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Abstract

The goal of this paper is twofold. In the �rst part we discuss a general approach to
determine Lyapunov exponents from ensemble- rather than time-averages. The ap-
proach passes through the identi�cation of locally stable and unstable manifolds (the
Lyapunov vectors), thereby revealing an analogy with generalized synchronization.
The method is then applied to a periodically forced chaotic oscillator to show that
the modulus of the Lyapunov exponent associated to the phase dynamics increases
quadratically with the coupling strength and it is therefore di�erent from zero already
below the onset of phase-synchronization. The analytical calculations are carried out
for a model, the generalized special �ow, that we construct as a simpli�ed version of
the periodically forced Rössler oscillator.

1 Introduction
As soon as synchronization phenomena in chaotic systems have been discovered [1, 2], the
standard tools of nonlinear dynamics have been implemented in order to clarify this phe-
nomenon. This is particularly true for the Lyapunov exponents (LEs), [3] because they
measure the degree of stability along di�erent directions and are thus the natural can-
didates to quantify the degree of synchronization of di�erent regimes. However, several
subtleties have been immediately discovered. For instance, the negativity of the �transver-
sal� LE is only a necessary condition for the stability of complete synchronization: (i) in
low-dimensional systems, �uctuations of the �nite-time LEs may render the synchronized
regime unstable even when the �averageëxponent is negative[4]; (ii) in high dimensional
systems, it has been ascertained that the propagation of �nite-amplitude perturbations
can sustain an unsynchronized regime, in spite of its linear stability[5, 6]. A still open
problem concerns the behaviour of the LEs in the context of phase synchronization [7, 9]
and more precisely of the exponent quantifying the stability of the phase dynamics. In fact,
it is often claimed that this LE is the right order-parameter to characterize the onset of
phase-synchronization: below the transition it is conjectured to be zero, while it is strictly
negative above the transition [7, 10]. However, the situation is certainly less simple than
initially believed because a negative exponent has been found also in correspondence of
locking phenomena occurring below the onset of phase-synchronization[11]. It is therefore
important to clarify analytically the stability of the dynamics along the �phase� direction:
in the absence of coupling, this is a marginally stable direction and it is thus natural to
expect some di�culties. Here, we develop a method that allows concluding that the LE
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corresponding to the phase dynamics is di�erent from zero (and possibly positive) as soon
as the coupling is switched on and therefore even below the onset of phase-synchronization.
One of the main problems is the lack of analytical methods for determining even pertur-
batively the LEs. Some ideas have been put forward for the maximum exponent [12, 13],
because almost any initial condition eventually grows with the maximum rate and no spe-
cial care is required to tune the direction of the perturbation. However, very little is known
for the other exponents, starting already from the second one. This is precisely what is
needed to determine the stability of phase dynamics in the simplest system exhibiting
phase synchronization, i.e. in a periodically forced chaotic attractor, where the �rst LE
accounts for the overall instability of the chaotic dynamics. Here, we attack and solve
the problem by developing a formalism to determine LEs as ensemble- rather than time-
averages. Similar ideas have been already discussed by Ershov and Potapov [14], although
they have not gone much beyond the level of formal statements. In fact, their method relies
on the determination of the growth rates of hypervolumes of increasing dimension. While
this idea proved very e�ective for the development of a powerful algorithm to compute
the LEs[15], its ensemble-average extension has some limitations due to the di�culty of
disentangling the various exponents. The advantage of our approach is that we are able
to associate each non-degenerate LE to a �eld of local directions, the Lyapunov vectors
(LVs). Roughly speaking, the ith LV is determined into two steps: the �rst one consists
in iterating forward in time a hypervolume of dimension i in tangent space to identify
the local orientation of the most expanding i directions (this is also considered in [14]);
the second step consists in iterating backward a vector lying within such a hypervolume.
As a result, a coordinate-independent LV can be determined: the LE is �nally obtained
by averaging the corresponding instantaneous expansion/contraction rate over the entire
phase-space, according to the invariant measure.
An objective identi�cation of LVs is particularly interesting in the study of the hydrody-
namic behaviour of extended systems. In the last years, mostly as a consequence of the
pioneering work of Posch and collaborators [16, 17], it has been discovered that in mod-
els of �uids (more in general in Hamiltonian systems) the directions corresponding to the
smallest (in absolute value) LEs almost coincide with long-wavelength Fourier modes. This
observation has in turn suggested that the Lyapunov analysis naturally leads to a hydro-
dynamic description without the need of introducing a suitable coarse graining. However,
progress has been hindered by the lack of an absolute de�nition of the Lyapunov �modes�,
that have been mostly identi�ed with the vectors arising from the implementation of the
Gram-Schmidt orthogonalization procedure during a standard computation of the LEs.
The only examples of a philososphy similar to that one outlined in the present paper con-
cern the chronotopic Lyapunov approach [18] and the characterization of space-time chaos
[19].
It is also interesting to notice that the problem of identifying the LVs is itself equivalent to
a problem of (generalized) synchronization. In fact, the Lyapunov vectors are determined
by integrating a skew-product system composed of the original nonlinear dynamics plus the
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�forcedëvolution in tangent space. As a result, the direction of the LVs varies in a possibly
singular way with the position in real space. However, this di�culty does not hinder the
LE determination, which results from an average that is substantially insensitive to the
presence of local singularities.
An analytic investigation of the stability of phase dynamics in a generic setup is an ex-
tremely di�cult task because of the lack of structural stability of low-dimensional chaos.
For this reason, it is convenient to consider suitable simpli�ed models. The simplest system
where phase-synchronization has been investigated is the so-called special �ow[20]. This is
basically a skew-product system, where the phase dynamics is forced by the chaotic am-
plitude dynamics. In this system, it is possible to estabilish analytically a certain number
of results, because the phase evolution is basically unidimensional and there is no need to
deal with the problem of identifying the direction of perturbations. In order to perform
a more realistic analysis of phase synchronization, a suitable coupling between phase and
amplitude dynamics has been added to the special �ow [21]. Here, setting up a perturba-
tive approach for the weakly forced Rössler oscillator, we show that the structure of the
model proposed in Ref. [21] is quite similar to that one expected in generic chaotic systems,
whenever the presence of strong dissipations allows eliminating the stable directions. Fur-
thermore, in order to simplify the analytic treatment of the LEs, we focus our attention on
a model that we call the generalized special �ow (GSF), very similar to that one analyzed
in Ref. [21] but characterized by a �nite Markov partition. As a result, we �nd that the
modulus of the second LE exponent increases quadratically with the coupling strength and
its corresponding smallness justi�es the claims often found in the literature that the second
LE is equal to zero below the onset of phase-synchronization. In other words, we conclude
that the LE is not the right order parameter to describe this transition.
More precisely, this paper is organized as follows. In the next section we introduce a
general approach for the determination of Lyapunov exponents through an average over
the invariant measure. In section 3 we present our case-study model, the GSF, deriving
it as a discrete�time approximation of a periodically forced Rössler system. In sections 4
and 5 we illustrate the perturbation expansion for the second LE, the corresponding LV
and the invariant measure. Finally some numerical results are presented in section 6, along
with conclusions.

2 A general approach for the determination of Lyapunov
vectors and Lyapunov exponents

In this section we discuss a method to determine Lyapunov exponents from suitable ensem-
ble averages. It is easy to write down a formal meaningful de�nition, but the problem lies in
translating it into a workable procedure. With reference to an N -dimensional discrete�time
system, described by the mapping rule

xt+1 = fd(xt) x ∈ RN , (1)
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one can express the ith LE (as usual, LE are supposed to be ordered from the largest to
the smallest one) as

λ(i) =
1

2

∫
dxP (x) ln

[ ||∂xfdV(i)(x)||2
||V(i)(x)||2

]
(2)

where P (x) is the corresponding invariant measure, ∂xfd is the Jacobian of the transfor-
mation, and the Lyapunov vector V(i)(x) identi�es the ith most expanding direction in
x.
With reference to a continuous�time system, ruled by the ordinary di�erential equation

ẋ = fc(x) x ∈ RN . (3)

the ith LE writes as
λ(i) =

∫
dxP (x)

[
∂xfcV

(i)(x)
] •V(i)(x)

||V(i)(x)||2 (4)

where • denotes the scalar product.
Unless a clear procedure to determine the LV is given, Eqs. (2,4) are nothing but formal
statements. As anticipated in the introduction, V(i)(x) can be obtained by following a
two-step procedure. We start with a generic set of i linearly independent vectors lying in
the tangent space and let them evolve in time. This is the standard procedure to determine
LEs, and it is well known that the hypervolume Y(i) identi�ed by such vectors contains for,
large enough times, the i most expanding directions. Furthermore, with reference to the
set of orthogonal cordinates obtained by implementing the Gram-Schmidt procedure, the
component vk of a generic vector v evolves according to the following di�erential equation
(for the sake of simplicity, we refer to continuous�time systems),

v̇k =
i∑

j=k

σk,j(x)vj 1 ≤ k ≤ i (5)

where, as shown in Ref. [14], σk,j does not explicitely depend on time, but only through
the position x in the phase space. As a result, the ith Lyapunov exponent can be formally
expressed as the ensemble average of the local expansion rate σi,i, i.e.,

λ(i) =

∫
dxP (x)σi,i(x) (6)

By comparing with Eq. (4), one �nds the obvious equality

σi,i =

[
∂xfcV

(i)(x)
] •V(i)(x)

||V(i)(x)||2 (7)

In Sec. 4, where this formalism is applied to a phase-synchronization problem, we �nd
that the only workable way to obtain an analytic expression for σi,i passes through the
determination of the direction of the corresponding LV vector V(i)(x).
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Let us now consider the backward evolution of a generic vector V(i) ∈ Y(i). Its direction
is identi�ed by the (i− 1)-dimensional vector

u ≡ (u1, u2, . . . , ui−1) (8)
where uk = vk/vi. From the de�nition of u and from Eq. (5), one easily �nds that the
backward evolution follows the equation

u̇k = (σi,i − σk,k)uk −
i−1∑

j=k+1

σk,j(t)uj − σk,i 1 ≤ k < i (9)

This is a cascade of skew-product linear stable equations (they are stable because the
Lyapunov exponents are organized in descending order). The overall stability is basically
determined by the smallest (σk,k − σi,i) that is obtained for k = i − 1. It is, therefore,
su�cient to turn our attention to the last (i− 1) component of the vector V. Its equation
has the following structure

u̇(t) = γu+ σ(t) (10)
where γ = λi − λi−1 < 0 and we have dropped the subscript i for simplicity. The value
of the direction u is obtained by integrating this equation. By neglecting the temporal
�uctuations of γ (it is not di�cult to include them, but this is not important for our �nal
goal), the formal solution of Eq. (10) reads

u(x(t)) =

∫ t

−∞
eγ(t−τ)σ(x) dτ . (11)

This equation does not simply tell us the value of u at time t, but the value of u when the
trajectory sits in x(t). It is in fact important to investigate the dependence of u on x. We
proceed by determining the deviation δju induced by a perturbation δxj of x along the jth
direction,

δju =

∫ t

−∞
eγ(t−τ)δjσ(τ) dτ (12)

where, assuming a smooth dependence of σ on x, (see below for a further discussion of this
point),

δjσ(τ) ≈ σx(τ)δxj(τ) = σx(τ)δxj(t)e
λj(t−τ) . (13)

(notice that the dynamics is �owing backward). If the Lyapunov exponent λj is negative,
δjσ(τ) decreases for τ → −∞ and the integral over τ in Eq. (12) converges. As a result,
δju is proportional to δxj, indicating that the direction of the LV is smooth along the jth
direction. If λj is positive, δjσ(τ) diverges, and below time t0 where

δxj(t)e
λj(t−t0) = 1 (14)

linearization breaks down. In this case, δσ(τ) for τ < t0 is basically uncorrelated with its
�initial value� δjσ(t) and one can estimate δju, by limiting the integral to the range [t0, t]

δju(t) = δxj(t)

∫ t

t0

dτe(λj+γ)(t−τ)σx(τ) (15)
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where t0 is given by Eq. (14). By bounding σx with constant functions and thereby per-
forming the integral in Eq. (15), we �nally obtain

δju(t) ≈ δxj(t) + δxj(t)
−γ/λj (16)

. The scaling behaviour is �nally obtained as the smalles number between 1 and −γ/λj. If
we now introduce the exponent ηj to identify the scaling behaviour of the deviation of the
LV direction when the point of reference is moved along the jth direction in phase space,
the results are summarized in the following way

ηj =

{
1 for λj ≤ −γ
−γ/λj for λj > −γ (17)

The former case corresponds to a smooth behavior (the derivative is �nite), while the latter
one reveals a singular behaviour that is the signature of a generalized synchronization.
Although most of the assumptions made to derive the above equation are quite plausible
(even though not rigorously proved), there is one point that needs to be more carefully
checked: the smoothness of σ(x). In the absence of a more careful analysis of this point,
we can only claim that the above equation provides an upper bound to the true range of
smoothness for the LV direction.

3 From the periodically forced Rössler system to the
generalized special �ow

The �rst model where phase synchronization has been explored is the forced Rössler os-
cillator [7]. In this section we derive a discrete-time mapping describing a forced Rössler
system in the limit of weak coupling. We obtain what we call the Generalized Special Flow
(GSF), because it extends a mapping previously introduced to characterize the onset of
phase synchronization[20].
The starting set of ordinary di�erential equations is

ẋ = −y − z + εy cos(Ωt+ ψ0)

ẏ = x+ a0y − εx sin(Ωt+ ψ0) (18)
ż = a1 + z(x− a2)

where ψ0 �xes the phase of the forcing term at time 0. It is convenient to introduce
cylindrical coordinates, namely u = (ϕ, r, z), (x = r cosφ, y = r sinφ). For the future sake
of clarity, let us denote with Sc the 3-dimensional space parametrized by such coordinates.
The di�erential equation (18) writes as

u̇ = F(u) + εG(u,Ωt+ ψ0) (19)
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where

F =
[
1 +

z

r
sinφ+

a0

2
sin 2φ , a0r sin2 φ− z cosφ , a1 + z(r cosφ− a2)

]
(20)

G =

[
− sin2 φ cos(Ωt+ ψ0)− cos2 φ sin(Ωt+ ψ0) ,

r√
2

sin 2φ cos(Ωt+ ψ0 + π/4) , 0

]

Note that system (19) can be written in the equivalent autonomous form

u̇ = F(u) + εG(u, ψ), ψ̇ = Ω,

where ψ denotes the phase of the forcing term.
We pass to a discrete-time description, by monitoring the system each time the phase φ is
a multiple of 2π. In the new framework, the relevant variables are r, z, and ψ, all measured
when the Poincaré section is crossed. The task is to determine the transformation mapping
the state (r, z, ψ) onto (r′, z′, ψ′).
In order to obtain the expression of the map, it is necessary to formally integrate the
equations of motion from one to the next section. This can be done, by expanding around
the unperturbed solution for ε = 0 (which must nevertheless be obtained numerically).
The task is anyhow worth, because it allows determining the structure of the resulting
map, which turns out to be (see appendix A)

ψ′ = ψ + 〈T (0)〉Ω + A1 + ε (Bc
1 cosψ +Bs

1 sinψ)

r′ = A2 + ε (Bc
2 cosψ +Bs

2 sinψ) (21)
z′ = A3 + ε (Bc

3 cosψ +Bs
3 sinψ)

where 〈T (0)〉 is the average period of the unperturbed Rössler oscillator and Am's and
Bm's are functions of z and r. As it is shown in appendix A, they can be numerically
determined by integrating the appropriate set of equations. Up to �rst order in ε, the
structure of the model is fairly general as it is obtained for a generic periodically forced
oscillator represented in cylindrical coordinates (as long the phase of the attractor can be
unambiguously identi�ed).
For the usual parameter values, the Rössler attractor is characterized by a strong contrac-
tion along one direction [22]. As a result, one can neglect the z dependence since this
variable is basically a function of r, and thus write

ψ′ = ψ + 〈T (0)〉Ω + A1(r) + ε (Bc
1(r) cosψ +Bs

1(r) sinψ)

r′ = A2(r) + ε (Bc
2(r) cosψ +Bs

2(r) sinψ) (22)

where all the functions can be obtained by integrating numerically the equations of motion
of the single Rössler oscillator.1

1Strictly speaking, A and B functions in (21) and (22) are di�erent (see appendix A). We use the same
notations here to simplify the presentation.
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Figure 1: Numerically computed functions Ai, gi and βi (i = 1, 2) for the Rössler oscillator.
Rössler parameters have been chosen as in Ref. [20]: a0 = 0.2, a1 = 1 and a2 = 9.

To simplify further manipulations, we �nally recast equation (22) in the form

ψ′ = ψ +K + A1(r) + εg1(r) cos (ψ + β1(r))

r′ = A2(r) + ε g2(r) cos (ψ + β2(r)) (23)

where

Bc
i (r) = gi(r) cos βi(r)

Bs
i (r) = −gi(r) sin βi(r) (24)

for i = 1, 2. The parameter K = 〈T (0)〉Ω−2π represents the detuning between the original
Rössler-system average frequency and the forcing frequency Ω.
The correctness of the scheme is con�rmed in Fig. 1, where all the functions de�ning the
model have been numerically obtained. The very fact that they all look as one-dimensional
curves, con�rms the conjecture that z-dependence can be neglected.
The GSF (23) generalizes the model introduced in Ref. [20], where the e�ect of the phase
on the r dynamics was not included. This implies that the GSF looses the skew-product
structure. This has important consequences on the orientation of the second Lyapunov
vector that we determine in the next sections. Notice also that the GSF (23) generalizes
and justi�es the model invoked in Ref. [21].
In spite of the simpli�cation introduced by removing the z variable, a rigorous treatment
of Eq. (23) for generic functions g and β is still very di�cult. A �rst obstacle may be
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the lack of a �nite Markov partition for the unperturbed system, which does not allow
us expressing the second order correction to the LV in a closed form (see appendix B for
details). A second obstacle is that the perturbation itself may and will in general destroy
the Markov partition, making the invariant measure hardly accessible to a perturbative
expansion. For both reasons, we restrict ourselves to considering speci�c A, g, and β
functions which guarantee the existence of a �nite Markov partitions in a �nite range of
the coupling constant. In the last section we shall comment on the possibility to extend
our formalism to a more general setup.
For the sake of simplicity, we have decided to analyse the following model,

r′ = f(r) + 2εcg(r) cos(ψ + α)

ψ′ = ψ +K + ∆r + εb cosψ (25)

where
f(r) = 1− 2|r| , g(r) = r2 − |r| (26)

with r ∈ [−1, 1]. The tent-map choice for r ensures that [−1, 0] and [0, 1] are the two atoms
of a Markov partion. Moreover, since g(r) is equal to 0 for r = 0 and r = ±1, this remains
true also when the perturbation is switched on. This is a key property that is necessary to
perform a completely analytical treatment in the following sections.
In this two-dimensional setup, the formal expression of the ith LE (2) writes

λ(i) =
1

2

∫ 1

−1

dr

∫ 2π

0

dψP (r, ψ) ln

[
||J(r, ψ)V(i)(r, ψ)||2

||V(i)(r, ψ)||2

]
(27)

and the Jacobian is

J(r, ψ) =

(
fr(r) + 2εcgr(r) cos(ψ + α) −2εcg(r) sin(ψ + α)

∆ 1− εb sinψ

)
(28)

where the subscript r denotes the derivative with respect to r. The computation of the
Lyapunov exponent therefore, requires determining both the invariant measure P (r, ψ) and
the local direction of the Lyapunov vector V(i).

4 A perturbative calculation of the second Lyapunov
exponent

In this section we derive a perturbative expression for the second LE of the GSF (25),
by expanding Eq. (27). One of the key ingredients is the second LV, whose direction can
be identi�ed by writing V = (V, 1) (for the sake of clarity, from now on, we omit the
superscript i = 2 in V and λ, as we shall refer only to the second direction). Due to the

9



skew-product structure of the unperturbed map (25), the second LV is, for ε = 0, aligned
along the ψ direction (i.e. V = 0). It is therefore natural to expand V in powers of ε

V ≈ εv1(r, ψ) + ε2v2(r, ψ) (29)

Accordingly, the logarithm of the norm of V is

ln ||V||2 = ln(1 + ε2v2
1) = ε2v2

1 (30)

while its forward iterate writes as (including only those terms that contribute up to second
order in the norm),

JV =

(
εfr(r)v1 − 2cεg(r) sin(ψ + α)
1 + ε(∆v1 − b sinψ) + ε2∆v2)

)
(31)

Notice that we have omitted the (r, ψ) dependence of v1 and v2 to keep the notation
compact.
The Euclidean norm of the forward iterate is

||JV||2 = 1+2ε(∆v1−b sinψ)+ε2
{

(∆v1−b sinψ)2 +2∆v2 +[fr(r)v1−2cg(r) sin(ψ+α)]2
}

(32)
and its logarithm is

ln ||JV||2 = 2ε(∆v1− b sinψ)−ε2
{

(∆v1− b sinψ)2−2∆v2− [fr(r)v1−2cg(r) sin(ψ+α)]2
}

(33)
We now proceed by formally expanding the invariant measure in powers of ε

P (r, ψ) ≈ p0(ψ) + εp1(r, ψ) + ε2p2(r, ψ). (34)

The determination of the pi coe�cients is presented in the next section, but here we
anticipate that, as a consequence of the skew-product structure for ε = 0, the zeroth-order
component of the invariant measure does not depend on the phase ψ. Moreover, because
of the structure of the tent-map, p0 is also independent of r, i.e. p0 = 1/4π. The second
Lyapunov exponent can thus be written as

λ =

∫ 1

−1

dr

∫ 2π

0

dψ
( 1

4π
+ εp1(r, ψ)

){
2ε(∆v1(r, ψ)− b sinψ)− ε2

[
(∆v1(r, ψ)− b sinψ)2

−2∆v2(r, ψ) + [fr(r)v1(r, ψ) + 2cg(r) sin(ψ + α)]2 + v2
1(r, ψ)

]}
+ o(ε2) (35)

As the variable ψ is a phase, it is not a surprise that some simpli�cations can be found
by expanding the relevant functions into Fourier components. We start writing the �rst
component of the invariant measure as

p1(r, ψ) =
1

2π

∑
n

qi(r)e
inψ (36)
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We then turn our attention to the �rst order component v1(r, ψ) of the second LV (29).
Due to the sinuosidal character of the forcing term in the GSF (25), it is easy to verify (see
the next section) that v1(r, ψ) contains just the �rst Fourier component,

v1(r, ψ) = c
[
L(r) sin(ψ + α) +R(r) cos(ψ + α)

]
(37)

By now, inserting Eqs. (36,37) into Eq. (35) and performing the integration over ψ, we
obtain

λ = ε2

∫ 1

−1

dr

{
∆c

[
qr1

[
L(r) sinα +R(r) cosα

]
− qi1

[
L(r) cosα−R(r) sinα

]]

+bqi1 −
b2

8
+ ∆

bc

4

[
L(r) cosα−R(r) sinα

]
+
c2

8
(3−∆2)

[
L2(r) +R2(r)

]
(38)

+
c2

2
g2(r) + c2

|r|
r
g(r)L(r)

}
+

∆I2
4π

where we have further decomposed q1(r) in its real and imaginary parts
q1(r) = qr1(r) + iqi1(r) (39)

and we have de�ned
I2 :=

∫ 1

−1

dr

∫ 2π

0

dψ v2(r, ψ), (40)

which accounts for the contribution arising from the second order correction to the LV. This
expansion shows that the highest-order contribution to the second Lyapunov exponent of
the GSF scales quadratically with the perturbation amplitude. This is indeed a general
result that does not depend on the particular choice of the functions used to de�ne the
GSF, but only on the skew-product structure of the unperturbed time evolution and on
the validity of the expansion assumed in (34) (we shall comment on this last issue in the
next section).
By inserting the expression for I2 obtained in appendix B (see Eq. (93)) in Eq. (38), we
�nally obtain the perturbative expression for the second LE,

λ = ε2

{
c2

30
− b2

4
+

∫ 1

−1

dr

[
bqi1(r) +

c2

16
(6−∆2)

[
L2(r) +R2(r)

]
(41)

+∆cqr1(r)
[
L(r) sinα +R(r) cosα

]
+ ∆c

(
b

4
− qi1(r)

) [
L(r) cosα−R(r) sinα

]

+ c2
|r|
r
g(r)L(r) +

∆c2

4
r sin

(
∆(1− r)

2

) [
L(r) cosK −R(r) sinK

]]}

Accordingly, the numerical value of the second LE can be obtained by performing integrals
which involve the four functions qr1(r), qi1(r), L(r), and R(r), that are determined in the
next section.

11



5 Determining the coe�cients of the power expansion
After having more or less formally expanded the expression of the second LE in powers
of the coupling strength ε in the previous section, now we show how the coe�cients can
be determined for both the invariant measure and the direction of the LV. Notice that
the second part of the project passes through the implementation of the general ideas put
forward in Sec. II.

5.1 The invariant measure

We start focusing our attention on the invariant measure P (r, ψ) which can be computed
as a �xed point of the Frobenius-Perron equation

P ′(r′, ψ′) =
P (r−, ψ−)

| detJ(r−, ψ−)| +
P (r+, ψ+)

| detJ(r+, ψ+)| (42)

where (r−, ψ−) and (r+, ψ+) are the two preimages of (r′, ψ′). It is important to notice that
our choice of the map guarantees that two solutions do exist in the whole rectangle [−1, 1]×
[0, 2π] in a �nite range of ε-values. This will be crucial for obtained exact expressions. As
it has been shown in the previous section, we are interested in solving the above equation
up to �rst order. Accordingly, we write

P (r′, ψ′) = p0(r
′, ψ′) +

ε

2π

∑
n

qi(r)e
inψ (43)

where we have expanded the �rst order contribution as in Eq. (36). It is also necessary to
expand the preimages

r± = r±0 + εr±1 (44)
ψ± = ψ±0 + εψ±1 (45)

where

r±0 = ±1− r′

2
(46)

ψ±0 = ψ′ −K ∓∆
1− r′

2
(47)

r±1 = ∓c1− r′2

4
cos(ψ±0 + α) (48)

ψ±1 = ±c∆1− r′2

4
cos(ψ±0 + α)− b cosψ±0 (49)

At zeroth order in ε, it is easy to see that the Frobenius-Perron equation (42) reduces to

p0(r
′, ψ′) =

1

2

(
p0(r

+
0 , ψ

+
0 ) + p0(r

−
0 , ψ

−
0 )

)
(50)

12



whose solution is everywhere constant, as anticipated in section 4. By imposing the nor-
malization condition, one obtains

p0 =
1

4π
. (51)

By then considering that

| detJ(r, ψ)|−1 =
1

2

[
1 + εb sinψ + εc signr(∆g(r) sin(ψ + α) + gr(r) cos(ψ + α))

]
(52)

and projecting Eq. (42) over its �rst Fourier component, we �nally obtain a closed equation
for q1(r)

q1(r
′) =

e−iK

2

[
e−i∆r

+
0

(
q1(r

+
0 )− i

b

4
+
c

4
eiαgr(r

+
0 )− i

c

4
eiα∆g(r+

0 )

)
+ (53)

e−i∆r
−
0

(
q1(r

−
0 )− i

b

4
− c

4
eiαgr(r

−
0 ) + i

c

4
eiα∆g(r−0 )

)]
(54)

The structure of this equation is very similar to a Frobenius-Perron equation for a one-
dimensional system. The dimensionality reduction has been made possible by exploting the
skew-product structure of the unperturbed system. Considering also the simple expression
of the preimages of r′ (they have to be determined at zeroth order), the above equation can
be accurately solved by implementing the standard method to solve a Frobenius-Perron
equation (the only limit being imposed by the numerical round-o�).
In Fig. 2 we have plotted the real and immaginary parts of q1 for three di�erent choices
of the parameters b and c. In all cases, one can see a very smooth dependence, which
thus suggests the possibility to obtain accurate fully analytic expressions by expanding
polynomially q1(r). However, being more interested in testing the overall validity of the
perturbative approach, we do not explore this possibility.
In fact, in order to test the general validity of the power expansion, we have numerically
investigated three di�erent GSFs, corresposinding to the following choices of the functions
f and g: i) f(r) = 1− 2|r|, g(r) = r2− |r| as considered in (26); ii) f(r) = 0.8− 1.8|r| and
g(r) = 1/2, for which there is no �nite Markov partition; iii) f(r) = 2(1 − 2εc)(1 − |r|)
and g(r) = 1/2, for which the �nite Markov partition existing in the unperturbed case is
destroyed as soon as the perturbation is switched on.
In order to compare such models, we have computed the deviation of the zero Fourier
component of the invariant measure of the map (25) induced by a small �nite coupling ε,

〈P (r, ψ)〉 =

∫ 1

−1

dr

∫ 2π

0

dψ
[
P (r, ψ)|ε − P (r, ψ)|ε=0

]
. (55)

As it can be clearly seen in Fig. 3, in the �rst two cases the linear term is even equal to
zero, while relevant multiplicative logarithmic corrections are present in the third case. This
�pathological� behaviour is induced by the fact that as soon as the coupling is switched on,
an in�nite series of discontinuities in the invariant measure suddenly arises in the vicinity
of the former �xed point r = −1. It is, however, important to notice that no peculiarity is
found in the more generic second case.
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Figure 2: The �rst order contribution q1 to the probability density for the parameter values:
∆ = −0.18, α = −π/4, K = 0.04π. Solid and dashed lines refer to real and imaginary
parts.

0 0.005 0.01ε

0

2

4

6

P

10
-4

10
-3

10
-2ε

2

4

P

__
ε

ε
__

Figure 3: The deviation of the zero Fourier component of the invariant measure (see Eq.(55)
of map (25) as a function of ε. Three di�erent choices of f and g have been tested: i)
f(r) = 1−2|r| and g(r) = r2−|r| (crosses), ii) f(r) = 0.8−1.8|r| and g(r) = 1/2 (squares),
and iii) f(r) = 2(1− 2εc)(1−|r|) and g(r) = 1/2 (diamonds). Parameter values have been
�xed to ∆ = −0.18, α = −π/4, K = 0.04π, b = −0.6 and c=2.8. Abscissas are divided by
ε to better emphasize deviations from linear scaling. The logarithmic deviations dispalyed
by the diamonds are emphasized in the inset.
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5.2 The direction of the second Lyapunov vector

In this subsection we derive a self-consistent equation for the second LV. We start from
Eq. (31), retaining only the relevant perturbation terms

JV =

(
[fr(r) + 2εcgr(r) cos(ψ + α)]V − 2εcg(r) sin(ψ + α)

∆V + 1− εb sinψ

)
(56)

By computing the ratio between the components of JV we obtain the new value of the
slope V ′ = εv′1 + εv′2 + . . .,

v′1 + εv′2 =

[
fr(r) + 2εcgr(r) cos(ψ + α)

]
(v1 + εv2)− 2cg(r) sin(ψ + α)

∆εv1 + (1− εb sinψ)
, (57)

where we have again kept only the relevant terms (up to �rst order after dividing both
sides by ε) and where v′1 and v′2 are both functions of the iterates r′ and ψ′,

r′ = r′0 + 2εcg(r) cos(ψ + α) (58)
ψ′ = ψ′0 + εb cosψ (59)

where r′0 = f(r) and ψ′0 = ψ + K + ∆r are the unperturbed iterates. By replacing the
expressions for r′ and ψ′ in Eq. (57), at leading order, we obtain

v′1(f(r), ψ +K + ∆r) = fr(r)v1(r, ψ)− 2cg(r) sin(ψ + α) (60)
As anticipated in Sec. 2, this recursive relation can be solved by following backwards the
dynamics of (r, ψ). It is worth stressing that the term 2cg(r) sin(ψ + α), i.e. the e�ect of
the phase on the amplitude dynamics, acts as a source term in Eq. (60). In its absence, the
latter equation would yield a trivial vanishing solution for v1 (which in turn also implies
v2 = 0, as it can be appreciated in App. B). It is therefore the feedback of the phase on
the amplitude dynamics that generates a nontrivial orientation of the perturbed second
Lyapunov vector. Furthermore, the structure of the source term 2cg(r) sin(ψ+α) naturally
suggests the Ansatz (37). By inserting it in Eq. (60) we obtain two recursive equations,

L(r) = sign(r)

[
1

2

(
R(f(r)) sin(K + ∆r)− L(f(r)) cos(K + ∆r)

)
− g(r)

]

R(r) = −1

2
sign(r) [(R(f(r)) cos(K + ∆r) + L(f(r)) sin(K + ∆r)] (61)

This equation can be solved numerically, by considering it as a recursive relation to be
iterated backward in time until the �xed point solution is eventually attained and the
functions L and R, computed with the desired precision. In Figs. 4 we can see some
examples of how they look like.
>From the analysis carried on in Sec. 2 and in particular from Eq. (17), we see that the
condition for a smooth behaviour of the direction V along the phase-direction is (noticing
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Figure 4: The functions L(r) and R(r) computed for ∆ = −0.18 and K = 0 (solid curve)
and K = −1 (dashed line).

that here, γ = λ2 − λ1) is λ1 > 2λ2 that is certainly veri�ed and this fully justi�es the
expansion in Fourier modes along such a direction. On the other hand, along the expand-
ing direction r, the codition writes λ2 < 0, that is only marginally veri�ed. The apparent
roughness exhibited by L(r) and R(r) can therefore be a manifestation of the expected
non-complete smoothness. It is, however, also important to stress the role played by the
functions we have speci�cally considered in the GSF. In fact, the tent map induces a dis-
continuity in the tangent space that propagates everywhere, though signi�cantly squeezed.
Luckily enough, as it can be appreciated in App. B, such singularities are integrated out
when determining the leading contribution to the Lyapunov exponent which is therefore
substantially insensitive and can be computed without much harm.

6 Numerical results and conclusions
In this paper we have introduced a novel approach to determine analytically the Lyapunov
exponent and applied it to the speci�c case of a periodically forced chaotic oscillator de-
scribed by a model (the generalized special �ow) which is also introduced here starting
from the speci�c case of the Rössler oscillator.
Given the many technical di�culties that is necessary to overcome in order to �nally
obtain the numerical value of the quadratic coe�cient, it is wise to compare the analytic
expression with the direct numerical computation of the second LE performed for small
enough values of ε. In Fig. 5, the second order coe�cient λ/ε2 is determined from the
analytic expression (41) and by directly simulating the GSF for ε-values in the range
[10−4, 10−2]. The good agreement obtained for all K values con�rm the correctness of the
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Figure 5: Second Lyapunov exponent for the Generalized Special Flow (25) as a function
of detuning K. The dashed line represent the analytical result, while dots (with the bars
indicating one standard deviation) results of direct numerical simulations of the GSF.
Parameter values have been �xed to: ∆ = −0.18, α = −π/4, b = −0.6, c = 2.8. Abscissas
have been rescaled by a factor ε2 to evidentiate the second order coe�cient. The inset
magni�es a part of the larger graph.

analytical calculations. The relative strong negative peak around K = 0 is a manifestation
of a resonance phenomenon. The LE tends to be more negative when the forcing frequency
is close to the average frequency of the chaotic attractor.
It is also important to stress that our results are valid for arbitrarily small ε, i.e. below
the transition to phase-synchronization (if there is any) and therefore tells us that the LE
corresponding to the phase dynamics is immediately di�erent from zero, as soon as the
coupling is switched on.
Another important point concerns the sign of the LE: naive considerations might suggest
that the coupling tends to stabilize the phase dynamics and thereby to give a negative LE.
However, the left tail in Fig. 5 (see also the inset) de�nitely shows a positive exponent.
It is desirable to �nd some simple heuristic arguments to understand when and why the
phase dynamics is stable, but this does not seem to be an easy task and is left as an open
problem for future investigations.
The major di�erence between the GSF, we analyse in this manuscript and the special �ow
introduced in [20] is the term proportional to c in the equation for r in Eq. (25). Such a
term prevents the possibility of further dimension reductions and requires setting up the
machinery we have developed in this paper. It is therefore interesting to quantify its direct
e�ect on the actual value of the LE. This can be simply done, by setting the other coupling
term b = 0, an assignment that is basically complementary to what done in the standard
special �ow. The results, reported in Fig. 6 show a sort of �dispersive� behaviour for the

17



-0.1 -0.05 0 0.05 0.1
K

-0.02

-0.01

0

0.01

0.02

0.03

λ/ε2

Figure 6: Second Lyapunov exponent for the Generalized Special Flow (25) as a function
of detuning K. Symbols and parameters values are the same as in Fig. 5, except for b = 0.

LE which also tends to be positive. This suggests that the back coupling of the phase
dynamics onto the amplitude evolution maybe responsible for an eventually positive LE.
While Eq. (41) cannot by any means capture the quantitative behavior of the original
Rössler system, still the quadratic behaviour of the second LE seems to be a very general
feature even though we can imagine that the lack of structural stability of generic oscillators
may mask the overall behaviour with the presence of additional stability windows. We
have therefore computed directly the second Lyapunov exponent for the periodically forced
Rössler system chosing the same set of parameters (a0 = 0.2, a1 = 1 and a2 = 9) considered
in Ref. [20].
When the frequency of the periodic force is close to the natural frequency of the oscillator,
ν0 = 1.0158(1) for our choice of parameters, we are able to detect the quadratic behavior
with a good accuracy, as demonstrated in Fig. 7. Since the coupling strengths we have
reached are much below the onset of phase synchronization, as can bee seen in Ref. [20],
these numerical results con�rm our theoretical conclusions that the Lyapunov exponent
corresponding to the phase dynamics deviates from zero as soon as the coupling is switched
on. It would be now interesting to extend the analysis carried out in this paper to two
coupled chaotic oscillators, perhaps by investigating suitable discrete-time models such
as that one introduced in [23]. However, while one can presumably learn something on
the phenomenon of phase-synchronization, we do not expect qualitative changes for the
behaviour of the Lyapunov spectrum. This is supported by the recently reported quadratic
growth of the �fth LE (the �rst one corresponding to phase dynamics) in a system of four
coupled Rössler oscillators [24].
Altogether, the numerical and analytical results presented in this paper clearly show that
the onset of phase-sinchronization is not signalled by the second LE (or, more generally,
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Figure 7: Second Lyapunov exponent for the periodically forced Rössler system close to the
resonance. Full circles refer to a forcing frequency Ω = 1.007 (the Rössler natural average
frequency is ν0 = 1.0158(1)), while open squares correspond to Ω = 1. Rössler parameters
have been �xed as a0 = 0.2, a1 = 1, a2 = 9, while the integration interval is about t = 108.
The inset shows the quadratic relation between λ(2) and ε.

the LE associated to the phase dynamics) turning negative, but it is rather associated to
a change in the structure of the dynamical attractor [21, 25] that is not directly related
to the sign of the �phase exponent�. On the other hand, the quadratic dependence on the
coupling strength makes it di�cult to numerically appreciate deviations from zero (espe-
cially because of the statistical �uctuations that necessarily a�ect numerical simulations)
and explains why in earlier studies, the LE has been mistakenly regarded as a proper order
parameter to characterize the transition to a phase-synchronized regime.
Another important point concerns the sign of the second Lyapunov exponent. In fact, it
was formerly believed that phase chaos (i.e. a positive LE) can only occur in the presence
of a speci�c structure of the underlying chaotic attractor (see e.g. [26]). On the other
hand, our analytical results show that the second LE can be positive even in a context
where no peculiar amplitude evolution has to be invoked. However, our approach does not
give any physical insight about the expected sign of the LE. It will be certainly useful to
�nd under which conditions a chaotic phase dynamics may arise.
Finally another major achievement of this paper is that Lyapunov exponents can be e�ec-
tively determined from ensemble averages, passing through the determination of the local
direction of the corresponding Lyapunov vectors. From a purely numerical point of view,
there is no conceptual di�culty to applying this method for a more detailed characteriza-
tion of high-dimensional chaos [19]. However, in the perspective of obtaining more general
analytical results, it is desirable to go beyond systems with �nite Markov partitions.
Acknowledgments: Part of this project has been carried out with the help of �nancial
support provided by the Collaborative Research NATO grant PST.CLG.979410.
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A From continuous to discrete time
In this appendix we present the detailed calculations relative to the determination of the
Poincaré mapping (21) for the periodically forced Rössler oscillator (18). Notice, however,
that the methodology is quite general and is indeed applicable to a generic periodically
perturbed system, as long as it can be written in the form (19).
Let us start by introducing some useful notations

U(r, z, ψ; t) ≡ (Φ(r, z, ψ; t), R(r, z, ψ; t), Z(r, z, ψ; t)) (62)

denotes the phase point in Sc at time t of a trajectory started in (0, r, z) at time 0 and with
an initial phase of the forcing term equal to ψ (pay attention to the fact that the triple
(r, z, ψ) ∈ Sd). The crossing time with the Poincaré surface is determined by imposing
that the phase Φ has increased by 2π, i.e.,

Φ(r, z, ψ;T ) = 2π. (63)

As we are interested in the small coupling regime, we can expand U in powers of ε and
retain just the �rst order term,

U(t) = U(0)(t) + εU(1)(t) (64)

In particular, from Eq. (63), we obtain

2π = Φ(0)(T ) + εΦ(1)(T ) = Φ(0)(T (0)) + εΦ(1)(T (0)) + ε
∂Φ(0)

∂t
(T (0))T (1) (65)

where we have expanded T as well, assuming that T = T (0) + εT (1). Since, Φ(0) = 2π, we
conclude that

T (1) = −Φ(1)(T (0))

f1

(66)

where f1 = ∂Φ(0)(T (0))
∂t

is determined by the right-hand side of (19) with ε = 0, namely, it is
the �rst component of F.
It can be easily seen that the zeroth and �rst order components satisfy the di�erential
equations

U̇(0) = F(U(0)) (67)
U̇(1) = DF(U(0))U(1) + G(U(0),Ωt+ ψ) (68)

where DF denotes the Jacobian of the velocity �eld F and we have introduced an explicit
dependence on the phase ψ, as it changes in going from one to the next section. The
equation for the �rst order correction can be formally solved,

U(1) =

∫ T (0)

0

dτW(T (0), τ)G(U(0)(τ),Ωτ + ψ) (69)
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where W(t, τ) is the matrix of fundamental solutions of the equation U̇ = DF(U(0))U.
Since G contains only �rst harmonics in ψ, it can be decomposed into sine and cosine
components,

G(U(0),Ωτ + ψ) = Gc(U(0),Ωτ) cosψ + Gs(U(0),Ωτ) sinψ (70)

where

Gc(U(0),Ωτ) =



− sin2 Φ(0) cos Ωτ − cos2 Φ(0) sin Ωτ

R(0) sin 2Φ(0) cos(Ωτ + π/4)/
√

2
0


 (71)

and

Gs(U(0),Ωτ) =




sin2 Φ(0) sin Ωτ − cos2 Φ(0) cos Ωτ

−R(0) sin 2Φ(0) sin(Ωτ + π/4)/
√

2
0


 (72)

Accordingly, as it follows from (69), U(1) can be decomposed in the same way

U(1) = Mc(r, z) cosψ + Ms(r, z) sinψ (73)

where
Mc(r, z) =

∫ T (0)

0

dτW(T (0), τ)Gc(U(0)(τ),Ωτ) (74)

and a similar equation holds for Ms(r, z).
The �rst component of Eq. (73) gives Φ(1). After substituting it into Eq. (66), we obtain,

T = T (0)(r, z)− ε

f1

(M c
1(r, z) cosψ +M s

1 (r, z) sinψ) (75)

where the subscripts indicate once more the component of the vector. Accordingly, the
new phase ψ′ is

ψ′ = ψ + ΩT = ψ + ΩT (0)(r, z)− εΩ

f1

[M c
1(r, z) cosψ +M s

1 (r, z) sinψ] (76)

On the other hand, from the second and third components of Eq. (64) we obtain the new
values r′ and z′ by also expanding the expression of T around T (0),

U(T ) = U(0)(T (0)) + εU(1)(T (0)) + εF(U(0))T (1) (77)

Straightforward but tedious calculations lead to

ψ′ = ψ + 〈T (0)〉Ω + A1 + ε(Bc
1 cosψ +Bs

1 sinψ) (78)
r′ = A2 + ε(Bc

2 cosψ +Bs
2 sinψ) (79)

z′ = A3 + ε(Bc
3 cosψ +Bs

3 sinψ) (80)
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where 〈T (0)〉 is the average period of the unperturbed Rössler oscillator. The functions Ai
can be determined by integrating the unperturbed equations

A1(r, z) =
[
T (0)(r, z)− 〈T (0)〉] Ω

A2(r, z) = R(0)(r, z;T (0)) (81)
A3(r, z) = Z(0)(r, z;T (0))

while the functions Bc
i read as

Bc
1(r, z) = −ΩM c

1(r, z)/f1

Bc
2(r, z) = M c

2(r, z)− f2M
c
1/f1 (82)

Bc
3(r, z) = M c

3(r, z)− f3M
c
1/f1

and similar equations hold for the sine components.

B Second order contribution to the Lyapunov vector
In this appendix we derive a closed expression for the term I2, which accounts for the contri-
bution to the LE arising from second order-corrections to the LV direction (see Eq. (40)).
To this pourpose, we have to consider all terms of order ε in Eq. (57), starting from
v′1(r

′, ψ′) ≡ v′1(r
′
0, ψ

′
0) + εδv′1, with

δv′1 = +bc
[
L(r′0) cos(ψ′0 + α)−R(r′0) sin(ψ′0 + α)

]
cosψ

+2c2g(r)
[
Lr(r

′
0) sin(ψ′0 + α) +Rr(r

′
0) cos(ψ′0 + α)

]
cos(ψ + α) (83)

where r′0 = f(r) and ψ′0 = ψ+K + ∆r are the iterates of the unperturbed GSF as de�ned
in section 5. In the following we shall not care about the possible lack of di�erentiability
along the direction r for two reasons: i) we have veri�ed that setting up a more accurate
procedure leads to the same results, but its presentation would be more cumbersome; ii)
the procedure is in itself correct, because in the end we are interested in the integral that
is insensitive to the presence of singularities.
The recursive equation for the second order term writes as

v2(r, ψ) =
1

fr(r)
v′2(r

′
0, ψ

′
0) + s(r, ψ) (84)

where we have introduced the source term

s(r, ψ) =
1

fr(r)

[
− 2cgr(r) cos(ψ + α)v1(r, ψ) + δv′1 + v′1(r

′
0, ψ

′
0)(∆v1 − b sinψ)

]
(85)

and v′1 is given by Eq. (60).
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Being interested in the integral I2 (see Eq. (40)), we see that the integration over ψ can be
easily performed since ψ′0 ranges over [0, 2π]. More delicate is the integral over r because
of the folding of r′0. However, one can still solve the problem by separately integrating over
the negative and positive values of r, i.e. the two atoms of the �nite Markov partition. By
introducing the integral over negative r-values

I−2 =

∫ 0

−1

dr

∫ 2π

0

dψ v2(r, ψ) (86)

and analogously de�nining I+
2 , we obtain from Eq. (84)

I−2 =
I−2 + I+

2

4
+ S

I+
2 = −I

−
2 + I+

2

4
+ S (87)

where S is the integral of s(r, ψ).

S =

∫ 1

−1

dr

∫ 2π

0

dψ s(r, ψ) (88)

We thus eventually obtain
I2 = I−2 + I+

2 = S. (89)
It is now convenient to express s(r, ψ) as a function of v′1 only,

s(r, ψ) =
1

fr(r)

{
− bv′1 sinψ + δv′1 +

∆v′1 − 2cgr cos(ψ + α)

fr(r)
[v′1 + 2cg(r) sin(ψ + α)]

}
(90)

Upon integrating over ψ, we obtain,

S = πc2
∆

4

∫ 1

−1

dy[L2(y) +R2(y)]

−2πc2
∫ 1

0

dr (r2 − r) sin(∆r)
[
Lr(1− 2r) cosK −Rr(1− 2r) sinK

]

+πc2∆

∫ 1

0

dr (r2 − r) cos(∆r)
[
L(1− 2r) cosK −R(1− 2r) sinK

]

+πc2
∫ 1

0

dr (1− 2r) sin(∆r)
[
L(1− 2r) cosK −R(1− 2r) sinK

]
(91)

After integrating by parts the integral involving Lr and Rr and rescaling the dummy
variable, we �nally arrive at the desired result:

I2 = πc2
∆

4

∫ 1

−1

dy[L2(y) +R2(y)] + (92)

πc2
∫ 1

−1

dy sin
∆(1− y)

2
y
[
L(y) cosK −R(y) sinK

]
(93)
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