1992), no. 6, 1–27; translation in St. Petersburg Math. J. 4 (1993), no. 6,
1055–1079.

[10] Birman, M.Sh.; Yafaev, D.R.: The spectral shift function. The papers of M.G. Krĕın
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