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Abstra
tIn this paper we 
onsider the �rst order fra
tional splitting method tosolve de
omposed 
omplex equations with multi-physi
al pro
esses for appli-
ations in porous media and phase-transitions. The �rst order fra
tional split-ting method is also 
onsidered as basi
 solution for the overlapping S
hwarz-Waveform-Relaxation method for an overlapped subdomains. The a

ura
yand the eÆ
ien
y of the methods are investigated through the solution ofdi�erent model problems of s
alar, 
oupling and de
oupling systems of 
on-ve
tion rea
tion di�usion equation.1 Introdu
tionWe motivate our studying on 
omplex models with 
oupled pro
esses, e.g. transportand rea
tion-equations with nonlinear parameters. The ideas for these models 
amefrom the ba
kground of the simulation of heat transport in engineering apparatus,e.g. 
rystal-growth, 
f. [12℄, or the simulation of 
hemi
al rea
tion and transport,e.g. in bio-remediation or waste disposals, 
f. [10℄. In the past many software-toolshave been developed for multi-dimensional and multi-physi
al problems, e.g. multi-dimensional transport-rea
tion based on di�erent PDE and ODE solvers. In thefuture a 
oupling between various software-tools with di�erent solver methods willbe of interest and 
ould be done with the fra
tional splitting method.We 
onsider the overlapped domain de
omposition method, su
h as overlappingS
hwarz wave form relaxation, 
f. [9℄ and [13℄, using fra
tional splitting as the basi
solver over the overlapped subdomains.The outline of the paper is as follows. For our mathemati
al model we des
ribe the
onve
tion-di�usion-rea
tion equation in se
tion 2. The Fra
tional-Splitting methodis introdu
ed in se
tion 3. For the overlapping S
hwarz-Waveform-Relaxationmethodwe derive the error-analysis for the s
alar and systems of equations (
oupled or de-
oupled systems) and presented the results in se
tion 4. In se
tion 5 we present thenumeri
al results from the solution to sele
tive model problems. We end the arti
lein se
tion 6 with 
on
lusion and 
omments.2 Mathemati
al ModelThe motivation for the study presented below is 
oming from a 
omputational sim-ulation of heat-transfer [12℄ and 
onve
tion-di�usion-rea
tion-equations [10℄.1



The mathemati
al equations are given by�t R u+r � (vu�Dru) = f(x; t; u(x; t)) ; in 
� (0; T ) ; (2.1)u(x; 0) = u0(x) ; (Initial-Condition) ; (2.2)u(x; t) = u1(x; t) ; on �
� (0; T ) ; (Diri
hlet-Boundary-Condition) ; (2.3)The unknown u = u(x; t) is 
onsidered in 
� (0; T ) � IRd� IR, the spa
e-dimensionis given by d . The parameter R 2 IR+ is a 
onstant and named as spe
i�
 heat orretardation fa
tor. The parameters u0(x); u1(x; t) 2 IR+ are fun
tions and used asinitial- and boundary-parameter respe
tively. D is the thermal 
ondu
tivity tensoror S
heidegger di�usion-dispersion tensor and v is the velo
ity. Further f(x; t; u) isa possible nonlinear fun
tion, and one 
ould 
hoose it for the following appli
ations: f(x; t; u) = up ;with p > 0 ; 
hemi
al-rea
tion ; (2.4)f(x; t; u) = u1� u ; bio-remediation ; (2.5)f(x; t; u) = ~f(x; t) ; heat-indu
tion : (2.6)The aim of this paper is to present a new method based on a mixed dis
retiza-tion method with Fra
tional-Splitting and Domain de
omposition methods for ane�e
tive solving of strong 
oupled paraboli
 di�erential equations.In the next se
tion we dis
uss the fra
tional splitting-methods for solving our equa-tions.3 Fra
tional-Splitting Methods3.1 Splitting methods of �rst order for linear equationsFirst we des
ribe the simplest operator-splitting, whi
h is 
alled sequential operatorsplitting for the following system of ordinary linear di�erential equations:�tu(t) = A u(t) + B u(t) ; in 
� [tn; tn+1℄ ; (3.1)where the initial-
onditions are un = u(tn). The operators A and B are spatiallydis
retised operators, e.g. they 
orrespond to the dis
retised in spa
e 
onve
tion anddi�usion operators (matri
es). Hen
e, they 
an be 
onsidered as bounded operators.The sequential operator-splitting method is introdu
ed as a method whi
h solve thetwo sub-problems sequentially, where the di�erent sub-problems are 
onne
ted viathe initial 
onditions. This means that one repla
es the original problem (3.1) withthe sub-problems �u�(t)�t = Au�(t) ; with u�(tn) = un ; (3.2)�u��(t)�t = Bu��(t) ; with u��(tn) = u�(tn+1) ;2



where the splitting time-step is de�ned as �n = tn+1 � tn. The approximated splitsolution is de�ned as un+1 = u��(tn+1).Clearly, the 
hange of the original problems with the sub-problems usually resultssome error, 
alled splitting error. Obviously, the splitting error of the sequentialoperator splitting method 
an be derived as follows (
f. e.g. [10℄)�n = 1� (exp(�n(A+B))� exp(�nB) exp(�nA)) u(tn)= 12�n[A;B℄ u(tn) +O(� 2) : (3.3)where [A;B℄ := AB�BA is the 
ommutator of A and B. Consequently, the splittingerror is O(�n) when the operators A and B do not 
ommute, otherwise the methodis exa
t. Hen
e, by de�nition, the sequential operator splitting is 
alled �rst ordersplitting method .Now we introdu
e the domain-de
omposition methods as next idea for splittingmethods to de
ompose 
omplex domains and solve them e�e
tively in an adaptivemethod.4 Overlapping S
hwarz wave form relaxation forthe solution to 
onve
tion-di�usion-rea
tion equa-tionThe �rst known method for solving partial di�erential equation over overlappeddomains is the S
hwarz method due to [23℄ in 1869. In the last years massiveparallel 
omputers are used for simulating 
omplex problems, therefore the methodhas regained its popularity, be
ause it 
an be implemented as a parallel method.Further te
hniques have been developed for the general 
ases when the domains areoverlapped and non overlapped. For ea
h 
lass of methods there are some interestingfeatures and both share same 
on
epts whi
h is how to de�ne the interfa
e boundary
onditions over the overlapped or along the non overlapped subdomains. The generalsolution methods over the whole subdomains together with the interfa
e boundary
onditions estimations are either iterative or non iterative methods.For the non overlapping subdomains the values at the interfa
es are predi
ted byusing an expli
it s
heme and the problem is solved over ea
h subdomain indepen-dently. This type of method is of non iterative type but it has a drawba
k regardingthe stability 
ondition for the interfa
e predi
tion by the expli
it method and thesolution by the impli
it s
heme or any other un
onditional stable �nite di�eren
es
heme [24℄.For the overlapping subdomains the determination of the interfa
e boundary 
on-dition is de�ned by using predi
tor 
orre
tor type of method. The predi
tor will3



provide an estimation of the boundary 
ondition while the 
orre
tion is performedfrom the updated solution over the subdomains. These types of the algorithms areiterative types with the advantage of stabilising the iterative values at the interfa
ethrough the overlapping. The overlapping is used as a relaxation-method of thesolution in the interfa
e region.In this work we will 
onsider the overlapping type of domain de
omposition methodfor solving the studied models of 
onstant 
oeÆ
ients, de
oupled and 
oupled sys-tems solved by using the �rst order operator splitting algorithm with a ba
kwardEuler di�eren
e s
heme. The most re
ent method in this �eld is the overlappingS
hwarz waveform relaxation s
heme, see [9℄ and [13℄.Overlapping S
hwarz waveform relaxation is the name for a 
ombination of twostandard algorithms, the S
hwarz alternating method and the wave form relaxationalgorithm to solve evolution problems in parallel. The method is de�ned by parti-tioning the spatial domain into overlapping sub-domains, as in the 
lassi
al S
hwarzmethod. However on sub-domains, time dependent problems are solved in the iter-ation and thus the algorithm is also of waveform relaxation type. Further more, theproblem is solved using the operator splitting of �rst order over ea
h sub-domain.The overlapping S
hwarz waveform relaxation are introdu
ed in [13℄ and indepen-dently in [9℄ as a solver method of evolution problems in a parallel environmentwith slow 
ommuni
ation links. The idea is to solve over several time steps be-fore 
ommuni
ating information to the neighboring sub-domains and updating the
al
ulated interfa
e boundary 
onditions for the overlapped domains.Two forms of 
onvergen
e behavior have been observed for the 
onvergen
e of theoverlapping S
hwarz wave form relaxation method. The 
onvergen
e behavior stateslinear 
onvergen
e on bounded time domain and super linear 
onvergen
e over shorttime domain [9℄.This algorithm stands in 
ontrast to the 
lassi
al approa
h in domain de
ompositionfor evolution problems, where time is �rst dis
retized uniformly using an impli
itdis
retization and then at ea
h time step a problem in spa
e only is solved usingdomain de
omposition, see for example [18℄ and [2, 3℄. Further more, in this workthe operator splitting method will be 
onsidered by using Crank-Ni
olson (CN)or an impli
it Euler-method for the time-dis
retisation. The main advantage in
onsidering the overlapping S
hwarz wave form relaxation method is the 
exibilitythat one 
an solve over ea
h sub-domain with di�erent time steps and di�erentspatial steps in the whole time-interval. In this se
tion we will 
onsider the S
hwarzwave form relaxation to solve s
alar, and systems of 
onve
tion-rea
tion-di�usionequations. For the systems of 
onve
tion-rea
tion-di�usion equations we study theweak 
oupled 
ase, i.e. two equations 
oupled by the rea
tion-terms.In this work the studied model problems are de�ned over unbounded time interval,or long time interval. We will show how the 
onvergen
e of the iterated solutionsare of linear 
onvergen
e behavior. 4



4.1 Overlapping S
hwarz wave form relaxation for the s
alar
onve
tion-di�usion-rea
tion equationWe 
onsider the 
onve
tion-di�usion-rea
tion equation, given byRut = Duxx � �ux � �u ; (4.1)de�ned on the domain 
 = [0; L℄ for T = [t0; tend), where L; tend 2 IR+, andR;D; �; � 2 IR+ and bounded, with the following initial and boundary 
onditionsu(0; t) = f1(t); u(L; t) = f2(t); u(x; t0) = u0(x) :We have the following theorem, see [5℄ or [19℄, that shows the existen
y, uniquenessand regularity of the solution to the 
on
erned boundary value problem for (4.1).Theorem 4.1. For any L1; L2 2 [0; L℄ with L1 < L2 and any 
ontinuous fun
tionsf1, f2 : [t0; tend℄ ! IR and any u0 : [L1; L2℄ ! IR whi
h satisfy the 
ompatibility
onditions u0(L1) = f1(t0) and u0(L2) = f2(t0) the boundary value-problem (4.1)and u(L1; t) = f1(t), u(L2; t) = f2(t), u(x; t0) = u0(x) has a unique solution. Thesolution u lies in C2;1([L1; L2℄; [t0; tend℄), that means u(�; t) 2 C2 and u(x; �) 2 C1.To solve the model problem using overlapping S
hwarz wave form relaxation method,we subdivide the domain 
 in two overlapping sub-domains 
1 = [0; L2℄ and 
2 =[L1; L℄, where L1 < L2 and 
1T
2 = [L1; L2℄ is the overlapping region for 
1 and
2:To start the wave form relaxation algorithm we �rstly 
onsider the solution to themodel problem (4.1) over 
1 and 
2 as followsRvt = Dvxx � �vx � �v over 
1 ; t 2 [t0; tend)v(0; t) = f1(t) ; t 2 [t0; tend)v(L2; t) = w(L2; t) ; t 2 [t0; tend)v(x; t0) = u0(x); x 2 
1; (4.2)Rwt = Dwxx � �wx � �w over 
2 ; t 2 [t0; tend)w(L1; t) = v(L1; t) ; t 2 [t0; tend)w(L; t) = f2(t) ; t 2 [t0; tend)w(x; t0) = u0(x); x 2 
2; (4.3)where v(x; t) = u(x; t)j
1 and w(x; t) = u(x; t)j
2. For the uniqueness and existen
ewe apply theorem 4.1. We ful�ll the 
riterias by the possitivity and boundedness ofthe parameters R, D, v and � and also of the intial- and boundary-
onditions.Therefore we will obtain the overlapping S
hwarz wave form relaxation from solving(4.2) and (4.3) over the whole time domain for ea
h iteration, and then updatingthe interior boundary 
onditions v(L2; t) and w(L1; t). The algorithm is given byRvk+1t = Dvk+1xx � �vk+1x � �vk+1 over 
1 ; t 2 [t0; tend)vk+1(0; t) = f1(t) ; t 2 [t0; tend)vk+1(L2; t) = � wk(L2; t) for k > 0u0(L2) for k = 0 ; t 2 [t0; tend)vk+1(x; t0) = u0(x); x 2 
1; (4.4)5



Rwk+1t = Dwk+1xx � �wk+1x � �wk+1 over 
2 ; t 2 [t0; tend)wk+1(L1; t) = � vk(L1; t) for k > 0u0(L1) for k = 0 ; t 2 [t0; tend)wk+1(L; t) = f2(t) ; t 2 [t0; tend)wk+1(x; t0) = u0(x); x 2 
2: (4.5)For the uniqueness and existen
e of the partial equations (4.4) and (4.5) we applytheorem 4.1.We are interested in estimating the de
ay of the error of the solution over theoverlapping subdomains by the overlapping S
hwarz wave form relaxation method.Let us assume e(x; t) = u(x; t)� v(x; t) and d(x; t) = u(x; t)�w(x; t) is the error of(4.4) over 
1 and (4.5) over 
2 respe
tively. The 
orresponding di�erential equationssatis�ed by e(x; t) and d(x; t) are given byRek+1t = Dek+1xx � �ek+1x � �ek+1 over 
1 ; t 2 [t0; tend)ek+1(0; t) = 0 ; t 2 [t0; tend)ek+1(L2; t) = dk(L2; t) ; t 2 [t0; tend)ek+1(x; t0) = 0 x 2 
1; (4.6)Rdk+1t = Ddk+1xx � �dk+1x � �dk+1 over 
2 ; t 2 [t0; tend)dk+1(L1; t) = ek(L1; t) ; t 2 [t0; tend)dk+1(L; t) = 0 ; t 2 [t0; tend)dk+1(x; t0) = 0 ; x 2 
2: (4.7)For ~
 � 
 and ~L 2 ~
 we de�ne for bounded fun
tions h : ~
 � [t0; tend) ! R thefollowing supremums normjjh(~L; �)jj1 := supt2[t0;tend) jh(~L; t)j:For the 
onvergen
e and error bound of ek+1 and dk+1 are presented by the followingtheoremTheorem 4.2. Let fek+1g and fdk+1g be the sequen
es of errors from the solutionto the subproblems (4.2) and (4.3) by S
hwarz wave form relaxation over 
1 and
2, respe
tively, then jek+2(x; t)j � 
jjek(L1; :)jj1 ; 8x 2 
1 ;and jdk+2(x; t)j � 
jjdk(L2; :)jj1 ; 8x 2 
2 ;for all t 2 [t0; tend), where
 = sinh(�L1)sinh(�L2) sinh(�(L� L2)sinh(�(L� L1)) ; with � = p�2 + 4D�2D :6



It holds for all (x; t) 2 (
1 � [t0; tend))je2n+1(x; t)j � 
nmax;1jje1(L1; :)jj1 ;where 
max;1 = maxx2[0;L2℄�exp(x� L1) sinh(�x)sinh(�L2) sinh(�(L� L2))sinh(�(L� L1))� :It holds for all (x; t) 2 (
2 � [t0; tend))jd2n+1(x; t)j � 
nmax;2jjd1(L2; :)jj1 ;where 
max;2 = maxx2[L1;L℄�exp(x� L2)sinh(�L1)sinh(�x) sinh(�(L2 � L))sinh(�(L1 � L))� :The errors e0 and d0 are bounded as :jje0(L1; :)jj1 � maxt2[t0;tend℄fmaxfjf1(t)j; jf2(t)j; ju0(L1)jgg ;and jjd0(L2; :)jj1 � maxt2[t0;tend℄fmaxfjf1(t)j; jf2(t)j; ju0(L2)jgg ;Proof. To estimate the error ek+1 and dk+1; 
onsider the following di�erential equa-tions de�ning êk+1 and d̂k+1êk+1t = Dêk+1xx � �êk+1x � �êk+1 over 
1 ; t 2 [t0; tend) ;êk+1(0; t) = 0 ; t 2 [t0; tend) ;êk+1(L2; t) = jjdk(L2; :)jj1 ; t 2 [t0; tend) ;êk+1(x; t0) = e(x�L2)� sinh(�x)sinh(�L2)jjdk(L2; t)jj1 ; x 2 
1 ; (4.8)and d̂k+1t = Dd̂k+1xx � �d̂k+1x � �d̂k+1 over 
2 ; t 2 [t0; tend) ;d̂k+1(L1; t) = jjek(L1; t)jj1 ; t 2 [t0; tend) ;d̂k+1(L; t) = 0 ; t 2 [t0; tend) ;d̂k+1(x; t0) = e(x�L1)� sinh�(L�x)sinh�(L�L1) jjek(L1; t)jj1 ; x 2 
2 ; (4.9)where � = �2D :The solution to (4.8) and (4.9) is the steady state solution given byêk+1(x; t) = e(x�L2)� sinh(�x)sinh(�L2) jjdk(L2; :)jj1 ;7



and d̂k+1(x; t) = e(x�L1)� sinh �(L� x)sinh�(L� L1) jjek(L1; :)jj1 ;respe
tively.For the error between the steady state and time-dependent solution that is de�nedby E(x; t) = êk+1 � ek+1, it holds thatREt �DExx + �Ex + �E � 0 ; over 
1 ; t 2 [t0; tend) ;E(0; t) � 0 ; t 2 [t0; tend) ;E(L2; t) � 0 ; t 2 [t0; tend) ;E(x; t0) � 0 ; x 2 
1 : (4.10)Hen
e E(x; t) satis�es the positivity lemma by Pao (or the maximum prin
ipletheorem), see [19℄, therefore E(x; t) � 0 ; (4.11)i.e. jek+1(x; t)j � êk+1(x) = e(x�L2)� sinh(�x)sinh(�L2) jjdk(L2; :)jj1 ; (4.12)for all (x; t) 2 (
1 � [t0; tend)) and similarly one 
on
ludes thatjdk+1(x; t)j � d̂k+1(x) = e(x�L1)� sinh�(x� L1)sinh �(L1 � L) jjek(L1; :)jj1 ;for all (x; t) 2 (
2 � [t0; tend)):Therefore one gets the estimation with the supremums-norm :We 
an 
on
lude jek+1(x; t)j � jjek+1(x; :)jj1 ;for all (x; t) 2 (
1 � [t0; tend)), and similar estimates for dk+1 
an also be derived.Then we 
on
ludejjek+1(x; :)jj1 � e(x�L2)� sinh(�x)sinh(�L2) jjdk(L2; :)jj1 ; (4.13)and jjdk+1(x; :)jj1 � e(x�L1)� sinh�(x� L1)sinh �(L1 � L) jjek(L1; :)jj1 : (4.14)Considering (4.14), evaluating dk(x; t) for x = L2, i.e.jjdk(L2; :)jj1 � e(L2�L1)� sinh�(L2 � L)sinh�(L1 � L) jjek�1(L1; :)jj1 ; (4.15)and substituting in (4.13), we 
on
lude that8



jek+1(x; t)j � e(x�L2)� sinh(�x)sinh(�L2)e(L2�L1)� sinh �(L2 � L)sinh �(L1 � L) jjek�1(L1; :)jj1 ;and e(x�L2)� sinh(�x) � e(L1�L2)� sinh(�L1) ;
onsist for all (x; t) 2 (
1; [t0; tend)).One obtainsjek+1(L1; t)j � e(L1�L2)� sinh(�L1)sinh(�L2)e(L2�L1)� sinh�(L2 � L)sinh�(L1 � L) jjek�1(L1; :)jj1 ;for all (x; t) 2 (
1; [t0; tend)).And one gets the resultjjek+2(L1; :)jj1 � sinh(�L1)sinh(�L2) sinh�(L2 � L)sinh�(L1 � L) jjek(L1; :)jj1 :Similarly for dk+1(x; t) one 
on
ludes thatjjdk+2(L1; :)jj1 � sinh(�L1)sinh(�L2) sinh�(L2 � L)sinh�(L1 � L) jjdk(L1; :)jj1 :Theorem 4.2 shows that the 
onvergen
e of the overlapping S
hwarz method dependson 
 = sinh(�L1)sinh(�L2) sinh�(L�L2)sinh�(L�L1) : Due to a large overlapping of the domains, we will have arelaxation and the error will vanish for L2 � L. The main 
hallange will be a smalloverlapp with adequate errors based on the amount of iterations.4.2 Overlapping S
hwarz wave form relaxation for a weakly
oupled system of 
onve
tion-di�usion-rea
tion equa-tionIn the following part we are going to present the 
onvergen
e and the error bound ofthe overlapping S
hwarz wave form relaxation for the solution to the 
oupled systemof 
onve
tion-di�usion-rea
tion de�ned by two fun
tions u1 and u2. The 
oupling
riteria in this 
ase of study is imposed within the sour
e term of the se
ond solution
omponent. The 
onsidered system with the solution u1 and u2 is given byR1u1;t = D1u1;xx � �1u1;x � �1u1 over 
 = f0 < x < Lg ; t 2 [t0; tend) ;u1(0; t) = f1;1(t); t 2 [t0; tend) ;u1(L2; t) = f1;2(t); t 2 [t0; tend) ;u1(x; t0) = u0(x) ; (4.16)9



for u1, and for u2 is given byR2u2;t = D2u2;xx � �2u2;x � �2u2 + �1u1 over 
; t 2 [t0; tend) ;u2(L1; t) = f2;1(t); t 2 [t0; tend) ;u2(L; t) = f2;2(t); t 2 [t0; tend) ;u2(x; t0) = u0(x) : (4.17)For the uniqueness and existen
e of the equations (4.16) and (4.17) we apply theorem4.1.In (4.17) the 
oupling appears in the sour
e term and is de�ned by the parameter�1 with the �rst 
omponent u1. The strength or the bound of the 
oupling and the
ontribution is related to the value of the s
alar de�ned by �1: The 
oupled 
ase(4.17) is redu
ed to the 
ase of two de
oupled equations by assuming �1 = 0 in(4.17).The overlapping S
hwarz wave form relaxation for (4.16) over 
1 and 
2 is given byR1vk+11;t = D1vk+11;xx � �1vk+11;x � �1vk+11 over 
1; t 2 [t0; tend) ;vk+11 (0; t) = f1;1(t); t 2 [t0; tend) ;vk+11 (L2; t) = � wk1(L2; t) for k > 1u1(L2; 0) for k = 1 ; t 2 [t0; tend) ;vk+11 (x; t0) = u0(x); x 2 
1 ; (4.18)R1wk+11;t = D1wk+11;xx � �1wk+11;x � �1wk+11 over 
2; t 2 [t0; tend) ;wk+11 (L1; t) = � vk1(L1; t) for k > 1u1(L1; 0) for k = 1 ; t 2 [t0; tend) ;wk+11 (L; t) = f1;2(t); t 2 [t0; tend) ;wk+11 (x; t0) = u0(x); x 2 
2 : (4.19)For the system de�ned by (4.17) one denote the S
hwarz wave form relaxation asR2vk+12;t = D2vk+12;xx � �2vk+12;x � �2vk+12 + �1vk+11 over 
1; t 2 [t0; tend) ;vk+12 (0; t) = f2;1(t); t 2 [t0; tend) ;vk+12 (L2; t) = � wk2(L2; t) for k > 1u2(L2; 0) for k = 1 ; t 2 [t0; tend) ;vk+12 (x; t0) = u0(x); x 2 
1 ; (4.20)R2wk+12;t = D2wk+12;xx � �2wk+12;x � �2wk+12 + �1wk+11 over 
2; t 2 [t0; tend) ;wk+12 (L1; t) = � vk2(L1; t) for k > 1u2(L1; 0) for k = 1 ; t 2 [t0; tend) ;wk+11 (L; t) = f2;2(t); t 2 [t0; tend) ;wk+11 (x; t0) = u0(x); x 2 
2 : (4.21)10



For the uniqueness and existen
e of the equations (4.18), (4.19), (4.20) and (4.21)we apply theorem 4.1.The 
onvergen
e and the error bound for the solution to (4.18-4.19) and (4.20- 4.21)is given by the following theorem.Theorem 4.3. Let ek+1i and dk+1i (i = 1; 2) be the error from the solution to thesubproblems (4.18-4.19) and (4.20- 4.21) by S
hwarz wave form relaxation over 
1and 
2, respe
tively. Then the error bounds of (4.18)-(4.19) de�ned by e1 and d1over 
1 and 
2 are given byjjek+21 (L1; :)jj1 � 
1jjek1(L1; :)jj1; (4.22)and jjdk+21 (L1; :)jj1 � 
1jjdk1(L1; :)jj1; (4.23)respe
tively, and the error bound of (4.20- 4.21) de�ned by e2 and d2 over 
1 and
2 are given byjjek+22 (L1; :)jj1 � jjek2(L1; :)jj1
2 + 
2 �1�2	 �1 + e�2(L1�L)e�2(L�L1)�+�1�2	 he�2(L1�L2) sinh�2L1sinh�2L2 � e�2(L1�L)e�2(L�L2) sinh�2L1sinh�2L2i+�1�2	 he�2L1 sinh�2(L1�L2)sinh�2L2 � e�2(L1�L2) sinh�2L1sinh�2L2 + 1i ; (4.24)and jjdk+22 (L2; :)jj1 � jjdk2(L2; :)jj1
2 + 
2 �1�2	 �1 + e�2(L1�L)e�2(L�L1)�+�1�2	 he�2(L1�L2) sinh�2L1sinh�2L2 � e�2(L1�L)e�2(L�L2) sinh�2L1sinh�2L2i+�1�2	 he�L1 sinh�2(L1�L2)sinh�2L2 � e�2(L1�L2) sinh�2L1sinh�2L2 + 1i ; (4.25)respe
tively, where
i = sinh�iL1sinh�iL2 sinh �i(L2 � L)sinh �i(L1 � L) ; with �i = �i2Di ; �i = p�2i + 4Di�i2Di ;for i = 1; 2, and 	 = max
 fe1; e2g :Proof. Sin
e the system (4.16) does not depend on u2, we 
an estimate the equations(4.22) and (4.23) by using the Theorem 4.2.Let ek+12 (x; t) := u2(x; t) � vk+12 (x; t) and dk+12 (x; t) := u2(x; t) � wk+12 (x; t) be theerror of (4.20) and (4.21) over 
1 and 
2 respe
tively. Then the 
orresponding11



di�erential equations are satis�ed by e2(x; t) and d2(x; t) :R2ek+12;t = D2ek+12;xx � �2ek+12;x � �2ek+12 + �1ek+11 over 
1; t 2 [t0; tend) ;ek+12 (0; t) = 0; t 2 [t0; tend) ;ek+12 (L2; t) = dk2(L2; t); t 2 [t0; tend) ;ek+12 (x; t0) = 0; x 2 
2 ; (4.26)R2dk+12;t = D2dk+12;xx � �2dk+12;x � �2dk+12 + �1dk+11 over 
2; t 2 [t0; tend) ;dk+12 (L1; t) = ek2(L1; t); t 2 [t0; tend) ;dk+11 (L; t) = 0; t 2 [t0; tend) ;dk+11 (x; t0) = 0; x 2 
2: (4.27)Furthermore we 
onsider the following di�erential equations de�ned by êk+1 andd̂k+1 given byR2êk+12;t = D2êk+12;xx � �2êk+12;x � �2êk+12 + �1	 over 
1; t 2 [t0; tend) ;êk+12 (0; t) = 0; t 2 [t0; tend) ;êk+12 (L2; t) = jjdk2(L2; t)jj
2;1; t 2 [t0; tend) ;êk+12 (x; t0) = A(x); x 2 
1 ; (4.28)where A(x) is given byA(x) = jjdk2(L2; :)jj1e�2(x�L2) sinh(�2x)sinh(�2L)+�1�2	 he�2x sinh(�2(x�L2))sinh(�2L2) � e�2(x�L2) sinh�2xsinh�2L2 + 1i ;andR2d̂k+12;t = D2d̂k+12;xx � �2d̂k+12;x � �2d̂k+12 + �1	 over 
2; t 2 [t0; tend) ;d̂k+12 (L1; t) = jjek2(L1; t)jj
1;1; t 2 [t0; tend) ;d̂k+12 (L; t) = 0; t 2 [t0; tend) ;d̂k+12 (x; t0) = B(x); x 2 
2 ; (4.29)where B(x) = jjek(L1; :)jj1e�2(x�L1) sinh(�2(x�L))sinh(�2(L1�L))+�1�2	 sinh(�2(L�x))sinh(�2(L1�L)) �e�2(x�L1) � e�2(x�L)e�2(L�L1)���1�2	 �1 � e�2(x�L)e�2(L�x)� : (4.30)Then the solution to (4.28) and (4.29) is the steady state solution given byêk+12 (x; t) = A(x); 8x 2 
1; t 2 [t0; tend) ;12



and d̂k+12 (x; t) = B(x); 8x 2 
2; t 2 [t0; tend) ;respe
tively.By de�ning the fun
tion E(x; t) = êk+1 � ek+1, as in the proof of theorem 4.2, andby the maximum prin
iple theorem we 
on
lude thatjek+12 (x; t)j � êk+12 (x; t)for all (x; t) and similarly jdk+12 (x; t)j � d̂k+12 (x; t):Then jjek+12 (x; :)jj1 � jjdk2(L2; :)jj1e�2(x�L2) sinh(�2x)sinh(�2L)+�1�2	 he�2x sinh(�2(x�L2))sinh(�2L2) � e�2(x�L2) sinh�2xsinh�2L2 + 1i ; (4.31)and jjdk+12 (x; t)jj1 � jjek(L1; :)jj1e�2(x�L1) sinh(�2(x�L))sinh(�2(L1�L))+�1�2	 sinh(�2(L�x))sinh(�2(L1�L)) �e�2(x�L1) � e�2(x�L)e�2(L�L1)���1�2	 �1� e�2(x�L)e�2(L�x)� : (4.32)By evaluating (4.32) for dk2(x; t) at x = L2, substituting the results in (4.31) andafterwards evaluating the resulting relation at x = L1 we observe that (4.24) holdsin general.Similarly (4.25) follows from evaluating ek+12 (x; t) at x = L1, substituting in (4.32)and evaluating afterwards the resulting relation at x = L2:For the 
oupled system we observed the Theorem 4.3 and assume that the errordepends on two main fa
tors, the 
onvergen
e parameter 
i and the 
oupling pa-rameter �1 de�ning the system 
oupling (4.16), (4.17). Its obvious that for the
oupling parameter �1 = 0 one retain the de
oupled system and faster 
onvergen
erate is a
hieved if we have a small ratio �1�2 :5 Numeri
al ResultsIn this se
tion we will present the numeri
al results from the solution to severalmodel problems using the presented methods. The problems are dis
retized using13



se
ond order approximation with respe
t to the spatial variable using regular meshspa
ing h(= L=N) and ba
kward approximation with respe
t to the time using �ttime stepping. The �rst order operator splitting method (FOP) is 
onsidered tobe the basi
 solution algorithm for the overlapping S
hwarz waveform relaxationmethod (FOPSWR).5.1 First example : Conve
tion-di�usion-rea
tion equationWe 
onsider the one-dimensional 
onve
tion-di�usion-rea
tion equation given byR�tu+ v�xu� �xD�xu = ��u ; on 
 � [t0; tend) (5.1)u(x; t0) = uexa
t(x; t0) ; (5.2)u(0; t) = uexa
t(0; t) ; u(L; t) = uexa
t(L; t); (5.3)de�ned over 
 � [t0; tend) with 
 = [0; L℄, and t0 = 100, tend = 105 and L = 150.Further we have � = 10�5, v = 0:001, D = 0:0001 and R = 1:0.The analyti
al solution of the equation (5.1) 
onsidered on IR� (0; tend), with van-ishing Diri
hlet-boundary 
onditions and also using a Æ-fun
tion as initial value, 
anbe derived by Lapla
e-Transformation, see [15℄, and is given byuexa
t(x; t) = ~u02pD�t exp(�(x� vt)24Dt ) exp(��t) ; (5.4)with ~u0 = 1, the resti
tion of uexa
t to 
� (0; tend) is a solution to (5.1)-(5.3).We 
onsidered the ba
kward Euler dis
retization for both of the splitted operators,i.e. the 
onve
tion and the di�usion rea
tion operator, to simulate the solution overthe time interval [100; 105℄.The model problem (5.1) is solved using �rst order operator splitting (FOP), andalso the operator splitting with overlapping S
hwarz wave form relaxation method(FOPSWR).We 
ompare the a

ura
y of the solution over the entire spatial domain with di�erenth values, and di�erent time steps �t, using FOP-method, and FOPSWR-methodover two subdomains with di�erent size of overlapping. The error of solution aregiven in Table 1, and Table 2, respe
tively. The FOPSWR-method is 
onsidered overtwo overlapping subdomains of di�erent overlapping size L2�L1, to 
on
lude on thea

ura
y of the algorithm with the operator splitting. The 
onsidered subdomainswere 
1 = [0; 60℄; and 
2 = [30; 150℄ and 
1 = [0; 100℄; and 
2 = [30; 150℄The results derived for the FOP-method are presented the in Figure 1.In the numeri
al 
omputations the time-steps and spa
e-steps are systemati
allyre�ned in order to visualize the a

ura
y and error redu
tion through the simulationover the time interval for re�ned time and spa
e steps. From Table 1 one observesthat by the FOP-method the error redu
ed as se
ond order with respe
t to spa
e14



time erru1 erru1 erru1�t0 = 20 0.001195 2.86514e-4 1.2868e-4�t0=2 = 10 0.00113 2.3942e-4 8.6641e-5�t0=4 = 5 0.001108 2.15813e-4 6.55262e-5h0 = 1 h = h0=2 h = h0=4Table 1: The L
;1-error in time and spa
e for the 
onve
tion-di�usion-rea
tion-equation using FOP-method.
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Figure 1: The results for the FOP-method.time erru1 erru1 erru1 erru1 erru1 erru1�t0 = 20 1.196e-3 1.195e-3 2.871e-4 2.865e-4 1.290e-4 1.286e-4� t02 = 10 1.138e-3 1.137e-3 2.397e-4 2.394e-4 8.681e-5 8.681e-5� t04 = 5 1.108e-3 1.08e-3 2.159e-4 2.158e-4 6.782e-5 6.552e-5overlap. 30 70 30 70 30 70size h0 = 1 h = h0=2 h = h0=4Table 2: The L
;1-error in time and spa
e for the s
alar 
onve
tion-di�usion-rea
tion-equation using FOPSWR- method with the S
hwarz waveform relaxationalgorithm for two di�erent size of overlapping 30 and 70.and redu
ed also with respe
t to time. For further re�nement one should obtain�rst order 
onvergen
e results with respe
t to time.For the solution by the FOPSWR-method, using the FOP-method as basi
 solver,the a

ura
y of the solution is improved over the large size of overlapping subdo-mains.The results for the modi�ed method are presented in the Figure 2.15
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Figure 2: The results for the S
hwarz-method with 2 domains (overlapping 30).
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Figure 3: The results for the S
hwarz-method with 2 domains (overlapping 70).16



5.2 Se
ond example System of Conve
tion-di�usion-rea
tionequationWe 
onsider a further example of a one-dimensional 
onve
tion-di�usion-rea
tionequation, given as (5.1) - (5.4) with the following parameters � = 4:0 � 10�5, v =0:001, D = 0:0001, R = 1:0 and t0 = 100.For the initial 
ondition we use the analyti
al solution given in (5.4), with ~u0 = 1:0and t0 = 100. As boundary 
ondition we use the Diri
hlet-Boundary-
ondition withthe analyti
al solutions given in (5.4). The time-interval is [100; 105℄.The results for the 
lassi
al method (operator-splitting) are given in Table 3.time erru1 erru1 erru1�t = 20 2.075e-4 1.963e-4 1.799e-4� t2 = 10 2.055e-4 1.948e-4 1.794e-4� t4 = 5 2.045e-4 1.940e-4 1.792e-4size h0 = 1 h = h0=2 h = h0=4Table 3: L
;1-error in time and spa
e for the 
onve
tion-di�usion-rea
tion equationsolved by operator splitting.In the next experiments we 
onsider the modi�ed method. For the overlappingwe obtain the overlap size-length of 30 and 70, i.e. 
1 = f0 < x < 60g and 
2 =f30 < x < 150g while for the other 
ase we have 
1 = f0 < x < 100g and 
2 =f30 < x < 150g.The results are given in Table 4.time erru1 erru1 erru1 erru1 erru1 erru1�t0 = 20 2.076e-4 2.075e-3 1.964e-4 1.963e-4 1.800e-4 1.800e-4� t02 = 10 2.056e-4 2.055e-4 1.948e-4 1.948e-4 1.795e-4 1.794e-4� t04 = 5 2.046e-4 2.046e-3 1.941e-4 1.941e-4 1.792e-4 1.792e-5overlap. 30 70 30 70 30 70size h0 = 1 h = h0=2 h = h0=4Table 4: The L
;1-error in time and spa
e for the s
alar 
onve
tion-di�usion-rea
tion-equation using DD for two di�erent size of overlapping 30 and 70 andoperator splitting.We 
ompare the results of our 
omputations given in Table (3) and (4). We 
anobserve a redu
tion of the error for ea
h time and spa
e re�nement for the modi�edmethod. Further re�nement in time would obtain a �rst order 
onvergen
e result.Be
ause of the de
oupling, ea
h equation 
ould be 
omputed separately. For the�rst 
omponent one derive improved results be
ause of the smaller rea
tion in theequation. 17



5.3 Third example System of Conve
tion-di�usion-rea
tionequation (
oupled), solved with Operator-SplittingWe deal with the more 
ompli
ate example of a one-dimensional 
onve
tion-di�usion-rea
tion equation. R1�tu1 + v�xu1 � �xD�xu1 = �R1�1u1 ; (5.5)R2�tu2 + v�xu2 � �xD�xu2 = R1�1u1 �R2�2u2 ; (5.6)u1(x; t0) = u1;exa
t(x; t0) ; u2(x; t0) = u2;exa
t(x; t0) (5.7)u1(0; t) = u1;exa
t(0; t) ; u2(0; t) = u2;exa
t(0; t); (5.8)u1(L; t) = u1;exa
t(L; t) ; u2(L; t) = u2;exa
t(L; t); (5.9)de�ned over 
 � [t0; tend) with 
 = [0; L℄, and t0 = 100, tend = 105 and L = 150.Further we have �1 = 1:0 10�5, �2 = 4:0 10�5, v = 0:001, D = 0:0001,R1 = 2:0, andR2 = 1:0.The analyti
al solution of the equation (5.5)-(5.6) 
onsidered on IR� (0; tend), withvanishing Diri
hlet-boundary 
onditions and also using a Æ-fun
tion as initial value,
an be derived by Lapla
e-Transformation, see [15℄, and is given byu1;exa
t(x; t) = u102R1pD � t=R1 e� (x�v t=R1)24 D t=R1 e(��1 t);u2;exa
t(x; t) = u202 R2 pD � t=R2 e� (x�v t=R2)24 D t=R2 e(��2 t)+ R1 �1 u102pD � (R1 �R2) exp( xv2D ) e�(R1 �1�R2 �2) t(R1�R2) (W (�2)�W (�1));�1 = qR1 �1 � (R1 �1�R2 �2)R1�R2 R1 + v2=(4D) ,�2 = qR2 �2 � (R1 �1�R2 �2)R1�R2 R2 + v2=(4D) ,W (�)= 0:5(exp(�x v �2 D )erf
(x�v � tp4 Dt ) + exp(x v �2 D )erf
(x+v � tp4 Dt )) ,de�ned for the initial 
ondition with u10 = 1:0 and u20 = 0:0, the resti
tion of uexa
tto 
� (0; tend).We have erf
(�) as the known error-fun
tion and we denote the following 
onditions: R1 > R2 and �2 > �1.In the next tables we 
ompare the 
lassi
al with the modi�ed method and test thedepend on the rea
tion-parameters. 18



time erru1 erru2 erru1 erru2 erru1 erru2�t0 = 20 4.594e-4 2.8e-3 3.611e-4 2.452e-3 1.036e-4 2.702e-3� t02 = 10 4.506e-4 2.403e-3 3.515e-4 2.447e-3 9.528e-5 2.697e-3� t04 = 5 4.461e-4 2.39e-3 3.466-4 2.438e-3 9.110e-5 2.689e-3size h0 = 1 h = h0=2 h = h0=4Table 5: L
;1-error in time and spa
e for the system of 
onve
tion-di�usion-rea
tion-equation using �rst order splitting, with �1 = 2e� 5; �2 = 4e� 5.The results for the 
lassi
al method (Operator-Splitting method) are given in Table5.The results for the modi�ed method (Operator-Splitting method and Domain de-
omposition method) is given in Table 6.time erru1 erru2 erru1 erru2 erru1 erru2�t0 = 20 4.594e-4 2.403e-3 3.611e-4 2.452e-3 1.036e-4 2.702e-3� t02 = 10 4.506e-4 2.398e-3 3.515e-4 2.447e-3 9.528e-5 2.697e-3� t04 = 5 4.461e-4 2.388e-3 3.466e-4 2.438e-3 9.110e-5 2.689e-3size h0 = 1 h = h0=2 h = h0=4overlap. 70Table 6: L
;1-error in time and spa
e for the system of 
onve
tion-di�usion-rea
tion-equation using �rst order splitting and S
hwarz wave form relaxation method, with�1 = 2e� 5; �2 = 4e� 5.In the Figure 4 one sees the result for the system, where the solutions for di�erenttime-steps are presented.We modify for a se
ond experiment the rea
tion-parameters to obtain the in
uen
ebetween the �rst and the se
ond 
omponent. In the �rst 
omputation we use the
lassi
al method and get the following results given in Table 7.time erru1 erru2 erru1 erru2 erru1 erru2�t = 20 3.396e-3 6.058e-7 2.673e-3 6.192e-7 7.746e-4 6.820e-7� t2 = 10 3.30e-3 6.044e-7 2.599e-3 6.179e-7 7.083e-4 6.808e-7� t4 = 5 3.297e-3 6.018e-7 2.562e-3 6.152e-7 6.753e-4 6.784e-7size h0 = 2 h = h0=2 h = h0=4Table 7: L
;1-error in time and spa
e for the system of 
onve
tion-di�usion-rea
tion-equation using �rst order splitting, with �1 = 1e� 9; �2 = 4e� 5.In the se
ond 
omputation we use the modi�ed method and get the following results19
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Figure 4: The �rst-order results for the di�erent time-steps and dis
retisations forthe �rst 
omponent and di�erent time-steps.given in Table 8.time erru1 erru2 erru1 erru2 erru1 erru2�t = 20 3.380e-3 6.058e-7 2.673e-3 6.192e-7 7.746e-4 6.820e-7� t2 = 10 3.314e-3 6.044e-7 2.599e-3 6.179e-7 7.083e-4 6.808e-7� t4 = 5 3.297e-3 6.018e-7 2.545e-3 6.152e-7 6.753e-4 6.784e-7size h0 = 2 h = h0=2 h = h0=4overlap. 70Table 8: L
;1-error in time and spa
e for the system of 
onve
tion-di�usion-rea
tion-equation using �rst order splitting and S
hwarz wave form relaxation method with�1 = 1e� 9; �2 = 4e� 5.We see in Table 7 and 8 a higher order results in spa
e for the �rst 
omponent.For the se
ond 
omponent the in
uen
e of the �rst 
omponent is important andde
reasing the error of the �rst 
omponent, also de
reases the error of the se
ond
omponent. The results for the modi�ed method are shown in the Figure 5.In the next se
tion we present our 
on
lusions.6 Con
lusions and Dis
ussionsWe present the mathemati
al ba
kground for the 
oupling of simple physi
al andone-dimensional software-
odes. The 
onvergen
e-results for simple and systems ofone-dimensional paraboli
 equations are derived for the S
hwarz-Domain-De
omposition-method. Numeri
al results for the s
alar and system of paraboli
 equations are doneand we 
an see the e�e
tivity with Domain-De
omposition and Operator-Splitting-20
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Figure 5: The se
ond-order results for the di�erent time-steps and dis
retisationsfor the �rst 
omponent and di�erent time-steps.
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