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AbstratThis paper is devoted to the two-sale homogenization for a lass of rate-indepen-dent systems desribed by the energeti formulation or equivalently by an evolution-ary variational inequality. In partiular, we treat the lassial model of linearizedelastoplastiity with hardening. The assoiated nonlinear partial di�erential inlu-sion has periodially osillating oe�ients, and the aim is to �nd a limit problemfor the ase that the period tends to 0.Our approah is based on the notion of energeti solutions whih is phrased interms of a stability ondition and an energy balane of an energy-storage funtionaland a dissipation funtional. Using the reently developed method of weak and strongtwo-sale onvergene via periodi unfolding, we show that these two funtionals havea suitable two-sale limit, but now involving the marosopi variable in the physialdomain as well as the mirosopi variable in the periodiity ell. Moreover, relyingon an abstrat theory of Γ-onvergene for the energeti formulation using so-alledjoint reovery sequenes it is possible to show that the solutions of the problem withperiodiity onverge to the energeti solution assoiated with the limit funtionals.1 IntrodutionOur aim is to provide homogenization results for evolutionary variational inequalities ofthe type:
∀ v ∈ Q : 〈Aq−ℓ(t), v − q̇〉 + R(v) − R(q̇) ≥ 0. (1.1)Here Q is a Hilbert spae with dual Q∗, the ontinuous linear operator A : Q → Q∗is symmetri and positive de�nite on the one on whih R is �nite. The foring ℓ liesin C1([0, T ],Q∗), and the dissipation funtional R : Q → [0,∞) is onvex, lower semi-ontinuous and positively homogeneous of degree 1, i.e., R(γq) = γR(q) for all γ ≥ 0 and

q ∈ Q. The latter property of R leads to rate independene.Problem (1.1) has many di�erent equivalent formulations. For our purposes the energetiformulation for rate-independent hysteresis problems is espeially appropriate, f. [MT99,MT04, Mie05℄. This formulation is solely based on the energy-storage funtional E :
[0, T ]×Q → R de�ned via E(t, q) = 1

2
〈Aq, q〉 − 〈ℓ(t), q〉 and the dissipation funtional R.Thus, homogenization of an evolutionary problem an be redued to some extent to thehomogenization of funtionals. A funtion q : [0, T ] → Q is alled an energeti solutionassoiated with the funtionals E and R, if for all t ∈ [0, T ] it satis�es the global stabilityondition (S) and the energy balane (E):(S) ∀ q ∈ Q : E(t, q(t)) ≤ E(t, q) + R(q−q(t));(E) E(t, q(t)) +

∫ 0

t
R(q̇(s))dt = E(0, q(0))−

∫ t

0
〈ℓ̇(s), q(s)〉ds.We also say that q solves the energeti formulation (S) & (E) assoiated with E and R.1



The purpose of this paper is to onsider a family of energy funtionals (Eε)ε and ofdissipation funtionals (Rε)ε whih are de�ned as integrals over a domain Ω ⊂ Rd andwhere the densities depend periodially on x with a period proportional to ε. Morepreisely, for a periodiity lattie Λ we denote by Y = Rd
/
Λ
the periodiity torus. For atensor-valued mapping A : Y → Lin(Rd×d

sym×Rm) and a funtion ρ : Y×Rm → R we de�nethe funtionals
Eε(t, u, z) =

∫
Ω

1
2

〈〈
A(x

ε
)
(

e(u)
z

)
,
(

e(u)
z

)〉〉
dx− 〈ℓ(t), u〉 and Rε(z) =

∫
Ω
ρ(x

ε
, z(x))dxon the spae Q = H1

ΓDir
(Ω)d×L2(Ω)m.The task is now to desribe the limiting behavior of the assoiated energeti solutions.Beause of the nonsmoothness and the hystereti behavior of the evolution of the sys-tems it will not be possible to �nd a homogenized limit equation in the lassial sense.This would mean to �nd limiting funtionals de�ned on Ω again. Instead we will needthe so-alled two-sale homogenization that deomposes solutions into marosopi andmirosopi behavior.The lassial notion of two-sale onvergene has been introdued by Nguetseng in 1989([Ngu89℄) and further developed by Allaire in 1992 ([All92℄). It was aimed at a betterdesription of sequenes of osillating funtions and thus at the derivation of a new ho-mogenization method. In [LNW02℄, an overview of the main homogenization problemswhih have been studied by this tehnique is given. This onept is now applied in avariety of quite di�erent appliations in ontinuum mehanis, see, e.g., [HJM94, Vis96,BLM96, Vis97, Alb00, EKK02, MS02℄. Moreover, even in engineering this method is usedextensively for numerial simulations. There the unit periodiity ell is usually alled a�representative unit ell�.To explain our results in some detail we introdue a few new notions. The two-salemethod relies on a miro-maro-deomposition of points x ∈ Rd via

x = Nε(x) + εRε(x) with Nε(x) = ε
[

x
ε

]
Λ
and Rε(x) =

{
x
ε

}
Y
,where [x̃]Λ is the losest lattie point to x̃ and {x̃}Y is the remainder, see Setion 2.1 forthe exat details. The deomposition of funtions is then done by the so-alled periodiunfolding introdued in [CDG02, CDD04, CDD06℄:

(Tεu)(x, y) = uex(Nε(x)+εy),where uex is the extention of u : Ω → R by 0 to all of Rd. Thus, funtions in Lp(Ω) aremapped to funtions U = Tεu ∈ Lp(Rd×Y).In Setion 2.2 we disuss this periodi unfolding operator together with a newly introduedfolding operator Fε : Lp(Rd×Y) → Lp(Ω), whih is a kind of pseudo inverse as well asthe adjoint operator (when taking the dual p). In partiular, we give speial are to theompliations arising from the mismath of Ω and a �nite union of small ells of the type
ε(λ+Y ).In Setion 2.3 we introdue our notion of weak and strong two-sale onvergene:

uε
w2
⇀ U ⇐⇒ Tεuε ⇀ Uex in Lp(Rd×Y),

uε
s2
−→ U ⇐⇒ Tεuε → Uex in Lp(Rd×Y).2



This de�nition is an adaptation of the de�nitions in [Vis04℄ to the ase that Ω has aboundary. Nevertheless, the onvergenes on the right-hand side are asked to our in
Lp(Rd×Y), sine the support of Tεu is in general not ontained in Ω×Y. We relate ourde�nitions to the ones whih are used in [Ngu89, All92, CD99, LNW02℄ and show that ourstrengthening makes many relations more natural. For instane, it is easy to show thatthe salar produt of a weakly two-sale onvergent family and of a strongly onvergentfamily onverges to the salar produt of the two limits.In Setion 2.4 we reall the lassial results on the two-sale limits of sequenes of gradientsand expliitly onstrut a gradient folding operator Gε : H1

0(Ω)×L2(Ω,H1
av(Y)) → H1

0(Ω)suh that for all (u0, U1) we have ∇Gε(u0, U1)
s2
−→ ∇xu0 + ∇yU1 and Gε(u0, U1) ⇀ u0 in

H1
0(Ω). Based on these results we provide the relevant two-sale Γ-limit results for thefuntionals Eε(t, ·) and Rε. Under simple additional assumptions, the two-sale limits are

E(t, u0, U1, Z) =
∫
Ω×Y

1
2

〈〈
A(y)

(
ex(u0)+ey(U1)

Z

)
,
(

ex(u0)+ey(U1)
Z

)〉〉
dydx− 〈ℓ(t), u0〉and

R(Z) =
∫
Ω×Y

ρ(y, Z(x, y))dydx.The onvergene of Eε and Rε to E and R an be seen as a type of two-sale Mosoonvergene, i.e., Γ-onvergene in the weak and in the strong topology, see [MRS06℄.Reovery sequenes (also alled realizing sequenes in [JKO94℄) in the strong two-saleonvergene sense are obtained via our expliit operators Fε and Gε.In Setion 3 we formulate our rate-independent evolution systems and we provide existeneand uniqueness theorems for energeti formulations assoiated with Eε and Rε on the onehand and with E and R on the other hand. The importane is that we obtain uniform apriori Lipshitz bounds for the energeti solutions qε = (uε, zε) : [0, T ] → Q. The solutions
Q = (u0, U1, Z) : [0, T ] → Q are de�ned on the spae Q = H×Z with

H = H1
ΓDir

(Ω)d×L2(Ω; H1
av(Y))d, Z = L2(Ω; L2(Y))m = L2(Ω×Y)m,with H1

av(Y) = {U ∈ H1(Y) |
∫

Y
U(y)dy = 0 }.The �nal Setion 4 establishes the relation between the solutions qε and Q. The mainresult is Theorem 4.3 and it states that if the initial data qε(0) strongly two-sale ross-onverge to Q0, written as qε(0)

s2c
−→ Q0 and de�ned as

uε ⇀ u0 in H1
ΓDir

(Ω)d, ∇uε
s2
−→ ∇xu0+∇yU1 in L2(Ω,H1

av(Y)), zε
s2
−→ Z in L2(Ω×Y),then for all t ∈ [0, T ] we have qε(t) s2c

−→ Q(t) where Q is the unique energeti solutionassoiated with E and R with the initial value Q(0) = Q0. In terms of evolutionaryvariational inequalities this means that the solutions qε = (uε, zε) of
〈DEε(t, qε), v−q̇ε〉 + Rε(v) − Rε(q̇ε) ≥ 0 for all v ∈ Qstrongly two-sale ross-onverge to the solution Q = (u0, U1, Z) of
〈DE(t, Q), V−Q̇〉 + R(V ) − R(Q̇) ≥ 0 for all V ∈ Q,if the initial onditions satisfy qε(0)

s2c
−→ Q(0) for ε→ 0.3



The ruial tool for proving this onvergene is the abstrat Γ-onvergene theory de-veloped in [MRS06℄. The main di�ulty in the theory is to show that weak (two-sale)limits of stable states are again stable. In [MRS06, Eqn. (2.16)℄ a su�ient ondition isprovided that asks for the existene of a joint reovery sequene (q̂ε)ε suh that
lim sup

ε→0
Eε(t, q̃ε)+Rε(z̃ε−zε)−Eε(t, qε) ≤ E(t, Q̃)+R(Z̃−Z)−E(t, Q) and q̃ε

w2c
⇀ Q̃,where qε is a given family of stable states with qε w2c

⇀ Q and Q̃ is an arbitrary test state,f. Prop. 4.5. In our situation this ondition an be ful�lled by exploiting the quadratinature of the energies, whih leads to some anellation of di�erenes of the energies,namely Eε(t, q̃ε)−Eε(t, qε) onverges to E(t, Q̃)−E(t, Q), if qε w2c
⇀ Q and q̃ε−qε s2c

−→ Q̃−Qstrong. Here it is important that our notion of weak and strong onvergene allows us toonlude onvergene of salar produts, see Prop. 2.4(d).As far as we know, this is the �rst homogenization work for a nonlinear and nonsmoothevolutionary problems exept for [Nes06℄. The latter work treats more general evolu-tion laws and is not restrited to the rate-independent setting. However, it is morerestritive in the onstitutive laws and proves the onvergene only in an averaged senseover mirosopi phase shifts of the ells. Similar variational inequalities are treated in[CPS04, Yos01℄, but with di�erent onstraints and without time dependene.We hope that our methods simplify and larify the theory of two-sale onvergene andthus provide ideas and tools for solving more general problems.2 Two-sale onvergeneWe reall here the de�nition of the two-sale onvergene and several important resultsonerning this notion (see [Ngu89, All92, CD99, LNW02℄). In partiular, the presentedresults are based on [CDG02, Vis04℄, where the notions of periodi unfolding (also alled`two-sale deomposition' in the latter work) and periodi folding, whih is alled `averag-ing operator' in [CDG02, Set. 5℄. In the following subsetions we take speial are of theproblems that are assoiated with the fat that we want to work on a bounded domain Ωand that this is only approximately ompatible with mirosopi periodiity. This givesrise to a ertain notational ompliation but allows us a very preise and e�ient de�ni-tion of weak and strong two-sale onvergene in Setion 2.3. Note also Example 2.7 thatshows that this speial are is neessary to avoid problems at the boundary.2.1 Basi de�nitions of the two-sale variablesLet d ∈ N be the spae dimension. The periodiity in Rd is expressed by a d-dimensionalperiodiity lattie
Λ = { λ =

∑d
j=1 kjbj | k = (k1, k2, ..., kd) ∈ Zd },where {b1, ..., bd} is an arbitrary basis in Rd. The assoiated unit ell is Y = { x =∑d

1 γjbj | γj ∈ [−1/2, 1/2) } ⊂ Rd, suh that Rd is the disjoint union of the translated4



ells λ+Y , if λ ranges all of Λ. Following [Vis04℄, we distinguish the unit ell from theperiodiity ell Y, whih is obtained by identifying the opposite faes of Y , or we may set
Y = Rd/Λ. Thus, Y has the struture of a torus. For most appliations one may assumethat Λ = Zd, Y = [−1/2, 1/2)d, and Y = Rd/Zd = Td, the d-dimensional standard torus.However, our theory overs the general ase. Yet, we will be slightly inonsistent and use
y to denote elements of Y and Y simultaneously by relying on the natural identi�ationbetween y+Λ ∈ Y and y ∈ Y .On Rd we de�ne the mappings [ · ]Λ and {·}Y suh that

[ · ]Λ : Rd → Λ, {·}Y : Rd → Y, x = [x]Λ + {x}Y for all x ∈ Rd.We also use the notation { · }
Y
suh that {x}

Y
= xmodΛ ∈ Y. Obviously a funtion fde�ned on Rd is Λ-periodi if f(x) = f({x}Y ) for x ∈ Rd and we may identify f witha funtion f̃ de�ned on Y. Note that Lp(Y ) and Lp(Y) may be identi�ed in ontrast to

Ck(Y ) and Ck(Y) = Ckper(Y ). Similarly, we use H1(Y) = H1per(Y ), whih is di�erent from
H1(Y ). A non-standard spae, whih we will need in the sequel, is

H1
av(Y) := { f ∈ H1(Y) |

∫
Y
f(y)dy = 0 }. (2.1)We now introdue a small length-sale parameter ε > 0 and want to study funtions whihhave fast periodi osillations on the mirosopi periodiity ell εY . We deompose thepoints x ∈ Ω ⊂ Rd suh that

x = Nε(x) + εRε(x) with Nε(x) = ε
[

x
ε

]
Λ
and Rε(x) =

{
x
ε

}
Y
.Thus, Nε ∈ εΛ denotes the marosopi enter of the small ell Nε(x)+εY that ontains

x and Rε denotes the �ne-sale part of x. With this we de�ne a deomposition map Dεand a omposition map Sε (f. [Vis04℄) as follows
Dε :

{
Rd → Rd×Y

x 7→ (Nε(x),Rε(x))
Sε :

{
Rd×Y → Rd,

(x, y) 7→ Nε(x)+εy,where in the last sum some y ∈ Y is identi�ed with y ∈ Y ⊂ Rd. For the onstrutionof periodi unfolding operator and folding operator in the next subsetion, the followingsimple properties of Dε and Sε are essential:
Dε(Sε(x, y)) = (Nε(x), y) and Sε(Dε(x)) = x for all (x, y) ∈ Rd×Y. (2.2)If Ω does not oinide with Rd then ertain tehnialities arise from the fat that theimage of Dε is not ontained in Ω×Y. Similarly, we note that Sε(Ω×Y) is not ontainedin Ω. To handle this, we introdue, for a �xed open domain Ω, the following subsets of Λ:

Λ−
ε = { λ ∈ Λ | ε(λ+Y ) ⊂ Ω } and Λ+

ε = { λ ∈ Λ | ε(λ+Y ) ∩ Ω 6= ∅ }.Using this, we de�ne the domains Ω−
ε and Ω+

ε via Ω±
ε = int

(
∪λ∈Λ±

ε
ε(λ+Y )

). Clearly,we have Ω−
ε ⊂ Ω ⊂ Ω+

ε . Moreover, we have [Ω±
ε ]±ε = Ω±

ε , Ω ⊂ Nεdiam(Y )(Ω
−
ε ) and Ω+

ε ⊂
Nεdiam(Y )(Ω), where diam(Y ) is the diameter of Y and Nδ(A) denotes the δ-neighborhoodof the set A. 5



Moreover, we set [Ω×Y]ε = S−1
ε (Ω) = { (x, y) | Sε(x, y) ∈ Ω } and note the relations

Ω−
ε ×Y ⊂ [Ω×Y]ε ⊂ Ω+

ε ×Y, (2.3)whih will signi�antly be used later on. From now on we will assume that Ω satis�es
Ω is open and bounded and |∂Ω| = 0. (2.4)This guarantees that |Ω\Ω−

ε |+ |Ω+
ε \Ω| → 0 for ε→ 0 whih will be used later. To see this,denote by φε the harateristi funtion of the set Nε diam(Y )(∂Ω), then Ω\Ω−

ε ∪ Ω+
ε \Ω ⊂

Nεdiam(Y )(∂Ω) and for all x 6∈ ∂Ω we have φε(x) → 0 for ε → 0. Hene, we onlude
|Ω\Ω−

ε | + |Ω+
ε \Ω| ≤ |Nεdiam(Y )(∂Ω)| =

∫
Rd φε dx → 0 for ε → 0. The seond ondition in(2.4) is ertainly satis�ed, if Ω has a Lipshitz boundary.2.2 Folding and periodi unfolding operatorsThe notion of two-sale onvergene is intrinsially linked with a suitable �two-sale em-bedding� of the funtion spae Lp(Ω) into the two-sale spae Lp(Ω×Y). Suh a mappingwill be alled a periodi unfolding operator. Moreover, for a two-sale funtion U de�nedon Ω×Y it is desirable to �nd a funtion uε de�ned on Ω that has the orresponding mi-rosopi behavior. A mapping from the two-sale spae into the original funtion spae

Lp(Ω) will be alled a folding operator.The natural andidate for the periodi unfolding operator was introdued in [CDG02℄ andreads
Tε : Lp(Ω) → Lp(Rd×Y); v 7→ vex ◦ Sε, (2.5)where vex ∈ Lp(Rd) is obtained from v by extending it by 0 outside of Ω. By de�nition,we immediately have the produt rule:

1
p

+ 1
q

= 1
r
≤ 1, u ∈ Lp(Ω), v ∈ Lq(Ω) =⇒ Tε(uv) = (Tεu) (Tεv) ∈ Lr(Ω×Y). (2.6)In general, the support of Tεv is [Ω×Y]ε whih is not ontained in Ω×Y. This disrepanyin support is the main reason why we repeat the de�nitions of the operators and thedi�erent versions of two-sale onvergene in detail. Most previous work either deals with

Ω = Rd or is not very preise about the supports. However, as was noted in [LNW02℄,see also our Examples 2.3 and 2.7, we need to be areful here.A variant of Tε that maps ontinuous funtions u into ontinuous ones an be found in[Vis04℄.As andidates for folding operators simple hoies are given in the form
F̂ε : F(Ω×Y) → F(Rd); U 7→ U ◦ Dε, and Fε : F(Ω×Y) → F(Rd); U 7→ U ◦Dε, (2.7)where Dε is the simple deomposition Dε : x 7→ (x,

{
x
ε

}
Y
). Both of these hoies arenot suitable, if for the funtion spae �F� we hoose Lp sine the image of Ω under Dεand Dε, respetively, is a set of measure 0 in Rd×Y. However, the folding operator Fε iswell-de�ned as a mapping from Ck(Rd×Y) into Ck(Rd) and has the big advantage that theimage of Ω×Y under Dε is equal to Ω. In fat, this is the basis of the lassial de�nitionof two-sale onvergene, see (2.9). 6



The main point in this subsetion is that we use a very partiular folding operator Fεthat is well adapted to the lassial Lp-spaes, namely
Lp(Ω×Y) = Lp(Ω; Lp(Y)) = Lp(Y; Lp(Ω)) for p ∈ [1,∞).These are the relevant ones for ellipti partial di�erential equations and our aim is toavoid spaes involving ontinuous funtions like Lp(Ω,C(Y)) (on whih F̂ε is well-de�ned).Our folding operator is a variant of the averaging operator Uε de�ned in [CDG02, Set. 5℄,sine we take speial are on the domain Ω.On Lp(Rd×Y) we �rst de�ne the lassial projetor to pieewise onstant funtions oneah ε(λ+Y ) via

(PεU)(x, y) = −

∫

Nε(x)+εY

U(ξ, y)dξ,where −∫
A
denotes the average over A, i.e., −∫

A
g(a)da = 1

|A|

∫
A
g(a)da. Clearly (Pε)

2 = Pε,
‖PεU‖p ≤ ‖U‖p, and PεU → U in Lp(Ω×Y) for all U ∈ Lp(Ω×Y).Our folding operator Fε is now de�ned as follows:

Fε : Lp(Rd×Y) → Lp(Ω); U 7→ Pε(χεU) ◦ Dε)|Ω with χε = χ[Ω×Y]ε. (2.8)Note that the folding operator is de�ned for funtions on the full spae Rd×Y and takesvalues in the funtions on Ω. The onstrution with the harateristi funtion χε :
Rd×Y → {0, 1} guarantees that satis�es χε = Pεχε and sppt(χε ◦ Dε) = Ω, whih followsfrom the de�nition of [Ω×Y]ε and from (2.2).The following proposition summarizes the properties of the folding operator and the pe-riodi unfolding operator. We restrit ourselves to the ase p ∈ (1,∞), and leave theobvious generalizations for p = 1 and p = ∞ to the reader. In fat, in our appliation wewill only use p = p′ = 2, whih is espeially nie.Proposition 2.1 Let p ∈ (1,∞) and p′ = p/(p−1). Then, the folding operator Fε :
Lp(Rd×Y) → Lp(Ω) and the periodi unfolding operators Tε : Lp(Ω) → Lp(Rd×Y) and
T̃ε : Lp′(Ω) → Lp′(Rd×Y) satisfy(a) ‖Tεu‖Lp′(Rd×Y) = ‖u‖Lp′(Ω) and sppt(Tεu) ⊂ [Ω×Y]ε for all u ∈ Lp′(Ω);(b) ‖FεU‖Lp(Ω) ≤ ‖U‖Lp(Rd×Y) for all U ∈ Lp(Rd×Y);() Fε is the adjoint of T̂ε, i.e., Fε =

(
T̂ε

)′;(d) Fε ◦ Tε = idLp(Ω) and (Tε ◦ Fε)
2 = Tε ◦ Fε = χεPε.All these identities an be obtained by elementary alulations via deomposing Rd into

∪λ∈Λε(λ+Y ).2.3 Weak and strong two-sale onvergeneFollowing [Ngu89, All92, CD99, LNW02℄ a family (uε)ε in Lp(Ω) is alled two-sale onver-gent to a funtion U ∈ Lp(Ω×Y) and write uε
2
⇀ U , if for all test funtions ψ : Ω×Y → Rwe have

lim
ε→0

∫

Ω

uε(x)ψ(x,
{

x
ε

}
Y
)dx =

∫

Ω

∫

Y

U(x, y)ψ(x, y)dydx for all ψ ∈ Ψ. (2.9)7



The hoie of the set of test funtions Ψ is important here, f. [LNW02℄. The weakestnotion ours if we take Ψ = C∞
c (Ω×Y), whih orresponds to a kind of distributionalonvergene. If p′ = p/(p−1) denotes the dual exponent to p ∈ (1,∞), the hoie Ψ =

Lp′(Ω,C(Y)) is advoated in [LNW02℄, sine it guarantees weak onvergene of (uε)ε to∫
Y
U(·, y) dy in Lp(Ω). Note that two-sale onvergene an also be de�ned using thefolding operator Fε de�ned in (2.7)

uε
2
⇀ U ⇐⇒ 〈uε, Fεψ〉Ω = 〈uε, ψ◦Dε〉Ω → 〈U, ψ〉Ω×Y.Here we follow the notions from [Vis04℄, but modify them to �t the ase Ω ( Rd, forde�ning weak and strong two-sale onvergene via the periodi unfolding operators Tε.De�nition 2.2 Let (uε)ε∈(0,ε0) be a family in Lp(Ω) with p ∈ (1,∞).(a) We say that uε weakly two-sale onverges to U ∈ Lp(Ω×Y) andwrite �uε

w2
⇀ U in Lp(Ω×Y)�, if Tεuε ⇀ Uex in Lp(Rd×Y).(b) We say that uε strongly two-sale onverges to U ∈ Lp(Ω×Y) andwrite �uε
s2
−→ U in Lp(Ω×Y)�, if Tεuε → Uex (strongly) in Lp(Rd×Y).As the supports of Tεuε are ontained in [Ω×Y]ε ⊂ Ω+

ε ×Y, it is lear that any possibleaumulation point U of (Tε)ε has its support in Ω×Y. Beause of |∂Ω| = 0 we have
Lp(Ω×Y) = Lp(Ω×Y) and hene aumulation points of (Tεuε)ε an be uniquely desribedby elements in Lp(Ω×Y). Nevertheless, it is important that our de�nition involves aonvergene statement in Lp(Rd×Y), i.e., we need to onsider funtions outside of Ω×Y.If the onvergene was only asked for the restritions on Ω×Y, then di�erent notionswould our.Example 2.3 We hoose Ω = (0, 1) and Y = [0, 1). Along the sequene εk = (k3−1)/k4 →
0 we onsider the funtions

uεk
(x) = ak for x ∈ (1−1/k2, 1) and 0 otherwise,whih satisfy ‖uεk

‖L2(Ω) = |ak|/k. The periodi unfolding Uk = Tεk
uεk

∈ L2(R×Y) reads
Uk(x, y) = ak if (

x ∈ (1−1/k2, 1+(k−1)/k2) and y ∈ (0, 1/k)
) and 0 else.The support of Uk only has a small part in Ω×Y while the most part is in (Ω+

εk
\ Ω)×Y.Hene, Uk

∣∣
Ω×Y

has a muh smaller norm, namely ‖Uk

∣∣
Ω×Y

‖L2(Ω×Y) = |ak|/k3/2. Thus, for
ak = o(k3/2) we have Uk

∣∣
Ω×Y

→ 0 strongly in L2(Ω×Y) whih implies uk
2
⇀ 0 in L2(Ω×Y).However, uεk

w2
⇀ U holds if and only if ak = O(k) and then U ≡ 0. Moreover, uεk

s2
−→ U ifand only if ak = o(k) and U ≡ 0 then.Using the fat that the folding operator is the adjoint of the periodi unfolding operator,we may equivalently de�ne weak two-sale onvergene in a way similar to the lassialde�nition (2.9), namely

uε
w2
⇀ U in Lp(Ω×Y) ⇐⇒ ∀V ∈ Lp′(Ω×Y) :

∫
Ω
uε FεV dx →

∫
Ω

∫
Y
U V dydx. (2.10)8



Note that we have simply replaed the folding operator Fε : U 7→ U◦Dε by the moresophistiated version Fε that allows us to take general Lp funtions. Moreover, the testfuntions V are allowed to have a support bigger than Ω×Y. As we are interested in
ε→ 0, it su�es to onsider V ∈ Lp′(Nδ(Ω)×Y) for any δ > 0, whereas δ = 0 will lead toa stritly weaker notion of onvergene.The de�nitions of weak and strong two-sale onvergene are obtained by transferringonvergene to the lassial weak and strong onvergenes in the lassial spae Lp(Ω×Y).Proposition 2.4 Let p ∈ (1,∞) and p′ = p/(p−1) and assume that Ω satis�es (2.4).(a) If uε

w2
⇀ U in Lp(Ω×Y), then ‖uε‖Lp(Ω) is bounded for ε→ 0.(b) If uε
w2
⇀ U in Lp(Ω×Y), then uε

2
⇀ U . (The reverse impliation is in general not true).() If uε

w2
⇀ U and ‖uε‖Lp(Ω) → ‖U‖Lp(Ω×Y), then uε

s2
−→ U .(d) If uε

w2
⇀ U in Lp(Ω×Y) and vε

s2
−→ V in Lp′(Ω×Y), then 〈uε, vε〉Ω → 〈U, V 〉Ω×Y.(e) For eah U ∈ Lp(Ω×Y) there exists a family (uε)ε suh that uε

s2
−→ U in Lp(Ω×Y)(simply take uε = FεUex).(f) For eah w ∈ Lp(Ω) we have Tεw

s2
−→ Ew in Lp(Ω×Y),where E : Lp(Ω) → Lp(Ω×Y) is de�ned via Ev(x, y) = v(x).(g) For p ∈ (1,∞), q ∈ (1,∞] and 1

p
+ 1

q
= 1

r
,let uε

w2
⇀ U in Lp(Ω×Y) and vε

s2
−→ V in Lq(Ω×Y), then uεvε

w2
⇀ UV in Lr(Ω×Y).If additionally uε

s2
−→ U in Lp(Ω×Y), then uεvε

s2
−→ UV in Lr(Ω×Y).Proof: Parts (a), (), (d), and (g) are immediate onsequenes of the orrespondingresults of weak and strong onvergene in Lp(Ω×Y).Property (b) will be a onsequene of Prop. 2.5 below.Property (e) follows as the projetor Pε on Lp(Ω×Y) satis�es PεU → U and the hara-teristi funtion χε (f. (2.8)) onverges pointwise a.e. to χΩ×Y.For property (f) we use the fat that the unfolding operators Tε have norm 1 and thatfor w ∈ C1(Ω) some alulation gives ‖Tεw − Ew‖Lp(Ω×Y) ≤ 2 diamY ε |Ω|1/p‖∇w‖L∞.However, beause of (2.4) the smooth funtions are dense and the assertion follows.In fat, the di�erene between 2

⇀ and w2
⇀ disappears, if we a priori impose boundednessof the sequene.Proposition 2.5 Let (uε)ε be a bounded family in Lp(Ω) with p ∈ (1,∞). Then, thefollowing statements are equivalent:(i) uε

2
⇀ U in Lp(Ω×Y), (ii) Tεuε

∣∣
Ω×Y

⇀ U in Lp(Ω×Y), (iii) uε
w2
⇀ U in Lp(Ω×Y).Proof: For the equivalene between (i) and (ii) see [LNW02, CDD06℄. The de�nitionof w2

⇀ shows that (iii) implies (ii). Moreover, using (2.10) and the boundedness of (uε)ε itis su�ient to show ∫
Ω
uεFεV dx →

∫
Ω

∫
Y
UV dy dx on the dense subset Ψ = C∞

c (Ω×Y).However, on Ψ we have ‖Fεψ−Fεψ‖Lp(Ω) = O(ε) and thus (i) implies (iii).9



The next result provides an improvement of part (g) in Prop. 2.4.Proposition 2.6 Let p ∈ [1,∞) and let (uε)ε
s2
−→ U in Lp(Ω×Y). Moreover, onsidera bounded sequene (mε)ε in L∞(Ω) suh that Tεmε(x, y) → M(x, y) for a.e. x ∈ Ω×Y.Then, mεuε

s2
−→MU in Lp(Ω×Y).Proof: By the assumption, Uε = Tεuε is bounded in Lp(Ω×Y) and hene there is asubsequene and a majorant g ∈ Lp(Ω×Y) suh that |Uεk

(x, y)| ≤ g(x, y) and Uεk
(x, y) →

U(x, y) a.e. in Ω×Y. Beause of the assumptions on mε we �nd that Tεk
(mεk

Uεk
) =

Tεk
mεk

Tεk
Uεk

also has a joint majorant and onverges pointwise a.e. From this we onlude
Tεk

mεk
Uεk

⇀ MU in Lp(Ω×Y). Sine the limit of all subsequenes is the same the usualontradition argument provides the onvergene of the whole family.The following example shows that the statement in Prop. 2.4(d) is not true if we do notinsist on the onvergene of Tεuε and Tεvε in Lp(Rd×Y). In [LNW02, Thm. 11℄ a relatedresult to () is proved, namely ∫
Ω
τuεvε dx →

∫
Ω
τ

∫
Y
UV dy dx for all τ ∈ C∞

c (Ω), wherethe ut-o� funtion τ that is 0 near the boundary ∂Ω is needed to ompensate for theusage of the weaker notion of two-sale onvergene 2
⇀ de�ned in (2.9). In [LNW02,Thm. 11℄ strong two-sale onvergene is impliitly de�ned by two-sale onvergene 2

⇀and additional norm onvergene, see Prop. 2.4().Example 2.7 We take Ω = (0, 1), Y = [0, 1), εk, and uεk
as in Example 2.3. Moreover,we let ak = k and vεk

= uεk
. Obviously, we have ∫

uεk
vεk

dx = ‖uεk
‖2

L2(Ω) = 1. However,as shown above we have Tεk
uεk

∣∣
Ω×Y

→ UΩ ≡ 0 in L2(Ω×Y). Hene, Prop. 2.4(d) does nothold for the limits UΩ and VΩ de�ned in Lp(Ω×Y) only.2.4 Two-sale onvergene of gradientsWe now deal with bounded sequenes in W1,p(Ω). The two-sale onvergene for theassoiated gradients provides an additional struture. To formulate the result we de�ne
W1,p

av (Y) = {w ∈ W1,p(Y) |

∫

Y

w(y)dy = 0 }and note that Lp(Ω; W1,p
av (Y)) is the set of funtions V in Lp(Ω×Y) = Lp(Ω; Lp(Ω)) suhthat ∫

Y
V (x, y) dy = 0 for a.a. x ∈ Ω and that ∇yV (in the sense of distributions) liesagain in Lp(Ω×Y).Theorem 2.8 Let (vε)ε be a sequene in W1,p(Ω) suh that vε ⇀ v0 weakly in W1,p(Ω),where p ∈ (1,∞). Then vε

s2
−→ Ev0 in Lp(Ω×Y), and there exist a subsequene (vε′)ε′ anda funtion V1 ∈ Lp(Ω; W1,p

av (Y)) suh that
∇vε′

w2
⇀ E∇xv0 + ∇yV1.10



Proof: Sine vε ⇀ v0 weakly in W1,p(Ω) implies by the ompat embedding that vε → v0(strongly) in Lp(Ω). Now using Propositions 2.1(a) and 2.4 we have ‖Tεvε − Ev0‖p ≤

‖Tε(vε−v0)‖p + ‖Tεv0 −Ev0‖p → 0. Thus, vε
s2
−→ Ev0 is established.The weak two-sale onvergene of the gradients along a subsequene an be dedued byexploiting the orresponding result from the lassial two-sale onvergene, see [Ngu89,All92℄. Sine weak onvergene in W1,p(Ω) implies boundedness of the gradients, thedesired result follows using Prop. 2.5.Like for the strong two-sale onvergene for funtions we also need a density resultfor gradients onverging in the two-sale sense. These results will be used to onstrutreovery sequenes for the Γ limits below. We �rst provide an expliit onstrution thatis based on a smoothing proedure using the heat kernels for Rd and Y. After that weprovide a seond onstrution whih is based in ideas in [Vis04℄ and involves the solutionsof ellipti problems.Proposition 2.9 Let p ∈ (1,∞) and Ω ⊂ Rd as above. Then, for every funtion

(u0, U1) ∈ W1,p(Ω)×Lp(Ω; W1,p
av (Y)) there exists a family (uε)ε in W1,p(Ω) suh that uε ⇀

u0 in W1,p(Ω) and that ∇uε
s2
−→ E∇u0 + ∇yU1.Proof: It is su�ient to prove the result for u0 ≡ 0, sine we may shift any sequene by

u0. Note that by Prop. 2.4(f) we have Tε∇u0
s2
−→ E∇u0.Hene it su�es to �nd for eah V1 ∈ Lp(Ω; W1,p
av (Y)) a family (vε)ε suh that

vε ⇀ 0 in W1,p(Ω) and ∇vε
s2
−→ ∇yV1 in Lp(Ω×Y).For this we use the heat kernels HRd and HY de�ned via

HRd(t, ξ) = 1
(4πt)d/2 exp

(
|ξ|2/(4t)

) and HY(t, η) =
∑

λ∈ΛHRd(t, η+λ).For t > 0 we now de�ne the funtions
V (t, x, y) =

∫
Rd

∫
Y
HRd(t, x−ξ)HY(t, y−η)(V1)ex(ξ, η)dηdξ. (2.11)The lassial semigroup theory for the paraboli equation ∂tV = ∆RdV + ∆YV implies

V (t, ·) ∈ C∞(Rd×Y) for t > 0 and
∀α, β ∈ Nd

0 ∃Cα,β > 0 ∀ t > 0 : ‖Dα
xDβ

yV (t, ·)‖Lp(Rd×Y) ≤ C / t(|α|+|β|)/2,

δ(t) = ‖∇yV (t, ·) −∇yV1‖Lp(Rd×Y) → 0 for tց 0.We now de�ne the two-sale funtion v(ε, t, ·) ∈ W1,p(Ω) via v(ε, t, x) = ε V (t, x,
{

x
ε

}
Y
).We will hoose t = tε suitably to de�ne vε = v(ε, tε, ·). As a �rst result we obtain

‖vε‖Lp(Ω) ≤ ε|Ω|1/p‖V (tε, ·)‖C0(Ω×Y) ≤ εCSob‖V (tε, ·)‖Wk,p(Ω×Y) ≤ Cεt−k/2
ε ,where k > (d+d)/p and CSob is the orresponding embedding onstant for Wk,p(Ω×Y)into C0(Ω×Y). Below we will hoose tε suh that ε t−k/2

ε → 0 for ε → 0 and thus weonlude vε → 0 in Lp(Ω). 11



For the gradients we obtain ∇vε(ε, x) = ε∇xV (tε, x,
{

x
ε

}
Y
) + ∇yV (tε, x,

{
x
ε

}
Y
). Using

‖Tε∇vε −∇yV1‖Lp(Ω×Y) ≤ ‖Tεvε −∇yV (tε, ·)‖Lp(Ω×Y) + δ(tε) with δ(tε) → 0 and realling
Tεu(x, y) = (u ◦ Sε)(x, y) = u(Nε(x)+εy) it su�es to estimate

|(Tε∇vε)(x, y) − V (tε, x, y)|

≤ ε|∇xV (tε,Nε(x), y)| + |∇yV (tε,Nε(x), y) −∇yV (tε, x, y)|

≤ ε‖∇xV (tε, ·)‖C0(Ω×Y) + εdiam(Y )‖∇x∇yV (tε, ·)‖C0(Ω×Y)

≤ C1εCSob‖V (tε, ·)‖Wk+2,p(Ω×Y) ≤ C2ε t
−(k+2)/2
ε .Letting tε = εγ with γ ∈ (0, 2/(2+k)) we obtain Tεvε ⇀ V1 in Lp(Ω×Y) and the result isproved.The seond onstrution is more diret and allows us to do unfolding and folding as well.It is based on [Vis04, Thm. 6.1℄ but we take are of the problems with the boundary ∂Ω.For simpliity, we restrit to the ase p = 2 and assume Dirihlet boundary onditions.We de�ne the intermediate spae L = L2(Ω)×L2(Rd×Y)d, the two-sale Hilbert spae

H = H1
0(Ω)×L2(Rd,H1

av(Y)), and the two norm-preserving linear operators
Tε :

{
H1

0(Ω) → L,

u 7→ (u, Tε∇u),
Fε :

{
H → L,

(u0, U1) 7→ (u0, (E∇xu0+∇yU1)ex),For norm-preservation of Fε we equip H1
av(Y) with the norm ‖U1‖2

H1
av(Y) = ‖∇yU1‖L2(Y).In partiular the images X ε

T
:= TεH

1(Ω) and X ε
F

= FεH are losed subspaes of L2
av(Y).We let Qε

T
and and Qε

F
be the orthogonal projetions onto X ε

T
and X ε

F
, respetively. Then,we are able to de�ne a gradient unfolding operator T (1)

ε = F−1
ε Qε

F
Tε : H1

0(Ω) → H and agradient folding operator Gε via
Gε :

{
H → H1

0(Ω),

(u0, U1) 7→ T−1
ε

(
Qε

T

(
Fε(u0, U1)

))
.

(2.12)As the operators T (1)
ε and Gε are ompositions of norm-preserving operators and orthog-onal projetions they have a norm not exeeding 1. The following result shows that thede�nition of Gε is suh that it relates to solving an auxiliary ellipti problem and that itprovides a reovery sequene with strongly two-sale onvergent gradients.Proposition 2.10 For given (u0, U1) ∈ H the funtion Gε(u0, U1) is uniquely harater-ized as the solution v ∈ H1

0(Ω) of the weak ellipti problem
∫

Ω

(v − u0)w +
(
∇v − Fε(E∇xu0+∇yU1)

)
· ∇wdx = 0 for all w ∈ H1

0(Ω). (2.13)Moreover, for ε→ 0, we have the onvergenes
Gε(u0, U1) ⇀ u0 in H1

0(Ω) and ∇Gε(u0, U1)
s2
−→ E∇xu0 + ∇yU1 in L2(Ω×Y). (2.14)

12



Proof: At �rst, we �x ε and let v = Gε(u0, U1) is suh that Tεv is the orthogonalprojetion of Fε(u0, U1) onto X ε
T

= TεH
1(Ω). Denoting by 〈·, ·〉L the salar produt in Lthis means that for all w ∈ H1

0(Ω) we have
0 = 〈 Tεv − Fε(u0, U1) ,Tεw〉L

=
∫
Ω
(v − u0)wdx+

∫
Rd×Y

(Tε(∇v) −∇xu0 −∇yU1) · Tε(∇w)dydx

=
∫
Ω
(v − u0)wdx+

∫
Ω
(∇v) · (∇w)dx−

∫
Ω
Fε(∇xu0+∇yU1) · ∇wdx.Here we use the de�nitions of Tε and Fε as well as the properties of Tε in Prop. 2.1(a)and (). Clearly the last line give (2.13).To show the desired onvergene we reall that the operators Gε : H → H1(Ω) have anorm bounded by 1. Hene, it su�es to proof the desired onvergene on a dense subset,namely C = C2

c(Ω)×C2
c(Ω×Y). For (u0, U1) ∈ C we write uε = (Gε(u0, U1)) in the form

uε(x) = vε(x) + gε(x) with vε(x) = u0(x) + ε U1(x,
{

x
ε

}
Y
),where gε is the solution of the weak ellipti problem

∫
Ω
gεw + ∇gε · ∇wdx = ℓε(w) for all w ∈ H1

0(Ω),where ℓε(w) =
∫
Ω
(u0−vε)w +

(
Fε(E∇xu0+∇yU1) −∇vε

)
· ∇wdx.

(2.15)Clearly, the family (vε)ε∈(0,1) is bounded in H1
0(Ω). Moreover, we have ‖u0−vε‖L∞ ≤

C1ε whih implies vε ⇀ u0 in H1
0(Ω). Using ∇vε(x) = ∇u0(x) + ∇yU1(x,

{
x
ε

}
Y
) +

ε∇xU1(x,
{

x
ε

}
Y
) and (u0, U1) ∈ C we have ‖Tε∇vε − (E∇xu0−∇yU1)ex‖L2(Rd×Y) ≤ C2ε,i.e., ∇vε

s2
−→ E∇xu0−∇yU1 in L2(Ω×Y).Hene, it su�es to show ‖gε‖H1(Ω) → 0, as this implies ∇gε

s2
−→ 0 in L2(Ω×Y). From(2.15) we have

‖gε‖2
H1(Ω) ≤ ‖(u0−vε,Fε(E∇xu0+∇yU1) −∇vε)‖2

L

= ‖u0−vε‖2
L2(Ω) + ‖E∇xu0+∇yU1) − Tε∇‖2

L2(Rd×Y)
≤ C3ε

2.This �nishes the proof of the onvergene result (2.14).Finally, let us note that we may extend the onstrution to funtions u, u0 ∈ H1(Ω),namely without Dirihlet boundary onditions. In fat, for u0 ∈ H1(Ω) we obtain a reov-ery sequene uε = u0 + Gε(0, U1) by simply employing the above result and Prop. 2.4(f).2.5 Two-sale Γ-limitsWe now disuss the question how funtionals behave under two-sale onvergene. Thisrelates strongly to the question of homogenization. The two-sale onvergene results wepresent here are well-known in the literature, but often they are not easily aessible.Thus, we repeat here some simple versions whih an be easily dedued by our theory andwhih are su�ient for our appliation in the next setion. For more advaned results werefer to [All92, CD99, CDD06℄. 13



Let W : Y×Rm → R∞ := R∪{∞} be a normal integrand, whih means that for eah
u ∈ Rm the funtion y 7→ W (y, u) is measurable and that for a.e. y ∈ Y the funtion
u 7→ W (y, u) is lower semi-ontinuous. Realling our de�nitions of Tε, Fε, and of [Ω×Y]ε(f. the line above (2.3)) we obtain the following entral formulas

∫
Ω
W

({
x
ε

}
Y
, u(x)

)
dx =

∫
[Ω×Y]ε

W (y, Tεu (x, y))dydx for all u ∈ Lp(Ω). (2.16)This identity follows by a simple deomposition of Ω+
ε into small ells Nε(ξ)+εY andusing the de�nition of Tε.The next two lemmas are the basis of the two-sale Γ-onvergene for the funtionals

Wε:





Lp(Ω)→ R∞,

u 7→
∫
Ω

W (
{

x
ε

}
Y
, u(x))dx and W :





Lp(Ω×Y)→ R∞,

U 7→
∫

Ω×Y

W (y, U(x, y))dydx.Lemma 2.11 Assume that p ∈ (1,∞), that Ω is as above, and that W : Y×Rm → R∞ isa onvex normal integrand, i.e., W (y, ·) : Rm → R∞ is onvex for a.e. y ∈ Y. Moreover,let W be bounded from below by W (y, u) ≥ −h(y) for a.e. y ∈ Y with h ∈ L1(Ω). Then,
uε

w2
⇀ U in Lp(Ω×Y) =⇒ W (U) ≤ lim inf

ε→0
Wε(uε).Proof: We hoose an inreasing sequene Ak, k ∈ N of open subsets of Ω suh that

Ak ⊂ Ak+1 ⋐ Ω and |Ω\Ak| → 0 for k → ∞.Then, for eah k there exists ε0 suh that Ak×Y ⊂ Ω−
ε ×Y ⊂ [Ω×Y]ε for ε ∈ (0, ε0).Now onsider a family with uε

w2
⇀ U . Using (2.16) and W ≥ 0 we �nd

Wε(uε) =
∫

[Ω×Y]ε

W (y, Tεuε(x, y))dydx ≥
∫

Ak×Y

W (y, Tεuε(x, y))dydx −
∫

Ω\Ak

h(y)dy.In the right-hand side we may pass to the limit inferior for ε → 0, as Tεuε ⇀ U in Lp(Ω×Y)and as W is a onvex normal integrand. We obtain
lim inf

ε→0
Wε(uε) ≥

∫
Ak×Y

W (y, U(x, y))dydx −
∫

Ω\Ak

h(y)dy.Sine k was arbitrary, we may onsider now the limit k → ∞. The seond term tends to
0 as |Ω\Ak| → 0 whereas the �rst term onverges to W (U).Lemma 2.12 Assume that p ∈ (1,∞), and that Ω is as above.(a) Let W : Y×Rm → R be a Caratheodory funtion, i.e., W (y, ·) is ontinuous for a.e.
y ∈ Y and W (·, u) is measurable for eah u ∈ Rd. Moreover, assume that there is afuntion h ∈ L1(Y) and a onstant C > 0 suh that |W (y, u)| ≤ h(y) + C(1+|u|)p for all
u ∈ Rm and a.e. y ∈ Y. Then,

uε
s2
−→ U in Lp(Ω×Y) =⇒ W (U) = lim

ε→0
Wε(uε).14



In partiular, this implies that Wε(FεUex) → W (U).(b) Let W : Y×Rm → R∞ be a normal integrand suh that for a.e. y ∈ Y the funtion
W (y, ·) is onvex and that |W (y, 0)| ≤ h(y) for some h ∈ L1(Y). Then,

W (U) = lim
ε→0

Wε(FεUex) for all U ∈ Lp(Ω×Y).Proof: ad (a). We let Uε = Tεuε, then formula (2.16) gives
Wε(uε) =

∫
[Ω×Y]ε

W (y, Uε(x, y))dydx = W (U) + Iε
1 + I2

εwith Iε
1 =

∫
Ω×Y

[
W (y, Uε(x, y))−W (y, U(x, y))

]
dydx = W (Uε) − W (U),and Iε

2 =
∫
[Ω×Y]ε

W (y, Uε(x, y))dydx−
∫
Ω×Y

W (y, Uε(x, y))dydx.We have Iε
1 → 0 beause of Uε → Uex in Lp(Rd×Y) and the strong ontinuity of thefuntional R. For the later property we use the ontinuity of W (y, ·) and the growthrestritions, f. [Da89, Val88℄.For Iε

2 → 0 we note that both integrals have the same integrand. Moreover, the di�ereneof the domains Ω×Y and [Ω×Y]ε is ontained in Bε =
(
Ω+

ε \Ω
−
ε

)
×Y. By ondition (2.4)the Lebesgue measure of this set tends to 0, whene Iε

2 → 0 and we onlude
|Iε

2 | ≤
∫

Bε
h(y) + C(1+|Uε(x, y)|)pdydx→ 0,where again Uε → U is used to obtain the equi-integrability of |Uε|p.ad (b). We again use (2.16) for u = FεUex and note that TεFεUex = χεPεUex by Prop.2.1(d). With this we �nd

Wε(FεUex) =
∫

[Ω×Y]ε

W (y,PεUex(x, y))dydx =
∫

Rd×Y

χε(x, y)W (y,PεUex(x, y))dydx

≤(1) ∫

Rd×Y

χε(x, y) −
∫

Nε(x)+εY

W (y, Uex(y, ξ))dξ dydx =(2) ∫

Rd×Y

χε(ξ, y)W (y, Uex(y, ξ))dydξ

≤(3) W (U) +
∫

(Ω+
ε \Ω)×Y

h(y)dydx.For ≤(1) we have used onvexity ofW (y, ·) and Jensen's inequality. The equality =(2) usesthe fat that the integrand is pieewise onstant in x on eah Nε(x)+εY . For ≤(3) we use
χε ≤ χΩ×Y + χ(Ω+

ε \Ω)×Y and Uex = 0 outside of Ω×Y. Using h ∈ L1(Y) and (2.4) we �nd
lim supε Wε(FεUex) ≤ W (U). The opposite inequality lim infε Wε(FεUex) ≥ W (U) wasestablished in Lemma 2.11.The following result states that the two-sale funtional W an be onsidered as the two-sale Γ-limit of the funtionals Wε in the sense of Moso, i.e., it is the two-sale Γ-limitin the weak as well as in the strong topology.Corollary 2.13 Let p ∈ (1,∞) and Ω be as above. Moreover, let W : Y×Rm → R be aonvex, normal integrand satisfying the bounds W (y, u) ≥ −h(y) and W (y, 0) ≤ h(y) forall u ∈ Rm and a.a. y ∈ Y with h ∈ L1(Y). Then, we have(i) Lower estimate: uε

w2
⇀ U in Lp(Ω×Y) =⇒ W (U) ≤ lim infε→0 Wε(uε).(ii) Reovery sequene: ∀U ∈ Lp(Ω×Y) ∃ (uε)ε: uε

s2
−→ U and W (U) = limε→0 Wε(uε).15



Remark 2.14 It is possible to generalize the above results to the ase that the density
W also depends on the marosopi variable x ∈ Ω. The entral identity (2.16) is easilygeneralized to

∫
Ω
Wε(x, u(x))dx =

∫
[Ω×Y]ε

Wε(Sε(x, y), Tεu(x, y))dydx for all u ∈ Lp(Ω).Thus, if we want to realize a general Caratheodory funtions W : Ω×Y×Rm → R∞ in thetwo-sale limit funtional W , we de�ne Wε via the approximate energy density
Wε(x, u) = Ŵε(x,

{
x
ε

}
Y
, u) with Ŵε(x, y, u) = −

∫
Nε(x)+εY

W (ξ, y, u)dξ,instead of the traditionally used W (x,
{

x
ε

}
Y
, u). Note that Wε satis�es Wε(Sε(x, y), u) =

Ŵε(x, y, u) →W (x, y, u) a.e. for ε→ 0.Under some mild additional onditions it is then possible to pass to the limit as in Lemmas2.11 and 2.12, see also Prop. 2.6. This also resolves the di�ulties addressed in [CDG02,Thm. 2℄. This will be subjet of future researh.2.6 Two-sale ross-onvergeneFinally we present a result onerning funtional involving gradients. For families ((uε, zε))εin W1,p(Ω)×Lp(Ω) we de�ne the notions of weak and strong two-sale ross-onvergeneas follows:
(uε, zε)

w2c
⇀ (u0, U1, Z) in Xp ⇐⇒





uε ⇀ u0 in W1,p(Ω),

∇uε
w2
⇀ E∇u0 + ∇yU1 in Lp(Ω×Y),

zε
w2
⇀ Z in Lp(Ω×Y),

(uε, zε)
s2c
−→ (u0, U1, Z) in Xp ⇐⇒






uε ⇀ u0 in W1,p(Ω),

∇uε
s2
−→ E∇u0 + ∇yU1 in Lp(Ω×Y),

zε
s2
−→ Z in Lp(Ω×Y),where Xp = W1,p(Ω)×Lp(Ω; W1,p

av (Y))×Lp(Ω×Y). The �nal result on two-sale Γ-onvergenenow provides relations between the funtionals
Φε(u, z) =

∫
Ω
φ(

{
x
ε

}
Y
, u(x),∇u(x), z(x))dx and

Φε(u0, U1, Z) =
∫
Ω×Y

φ(y, u0(x),∇u0(x)+∇yU1(x, y), Z(x, y))dx.Proposition 2.15 Let p ∈ (1,∞) and let Ω ⊂ Rd be a bounded domain with Lipshitzboundary. Assume that φ : Y×Rk×Rk×d×Rm → R is a Caratheodory funtion (measur-able in y ∈ Y and ontinuous in (u, F, z) ∈ Rk×Rk×d×Rm → R) satisfying the bound
|φ(y, u, A, z)| ≤ h(y) + C(1+|u|+|A|+|z|)p for h ∈ L1(Y). Then, we have

(uε, zε)
s2c
−→ (u0, U1, Z) in Xp =⇒ Φε(uε, zε) → Φ(u0, U1, Z).Moreover, if φ(y, ·) is onvex for a.a. y ∈ Y, we also have

(uε, zε)
w2c
⇀ (u0, U1, Z) in Xp =⇒ Φ(u0, U1, Z) ≤ lim inf

ε→0
Φε(uε, zε).The proof is a diret onsequene of ombining Lemmas 2.11 and 2.12(a).16



3 Evolutionary variational inequality3.1 Abstrat resultFor the onveniene of the reader we reall the standard existene and uniqueness resultsfor evolutionary variational inequalities, see, e.g., [BS96, Vis94, Mie05℄. We start with aHilbert spae Q with dual Q∗ and dual pairing 〈·, ·〉 : Q∗×Q → R and a positive semide�niteoperator A ∈ Lin(Q,Q∗), i.e., A = A∗ and 〈Aq, q〉 ≥ 0 for all q ∈ Q. For a funtion
ℓ ∈ C1([0, T ],Q∗) we de�ne the energy funtional

E(t, q) =
1

2
〈Aq, q〉 − 〈ℓ(t), q〉.Moreover, let a dissipation funtional R : Q → [0,∞] be given that is onvex, lowersemi-ontinuous and positively homogeneous of degree 1, viz.,

R(γq) = γR(q) for all γ ≥ 0 and q ∈ Q.The energeti formulation (S) & (E) of the rate-independent hysteresis problem assoiatedwith E and R is based on the global stability ondition (S) and the energy balane (E):
(S) : E(t, q(t)) ≤ E(t, q̃) + R(q̃−q(t)) for every q̃ ∈ Q,

(E) : E(t, q(t)) + DissR(q; [0, t]) = E(0, q(0)) +
∫ t

0
∂sE(s, q(s))ds,where DissR(q; [r, s]) =

∫ s

r
R(q̇(t))dt and ∂sE(s, q(s)) = −〈ℓ̇(s), q(s)〉. We all q : [0, T ] →

Q satisfying (S) and (E) for all t ∈ [0, T ] an energeti solution assoiated with (E,R).The stability ondition an be formulated in terms of the sets of stable states
S(t) = { q ∈ Q | E(t, q) ≤ E(t, q̂) + R(q̂ − q) for every q̂ ∈ Q }.Now, (S) just means q(t) ∈ S(t).There are several equivalent formulation for (S) & (E), for instane the subdi�erentialinlusion 0 ∈ ∂R(q̇(t)) + DqE(t, q(t)) or the variational inequality
〈Aq(t)−ℓ(t), v−q̇(t)〉 + R(v) − R(q̇(t)) ≥ 0 for every v ∈ Q. (3.1)For these equivalenes, we refer to [MT04, Mie05℄, where also a proof of the followingexistene and uniqueness result an be found.Theorem 3.1 Let ℓ ∈ C1([0, T ],Q∗) and q0 ∈ S(0). Moreover, assume that the followingoerivity ondition holds:

∃α > 0 ∀ v ∈ Q with R(v) <∞ : 〈Av, v〉 ≥ α‖v‖2. (3.2)Then, the energeti problem (S) & (E) has a unique solution q ∈ CLip([0, T ],Q) with
‖q(t) − q(s)‖Q ≤

LipQ∗(ℓ)

α
|t− s| for all s, t ∈ [0, T ].17



For the reader's onveniene we repeat the main argument for the a priori estimate.Assume that for t the derivative q̇(t) exists. Using (3.1) with v = 0 we �nd 〈Aq(t) −
ℓ(t),−q̇(t)〉 − R(q̇(t)) ≤ 0. For a sequene tn → t where (3.1) holds we test with v =

µ(̇t), divide by µ and onsider the limit µ → ∞. Using 1-homogeneity of R we obtain
〈Aq(tn) − ℓ(tn), q̇(t)〉 + R(q̇(t)) ≤ 0. Adding this to the above estimate gives

〈
(
Aq(tn)−ℓ(tn)

)
−

(
Aq(t)−ℓ(t)

)
, q̇(t)〉 ≤ 0.Assuming tn > t we may divide the above inequality and pass to the limit to �nd 〈Aq̇(t)−

ℓ̇(t), q̇(t)〉 ≤ 0. For tn < t we �nd the opposite inequality. Sine we may approah t bysequenes from both sides, this implies 〈Aq̇(t), q̇(t)〉 = 〈ℓ̇(t), q̇(t)〉. Now, (3.2) leads to thedesired result α‖q̇(t)‖ ≤ ‖ℓ(t)‖∗.3.2 Elastoplastiity with periodi oe�ientsIn this setion we formulate the ontinuum mehanis that desribes the rate-independentevolution of an elastoplasti body under presribed loading. This model is the lassialone introdued by Moreau and is still used in many engineering appliations, f. [Mor76,HR99℄.The body oupies a domain Ω ⊂ Rd, whih is assumed to be a nonempty onnetedbounded open set with Lipshitz boundary ∂Ω. As above we have a length sale parameter
ε and a periodiity lattie Λ with unit ell Y ⊂ Rd. With u : Ω → Rd we denote thedisplaement of the body and z : Ω → Rm denotes a vetor of internal variables whihwill aount for inelasti e�ets due to plasti strains and plasti hardening.The material properties are assumed to be periodi with respet to the mirosopi lattie
εΛ, whih leads to the dependene on {

x
ε

}
Y
. The energy funtional Eε is based on astored-energy density W : Y×Rd×d

sym×Rm → R; (y, e, z) 7→ W (y, e, z), where Rd×d
sym = {A ∈

Rd×d |A = AT } and e = e(u) = 1
2
(∇u+∇uT) ∈ Rd×d

sym is the linearized strain tensor. Withthis, Eε takes the form
Eε(t, u, z) =

∫

Ω

W (
{

x
ε

}
Y
, e(u)(x), z(x))dx− 〈ℓ(t), u〉with 〈ℓ(t), u〉 =

∫
Ω
u(x) · fap(t, x)dx+

∫
∂Ω
u(ξ) · gap(t, ξ)dξ,where fap and gap are the applied, time-dependent loading in the volume and on thesurfae, respetively. We assume that they satisfy fap ∈ C1([0, T ],L2(Ω; Rd)) and gap ∈

C1([0, T ],L2(∂Ω; Rd)), suh that ℓ ∈ C1([0, T ],H1(Ω; Rd)∗).For the stored energy W we assume that it is a quadrati form in (e, z), namely
W (y, e, z) =

1

2

〈〈
A(y)

(
e

z

)
,
(

e

z

)〉〉
,where A(y) : Rd×d

sym×Rm → Rd×d
sym×Rm is a positive semide�nite linear operator and〈〈(

e

z

)
,
(

ee

ez

)〉〉
=

∑d
i,j=1 eij ẽij +

∑m
k=1 zkz̃k is the salar produt on Rd×d

sym×Rm.The dissipation potential Rε is de�ned via a dissipation density ρ : Y×Rm → [0,∞] in theform Rε(ż) =
∫
Ω
ρ(

( {
x
ε

}
Y

)
, ż(x)) dx. Rate-independene is imposed by assuming that18



ρ(y, ·) is positively homogeneous of degree 1 (for short: 1-homogeneous). Note that ρ isnot assumed to be symmetri (i.e., ρ(y,−ż) 6= ρ(y, ż) is allowed), sine this freedom isneessary to model hardening.Our preise assumptions on the material data A and ρ are
A ∈ L∞(Y,Lin(Rd×d

sym×Rm)) with A(y) = A(y)T ≥ 0, (3.3a)
ρ : Y → [0,∞] is a onvex, normal integrand and ρ(y, ·) is 1-homogeneous, (3.3b)
∃ α̂ > 0 ∀a.a.y ∈ Y ∀

(
e

z

)
∈ Rd×d

sym×Rm with ρ(y, z) <∞ :
〈〈

A(y)
(
e

z

)
,
(

e

z

)〉〉
≥ α̂|

(
e

z

)
|2.

(3.3)Remark 3.2 Here we desribe the exat setting for the linearized theory of elastoplas-tiity whih is the motivation of this work. However, in the sequel of the paper we do notrely on the further spei�ations given here.The basis of linearized elastoplastiity is the additive split of the strain into an elastipart eel = e(u) − p and an plasti part p = B(y)z, where B(y) : Rm → Rd×d
sym is a linearmapping. Then, W is taken in the form

W (y, e, z) =
〈
C(y)(e−B(y)z), e−B(y)z

〉
d×d

+ 〈H(y)z, z〉m,where C(y) : Rd×d
sym → Rd×d

sym is the symmetri (fourth order) elastiity tensor and H(y)denotes the hardening tensor. This means that A has the blok struture (
A

−B∗C

CB

H+B∗CB

).The typial ase of isotropi hardening may be written in the way that z = (p, h), where
p ∈ (Rd×d

sym)0 = {A ∈ Rd×d
sym | trA = 0 } is the (deviatori) plasti strain (i.e., B(y)(p, h) = p)and h ∈ R is the isotropi hardening parameter and H(y) is taken as κ(y) > 0. Moreover,

ρ is assumed to have the form
ρ(y, (ṗ, ḣ)) =

{
r(y)ḣ for ḣ ≥ 0 and ṗ ∈ ḣΣ(y),

∞ otherwise,where r(y) > 0 and Σ(y) ⊂ (Rd×d
sym)∗0 is the ompat and onvex elasti domain (with ∂Σ(y)being the yield surfae) at the point y ∈ Y for the the initial hardening state h = 1.The oerivity assumption (3.3) then follows if we assume that there exist positive on-stants c and C suh that for a.a. y ∈ Y we have the estimates

κ(y) ≥ c, 〈C(y)e, e〉 ≥ c|e|2 for all e, |σ| ≤ C for all σ ∈ Σ(y).Note that the restrition ρ(y, (p, h)) <∞ implies |p| ≤ Ch.Finally, we �x the funtion spaes by presribing Dirihlet boundary onditions u = 0along the part ΓDir of ∂Γ. This de�nes the underlying Hilbert spae
Q = H1

ΓDir
(Ω)d×L2(Ω)m with H1

ΓDir
(Ω) = { u ∈ H1(Ω) | uΓDir

= 0 }.The domain Ω and the Dirihlet boundary part ΓDir are spei�ed further in the next resultto guarantee oerivity of the energy Eε. 19



Proposition 3.3 (Korn's inequality) Let Ω ⊂ Rd be a onneted, open, bounded setwith Lipshitz boundary Γ. Moreover, let ΓDir be a measurable subset of Γ, suh that∫
ΓDir

1da > 0. Then there exists a onstant CKorn > 0, suh that
∫
Ω
|e(u)|2 dx ≥ CKorn‖u‖2

H1(Ω) for all u ∈ H1
ΓDir

(Ω)d. (3.4)Clearly, we may write Eε(t, e, z) = 1
2

〈〈
Aε

(
u
z

)
,
(

u
z

)〉〉
− 〈ℓ̃(t),

(
e

z

)
〉, where Aε : Q → Q∗ issymmetri and positive semi-de�nite. Moreover, ombining assumption (3.3) and Korn'sinequality, we �nd for all (

e

z

)
∈ Q with Rε(z) <∞ the oerivity estimate

〈〈
Aε

(
u
z

)
,
(

u
z

)〉〉
≥ α̂‖

(
e(u)

z

)
‖2

L2(Ω) ≥ α‖
(

u
z

)
‖2

Q with α = α̂min{1, CKorn}. (3.5)We all qε = (uε, zε) : [0, T ] → Q an energeti solution assoiated with (Eε,Rε), if forall t ∈ [0, T ] the stability ondition (Sε) and the energy balane (Eε) hold:
(Sε) Eε(t, uε(t), zε(t)) ≤ Eε(t, ũ, z̃) + Rε(z̃−zε(t)) for every (ũ, z̃) ∈ Q,

(Eε) Eε(t, uε(t), zε(t)) +
∫ t

0
Rε(żε(s))ds = Eε(0, uε(0), zε(0))−

∫ t

0
〈ℓ(s), u(s)〉ds.

(3.6)Applying the abstrat Theorem 3.1 we immediately obtain the following existene anduniqueness result whih ontains an a priori Lipshitz bound that is independent of ε > 0.Proposition 3.4 Let ℓ ∈ CLip([0, T ], (H1
ΓDir

(Ω)d)∗). Then for all ε > 0 and all stable
(u0

ε, z
0
ε) ∈ Q there exists a unique solution (uε, zε) ∈ CLip([0, T ],Q) of (Sε) & (Eε) with

(uε(0), zε(0)) = (u0
ε, z

0
ε ). Moreover, all these solutions satisfy

‖(uε(t), zε(t)) − (uε(s), zε(s))‖Q ≤ LipQ∗((ℓ,0))
α

|t−s| for all t, s ∈ [0, T ], (3.7)where α is de�ned in (3.5) and is independent of ε.3.3 The two-sale homogenized problemInstead of the funtionals Eε and Rε we may onsider their two-sale limits. As theenergy storage funtional depends on the gradient of u, we use the notion of two-saleross-onvergene introdued in Setion 2.6 on the spae
Q = H×Z with H = H1

ΓDir
(Ω)d×L2(Ω,H1

av(Y))d and Z = L2(Ω×Y)m.We use U = (u0, U1) for the elements in H and Z for the internal elements lying in Z.The funtionals E and R are de�ned via
E(t, U, Z) =

∫
Ω×Y

1
2

〈〈
A(y)

(
be(U)

Z

)
,
(

be(U)
Z

)〉〉
− 〈ℓ(t), u0〉,where ê(U) = ex(u0) + ey(U1) = 1

2
(∇xu0+(∇xu0)

T) + 1
2
(∇yU1+(∇yU1)

T),

R(Z) =
∫

Ω×Y
ρ(y, Z(x, y))dydx.Again we de�ne the energeti formulation for E and R on Q via the global stabilityondition (S) and the energy balane (E). As above, a mapping (U,Z) : [0, T ] → H×Z =

Q is alled an energeti solution assoiated with E and R if for all t ∈ [0, T ] we have
(S) E(t, U(t), Z(t)) ≤ E(t, Ũ , Z̃) + R(Z̃−Z(t)) for all (Ũ , Z̃) ∈ H×Z,

(E) E(t, U(t), Z(t)) +
∫ t

0
R(Ż(s))ds = E(0, U(0), Z(0)) −

∫ t

0
〈ℓ(s), u0(s)〉ds.

(3.8)20



Using the abstrat existene Theorem 3.1 we again obtain the following result as soon aswe have established the oerivity assumption (3.2) for the energy E.Proposition 3.5 Let ℓ ∈ CLip([0, T ], (H1
ΓDir

(Ω)d)∗). Then for all stable Q0 = (U0, Z0) ∈
Q, (S) & (E) has a unique solution Q = (U,Z) ∈ CLip([0, T ],Q) with Q(0) = Q0.Proof: It remains to prove that A : Q → Q∗, whih is de�ned via E(t, U, Z) =
1
2

〈
A

(
U
Z

)
,
(

U
Z

)〉
Q
− 〈ℓ(t), u0〉H1, satis�es (3.2),

∃α > 0 ∀ (U,Z) ∈ Q with R(Z) <∞ :
〈
A

(
U
Z

)
,
(

U
Z

)〉
Q
≥ α‖(U,Z)‖2

Q. (3.9)By our Assumption (3.3), we immediately obtain the lower estimate
〈
A

(
U
Z

)
,
(

U
Z

)〉
Q
≥ α̂‖(ê(U), Z)‖2

L2(Ω×Y) for all (U,Z) ∈ Q. (3.10)Next, we use an orthogonality ondition for the two-sale limit of gradients. If ∇uε
w2
⇀

E∇xu0 + ∇yU1 in L2(Ω×Y), then
∫
Ω×Y

|∇xu0(x)+∇yU1(x, y)|2dydx =
∫
Ω
|∇u0(x)|2 dx+

∫
Ω×Y

|∇yU1(x, y)|2 dydx.The mixed terms drop out, sine E∇u0(x, ·) is onstant on Y, while∇yU1(x, ·) has average
0 as it is a derivative of a periodi funtion. For the symmetri strains we similarly obtain

‖ê((u0, U1))‖
2
L2(Ω×Y) = ‖e(u0)‖

2
L2(Ω) + ‖ey(U1)‖

2
L2(Ω×Y).With KY = 2π2 min{ |λ|2 | 0 6= λ ∈ Λ } we have the Korn-Poinaré type inequalities:

∀V ∈ H1
av(Y): ‖ey(V )‖2

L2(Y) ≥ KY‖V ‖2
L2(Y) and ‖ey(V )‖2

L2(Y) ≥
1
2
‖∇yV ‖2

L2(Y).This follows easily by writing V (y) =
∑

Λ Vλe
2iπλ·y and using Planherel's identity. In-serting these estimates into (3.10) and employing Korn's inequality for u0 we obtain

〈
A

(
U
Z

)
,
(

U
Z

)〉
Q
≥ α̂

(
CKorn‖u0‖2

H1(Ω) + KY

1+2KY

∫
Ω
‖U1(x, ·)‖2

H1(Y) dx+ ‖Z‖2
L2(Ω×Y)

)
,whih provides the desired estimate (3.9).4 Convergene resultsThis �nal setion addresses the question under whih onditions the solutions (uε, zε) of

(Sε) & (Eε) have a two-sale limit (U,Z) whih is a solution of (S)& (E). The onvergeneis taken in the sense of two-sale ross-onvergene and we an build on our theory inSetion 4.3.In partiular, the results of Setion 2.5 state that E and R are the Γ-limits of the families
(Eε)ε and (Rε)ε, respetively, in the Moso sense.21



Proposition 4.1 Let Ω ⊂ Rd be bounded with Lipshitz boundary. Moreover, let Eε, Rε,
E, and R be de�ned as above suh that (3.3) and ℓ ∈ C0([0, T ], (H1

ΓDir
(Ω)d)∗) hold. Then,for eah t ∈ [0, T ] we have the following onvergenes

(uε, zε)
w2c
⇀ (u0, U1, Z) ∈ Q =⇒

{
E(t, u0, U1, Z) ≤ lim infε→0 Eε(t, uε, zε),

R(Z) ≤ lim infε→0 Rε(zε);
(4.1a)

∀ (u0, U1, Z) ∈ Q ∃ ((uε, zε))ε :

(uε, zε)
s2c
−→ (u0, U1, Z) in Q and {

Eε(t, uε, zε) → E(t, u0, U1, Z),

Rε(zε) → R(Z),

(4.1b)where for the reovery sequene in (4.1b) we may take (uε, zε) = (u0+Gε(0, U1),FεZ) with
Fε and Gε as de�ned in (2.8) and (2.12), respetively.Here it is important that Gε maps into H1

0(Ω), suh that u0 + Gε(0, U1) ∈ H1
ΓDir

(Ω)d.Our onvergene result for the solutions (uε, zε) ∈ CLip([0, T ],Q) of (Sε) & (Eε) to asolution (U,Z) ∈ CLip([0, T ],Q) will be an adapted and simpli�ed variant of the twoabstrat Theorems 3.1 and 3.3 in [MRS06℄. The abstrat theory is formulated on onesingle spae Q̂ but in fat, the results there are easily generalized to the setting neededhere. The following remark gives the alternative way of embedding everything into onebig funtion spae Q̂.Remark 4.2 To show that our situation is inluded exatly in this setting we hoose
Q̂ = Ĥ×Ẑ with Ĥ = H1

ΓDir
(Ω)d×L2(Rd; H1

av(Y)) and Ẑ = L2(Rd×Y)and de�ne an ε-dependent embedding (u, z) 7→ (Qεu,Uεu, Tεz), where theQε : H1
ΓDir

(Ω)d →
H1

ΓDir
(Ω)d and U : H1

ΓDir
(Ω)d → L2(Rd; H1

av(Y)) an be de�ned as indiated in [CDG02℄. De-�ne Hε as the subspae of H1
ΓDir

(Ω)d ontaining the funtions u suh that −∫
ε(λ+Y )

u(x)dx =

0 for all λ ∈ Λ−
ε , see Setion 2.1. Then, let Qε be the orthogonal projetion to the or-thogonal omplement of Hε and set Uεu = 1

ε
(id−Qε)u. Finally, we de�ne the funtionalsin Q̂ viâ

Eε(t, u0, Û1, Ẑ) =

{
Eε(t, u, z) if (u0, Û1, Ẑ) = (u,Qεu, Tεz),

∞ else,
Ê0(t, u0, Û1, Ẑ) =

{
E(t, u0, U1, Z) if sppt(Û1, Ẑ) ⊂ Ω×Y,

∞ else,
R̂ε(Ẑ) =

{
Rε(z) if Ẑ = Tεz,

∞ else, R̂0(Z) =

{
R(Z) if sppt(Z) ⊂ Ω×Y,

∞ else.Hene, under the additional assumption that for all onsidered funtions the orrespondingfuntionals have �nite values, we have onluded that weak and strong onvergene in Q̂is equivalent to weak or strong two-sale onvergene of families (uε, zε)ε in Q towards alimit (u0, U1, Z) ∈ Q. 22



Now we are able to formulate the main result of this paper. It states that the solutions
(uε, zε)ε of the ε-periodi problem (Sε) & (Eε) strongly two-sale ross-onverge to a so-lution (U,Z) of the two-sale homogenized problem (S) & (E) under the sole assumptionthat the initial onditions strongly two-sale ross-onverge.Theorem 4.3 Let (uε, zε) : [0, T ] → Q be the solution for (Sε) & (Eε) as obtained inProp. 3.4. Assume that the initial data satisfy

(uε(0), zε(0))
s2c
−→ Q0 = (u0, U0, Z0) in Q.Then Q0 is stable (i.e., Q0 ∈ S(0)) and

∀ t ∈ [0, T ] : (uε(t), zε(t))
s2c
−→ Q(t) = (u0(t), U1(t), Z(t)) in Q,where Q : [0, T ] → Q is the unique solution of (S) & (E) with initial ondition Q(0) = Q0as provided in Prop. 3.5.Reall the de�nition of the stable sets

Sε(t) = { (u, z) ∈ Q | ∀(ũ, z̃) ∈ Q: Eε(t, ũ, z̃) ≤ Eε(0, ũ, z̃)−Rε(z̃−z) },

S(t) = { (U,Z) ∈ Q | ∀(Ũ , Z̃) ∈ Q: E(t, Ũ , Z̃) ≤ E(0, Ũ , Z̃)−R(Z̃−Z) }.Remark 4.4 In [MRS06℄ the onvergene of the initial ondition and of the solutions isformulated in terms of the underlying topology, whih in the present setting means weaktwo-sale ross-onvergene. However, the abstrat theory assumes onvergene of the ini-tial energies and proves onvergene of the energies Eε(t, uε(t), zε(t)) → E(t, U(t), Z(t)).Beause of uniform onvexity (f. (3.9)) we see that weak onvergene and energy on-vergene implies strong onvergene. The details of this argument are worked out at theend of the proof of Theorem 4.3. See also [Vis84℄ for general arguments of this type.The main di�ulty in the proof of the desired result is to prove that the weak limit ofstable states is again stable. In [MRS06℄ this property is redued to a property whihpostulates the existene of suitable joint reovery sequenes for a ombination of Eε and
Rε. In our setting this reads as follows.Proposition 4.5 For t ∈ [0, T ] assume (uε, zε) ∈ Sε(t) and (uε, zε)

w2c
⇀ (u0, U1, Z) in Q.(a) Then, for eah (ũ0, Ũ1, Z̃) ∈ Q there exists a joint reovery family (ũε, z̃ε)ε with

(ũε, z̃ε)
w2c
⇀ (ũ0, Ũ1, Z̃) in Q suh that

lim sup
ε→0

[
Eε(t, ũε, z̃ε)+Rε(z̃ε−zε)−Eε(t, uε, zε)

]
≤ E(t, Ũ , Z̃)+R(Z̃−Z)−E(t, U, Z).(4.2)(b) As a onsequene (u0, U1, Z) ∈ S(t).Proof: ad (a). We give the joint reovery sequene expliitly in the form

(ũε, z̃ε) = (uε, zε) + (ũ0−u0 + Gε(0, Ũ1−U1) , Fε(Z̃−Z)).23



Note that the arguments for Gε and Fε do not depend on ε. Hene, by Prop. 2.10 andProp. 2.4 we obtain the important relation
(ũε, z̃ε)−(uε, zε) = (ũ0−u0+Gε(0, Ũ1−U1) , Fε(Z̃−Z))

s2c
−→ (ũ0−u0, Ũ1−U1, Z̃−Z). (4.3)In turn, this implies the obvious onvergene (ũε, z̃ε)

w2c
⇀ (ũ0, Ũ1, Z̃).From (4.3) and Lemma 2.12(b) we obtain Rε(z̃ε−zε) → R(Z̃−Z).For the energies we use the quadrati nature and obtain

Eε(t, ũε, z̃ε)−Eε(t, uε, zε) = 1
2

∫
Ω

〈〈
A(

{
x
ε

}
Y
)
(

e(euε−uε)
ezε+zε

)
,
(

e(euε−uε)
ezε+zε

)〉〉
dx− 〈ℓ(t), ũε−uε〉.The last term obviously onverges to 〈ℓ(t), ũ0−u0〉 by the usual weak onvergene in

H1
ΓDir

(Ω)d. Under the integral we have a quadrati form, where the right fator weaklytwo-sale onverges to (
ee(eU+U)

eZ+Z

) in L2(Ω×Y). The left-hand fator is a produt of themultipliator mε = A(
{

·
ε

}
Y
) and a strongly two-sale onvergent sequene with limit

(
ee(eU−U)

eZ−Z

) in L2(Ω×Y). As Tεmε(x, y) = A(y) Prop. 2.6 implies
A(

{
·
ε

}
Y
)
(

e(euε−uε)
ezε+zε

) s2
−→ A

(
ee(eU−U)

eZ−Z

) in L2(Ω×Y).Sine a salar produt of a weakly and a strongly onverging sequene onverges (seeProp. 2.4(d)), we onlude
Eε(t, ũε, z̃ε)−Eε(t, uε, zε) → E(t, Ũ , Z̃)−E(t, U, Z).Thus, we have established (4.2) in the stronger version that the limsup is a limit and the�≤� is �=�.ad (b). This is a diret onsequene of part (a). Let (U,Z) be the limit of stable statesand take any test state (Ũ , Z̃) ∈ Q. Now take the joint reovery sequene obtained inpart (a) and insert (ũε, z̃ε) into the stability ondition for (uε, zε), namely

0 ≤ Eε(t, ũε, z̃ε) + Rε(z̃ε−zε) − Eε(t, uε, zε).As the right-hand side onverges we onlude 0 ≤ E(t, Ũ , Z̃)+R(Z̃−Z)−E(t, U, Z) andstability is established as (Ũ , Z̃) was arbitrary.Proof: [of Theorem 4.3℄By Prop. 3.4 we know that the family (uε, zε)ε is uniformly bounded in CLip([0, T ],Q).As losed balls in Q are weakly ompat and have a metrizable topology, the Arzela-Asoli theorem an be applied in C0([0, T ],Qweak) and we �nd a subsequene (εk)k∈N with
0 < εk → 0 suh that

∀ t ∈ [0, T ] : (uεk
(t), zεk

(t))
w2c
⇀ (U(t), Z(t)) in Q.By the lower semi-ontinuity of the norm, we have (U,Z) ∈ CLip([0, T ],Q) and it remainsto show that (U,Z) is a solution of (S) & (E). As the initial ondition (U0, Z0) is knownthe solution is unique and we even onlude that the whole family onverges (by thestandard argument via ontradition). 24



By Prop. 4.5 we know that (U(t), Z(t)) is stable for all t ∈ [0, T ], hene (S) is satis�edand we have to establish the energy balane (E) in (3.8). For this, we pass to the limit
ε → 0 in (Eε), f. (3.6). The �rst term on the right-hand side onverges, as the energy
Eε(0, uε(0), zε(0)) onverges applying the strong two-sale ross-onvergene and Prop.2.15. The seond term onverges by Lebesgue's dominated onvergene theorem as theintegrands are uniformly bounded and onverge pointwise.To treat the left-hand side of (Eε) we let eε(t) = Eε(t, uε(t), zε(t)) and dε(t) =

∫ t

0
Rε(zε(s))ds.By the above, we know that rε(t) = eε(t) + dε(t) onverges to r0(t), whih is the limitof the right-hand side. We let e∗(t) = lim supε→0 eε(t) and d∗(t) = lim infε→0 dε(t) andonlude e∗(t) + d∗(t) = r0(t). Now we use the lower estimates for the funtionals. Forthe stored energy we use (4.1a) to obtain

E(t, U(t), Z(t)) ≤ lim inf
ε→0

eε(t) ≤ lim sup
ε→0

eε(t) = e∗(t).For the dissipation integral we use ∫ t

0
R(Ż(s)) ds = sup

∑N
j=1 R(Z(tj)−Z(tj−1)), wherethe supremum is taken over all �nite partitions of [0, t]. Again by (4.1a) we �nd

∑N
j=1 R(Z(tj)−Z(tj−1)) ≤ lim infε→0

∑N
j=1 Rε(zε(tj)−zε(tj−1))

≤ lim infε→0

∫ t

0
Rε(żε(s))ds = d∗(t).

(4.4)Thus, realling e∗ + d∗ = r0 we proved the lower energy estimate
E(t, U(t), Z(t)) +

∫ T

0
R(Ż(s))ds ≤ e∗(t) + d∗(t) = E(0, U(0), Z(0)) −

∫ t

0
〈ℓ(s), u0(s)〉ds.The upper energy estimate (just replae �≤� by �≥�) follows from the already establishedstability of (U,Z), see [MTL02, Thm. 2.5℄ or [MM05, Thm. 4.4℄. Thus, (E) holds and,moreover, we also onlude that the inequality in (4.4) must be an equality. This in turnimplies that E(t, U(t), Z(t)) = e∗(t) = limε→0 Eε(t, uε(t), zε(t)).As the value of t ∈ [0, T ] is kept from now on, we omit it in the rest of the proof. Fromthe above and using the weak two-sale onvergene qε = (uε, zε)

w2c
⇀ Q = (u0, U1, Z) wewant to onlude qε s2c

−→ Q.For this, we de�ne q̂ε = (u0 + Gε(0, U1),FεZ) ∈ Q, whih satis�es q̂ε s2c
−→ Q. Moreover, wehave

α
2
‖q̂ε−qε‖2

Q ≤ 1
2

〈〈
Aε(q̂ε−qε), (q̂ε−qε)

〉〉

= Eε(t, qε) − Eε(t, q̂ε) +
〈〈
Aεq̂ε−ℓ, qε−q̂ε

〉〉

→ e∗ − E(t, Q) + 0 = 0.For the onvergene note that the �rst term was treated above, that the seond termonverges beause of � s2c
−→� and Prop. 2.15, and that the third term onverges as a salarprodut, sine the left-hand term is strongly onvergent and while the right-hand termweakly onverges to 0, see Prop. 2.4(d). Finally, we onlude by noting that

‖(Tε(∇uε), zε) − (E∇xu0+∇yU1, Z)‖L2(Rd×Y) ≤

‖(Tε(∇uε−∇ûε), zε−ẑε)‖L2(Rd×Y) + δε ≤ ‖(uε, zε)−(ûε, ẑε)‖Q + δε → 0with δε = ‖(Tε(∇ûε), ẑε) − (E∇xu0+∇yU1, Z)‖L2(Rd×Y) → 0 beause of q̂ε s2c
−→ Q. Thisestablishes qε s2c

−→ Q and we are done. 25
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