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Abstrat. DAN The present paper is onerned with investigating the apability ofthe smoothness preserving �titious domain method from [22℄ to shape optimizationproblems. We onsider the problem of maximizing the Dirihlet energy funtional in thelass of all simply onneted domains with �xed volume, where the state equation involvesan ellipti seond order di�erential operator with non-onstant oe�ients. Numerialexperiments in two dimensions validate that we arrive at a fast and robust algorithm forthe solution of the onsidered lass of problems. The proposed method keeps appliablefor three dimensional shape optimization problems.IntrodutionIn several papers (see [8, 9℄ for example), two of the authors developed e�ient algorithmsfor the solution of several ellipti shape optimization problems. A boundary variationalapproah was proposed in ombination with boundary integral representations of theshape gradient and the shape Hessian. The onsidered lass of model problems allowedthe use of boundary integral equations to ompute all ingredients of the funtional, thegradient, and the Hessian, that arise from the state equation. In ombination with afast wavelet Galerkin method to solve the boundary integral equations, we obtained verye�ient �rst and seond order algorithms for shape problems in two and three spatialdimensions. In partiular, the use of boundary element methods requires only a dis-retization of the free boundary. In our opinion this is very advantageous sine, on theone hand, modern boundary integral methods redue the omplexity, and on the otherhand, large deformations of the domains are realizable without remeshing. Moreover,exterior boundary value problems are treatable, like in the omputation of free surfaesof liquid bubbles or drops levitating in an eletromagneti �eld, f. [10, 11℄.However, to be able to realize the optimal e�ieny from these advantages, it is of greathelp if the onstraints and shape derivatives an be formulated in terms of boundaryintegrals. Consequently, further assertions on the objetive have to be made for thepowerful appliation of boundary element methods, see [8℄ for the details.In ase of ompatly supported ost funtionals one an overome this restrition by ou-pling �nite and boundary elements (see [12℄). Thus, the advantages of both methods areretained, namely fast aess to values on the ompat subset by �nite elements on a �xedtriangulation and the simple treatment of the free boundary by boundary elements. Nev-ertheless, the restrition to state equations involving di�erential operators with onstantoe�ients remains.However, the above mentioned tehniques are not appliable to state equations involvingellipti di�erential operators with non-onstant oe�ients. Fititious domain methodso�er obviously a onvenient tool to deal with suh shape optimization problems while theompliated remeshing, required for �nite element methods, is still avoided, see Haslingeret al. [15, 16℄, Kunish/Peihl [21℄, Neitaanmäki/Tiba [25℄, and Slawig [29, 30℄.Up to now, the suess of �titious domain methods was limited sine traditional meth-ods su�er from low orders of onvergene. For instane, the �titious domain-Lagrange1



multiplier approah onverges only as O(h1/2) in the energy norm when approximatingfrom uniform grids with mesh size h (see [18℄). Even the rate of onvergene of stan-dard (i.e. based on isotropi re�nements) adaptive methods is limited by O(N−1/2) and
O(N−1/4) in two and three dimensions, respetively, when spending N degrees of free-dom, independently of the order of the approximation spaes (see [23℄ for a more detaileddisussion).These di�ulties arise from non-smooth extensions of the solutions outside the intrinsidomain. In [22, 23℄, one of the authors proposed a rather novel and promising smoothnesspreserving �titious domain method whih realizes higher orders of onvergene due tosmooth extensions of the solution. The present paper is devoted to demonstrate theapability of this method when used in the ontext of shape optimization problems.We onsider the problem of maximizing the Dirihlet energy funtional in the lass ofall onneted domains of lass C2, where the state solves a standard ellipti boundaryvalue problem of seond order. To ensure uniqueness the sought domain is supposed tohave a given volume. For sake of learness in representation, we restrit ourselves tothe two dimensional setting. However, we emphasize that the present algorithms an bestraightforwardly extended to three spatial dimensions.The paper is organized as follows. Setion 1 is dediated to shape optimization. Weintrodue our model problem of maximizing the Dirihlet energy funtional under a vol-ume onstraint. After deriving the shape derivatives, we onsider a standard augmentedLagrangian algorithm to treat the volume onstraint. The minimization problems in theinner loop are solved by a nonlinear Ritz-Galerkin method for the neessary ondition. Avetor valued boundary perturbation ansatz is employed in order to desribe the bound-ary and its update. On the one hand, any domain of gender zero an be represented, onthe other hand, the boundary representation is non-unique. Sine therefore the surfaemesh might degenerate, we add a regularization term to the objetive. In Setion 2 wepresent the numerial sheme to ompute the state funtion. We introdue the smooth-ness preserving �titious domain method and disuss the evaluation of domain integralsby numerial quadrature. In the last setion (Setion 3) we present numerial results todemonstrate the apability of our approah.1. Shape Optimization1.1. The model problem. Let Ω ⊂ R

2 be a domain with boundary Γ := ∂Ω. Weonsider the Dirihlet energy funtional(1.1) J(Ω) =

∫

Ω

〈A∇u,∇u〉dx =

∫

Ω

fudx,where the state funtion u solves the boundary value problem(1.2) −÷ (A∇u) = f in Ω,

u = 0 on Γ = ∂Ω.2



Herein, we assume that the inhomogenity f : D → R and the symmetri and positivematrix A(x) = [aij(x)]2i,j=1 are su�iently regular and de�ned in a su�iently large holdall D ⊂ R
2.The goal of the present paper is to maximize the the Dirihlet energy (1.1) over the lass

Υ of admissible domains. We assign Υ to be the set of all simply onneted domains ofthe lass C2. To ensure uniqueness we shall impose an equality onstraint on the volumeof the domain(1.3) V (Ω) :=

∫

Ω

dx
!
= V0.Consequently, we arrive at the following problem:

−J(Ω) → min
Ω∈Υ

subjet to V (Ω) = V0.(P )1.2. Shape alulus. We brie�y reall well known fats about the �rst order shapealulus, useful for the disussion of the neessary ondition and the numerial algorithms.For a general overview on shape alulus, mainly based on the perturbation of identity(Murat and Simon) or the speed method (Sokolowski and Zolesio), we refer the readerfor example to Murat and Simon [24, 28℄, Pironneau [27℄, Sokolowski and Zolesio [31℄,Delfour and Zolesio [4℄, and the referenes therein.Let n denote the outer unit normal to the boundary Γ and onsider a C2-smooth boundaryperturbation �eld U : Γ → R
2. Then, the shape gradient to the funtional (1.1) reads as(1.4) ∇J(Ω)[U] =

∫

Γ

〈U,n〉〈A∇u,∇u〉dσ,sine the loal shape derivative du = du[U] satis�es
÷(A∇du) = 0 in Ω,

du = −〈U,n〉
∂u

∂n
on Γ.The gradient of the volume reads as(1.5) ∇V (Ω)[U] =

∫

Γ

〈U,n〉dσ.1.3. Relaxation of the onstraints. The minimization problem (P ) implies to �nd thesolution (Ω⋆, λ⋆) ∈ Υ × R of the saddle point problem
(Ω⋆, λ⋆) = arg inf

Ω∈Υ
sup
λ∈R

Lα(Ω, λ),where Lα(Ω, λ) denotes the augmented Lagrangian funtional(1.6) Lα(Ω, λ) = −J(Ω) + λ
(
V (Ω) − V0

)
+

α

2

(
V (Ω) − V0

)2
.Of ourse, the hoie α = 0 yields the pure Lagrangian while λ = 0 and α → ∞ is knownas standard quadrati penalty method. However, both hoies have some drawbaks fromthe numerial point of view, f. [5, 19℄, for example.3



In order to avoid these di�ulties, we hoose α > 0 and onsider the following standardaugmented Lagrangian algorithm:
• initialization: hoose initial guesses λ(0) for λ⋆ and Ω(0) for Ω⋆,
• inner iteration: solve(1.7) Ω(n+1) := argmin Lα(Ω, λ(n))with initial guess Ω(n),
• outer iteration: update

λ(n+1) := λ(n) − α
(
V (Ω(n+1)) − V0

)
.It is well known that the this algorithm onverges to (Ω⋆, λ⋆) provided that α is appro-priately hosen [5, 19℄.Notie that the neessary ondition to (1.6) is equivalent to the identity

〈A∇u,∇u〉 ≡ λ⋆ on Γ⋆.1.4. Ritz-Galerkin approximation of the shape problem. The boundary of a do-main Ω ∈ Υ an be parameterized by a bijetive positive oriented urve(1.8) γ : [0, 1] → Γ, γ(φ) =

[
γx(φ)

γy(φ)

]
,suh that

γx, γy ∈ C2per([0, 1]) :=
{
f ∈ C2([0, 1]) : f (i)(0) = f (i)(1), i = 0, 1, 2

}
.Setting(1.9) ϕΓ

−N := sin(2πNφ), ϕΓ
1−N := sin

(
2π(N − 1)φ

)
, . . . , ϕΓ

−1 := sin(2πφ),

ϕΓ
0 := 1, ϕΓ

1 := cos(2πφ), . . . , ϕΓ
N := cos(2πNφ),we de�ne the spae(1.10) V Γ

N = span{ϕΓ
−N , ϕΓ

1−N , . . . , ϕΓ
N} ⊂ C2per([0, 1])of all trigonometri polynomials of degree ≤ 2N . To disretize the shape optimizationproblem we make the ansatz(1.11) γN =

N∑

k=−N

[
ak

bk

]
ϕΓ

k ∈ V Γ
N × V Γ

Nwith oe�ient vetors [ak, bk]
T ∈ R

2. Identifying the approximate domain ΩN with thisboundary urve, problem (1.7) beomes �nite dimensional
Ω⋆

N := argmin Lα(ΩN , λ(n)).This disrete problem leads to a nonlinear Ritz-Galerkin sheme for the neessary ondi-tion: seek γ
⋆
N ∈ V Γ

N × V Γ
N suh that ∇Lα(Ω⋆

N , λ⋆)[vN ] = 0 for all vN ∈ V Γ
N × V Γ

N .4



For the numerial solution of this nonlinear variational equation we apply the quasi-Newton method updated by the inverse BFGS-rule without damping. A seond orderapproximation is proposed for performing the line searh update if a desent fails. For allthe details we refer to [5, 13, 14, 19℄ and the referenes therein.Remark 1.1. In the three dimensional ase one onsiders the unit sphere S
2 as parameterspae and the ansatz spaes V Γ

N onsisting of spherial harmonis of order ≤ N . Then,
γN : S

2 → Γ is de�ned aording to
γN =

∑

k

akϕ
Γ
k ∈ V Γ

N × V Γ
N × V Γ

Nwith oe�ients ak ∈ R
3. This ansatz has been used in e.g. [20℄.1.5. Regularization. The ansatz (1.11) does not impose any restrition to the topologyof the domain exept for its gender. However, even though both omponents of γ areelements of C2per([0, 1]), we annot guarantee that Ω ∈ C2. Furthermore, the parametrirepresentation (1.8) of the domain Ω is not unique. In fat, if Ξ : [0, 1] → [0, 1] denotesany smooth 1-periodi bijetive mapping, then the boundary urve γ◦Ξ desribes anotherparameterization of Ω.To avoid degenerated boundary representations we shall inlude a regularization term. Itis quite obvious that, for numerial omputations, a �nie� parameterization distributesequidistant grid points of [0, 1] equidistantly on Γ. This means that the mesh funtional(1.12) M(Ω) =

∫ 1

0

(〈γ ′, γ ′〉 − |Γ|2)2dφ,beomes small sine it vanishes only if Ω is parameterized with respet to the ar length.This motivates to solve for small β > 0 the regularized shape problem
J(Ω) + βM(Ω) → min

Ω∈Υ
subjet to V (Ω) = V0(P ′)instead of the original problem (P ). We mention that the best numerial results areahieved when β → 0 during the optimization proedure.Remark 1.2. The three dimensional analogue of the mesh funtional (1.12) is

M(Ω) =

∫

S2

∥∥∥∥
[
〈γx, γx〉 〈γx, γy〉

〈γy, γx〉 〈γy, γy〉

]
−

|Γ|2

|S|2
I

∥∥∥∥
2

F

dσ,where ‖ · ‖F denotes the Frobenius norm. The mesh funtional is idential to zero i� the�rst fundamental tensor of di�erential geometry is on the whole parameter spae identialto |Γ|2/|S|2-times the identity matrix.2. Numerial Method to ompute the State2.1. The SPFD method. To ompute the state given by (1.2) we use a lose variantof the smoothness preserving �titious domain (SPFD) method, introdued in [22℄. The5



SPFD method is a fairly new domain embedding tehnique that has yet to be fully under-stood from a theoretial point of view. It has, however, performed well in experimentalsettings before, and as will be seen in the numerial results, it an ful�ll its promise inmore applied settings.To solve a boundary value problem with any �titious domain method, one embeds theintrinsi domain into a larger �titious domain, for example, a periodi ube T = (R\Z)2.The next step is to onstrut from the original problem some auxiliary problem on the�titious domain suh that the solutions of this auxiliary and the original problem oinideon the intrinsi domain.We assume that the right hand side f is in L2(T). For sake of simpliity we shall assumefrom now on that the hold all satis�es D = T. Then, sine the boundary is C2, thesolution of the state equation will be in H2(Ω). Consider for a moment the more general,non-homogeneous boundary ondition u = g on Γ, with g ∈ H3/2(Γ), and onsider theleast-squares funtional on H2(T),(2.13) Φ(u+) = ‖C(Au+ − f)‖2
L2(T) + ‖Bu+ − g‖2

H3/2(Γ),where A : H2(T) → L2(T) is the di�erential operator, B : H2(T) → H3/2(Γ) is the traeoperator, and C : L2(T) → L2(T) is suh that Cv is the extension by zero of the restritionto Ω of v ∈ L2(T).It is reasonably easy to hek that Φ has a minimum, whih is not unique but an behosen to depend ontinuously on the data b := [f, g]T ∈ H := L2(T) × H3/2(Γ). Thus,the operator M : H2(T) → H assoiated with Φ, given by the operator matrix
M =

[
CA

B

]
,is bounded, and, while it has a large kernel, it still has a bounded pseudoinverse. Further-more, every minimizer of Φ is an extension of the solution to the original problem (see[22℄). Thus, to ompute the state, we shall solve the least-squares problem(2.14) �nd u+ ∈ H2(T) suh that ‖Mu+ − b‖H → min,and take u = u+

|Ω.2.2. Disretization and solution of the disrete problems. To approximate solu-tions of (2.14), we will use dyadi grids of mesh size hj := 2−j, with j ≥ 0 an integer. Wewrite
T =

⋃

k=(kx,ky)∈Zj

Qjk,where Zj := (Z/2j
Z)2, and Qjk := 2−j[kx, kx + 1) × [ky, ky + 1).When trying to disretize the operator M on the given mesh, one quikly realizes thatthe operator C an yield a potentially fatal problem for the numerial implementation,as it implies the omputation of quadrature problems on nontrivial domains, a task thatusually is expensive. To overome this problem, we approximate C by the operator Cj,6



de�ned as follows. Given v ∈ L2(T), Cjv is de�ned as the extension by zero of therestrition of v to Ωj , where
Ωj :=

⋃

k∈Zj

{Qjk : Qjk ∩ Ω 6= ∅}.In pratie, this hoie also enhanes the stability of the method.Notie that this approximation is not as rude as it looks. It has been shown in [22℄ thatif C(Au+ − f) = 0, and Au+ − f ∈ Hs(T) for s > 0 suh that s − 1/2 is not an integer,then
‖Cj(Au+ − f)‖L2(T) . hs

j‖Au+ − f‖Hs(T).Sine one an always �nd suh an extension u+ whenever u ∈ Hs+2(Ω), this proves thatthe minimum of the modi�ed least-squares funtional(2.15) Φj(u
+) = ‖Cj(Au+ − f)‖2

L2(T) + ‖Bu+ − g‖2
H3/2(Γ)onverges rapidly towards the minimum of Φ.Next, let us hoose suitable approximation spaes. In H2(T) we will approximate fromthe spaes

V T

j = span{ϕT

j,k : k ∈ Zj}of periodi ardinal B-splines ϕT

j,k of order m > 2 on the given grid. These are Cm−2-funtions that are multi-polynomials of degree m− 1 on eah ube Qjk. In L2(T) we willapproximate using the spaes
V 0

j = span{ϕ0
j,k,l : k ∈ Zj , l ∈ I},where I := {l = (lx, ly) : 0 ≤ lx, ly < n}, onsisting of diontinuous pieewise multi-polynomials of order n. The orthonormal basis funtions ϕ0

j,k,l are supported on Qjk, de-�ned as tensor produts of Legendre polynomials up to degree n−1. Note that CjV
0
j ⊂ V 0

jgreatly simpli�es the alulation of entries in the system matrix. Finally, to approximatein H3/2(Γ), we use (after identifying Γ with [0, 1] by means of the parameterization (1.11))the spae V Γ
j := V Γ

N , where V Γ
N is as de�ned in (1.10) with N = 2j.Next, we should introdue the disrete system matries and load vetors. We have toompute

[Aj](k,l),k′ = −

∫

Ωj

÷(A∇ϕT

j,k′)ϕ0
j,k,ldx, [fj ](k,l) =

∫

Ωj

fϕ0
j,k,ldx,

[Bj]k,k′ =

∫ 1

0

(ϕT

j,k′ ◦ γ)ϕΓ
kdφ, [gj]k =

∫ 1

0

(g ◦ γ)ϕΓ
kdφ.where γ denotes a suitable parameterization to Γ aording to (1.8).In order to takle the di�erent norms we need some suitable preonditioners. To omputethe H3/2(Γ)-norm of a funtion gj ∈ V Γ

j we simply have to sale the oe�ients of sin(kφ),and of cos(kφ), by k3/2. Thus, we shall introdue the diagonal matrix
[Dj ]k,l = |k|3/2δk,l.7



For preonditioning of the operator M we ould use (as is done in [22℄) a suitable wavelettransform, see e.g. [3℄. Instead, we use the Bramble-Pasiak-Xu (BPX) multilevel preon-ditioner [2℄ assoiated with the disretization of I −÷(A∇). We indiate its appliationby the matrix Tj.We are now in the position to present the disrete least-squares problem: solve(2.16) ∥∥∥∥
[

Aj

DjBj

]
Tjvj −

[
fj

Djgj

]∥∥∥∥ → minand take u+
j = Tjvj .We use the iterative least-squares solver LSQR [26℄ to solve the disrete least-squaresproblem (2.16) iteratively within a nested iteration. Moreover, it is not neessary toassemble the matrix Bj sine matrix-vetor produts Bjx and BT

j x an be e�ientlyevaluated by using the (inverse) fast Fourier transform.2.3. Error estimates. The energy spae of the least-squares formulation (2.13) is theSobolev spae H2(T). Therefore, sine we use ansatz funtions that are exat of order m,the best possible onvergene rate is limited by h2m−4
j , ahieved in the H4−m(T)-norm if

u+ ∈ Hm(T).Theorem 2.1. Assume that there exists an n ∈ [0, m − 2] suh that(2.17) ‖u − uj‖H2−n(Ω) . h2n
j ‖u‖H2+n(Ω)provided that u ∈ H2+n(Ω). Then, if Γ is su�iently smooth, the approximate shapefuntional and gradient

J̃(Ω) =

∫

Ω

fujdx, ∇̃J(Ω)[U] =

∫

Γ

〈U,n〉〈A∇uj,∇uj〉dσ,satisfy the error estimates
|J(Ω) − J̃(Ω)| = O(h2n

j ), |∇J(Ω)[U] − ∇̃J(Ω)[U]| = O(h
min{2n,n+1}
j ).Proof. The approximation error of the shape funtional is estimated aording to

|J(Ω) − J̃(Ω)| =

∣∣∣∣
∫

Ω

fudx−

∫

Ω

fujdx

∣∣∣∣
. ‖f‖Hn−2(Ω)‖u − uj‖H2−n(Ω)

. h2n
j ‖f‖Hn−2(Ω)‖u‖Hn−2(Ω).In ase of the shape gradient we derive the assertion by

|∇J(Ω)[U] − ∇̃J(Ω)[U]| =

∣∣∣∣
∫

Γ

〈U,n〉
{
〈A∇u,∇u〉 − 〈A∇uj,∇uj〉

}
dσ

∣∣∣∣

≤

∣∣∣∣
∫

Γ

〈U,n〉〈A∇(u− uj),∇(u − uj)〉dσ

∣∣∣∣ + 2

∣∣∣∣
∫

Γ

〈A∇u〈U,n〉,∇(u− uj)〉dσ

∣∣∣∣
. ‖〈U,n〉‖L∞(Γ)‖u − uj‖

2
H1(Γ) + 2‖∇u〈U,n〉‖H1/2(Γ)‖u − uj‖H1/2(Γ).8



Using (2.17) together with the inverse inequality yields for the �rst term
‖〈U,n〉‖L∞(Γ)‖u − uj‖

2
H1(Γ) . h2n

j ‖〈U,n〉‖L∞(Γ)‖u‖
2
H2+n(Γ).Invoking additionally the trae theorem the seond term an be likewise estimated by

‖∇u〈U,n〉‖H1/2(Γ)‖u − uj‖H1/2(Γ) . ‖∇u〈U,n〉‖H1/2(Γ)‖u − uj‖H1(Ω)

. h
min{2n,n+1}
j ‖〈U,n〉‖C1(Γ)‖u‖

2
H2+n(Ω).

�2.4. Computing domain integrals. At least in order to evaluate the Dirihlet energy(1.1) we have to approximate domain integrals(2.18) I(Ω) :=

∫

Ω

f(x)dxfor f ∈ C(Ω). This will be done as follows.We ompute the points of intersetion of the boundary urve Γ and the underlying grid⋃
k∈Z

∂Qj,k. Then, we replae the boundary urve Γ by the pieewise linear urve Γ̃ whihonnets these points by straight lines. The enlosed polygonal domain will be denotedby Ω̃.

Figure 2.1. Triangulation of the domain.We will next onstrut a suitable triangulation of Ω̃. We subdivide all elements Qj,k thatinterset the boundary Γ̃ into suitable triangles to triangulate Qj,k ∩ Ω̃. In the remainingpart of Ω̃ we subdivide the elements Qj,k into two triangles. Finally, we apply appropriate9



quadrature formulae for triangles. Figure 2.1 exempli�es a triangulation produed by ouralgorithm.Theorem 2.2. Assume that Ω ∈ C2 and f ∈ C2(D). Then, the above quadrature al-gorithm omputes the integral I(Ω) from (2.18) with auray O(h2
j) provided that theelement quadrature formulae are exat for linear polynomials.Proof. The triangulation onsists of O(h−2

j ) elements of volume O(h2
j ). Consequently,sine the element quadrature formulae are exat of order two, we get an error of quadrature

O(h4
j) per element. Thus, denoting the result of the omposite quadrature formula by

Q(Ω̃), we onlude(2.19) |I(Ω̃) − Q(Ω̃)| = O(h2
j).We shall next estimate the error indued by the domain approximation. Sine Γ̃ is apieewise linear approximation of step width ∼ hj to the boundary urve Γ, the area

V (Qj,k ∩ Ω) of eah square Qj,k for whih Qj,k ∩ Γ̃ 6= ∅ is approximated of order
|V (Qj,k ∩ Ω̃) − V (Qj,k ∩ Ω)| = O(h3

j ).Taking into aount that there are at most O(h−1
j ) squares that interset the boundaryurve, we onlude(2.20) |I(Ω) − I(Ω̃)| = O(h2

j ).Combining both estimates yields the assertion due to
|I(Ω) − Q(Ω)| ≤ |I(Ω) − I(Ω̃)| + |I(Ω̃) − Q(Ω̃)|.

�Remark 2.3. In three dimensions one introdues a triangulation of the free surfae andheneforth a tretrahedral mesh of the domain. As one readily veri�es the same errorestimate holds while the omplexity of the algorithm is O(h−3
j ) instead O(h−2

j ).3. Numerial Experiments3.1. Domain quadrature. We shall �rst demonstrate the domain quadrature algorithm,introdued in Subsetion 2.4. The error estimate derived in Theorem 2.2 is sharp as thefollowing example shows.For di�erent disretization levels j we approximate the volume of the domain that under-lies the Figure 2.1. By virtue of the Gauss theorem, we an ompare these values withthe result of the following boundary integral
V (Ω) =

1

2

∫

Ω

÷x dx =
1

2

∫

Γ

〈x,n〉dσ,omputed with high auray. Notie that, even though f ≡ 1 in (2.18), this examplevalidates the essential part of the error sine it is related to the approximation error of10
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Figure 3.2. Errors of quadrature.the domain of integration (2.20). Whereas, the quadrature error on the perturbed domaindepends only on the hosen quadrature rules and the smoothness of the integrand.We plotted the errors of quadrature in semi-logarithmial sale in Figure 3.2. One observesin fat the predited quadrati order of onvergene in hj , as indiated by dahed lines.3.2. Solving the state equation. We next investigate the asymptoti behaviour ofour �titious domain solver. We use lowest order ansatz funtions, that are quadratismoothest splines (m = 3), and disontinuous pieewise bilinear test funtions (n = 2).To measure the rates of onvergene of the smoothness preserving �titious domainmethod we will fous on a boundary value problem where the solution is known ana-lytially. To that end, we onsider the following boundary value problem
−÷ (A∇u) = cos(x)

(
4 + sin2(y)

)
− 6y

(
2 + sin(x)

) in Ω,

u = cos(x) + y3 on Γ,where
A(x, y) =

[
4 − sin2(y) −1

−1 2 + sin(x)

]
.We hoose the same domain Ω as underlying in Figure 2.1. One readily veri�es that thesolution is given by the funtion u = cos(x) + y3.We ompute the numerial solution uj for di�erent disretization levels j by the smooth-ness preserving �titious domain method proposed in the previous setion. Sine m = 3we expet in H1(Ω) an at most quadrati rate of onvergene. In Table 3.1 we tabulate11



j ‖u − uj‖L2(Ω) ‖∇(u − uj)‖L2(Ω) pu-time4 3.1e-5 1.5e-3 0.3 se.5 4.6e-6 (6.7) 3.9e-4 (3.9) 1 se.6 8.5e-7 (5.4) 9.8e-5 (4.0) 6 se.7 1.1e-7 (7.8) 2.4e-5 (4.0) 30 se.8 1.6e-8 (6.6) 6.1e-6 (4.0) 128 se.9 3.8e-9 (4.4) 1.5e-6 (4.0) 10 min.10 8.5e-10 (4.5) 3.8e-7 (4.0) 44 minTable 3.1. Errors of approximation and over-all omputing times.
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Figure 3.3. Rates of onvergene.the absolute errors with respet to the L2-norm and H1-seminorm on Ω, respetively. Thebraketed values indiate the ratio of the previous error and the present error. It is about4 whih implies quadrati orders of onvergene. We illustrated the di�erent error urvesalso in Figure 3.3. As indiated by the dashed lines one observes in fat quadrati ratesof onvergene for both norms. Aording to Theorem 2.1 we an therefore dedue thatboth, the shape funtional and the shape gradient, will be approximated with quadratiorders of onvergene.The last olumn of Table 3.1 refers to the over-all omputing times to produe the ap-proximate solution uj. The present implementation is still on experimental level, beinga mixture of MATLAB and C-Codes. Nevertheless, the method is feasible and highlyaurate. 12



−0.2 −0.1 0 0.1 0.2 0.3
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Ω*

Figure 3.4. The maximizing domain.3.3. Appliation to shape optimization problems. We shall �nally solve a shapeoptimization problem. We hoose the di�usion matrix
A(x, y) =

[
4 + 2.75 sin(10x) −1

−1 2 + sin(3x)

]and the inhomogenity
f(x, y) = 2(1 − 3x2)(1 − 3y2)as the data of the state equation (1.2) Moreover, we onsider the volume onstraint

V (Ω)
!
= V0 := 0.2.The numerial setting is as follows. To approximate the boundary urve we hoose N = 16whih yields 66 shape design parameters (f. Subsetion 1.4). Moreover, we perform 5inner and 20 outer iterations of the augmented Lagrangian algorithm (f. Subsetion 1.3),where α := 100 does a good job (see (1.6)). The regularization parameter is hosen as

β(n) = 2−n/100 where n denotes the number of the outer iteration. The disretizationlevel of the �titious domain method is set to j := 7.The domain omputed by our algorithm is shown in Figure 3.3. The algorithm onsumesabout 1 hour pu-time to derive this solution. To be on safe ground we validated theresult by omparing it with the solution of a shape optimization algorithm based onstarlike domains and �nite elements (on starlike domains one an de�ne the triangulationvia parametrization). The maximizing domains produed by the di�erent algorithmsoinide. 13
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