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Abstract

In this paper we consider the first order fractional splitting method to
solve decomposed complex equations with multi-physical processes for appli-
cations in porous media and phase-transitions. The first order fractional split-
ting method is also considered as basic solution for the overlapping Schwarz-
Waveform-Relaxation method for an overlapped subdomains. The accuracy
and the efficiency of the methods are investigated through the solution of
different model problems of scalar, coupling and decoupling systems of con-
vection reaction diffusion equation.

1 Introduction

We motivate our studying on complex models with coupled processes, e.g. transport
and reaction-equations with nonlinear parameters. The ideas for these models came
from the background of the simulation of heat transport in engineering apparatus,
e.g. crystal-growth, cf. [12], or the simulation of chemical reaction and transport,
e.g. in bio-remediation or waste disposals, cf. [10]. In the past many software-tools
have been developed for multi-dimensional and multi-physical problems, e.g. multi-
dimensional transport-reaction based on different PDE and ODE solvers. In the
future a coupling between various software-tools with different solver methods will
be of interest and could be done with the fractional splitting method.

We consider the overlapped domain decomposition method, such as overlapping
Schwarz wave form relaxation, cf. [9] and [13], using fractional splitting as the basic
solver over the overlapped subdomains.

The outline of the paper is as follows. For our mathematical model we describe the
convection-diffusion-reaction equation in section 2. The Fractional-Splitting method
is introduced in section 3. For the overlapping Schwarz-Waveform-Relaxation method
we derive the error-analysis for the scalar and systems of equations (coupled or de-
coupled systems) and presented the results in section 4. In section 5 we present the
numerical results from the solution to selective model problems. We end the article
in section 6 with conclusion and comments.

2 Mathematical Model

The motivation for the study presented below is coming from a computational sim-
ulation of heat-transfer [12] and convection-diffusion-reaction-equations [10].
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The mathematical equations are given by

Ot Ru+ V- (vu— DVu) = f(z,t,u(z,t)), in Q x (0,7, (2.1)
u(z,0) = uo(z) , (Initial-Condition) (2.2)
u(z,t) = ui(z,t) , on 0Q x (0,T), (Dirichlet-Boundary-Condition) , (2.3)

The unknown u = u(z,t) is considered in  x (0,7) C IR? x IR, the space-dimension
is given by d . The parameter R € IR™ is a constant and named as specific heat or
retardation factor. The parameters ug(z),ui(z,t) € IRT are functions and used as
initial- and boundary-parameter respectively. D is the thermal conductivity tensor
or Scheidegger diffusion-dispersion tensor and v is the velocity. Further f(z,t,u) is
a possible nonlinear function, and one could choose it for the following applications

f(z,t,u) = uP ,with p > 0, chemical-reaction, (2.4)

flz,t,u) = 1L , bio-remediation , (2.5)
—u

flz,t,u) = f(a:,t) , heat-induction . (2.6)

The aim of this paper is to present a new method based on a mixed discretiza-
tion method with Fractional-Splitting and Domain decomposition methods for an
effective solving of strong coupled parabolic differential equations.

In the next section we discuss the fractional splitting-methods for solving our equa-
tions.

3 Fractional-Splitting Methods

3.1 Splitting methods of first order for linear equations

First we describe the simplest operator-splitting, which is called sequential operator
splitting for the following system of ordinary linear differential equations:

Owu(t) = Au(t) + Bu(t), in Q x [t", "], (3.1)

where the initial-conditions are u™ = u(t"). The operators A and B are spatially
discretised operators, e.g. they correspond to the discretised in space convection and
diffusion operators (matrices). Hence, they can be considered as bounded operators.

The sequential operator-splitting method is introduced as a method which solve the
two sub-problems sequentially, where the different sub-problems are connected via
the initial conditions. This means that one replaces the original problem (3.1) with
the sub-problems

‘9“at(t) _ Au(t), withut (") = u” (3.2)
auat(t) _ B’U,**(t) 7 Wlth ’U,**(tn) — u*(tn—l—l) 7



where the splitting time-step is defined as 7,, = t"** — ¢". The approximated split
solution is defined as u™t! = u**(t"*1).

Clearly, the change of the original problems with the sub-problems usually results
some error, called splitting error. Obviously, the splitting error of the sequential
operator splitting method can be derived as follows (cf. e.g. [10])

pn = (exp(ra(A+ B)) — exp(rB) exp(r A) u(")

- %TH[A, Bl u(t") + O(7?) . (3.3)

where [A, B] := AB— B A is the commutator of A and B. Consequently, the splitting
error is O(7,) when the operators A and B do not commute, otherwise the method
is exact. Hence, by definition, the sequential operator splitting is called first order
splitting method .

Now we introduce the domain-decomposition methods as next idea for splitting
methods to decompose complex domains and solve them effectively in an adaptive
method.

4 Overlapping Schwarz wave form relaxation for
the solution to convection-diffusion-reaction equa-
tion

The first known method for solving partial differential equation over overlapped
domains is the Schwarz method due to [23] in 1869. In the last years massive
parallel computers are used for simulating complex problems, therefore the method
has regained its popularity, because it can be implemented as a parallel method.

Further techniques have been developed for the general cases when the domains are
overlapped and non overlapped. For each class of methods there are some interesting
features and both share same concepts which is how to define the interface boundary
conditions over the overlapped or along the non overlapped subdomains. The general
solution methods over the whole subdomains together with the interface boundary
conditions estimations are either iterative or non iterative methods.

For the non overlapping subdomains the values at the interfaces are predicted by
using an explicit scheme and the problem is solved over each subdomain indepen-
dently. This type of method is of non iterative type but it has a drawback regarding
the stability condition for the interface prediction by the explicit method and the
solution by the implicit scheme or any other unconditional stable finite difference
scheme [24].

For the overlapping subdomains the determination of the interface boundary con-
dition is defined by using predictor corrector type of method. The predictor will
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provide an estimation of the boundary condition while the correction is performed
from the updated solution over the subdomains. These types of the algorithms are
iterative types with the advantage of stabilising the iterative values at the interface
through the overlapping. The overlapping is used as a relaxation-method of the
solution in the interface region.

In this work we will consider the overlapping type of domain decomposition method
for solving the studied models of constant coefficients, decoupled and coupled sys-
tems solved by using the first order operator splitting algorithm with a backward
Euler difference scheme. The most recent method in this field is the overlapping
Schwarz waveform relaxation scheme, see [9] and [13].

Overlapping Schwarz waveform relaxation is the name for a combination of two
standard algorithms, the Schwarz alternating method and the wave form relaxation
algorithm to solve evolution problems in parallel. The method is defined by parti-
tioning the spatial domain into overlapping sub-domains, as in the classical Schwarz
method. However on sub-domains, time dependent problems are solved in the iter-
ation and thus the algorithm is also of waveform relaxation type. Further more, the
problem is solved using the operator splitting of first order over each sub-domain.
The overlapping Schwarz waveform relaxation are introduced in [13] and indepen-
dently in [9] as a solver method of evolution problems in a parallel environment
with slow communication links. The idea is to solve over several time steps be-
fore communicating information to the neighboring sub-domains and updating the
calculated interface boundary conditions for the overlapped domains.

Two forms of convergence behavior have been observed for the convergence of the
overlapping Schwarz wave form relaxation method. The convergence behavior states
linear convergence on bounded time domain and super linear convergence over short
time domain [9].

This algorithm stands in contrast to the classical approach in domain decomposition
for evolution problems, where time is first discretized uniformly using an implicit
discretization and then at each time step a problem in space only is solved using
domain decomposition, see for example [18] and [2, 3]. Further more, in this work
the operator splitting method will be considered by using Crank-Nicolson (CN)
or an implicit Euler-method for the time-discretisation. The main advantage in
considering the overlapping Schwarz wave form relaxation method is the flexibility
that one can solve over each sub-domain with different time steps and different
spatial steps in the whole time-interval. In this section we will consider the Schwarz
wave form relaxation to solve scalar, and systems of convection-reaction-diffusion
equations. For the systems of convection-reaction-diffusion equations we study the
weak coupled case, i.e. two equations coupled by the reaction-terms.

In this work the studied model problems are defined over unbounded time interval,
or long time interval. We will show how the convergence of the iterated solutions
are of linear convergence behavior.



4.1 Overlapping Schwarz wave form relaxation for the scalar
convection-diffusion-reaction equation

We consider the convection-diffusion-reaction equation, given by
Rus = Dugy — vug, — Au, (4.1)

defined on the domain @ = [0, L] for T = [to,tenda), Where L, tena € RT, and
R,D,v, ) € Rt and bounded, with the following initial and boundary conditions

u(0,t) = fi(t), w(L,t) = fa(t), u(z,to) = uo(z) .

We have the following theorem, see [5] or [19], that shows the existency, uniqueness
and regularity of the solution to the concerned boundary value problem for (4.1).

Theorem 4.1. For any Ly, Ly € [0, L] with L; < Ly and any continuous functions
fi, f2 : [to,tena] = R and any uo : [L1, Ly] — IR which satisfy the compatibility
conditions uo(L1) = fi(to) and uo(La) = fa(to) the boundary value-problem (4.1)
and u(Lq1,t) = fi(t), u(La,t) = fa(t), u(z,to) = uo(z) has a unique solution. The
solution u lies in C**([Ly, L3, [to, tend)), that means u(-,t) € C? and u(z,-) € C*.

To solve the model problem using overlapping Schwarz wave form relaxation method,
we subdivide the domain Q in two overlapping sub-domains ; = [0, L,] and Q, =
[L1, L], where Ly < Ly and Q4 [Q = [L1, L»] is the overlapping region for £; and
Q,.

To start the wave form relaxation algorithm we firstly consider the solution to the
model problem (4.1) over ; and Q, as follows

Ruv, = Dvgy — v, — Av over 1, t € [to, tend)

’U(O,t) - fl(t) ) te [t07tend) (4 2)
’U(Lg,t) = ’LU(Lg,t) ; t € [t07tend) )
v(z,t0) =uo(z), =€,

Rw, = Dwgy — vw, — Aw over y, t € [to, tend)

’LU(Ll,t) = ’U(Ll,t) ; t € [t07tend) (43)

w(L,t) = fa(t), t€ [to,tena)

w(z,to) =uo(z), z € o,
where v(z,t) = u(z,t)|q, and w(z,t) = u(z,t)|q,. For the uniqueness and existence
we apply theorem 4.1. We fulfill the criterias by the possitivity and boundedness of
the parameters R, D, v and A and also of the intial- and boundary-conditions.

Therefore we will obtain the overlapping Schwarz wave form relaxation from solving
(4.2) and (4.3) over the whole time domain for each iteration, and then updating
the interior boundary conditions v(Ls,t) and w(Ly,t). The algorithm is given by

RuFt? = DvEHl — puFtl o+l over Q) )t € [to, tend)
’Uk+1(0,t) = fl(t) b) t E [t07tend)
k
kb1 | w*(La,t) fork >0
v (Lg,t) = { ’u,o(Lg) fork—=10 ° t € [t07tend)

,Uk-l_l(m)tO) = uO(m)7 T C Ql)

(4.4)
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Ruwkt? = Dwktl — vkt — Awktl over Q, , t € [to, tend)

k
kil [ v®(Ly,t) fork >0
wnt) = { wo(Ly) fork—0 @ b€ tortend) (4.5)
wk+1(L7t) = f2(t) ) t € [t07tend)
wktl(z 1) = wuo(z), z € Q.

For the uniqueness and existence of the partial equations (4.4) and (4.5) we apply
theorem 4.1.

We are interested in estimating the decay of the error of the solution over the
overlapping subdomains by the overlapping Schwarz wave form relaxation method.
Let us assume e(z,t) = u(z,t) — v(z,t) and d(z,t) = u(z,t) — w(z,t) is the error of
(4.4) over Q and (4.5) over Q, respectively. The corresponding differential equations
satisfied by e(z,t) and d(z,t) are given by

Reft! = Dektl — pektl — Neb 1 over ), t € [to, tend)

e"™1(0,¢t) =0, tE€ [to,tena) L6
e"(La,t) = d*(La,t), tE€ [to,tena) (4.6)
e*tl(z,t) =0 z €y,

RdF+? = DdFl — pdbtt — AdF+! over Oy, t € [to, tend)

d*T(Ly,t) = €F(L1,t), tE [to,tenq) (4.7)

dk+1(L7t) =0 , 1€ [toatend)
dk+1($,t0) =0 , X € Qg.

For Q C Q and L € ) we define for bounded functions k : ) x [to,tena) — R the
following supremums norm

1A(L, oo == sup [A(L,t)].

te [tO 7tend)

For the convergence and error bound of e¥*! and d**! are presented by the following
theorem

Theorem 4.2. Let {e**1} and {d**'} be the sequences of errors from the solution
to the subproblems (4.2) and (4.3) by Schwarz wave form relazation over Q; and
Q,, respectively, then

€542 (,8)| < ylle* (L1, oo , V2 € U,

and

|d**2 (2, )| < y]|d*(La, )l|oo » Yo € Qs ,
for all t € [to,tena), where

_ sinh(BL;) sinh(B(L — Ly) th = V2 +4D)
77 Snh(BLy)sinh(B(L — Ly)) T P T T 2D
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It holds for all (z,t) € (1 X [to, tend))

€27 (@, 8)] < Ymaxalle' (L1 oo

where

— maXx EXplLT — Slnh(ﬁm) Sinh(B(L_Lz))>
o = g (exple — 1) S ST

It holds for all (z,t) € (2 X [to, tend))

@2 (2, 8)| < Vmaxlld (L2, )lloo

where

B sinh(BL;) sinh(B(Ly — L))
Tmax2 = TaX (eXP(”” L) inh(a) sinh(B(L; — L))) '

The errors € and d° are bounded as :

1€°(L1, oo < epax {max{|fi(t)], [f2(2)]; [uo(L1)[}}

0stend

and

1d°(L2, oo < max Jmax{lfi(6)], [f2(2)]; [uo(L2)[}}

0> end

Proof. To estimate the error e¥*! and d**!, consider the following differential equa-

tions defining é**! and dr+?
ekt = Dektl — ekl _ Nl over ), t € [to, tend) ,
e*t1(0,¢) =0, t€ [to,tena), (4.8)
€k+1(L2,t) = ||dk(_[/27 )||oo ; t - [t07tend) ; ’
ék+1(az,to) — ele— LZ)asT;ILhﬂﬂIZ ||dk(L2, )||oo oz e,

and
Jf“ = Daz’;‘z"l — ch’;"'l — A"+ over Qs, tE [to,tend),
dk+1(L17t) = ||ek(L17t)||oo , 1€ [toatend) ) (4 9)

d*Y(L,t) =0, t€ [to,tend),
dk+1(a},to) = e(z LI)Q%H k(L17 Moo, € Qa,

_ v
where a = Yok

The solution to (4.8) and (4.9) is the steady state solution given by

il . sinh(Bz) |,
e (g, 1) = ele—lela 220 .
- ( 7t) s1nh(ﬁL )||d (L27 )||00 )
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and

5 sinh
#41(z,1) = dlo-te SN eK L)

respectively.

For the error between the steady state and time-dependent solution that is defined
by E(z,t) = ekt — eb+1 it holds that

RE,— DE,, + vE, + AE >0, over Q;, t€ [to,tend) ,
E(0,1) >0, tE€lto,tend),

E(L,,t) >0, tE€lto,tend),

E(z,t0) >0, z€Q.

(4.10)

Hence E(z,t) satisfies the positivity lemma by Pao (or the maximum principle
theorem), see [19], therefore

E(z,t) >0, (4.11)
le. h(g2)
By 4)| < et (g) = ele-ta)a SBROT) e p ) 4.12
(o, t)] < 60e) = e BRI ks Dl (aa)
for all (z,t) € (91 X [to,tend)) and similarly one concludes that
sinh B(z — )

(@ (=, 8)| < & (o) = o) 1€ (L1, oo

sinh (L, — L)
for all (z,t) € (92 X [to, tend))-
Therefore one gets the estimation with the supremums-norm :

We can conclude
€4 (2, 1) < ||e¥ (2, ) |oo

for all (z,t) € (01 X [to,tend)), and similar estimates for d**! can also be derived.

Then we conclude

1632, Mo < el 2 1, ) (4.13)
and
273, e < 2 SR I Ly e (414
Considering (4.14), evaluating d*(z,t) for z = L, i.e.
(22, o < P PSB85

and substituting in (4.13), we conclude that
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(z—Ls)a sinh(Bz) (Ly—Ly )o SIND B(L,— L)

k+1 )| < k-1 L oo
|€ (m7 )|—e Slnh(ﬁLz)e SlnhB(Ll—L)He ( 1, )|| ?
and
elz—L2)a sinh(Bz) < elli—Lz)a sinh(BL;) ,
consist for all (z,t) € (1, [to, tend))-
One obtains
_ 1 h(ﬁLl) _ SiHhB(Lg — L) _
k17 1] < oD Lp)o 811 (La—Ln)a k=10
|€ ( 1, )|_€ Sinh(ﬁLg)e SthB(Ll—L)He ( 1, )||007
for all (z,t) € (Q4, [to, tend))-
And one gets the result
inh(BL,) sinh B(Ly — L)
B2 Y| < BBV (L1, ) oo -
||e ( 1, )||oo_Slnh(ﬁLg)Slnhﬁ(Ll—L)He ( 1, )||°°

Similarly for d**!(z,t) one concludes that

sinh(BLy) sinh B(L,y —

L M e <
] (L1, )lleo < sinh(BLs) sinh B(L, —

L) s
Py 1L, e

O

Theorem 4.2 shows that the convergence of the overlapping Schwarz method depends
sinh(BL1) sinh 8(L—Ly)
‘sinh(ﬂLg) sinh8(L—L,) . ) . )
relaxation and the error will vanish for Ly, ~ L. The main challange will be a small

overlapp with adequate errors based on the amount of iterations.

ony = . Due to a large overlapping of the domains, we will have a

4.2 Overlapping Schwarz wave form relaxation for a weakly
coupled system of convection-diffusion-reaction equa-
tion

In the following part we are going to present the convergence and the error bound of
the overlapping Schwarz wave form relaxation for the solution to the coupled system
of convection-diffusion-reaction defined by two functions u; and uy;. The coupling
criteria in this case of study is imposed within the source term of the second solution
component. The considered system with the solution u; and u, is given by

Ryuq s = DUt gy — V1U1z — Mug over Q@ ={0 <z < L}, tE [to,tend) ,
u1(0,t) = f1.1(¢), t € [to,tend)

u1(La,t) = f12(t), t € [to,tend) ,

ui(z,t0) =uo(z),

(4.16)



for u, and for u, is given by

Ryug = DUy zy — VolUn z — AaUs + Aqus over £, t € [to,tend) ,

ug(L1,t) = f21(t), t € [to,tend) , (4.17)
u2(L7t) - f2,2(t)7 te [t07tend) 3 )
uz(z,t0) = uo(z) .

For the uniqueness and existence of the equations (4.16) and (4.17) we apply theorem
4.1.

In (4.17) the coupling appears in the source term and is defined by the parameter
A1 with the first component u;. The strength or the bound of the coupling and the
contribution is related to the value of the scalar defined by ;. The coupled case
(4.17) is reduced to the case of two decoupled equations by assuming A; = 0 in

(4.17).

The overlapping Schwarz wave form relaxation for (4.16) over €5 and 2, is given by

Rwﬁ'l = Dlvf;i — Vlvfj,;l — Alvf“ over y, t € [to,tend) ,
vf—l—l(O)t) - fl,l(t)7 te [t07tend) 3
wh(Ly,t) fork > 1 4.18
v { ull((L; 0; fork =1 b€ lortend), )
vf"’l(az,to) = ug(z),z € Q1 ,
R1w]fjt'1 = Dlw’f;}ﬂ — Vlw’fj,;l - Alw’f"'l over y, t € [to,tend) ,
k
kil [ wi(Ly,t) fork>1
by = { w(L1,0) fork =1 ¢ €llortend), (4.19)
wllc-l—l(L)t) - fl,2(t)7 t € [t07tend) )
w’f+1(m,to) = ug(z),z € Qy .

For the system defined by (4.17) one denote the Schwarz wave form relaxation as

k41 k+1 E+1 k+1 k1
Ryvy} = Dyvy iy — 1auy st — vyt + Ao over Qy, t € [to, tend)

2,xx

v§+1(07t) = f2,1(t)7 te [t07tend) 3
k

U§+1(L27t) = w2(L27t) fOI' k > 1

us(La,0) fork=1" t € [to, tena) ,

’Ug-l_l(m)tO) = uO(m)7 S Q1 ’ ( )
4.20
k+1 _ k+1 k+1 k+1 k41
Rywy = Dywy by — tawy . — Agwy 4 Aqwy" over €y, T € [to,tend)
k
k1 [ vy(Ly,t) fork>1
Wy (Llat) - { u2(L1,0) fork =1 ° te [toatend) )
wllc—l—l(L)t) = f2,2(t)7 te [t07tend) )
wit (z,t0) = uo(z), w€ Q.
(4.21)
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For the uniqueness and existence of the equations (4.18), (4.19), (4.20) and (4.21)
we apply theorem 4.1.

The convergence and the error bound for the solution to (4.18-4.19) and (4.20- 4.21)
is given by the following theorem.

Theorem 4.3. Let e¥*! and d** (i = 1,2) be the error from the solution to the
subproblems (4.18-4.19) and (4.20- 4.21) by Schwarz wave form relazation over §;
and Q,, respectively. Then the error bounds of (4.18)-(4.19) defined by e; and d;

over §}; and €y are given by
1€5 (L1, oo < mllef(La, -)lloo, (4.22)

and

14372(L1, leo < mlldF (L1, oo, (4.23)
respectively, and the error bound of (4.20- 4.21) defined by e; and dy over §; and

Q, are given by

1€572(L, Moo < [le5(La, Mloor2 + 7235 T [1 + el eflbmtu)]

A Li—Ly)sinh B L L,—L L—Ly)sinhBsL
‘|‘ﬁ\I} |:ea2( 1 Z)Z;EhﬂzL; — e22(ln—L) gBa( Z)Z;EhﬂzL;] + (4‘24)

My | ga2ln sinh By (L1 —La) e2(L1—Lo) sinh 8o Iy 1
Ag sinh IBZLZ sinh IBZLZ ?

and

14572 (Lo, Moo < Md5 (Lo, )llooye + 7232 [1 + em2BrDlefollmtu)]

AL as(Ly—Lp)sinh 8oLy ay(Li—L) B2(L—Ly)sinh By Ly
+A2\I’ [e sinhBs Ly  © € sinh 85 Ls

A_l al, Sinhﬂ? (Ll _LZ) _ pOn (L1 —Lg) SinhﬂZLl
AZ\IJ [e sinh 35 Ly € sinhfBaL, 1,

respectively, where

o sinh B, Ly sinh B;( Ly — L)
%= Sinh BiL, sinh By(L; — L)’

fori1=1,2, and ¥ = maxq {e;, ez} .

Proof. Since the system (4.16) does not depend on u,, we can estimate the equations
(4.22) and (4.23) by using the Theorem 4.2.

Let et (z,1) := uy(z,t) — viti(xz,t) and dE™ (1) 1= ua(z,t) — wE™ (x,t) be the
error of (4.20) and (4.21) over §; and , respectively. Then the corresponding
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differential equations are satisfied by es(z,t) and da(z,t) :

Rge’;jgl = Dzelgj,;i — 1/2612“,";1 — Dot 4 e over Qy, t € [to,tend)
ebt1(0,¢) =0, t € [to,tend)

5 (Loyt) = db(La,t), ¢ € [to, tenc)
eitl(z,ty) =0, z€Qy,

(4.26)
Rydk? = Dydith — vadsth — Nads™ 4+ Mdit over Qa, ¢ € [to, tend)
dlzc-l-l(Ll’t) = elzc(Lht), t e [tO;tend) s
dllc-l—l(L:t) = 07 te [t07tend) )
dllc—l—l(ill,to) = 0, T € Qg.
(4.27)
Furthermore we consider the following differential equations defined by ekl and
d**! given by
}%él’;;l = Dyéyts — et — Myt + MW over Oy, t € [to, tend)
Skt
€y (Oat) = 07 te [t07tend) ’
. 4.28
A (Lo, ) = [|d5(La, Ollnner € [for ens) (4.28)
(2, t)) = A(z), o€,
where A(z) is given by
A(@) = |ld5(La, .)[looe=el=2) SmplEec)
A1 asz sinh(By (z—Lo ag(z—Ly) sinh Bz
+E\I} [e sir(lh(,(BZLg) D _ geala-t )sinhﬂZLZ + 1] )
and
delzctl = Dzdlzctlz - Vzaz]zc,tl —Aeds™ + M over Qa, t € [to, tend) ,
BV (L11) = (L, )llageer ¢ € [fortend) (429)
dlzc-l—l(L:t) = 07 te [t07tend) )
dit(z,t0) = B(z), z€Q,,
where inh(Ba(e—L))
B(:II) = ||ek(L17 ')||°°ea2(z_L1)s?;ril(ﬂ;(li—L))
Al sinh ,52 L—z as(z—Ln agle— 2 —4in
SR e — e B Eom] - (430)

_Myg [1 _ eGZ(E—L)eﬂZ(L—E)] ]

Then the solution to (4.28) and (4.29) is the steady state solution given by

é]2c+1(m7t) = A(ZII), V:II € Ql; t € [t07tend) )
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and
dl2c+1(m7t) = B(ZII), V:II € Q27 t € [t07tend) )

respectively.

By defining the function E(z,t) = é¥*! — ¢**! as in the proof of theorem 4.2, and
by the maximum principle theorem we conclude that

€57 (2, 1)| < &+ (2, ¢)
for all (z,t) and similarly

&5 (,0)| < d5* (a2, 2).

Then
157 (@, Moo < [|d5(La, .)||ooe (=52 E1pE22)
Py et e g ), Y
and
157 (2, 8)l[oo < [€5(La, .)||ooem2(=~1) StiEale Ll
3 @ o) [eealemln) — geale=Dlgh(l-)] — (4.32)

i—;\ll [1 — eaZ(z-L)eﬂZ(L_"”)] .

By evaluating (4.32) for d&(z,t) at £ = L, substituting the results in (4.31) and
afterwards evaluating the resulting relation at « = L; we observe that (4.24) holds
in general.

Similarly (4.25) follows from evaluating e (z,t) at = L, substituting in (4.32)
and evaluating afterwards the resulting relation at z = L,. O

For the coupled system we observed the Theorem 4.3 and assume that the error

depends on two main factors, the convergence parameter 7; and the coupling pa-

rameter )\, defining the system coupling (4.16), (4.17). Its obvious that for the

coupling parameter A\; = 0 one retain the decoupled system and faster convergence
AL

rate is achieved if we have a small ratio .

5 Numerical Results

In this section we will present the numerical results from the solution to several
model problems using the presented methods. The problems are discretized using

13



second order approximation with respect to the spatial variable using regular mesh
spacing h(= L/N) and backward approximation with respect to the time using At
time stepping. The first order operator splitting method (FOP) is considered to
be the basic solution algorithm for the overlapping Schwarz waveform relaxation

method (FOPSWR).

5.1 First example : Convection-diffusion-reaction equation

We consider the one-dimensional convection-diffusion-reaction equation given by

RO + v0,u — 0, D0yu = —Au, on Q X [to, tend) (5.1)
’U,(fll,to) — uexact(mytO) )
(0,t) = Uexact(0,1) , U(L,t) = Uexact(L, t),

defined over Q X [to,tena) With © = [0, L], and g = 100, tenqa = 10° and L = 150.
Further we have A = 107°, v = 0.001, D = 0.0001 and R = 1.0.

The analytical solution of the equation (5.1) considered on IR X (0, tend), with van-
ishing Dirichlet-boundary conditions and also using a d-function as initial value, can
be derived by Laplace-Transformation, see [15], and is given by

U (z — vt)?

0
exp(——~
2v/ Dt p( 4Dt

with @ = 1, the restiction of Uexact t0 X (0, tend) is a solution to (5.1)-(5.3).

Jexp(—At) (5.4)

uexact(my t) —

We considered the backward Euler discretization for both of the splitted operators,
i.e. the convection and the diffusion reaction operator, to simulate the solution over
the time interval [100, 10].

The model problem (5.1) is solved using first order operator splitting (FOP), and
also the operator splitting with overlapping Schwarz wave form relaxation method

(FOPSWR).

We compare the accuracy of the solution over the entire spatial domain with different
h values, and different time steps At, using FOP-method, and FOPSWR-method
over two subdomains with different size of overlapping. The error of solution are
given in Table 1, and Table 2, respectively. The FOPSWR-method is considered over
two overlapping subdomains of different overlapping size Ly — L, to conclude on the
accuracy of the algorithm with the operator splitting. The considered subdomains

were (; = [0,60],and 5 = [30,150] and Q; = [0,100],and Q, = [30, 150]
The results derived for the FOP-method are presented the in Figure 1.

In the numerical computations the time-steps and space-steps are systematically
refined in order to visualize the accuracy and error reduction through the simulation
over the time interval for refined time and space steps. From Table 1 one observes
that by the FOP-method the error reduced as second order with respect to space

14



Table 1: The Lg o-error in time and space for the convection-diffusion-reaction-

time €rry, €rry, €rry,
Aty =20 |0.001195 | 2.86514e-4 | 1.2868e-4
Atg/2 =10 | 0.00113 | 2.3942e-4 | 8.6641e-5
Atg/4 =15 | 0.001108 | 2.15813e-4 | 6.55262e-5
ho =1 h="ho/2 | h=ho/4

equation using FOP-method.

Figure 1: The results for the FOP-method.

time erry, erry, erry, erry, erry, erry,
Aty =20 || 1.196e-3 | 1.195¢-3 || 2.871e-4 | 2.865e-4 || 1.290e-4 | 1.286e-4
A% =10 [ 1.138e-3 | 1.137e-3 || 2.397e-4 | 2.394e-4 || 8.681e-5 | 8.681e-5
A% =5 || 1.108e-3 | 1.08e-3 || 2.159e-4 | 2.158e-4 || 6.782e-5 | 6.552¢-5
overlap. 30 | 70 30 | 70 30 | 70

size ho =1 h =ho/2 h = ho/4

Table 2: The Lgo-error in time and space for the scalar convection-diffusion-
reaction-equation using FOPSWR- method with the Schwarz waveform relaxation

algorithm for two different size of overlapping 30 and 70.

and reduced also with respect to time. For further refinement one should obtain

first order convergence results with respect to time.

For the solution by the FOPSWR-method, using the FOP-method as basic solver,

the accuracy of the solution is improved over the large size of overlapping subdo-

mains.

The results for the modified method are presented in the Figure 2.
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Figure 2: The results for the Schwarz-method with 2 domains (overlapping 30).
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Figure 3: The results for the Schwarz-method with 2 domains (overlapping 70).
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5.2 Second example System of Convection-diffusion-reaction
equation

We consider a further example of a one-dimensional convection-diffusion-reaction
equation, given as (5.1) - (5.4) with the following parameters A = 4.0 - 107°, v =
0.001, D = 0.0001, R = 1.0 and ¢, = 100.

For the initial condition we use the analytical solution given in (5.4), with 4y = 1.0
and to = 100. As boundary condition we use the Dirichlet-Boundary-condition with
the analytical solutions given in (5.4). The time-interval is [100, 10°].

The results for the classical method (operator-splitting) are given in Table 3.

time €rry, €rry, €rry,
At =20 | 2.075e-4 || 1.963e-4 | 1.799e-4
AL =10 ]|2.055e-4 | 1.948e-4 || 1.794e-4
AL =5 |2.045e-4 | 1.940e-4 || 1.792e-4

size ho=1 || h=ho/2 || h=ho/d

Table 3: Lg o-error in time and space for the convection-diffusion-reaction equation
solved by operator splitting.

In the next experiments we consider the modified method. For the overlapping
we obtain the overlap size-length of 30 and 70, i.e. Q; = {0 < z < 60} and Q, =
{30 < z < 150} while for the other case we have ; = {0 < z < 100} and Q, =
{30 < z < 150}.

The results are given in Table 4.

time erry, erry, erry, erry, erry, erry,
Aty =20 || 2.076e-4 | 2.075e-3 || 1.964e-4 | 1.963e-4 || 1.800e-4 | 1.800e-4
AL =10 || 2.056e-4 | 2.055e-4 || 1.948e-4 | 1.948e-4 || 1.795e-4 | 1.794e-4
A% =5 || 2.046e-4 | 2.046e-3 || 1.941e-4 | 1.941e-4 || 1.792e-4 | 1.792e-5
overlap. 30 | 70 30 | 70 30 | 70

size ho =1 h =ho/2 h = ho/4

Table 4: The Lgo-error in time and space for the scalar convection-diffusion-
reaction-equation using DD for two different size of overlapping 30 and 70 and
operator splitting.

We can
observe a reduction of the error for each time and space refinement for the modified

We compare the results of our computations given in Table (3) and (4).

method. Further refinement in time would obtain a first order convergence result.
Because of the decoupling, each equation could be computed separately. For the
first component one derive improved results because of the smaller reaction in the
equation.
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5.3 Third example System of Convection-diffusion-reaction
equation (coupled), solved with Operator-Splitting

We deal with the more complicate example of a one-dimensional convection-diffusion-
reaction equation.

R10yu1 + v0puy — 05 D0pur = —Ridiuyg (5.5)

Ry0iuq + v0yus — 0, DOzuy = RiAiu; — Rodsusy (5.6)
ul(fﬂ,to) = ul,exact(m,to) ,uz(fﬂ,to) = u2,exact($7t0) (5 7)
u1(0,t) = U1 exact(0,%) , u2(0,) = Uz exact(0, 1), (5.8)
u1(L,t) = U1 exact(L,t) , ua(L,t) = Uz exact(L, t), (5.9)

defined over Q X [to,tena) With © = [0, L], and g = 100, tenqa = 10° and L = 150.
Further we have A\; = 1.0 1075, A, = 4.0 107%, v = 0.001, D = 0.0001,R; = 2.0, and
Rg - 10

The analytical solution of the equation (5.5)-(5.6) considered on IR X (0, tena), with
vanishing Dirichlet-boundary conditions and also using a §-function as initial value,
can be derived by Laplace-Transformation, see [15], and is given by

2
ulo _(m—'u t/Rq) gt
ul,exact(myt) — e 1D t/R e( 1 )7

2R1\/D Wt/Rl

U20 _(e=vt/Ry)®
u’2,exact($7 t) = e 4Dt/Ry (=X t)
2 R2 D i t/Rz
Ry Ay ugo TV, —(RiM-Ryig)t

e @) (W(r)— W(n)),

2 /D (B — Ry P 2D

mo= R B3R poyeyap)

vo= Ry o — B3Rkl By 24D

W(v)= 0.5(exp(—55 )erfc( %t) + exp( 55 )erfe( z+:Dutt)) ,

defined for the initial condition with w19 = 1.0 and us = 0.0, the restiction of Uexact

to 1 x (O;tend)-

We have erfc(-) as the known error-function and we denote the following conditions

: Ry > R, and >\2>>\1.

In the next tables we compare the classical with the modified method and test the
depend on the reaction-parameters.
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time erry, err,, erry, err,, erry, err,,
Aty =20 || 4.594e-4 | 2.8e-3 3.611le-4 | 2.452e-3 || 1.036e-4 | 2.702e-3
A%O =10 || 4.506e-4 | 2.403e-3 || 3.515e-4 | 2.447e-3 || 9.528e-5 | 2.697e-3
A%’ =5 || 4.461le-4 | 2.39e-3 3.466-4 | 2.438e-3 || 9.110e-5 | 2.689%¢-3
size ho =1 h =ho/2 h = ho/4

Table 5: Lg o-error in time and space for the system of convection-diffusion-reaction-
equation using first order splitting, with A\; = 2e — 5, Xy = 4e — 5.

The results for the classical method (Operator-Splitting method) are given in Table
5.

The results for the modified method (Operator-Splitting method and Domain de-
composition method) is given in Table 6.

H time H erry, ‘ erry, H erry, ‘ erry, H erry, ‘ erry, H
Atg =20 || 4.594e-4 | 2.403e-3 || 3.611e-4 | 2.452e-3 || 1.036e-4 | 2.702e-3
A% =10 || 4.506e-4 | 2.398e-3 || 3.515e-4 | 2.447e-3 | 9.528e-5 | 2.697e-3
AL =5 [ 4.461e-4 | 2.388e-3 || 3.466e-4 | 2.438e-3 || 9.110e-5 | 2.689e-3

size ho =1 h =ho/2 h = ho/4
overlap. 70

Table 6: Lg oo-error in time and space for the system of convection-diffusion-reaction-
equation using first order splitting and Schwarz wave form relaxation method, with

)\1:26—5, )\2:46—5.

In the Figure 4 one sees the result for the system, where the solutions for different
time-steps are presented.

We modify for a second experiment the reaction-parameters to obtain the influence
between the first and the second component. In the first computation we use the
classical method and get the following results given in Table 7.

H time H erry, ‘ err,, H erry, ‘ err,, H erry, ‘ err,, H

At =20 || 3.396e-3 | 6.058e-7 || 2.673e-3 | 6.192e-7 || 7.746e-4 | 6.820e-7

A% =10 || 3.30e-3 | 6.044e-7 || 2.599¢-3 | 6.179e-7 || 7.083e-4 | 6.808e-7

Ai =5 | 3.297e-3 | 6.018e-7 || 2.562e-3 | 6.152e-7 || 6.753e-4 | 6.784e-7
size ho =2 h = ho/2 h = ho/4

Table 7: Lg oo-error in time and space for the system of convection-diffusion-reaction-
equation using first order splitting, with A\; = le — 9, Xy = 4e — 5.

In the second computation we use the modified method and get the following results
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Figure 4: The first-order results for the different time-steps and discretisations for
the first component and different time-steps.

given in Table 8.

time erry, erry, erry, erry, erry, erry,
At =20 || 3.380e-3 | 6.058e-7 || 2.673e-3 | 6.192e-7 || 7.746e-4 | 6.820e-7
AL =10 || 3.314e-3 | 6.044e-7 || 2.599e-3 | 6.179e-7 || 7.083e-4 | 6.808e-7
AL =5 |3.297e-3 | 6.018e-7 || 2.545e-3 | 6.152e-7 | 6.753e-4 | 6.784e-7

size ho =2 h = ho/2 h = ho/4
overlap. 70

Table 8: Lg oo-error in time and space for the system of convection-diffusion-reaction-
equation using first order splitting and Schwarz wave form relaxation method with

)\1:16—9, )\2:46—5.

We see in Table 7 and 8 a higher order results in space for the first component.
For the second component the influence of the first component is important and
decreasing the error of the first component, also decreases the error of the second
component. The results for the modified method are shown in the Figure 5.

In the next section we present our conclusions.

6 Conclusions and Discussions

We present the mathematical background for the coupling of simple physical and
one-dimensional software-codes. The convergence-results for simple and systems of
one-dimensional parabolic equations are derived for the Schwarz-Domain-Decomposition-
method. Numerical results for the scalar and system of parabolic equations are done
and we can see the effectivity with Domain-Decomposition and Operator-Splitting-
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Figure 5: The second-order results for the different time-steps and discretisations
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Figure 6: The results for the Schwarz-method with 2
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methods. In future we will focus on more applied problems, for example in crystal-
growth, see [1] and biological models, see [6].
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