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Abstra
tThis paper is devoted to the two-s
ale homogenization for a 
lass of rate-indepen-dent systems des
ribed by the energeti
 formulation or equivalently by an evolution-ary variational inequality. In parti
ular, we treat the 
lassi
al model of linearizedelastoplasti
ity with hardening. The asso
iated nonlinear partial di�erential in
lu-sion has periodi
ally os
illating 
oe�
ients, and the aim is to �nd a limit problemfor the 
ase that the period tends to 0.Our approa
h is based on the notion of energeti
 solutions whi
h is phrased interms of a stability 
ondition and an energy balan
e of an energy-storage fun
tionaland a dissipation fun
tional. Using the re
ently developed method of weak and strongtwo-s
ale 
onvergen
e via periodi
 unfolding, we show that these two fun
tionals havea suitable two-s
ale limit, but now involving the ma
ros
opi
 variable in the physi
aldomain as well as the mi
ros
opi
 variable in the periodi
ity 
ell. Moreover, relyingon an abstra
t theory of Γ-
onvergen
e for the energeti
 formulation using so-
alledjoint re
overy sequen
es it is possible to show that the solutions of the problem withperiodi
ity 
onverge to the energeti
 solution asso
iated with the limit fun
tionals.1 Introdu
tionOur aim is to provide homogenization results for evolutionary variational inequalities ofthe type:
∀ v ∈ Q : 〈Aq−ℓ(t), v − q̇〉 + R(v) − R(q̇) ≥ 0. (1.1)Here Q is a Hilbert spa
e with dual Q∗, the 
ontinuous linear operator A : Q → Q∗is symmetri
 and positive de�nite on the 
one on whi
h R is �nite. The for
ing ℓ liesin C1([0, T ],Q∗), and the dissipation fun
tional R : Q → [0,∞) is 
onvex, lower semi-
ontinuous and positively homogeneous of degree 1, i.e., R(γq) = γR(q) for all γ ≥ 0 and

q ∈ Q. The latter property of R leads to rate independen
e.Problem (1.1) has many di�erent equivalent formulations. For our purposes the energeti
formulation for rate-independent hysteresis problems is espe
ially appropriate, 
f. [MT99,MT04, Mie05℄. This formulation is solely based on the energy-storage fun
tional E :
[0, T ]×Q → R de�ned via E(t, q) = 1

2
〈Aq, q〉 − 〈ℓ(t), q〉 and the dissipation fun
tional R.Thus, homogenization of an evolutionary problem 
an be redu
ed to some extent to thehomogenization of fun
tionals. A fun
tion q : [0, T ] → Q is 
alled an energeti
 solutionasso
iated with the fun
tionals E and R, if for all t ∈ [0, T ] it satis�es the global stability
ondition (S) and the energy balan
e (E):(S) ∀ q ∈ Q : E(t, q(t)) ≤ E(t, q) + R(q−q(t));(E) E(t, q(t)) +

∫ 0

t
R(q̇(s))dt = E(0, q(0))−

∫ t

0
〈ℓ̇(s), q(s)〉ds.We also say that q solves the energeti
 formulation (S) & (E) asso
iated with E and R.1



The purpose of this paper is to 
onsider a family of energy fun
tionals (Eε)ε and ofdissipation fun
tionals (Rε)ε whi
h are de�ned as integrals over a domain Ω ⊂ Rd andwhere the densities depend periodi
ally on x with a period proportional to ε. Morepre
isely, for a periodi
ity latti
e Λ we denote by Y = Rd
/
Λ
the periodi
ity torus. For atensor-valued mapping A : Y → Lin(Rd×d

sym×Rm) and a fun
tion ρ : Y×Rm → R we de�nethe fun
tionals
Eε(t, u, z) =

∫
Ω

1
2

〈〈
A(x

ε
)
(

e(u)
z

)
,
(

e(u)
z

)〉〉
dx− 〈ℓ(t), u〉 and Rε(z) =

∫
Ω
ρ(x

ε
, z(x))dxon the spa
e Q = H1

ΓDir
(Ω)d×L2(Ω)m.The task is now to des
ribe the limiting behavior of the asso
iated energeti
 solutions.Be
ause of the nonsmoothness and the hystereti
 behavior of the evolution of the sys-tems it will not be possible to �nd a homogenized limit equation in the 
lassi
al sense.This would mean to �nd limiting fun
tionals de�ned on Ω again. Instead we will needthe so-
alled two-s
ale homogenization that de
omposes solutions into ma
ros
opi
 andmi
ros
opi
 behavior.The 
lassi
al notion of two-s
ale 
onvergen
e has been introdu
ed by Nguetseng in 1989([Ngu89℄) and further developed by Allaire in 1992 ([All92℄). It was aimed at a betterdes
ription of sequen
es of os
illating fun
tions and thus at the derivation of a new ho-mogenization method. In [LNW02℄, an overview of the main homogenization problemswhi
h have been studied by this te
hnique is given. This 
on
ept is now applied in avariety of quite di�erent appli
ations in 
ontinuum me
hani
s, see, e.g., [HJM94, Vis96,BLM96, Vis97, Alb00, EKK02, MS02℄. Moreover, even in engineering this method is usedextensively for numeri
al simulations. There the unit periodi
ity 
ell is usually 
alled a�representative unit 
ell�.To explain our results in some detail we introdu
e a few new notions. The two-s
alemethod relies on a mi
ro-ma
ro-de
omposition of points x ∈ Rd via

x = Nε(x) + εRε(x) with Nε(x) = ε
[

x
ε

]
Λ
and Rε(x) =

{
x
ε

}
Y
,where [x̃]Λ is the 
losest latti
e point to x̃ and {x̃}Y is the remainder, see Se
tion 2.1 forthe exa
t details. The de
omposition of fun
tions is then done by the so-
alled periodi
unfolding introdu
ed in [CDG02, CDD04, CDD06℄:

(Tεu)(x, y) = uex(Nε(x)+εy),where uex is the extention of u : Ω → R by 0 to all of Rd. Thus, fun
tions in Lp(Ω) aremapped to fun
tions U = Tεu ∈ Lp(Rd×Y).In Se
tion 2.2 we dis
uss this periodi
 unfolding operator together with a newly introdu
edfolding operator Fε : Lp(Rd×Y) → Lp(Ω), whi
h is a kind of pseudo inverse as well asthe adjoint operator (when taking the dual p). In parti
ular, we give spe
ial 
are to the
ompli
ations arising from the mismat
h of Ω and a �nite union of small 
ells of the type
ε(λ+Y ).In Se
tion 2.3 we introdu
e our notion of weak and strong two-s
ale 
onvergen
e:

uε
w2
⇀ U ⇐⇒ Tεuε ⇀ Uex in Lp(Rd×Y),

uε
s2
−→ U ⇐⇒ Tεuε → Uex in Lp(Rd×Y).2



This de�nition is an adaptation of the de�nitions in [Vis04℄ to the 
ase that Ω has aboundary. Nevertheless, the 
onvergen
es on the right-hand side are asked to o

ur in
Lp(Rd×Y), sin
e the support of Tεu is in general not 
ontained in Ω×Y. We relate ourde�nitions to the ones whi
h are used in [Ngu89, All92, CD99, LNW02℄ and show that ourstrengthening makes many relations more natural. For instan
e, it is easy to show thatthe s
alar produ
t of a weakly two-s
ale 
onvergent family and of a strongly 
onvergentfamily 
onverges to the s
alar produ
t of the two limits.In Se
tion 2.4 we re
all the 
lassi
al results on the two-s
ale limits of sequen
es of gradientsand expli
itly 
onstru
t a gradient folding operator Gε : H1

0(Ω)×L2(Ω,H1
av(Y)) → H1

0(Ω)su
h that for all (u0, U1) we have ∇Gε(u0, U1)
s2
−→ ∇xu0 + ∇yU1 and Gε(u0, U1) ⇀ u0 in

H1
0(Ω). Based on these results we provide the relevant two-s
ale Γ-limit results for thefun
tionals Eε(t, ·) and Rε. Under simple additional assumptions, the two-s
ale limits are

E(t, u0, U1, Z) =
∫
Ω×Y

1
2

〈〈
A(y)

(
ex(u0)+ey(U1)

Z

)
,
(

ex(u0)+ey(U1)
Z

)〉〉
dydx− 〈ℓ(t), u0〉and

R(Z) =
∫
Ω×Y

ρ(y, Z(x, y))dydx.The 
onvergen
e of Eε and Rε to E and R 
an be seen as a type of two-s
ale Mos
o
onvergen
e, i.e., Γ-
onvergen
e in the weak and in the strong topology, see [MRS06℄.Re
overy sequen
es (also 
alled realizing sequen
es in [JKO94℄) in the strong two-s
ale
onvergen
e sense are obtained via our expli
it operators Fε and Gε.In Se
tion 3 we formulate our rate-independent evolution systems and we provide existen
eand uniqueness theorems for energeti
 formulations asso
iated with Eε and Rε on the onehand and with E and R on the other hand. The importan
e is that we obtain uniform apriori Lips
hitz bounds for the energeti
 solutions qε = (uε, zε) : [0, T ] → Q. The solutions
Q = (u0, U1, Z) : [0, T ] → Q are de�ned on the spa
e Q = H×Z with

H = H1
ΓDir

(Ω)d×L2(Ω; H1
av(Y))d, Z = L2(Ω; L2(Y))m = L2(Ω×Y)m,with H1

av(Y) = {U ∈ H1(Y) |
∫

Y
U(y)dy = 0 }.The �nal Se
tion 4 establishes the relation between the solutions qε and Q. The mainresult is Theorem 4.3 and it states that if the initial data qε(0) strongly two-s
ale 
ross-
onverge to Q0, written as qε(0)

s2c
−→ Q0 and de�ned as

uε ⇀ u0 in H1
ΓDir

(Ω)d, ∇uε
s2
−→ ∇xu0+∇yU1 in L2(Ω,H1

av(Y)), zε
s2
−→ Z in L2(Ω×Y),then for all t ∈ [0, T ] we have qε(t) s2c

−→ Q(t) where Q is the unique energeti
 solutionasso
iated with E and R with the initial value Q(0) = Q0. In terms of evolutionaryvariational inequalities this means that the solutions qε = (uε, zε) of
〈DEε(t, qε), v−q̇ε〉 + Rε(v) − Rε(q̇ε) ≥ 0 for all v ∈ Qstrongly two-s
ale 
ross-
onverge to the solution Q = (u0, U1, Z) of
〈DE(t, Q), V−Q̇〉 + R(V ) − R(Q̇) ≥ 0 for all V ∈ Q,if the initial 
onditions satisfy qε(0)

s2c
−→ Q(0) for ε→ 0.3



The 
ru
ial tool for proving this 
onvergen
e is the abstra
t Γ-
onvergen
e theory de-veloped in [MRS06℄. The main di�
ulty in the theory is to show that weak (two-s
ale)limits of stable states are again stable. In [MRS06, Eqn. (2.16)℄ a su�
ient 
ondition isprovided that asks for the existen
e of a joint re
overy sequen
e (q̂ε)ε su
h that
lim sup

ε→0
Eε(t, q̃ε)+Rε(z̃ε−zε)−Eε(t, qε) ≤ E(t, Q̃)+R(Z̃−Z)−E(t, Q) and q̃ε

w2c
⇀ Q̃,where qε is a given family of stable states with qε w2c

⇀ Q and Q̃ is an arbitrary test state,
f. Prop. 4.5. In our situation this 
ondition 
an be ful�lled by exploiting the quadrati
nature of the energies, whi
h leads to some 
an
ellation of di�eren
es of the energies,namely Eε(t, q̃ε)−Eε(t, qε) 
onverges to E(t, Q̃)−E(t, Q), if qε w2c
⇀ Q and q̃ε−qε s2c

−→ Q̃−Qstrong. Here it is important that our notion of weak and strong 
onvergen
e allows us to
on
lude 
onvergen
e of s
alar produ
ts, see Prop. 2.4(d).As far as we know, this is the �rst homogenization work for a nonlinear and nonsmoothevolutionary problems ex
ept for [Nes06℄. The latter work treats more general evolu-tion laws and is not restri
ted to the rate-independent setting. However, it is morerestri
tive in the 
onstitutive laws and proves the 
onvergen
e only in an averaged senseover mi
ros
opi
 phase shifts of the 
ells. Similar variational inequalities are treated in[CPS04, Yos01℄, but with di�erent 
onstraints and without time dependen
e.We hope that our methods simplify and 
larify the theory of two-s
ale 
onvergen
e andthus provide ideas and tools for solving more general problems.2 Two-s
ale 
onvergen
eWe re
all here the de�nition of the two-s
ale 
onvergen
e and several important results
on
erning this notion (see [Ngu89, All92, CD99, LNW02℄). In parti
ular, the presentedresults are based on [CDG02, Vis04℄, where the notions of periodi
 unfolding (also 
alled`two-s
ale de
omposition' in the latter work) and periodi
 folding, whi
h is 
alled `averag-ing operator' in [CDG02, Se
t. 5℄. In the following subse
tions we take spe
ial 
are of theproblems that are asso
iated with the fa
t that we want to work on a bounded domain Ωand that this is only approximately 
ompatible with mi
ros
opi
 periodi
ity. This givesrise to a 
ertain notational 
ompli
ation but allows us a very pre
ise and e�
ient de�ni-tion of weak and strong two-s
ale 
onvergen
e in Se
tion 2.3. Note also Example 2.7 thatshows that this spe
ial 
are is ne
essary to avoid problems at the boundary.2.1 Basi
 de�nitions of the two-s
ale variablesLet d ∈ N be the spa
e dimension. The periodi
ity in Rd is expressed by a d-dimensionalperiodi
ity latti
e
Λ = { λ =

∑d
j=1 kjbj | k = (k1, k2, ..., kd) ∈ Zd },where {b1, ..., bd} is an arbitrary basis in Rd. The asso
iated unit 
ell is Y = { x =∑d

1 γjbj | γj ∈ [−1/2, 1/2) } ⊂ Rd, su
h that Rd is the disjoint union of the translated4




ells λ+Y , if λ ranges all of Λ. Following [Vis04℄, we distinguish the unit 
ell from theperiodi
ity 
ell Y, whi
h is obtained by identifying the opposite fa
es of Y , or we may set
Y = Rd/Λ. Thus, Y has the stru
ture of a torus. For most appli
ations one may assumethat Λ = Zd, Y = [−1/2, 1/2)d, and Y = Rd/Zd = Td, the d-dimensional standard torus.However, our theory 
overs the general 
ase. Yet, we will be slightly in
onsistent and use
y to denote elements of Y and Y simultaneously by relying on the natural identi�
ationbetween y+Λ ∈ Y and y ∈ Y .On Rd we de�ne the mappings [ · ]Λ and {·}Y su
h that

[ · ]Λ : Rd → Λ, {·}Y : Rd → Y, x = [x]Λ + {x}Y for all x ∈ Rd.We also use the notation { · }
Y
su
h that {x}

Y
= xmodΛ ∈ Y. Obviously a fun
tion fde�ned on Rd is Λ-periodi
 if f(x) = f({x}Y ) for x ∈ Rd and we may identify f witha fun
tion f̃ de�ned on Y. Note that Lp(Y ) and Lp(Y) may be identi�ed in 
ontrast to

Ck(Y ) and Ck(Y) = Ckper(Y ). Similarly, we use H1(Y) = H1per(Y ), whi
h is di�erent from
H1(Y ). A non-standard spa
e, whi
h we will need in the sequel, is

H1
av(Y) := { f ∈ H1(Y) |

∫
Y
f(y)dy = 0 }. (2.1)We now introdu
e a small length-s
ale parameter ε > 0 and want to study fun
tions whi
hhave fast periodi
 os
illations on the mi
ros
opi
 periodi
ity 
ell εY . We de
ompose thepoints x ∈ Ω ⊂ Rd su
h that

x = Nε(x) + εRε(x) with Nε(x) = ε
[

x
ε

]
Λ
and Rε(x) =

{
x
ε

}
Y
.Thus, Nε ∈ εΛ denotes the ma
ros
opi
 
enter of the small 
ell Nε(x)+εY that 
ontains

x and Rε denotes the �ne-s
ale part of x. With this we de�ne a de
omposition map Dεand a 
omposition map Sε (
f. [Vis04℄) as follows
Dε :

{
Rd → Rd×Y

x 7→ (Nε(x),Rε(x))
Sε :

{
Rd×Y → Rd,

(x, y) 7→ Nε(x)+εy,where in the last sum some y ∈ Y is identi�ed with y ∈ Y ⊂ Rd. For the 
onstru
tionof periodi
 unfolding operator and folding operator in the next subse
tion, the followingsimple properties of Dε and Sε are essential:
Dε(Sε(x, y)) = (Nε(x), y) and Sε(Dε(x)) = x for all (x, y) ∈ Rd×Y. (2.2)If Ω does not 
oin
ide with Rd then 
ertain te
hni
alities arise from the fa
t that theimage of Dε is not 
ontained in Ω×Y. Similarly, we note that Sε(Ω×Y) is not 
ontainedin Ω. To handle this, we introdu
e, for a �xed open domain Ω, the following subsets of Λ:

Λ−
ε = { λ ∈ Λ | ε(λ+Y ) ⊂ Ω } and Λ+

ε = { λ ∈ Λ | ε(λ+Y ) ∩ Ω 6= ∅ }.Using this, we de�ne the domains Ω−
ε and Ω+

ε via Ω±
ε = int

(
∪λ∈Λ±

ε
ε(λ+Y )

). Clearly,we have Ω−
ε ⊂ Ω ⊂ Ω+

ε . Moreover, we have [Ω±
ε ]±ε = Ω±

ε , Ω ⊂ Nεdiam(Y )(Ω
−
ε ) and Ω+

ε ⊂
Nεdiam(Y )(Ω), where diam(Y ) is the diameter of Y and Nδ(A) denotes the δ-neighborhoodof the set A. 5



Moreover, we set [Ω×Y]ε = S−1
ε (Ω) = { (x, y) | Sε(x, y) ∈ Ω } and note the relations

Ω−
ε ×Y ⊂ [Ω×Y]ε ⊂ Ω+

ε ×Y, (2.3)whi
h will signi�
antly be used later on. From now on we will assume that Ω satis�es
Ω is open and bounded and |∂Ω| = 0. (2.4)This guarantees that |Ω\Ω−

ε |+ |Ω+
ε \Ω| → 0 for ε→ 0 whi
h will be used later. To see this,denote by φε the 
hara
teristi
 fun
tion of the set Nε diam(Y )(∂Ω), then Ω\Ω−

ε ∪ Ω+
ε \Ω ⊂

Nεdiam(Y )(∂Ω) and for all x 6∈ ∂Ω we have φε(x) → 0 for ε → 0. Hen
e, we 
on
lude
|Ω\Ω−

ε | + |Ω+
ε \Ω| ≤ |Nεdiam(Y )(∂Ω)| =

∫
Rd φε dx → 0 for ε → 0. The se
ond 
ondition in(2.4) is 
ertainly satis�ed, if Ω has a Lips
hitz boundary.2.2 Folding and periodi
 unfolding operatorsThe notion of two-s
ale 
onvergen
e is intrinsi
ally linked with a suitable �two-s
ale em-bedding� of the fun
tion spa
e Lp(Ω) into the two-s
ale spa
e Lp(Ω×Y). Su
h a mappingwill be 
alled a periodi
 unfolding operator. Moreover, for a two-s
ale fun
tion U de�nedon Ω×Y it is desirable to �nd a fun
tion uε de�ned on Ω that has the 
orresponding mi-
ros
opi
 behavior. A mapping from the two-s
ale spa
e into the original fun
tion spa
e

Lp(Ω) will be 
alled a folding operator.The natural 
andidate for the periodi
 unfolding operator was introdu
ed in [CDG02℄ andreads
Tε : Lp(Ω) → Lp(Rd×Y); v 7→ vex ◦ Sε, (2.5)where vex ∈ Lp(Rd) is obtained from v by extending it by 0 outside of Ω. By de�nition,we immediately have the produ
t rule:

1
p

+ 1
q

= 1
r
≤ 1, u ∈ Lp(Ω), v ∈ Lq(Ω) =⇒ Tε(uv) = (Tεu) (Tεv) ∈ Lr(Ω×Y). (2.6)In general, the support of Tεv is [Ω×Y]ε whi
h is not 
ontained in Ω×Y. This dis
repan
yin support is the main reason why we repeat the de�nitions of the operators and thedi�erent versions of two-s
ale 
onvergen
e in detail. Most previous work either deals with

Ω = Rd or is not very pre
ise about the supports. However, as was noted in [LNW02℄,see also our Examples 2.3 and 2.7, we need to be 
areful here.A variant of Tε that maps 
ontinuous fun
tions u into 
ontinuous ones 
an be found in[Vis04℄.As 
andidates for folding operators simple 
hoi
es are given in the form
F̂ε : F(Ω×Y) → F(Rd); U 7→ U ◦ Dε, and Fε : F(Ω×Y) → F(Rd); U 7→ U ◦Dε, (2.7)where Dε is the simple de
omposition Dε : x 7→ (x,

{
x
ε

}
Y
). Both of these 
hoi
es arenot suitable, if for the fun
tion spa
e �F� we 
hoose Lp sin
e the image of Ω under Dεand Dε, respe
tively, is a set of measure 0 in Rd×Y. However, the folding operator Fε iswell-de�ned as a mapping from Ck(Rd×Y) into Ck(Rd) and has the big advantage that theimage of Ω×Y under Dε is equal to Ω. In fa
t, this is the basis of the 
lassi
al de�nitionof two-s
ale 
onvergen
e, see (2.9). 6



The main point in this subse
tion is that we use a very parti
ular folding operator Fεthat is well adapted to the 
lassi
al Lp-spa
es, namely
Lp(Ω×Y) = Lp(Ω; Lp(Y)) = Lp(Y; Lp(Ω)) for p ∈ [1,∞).These are the relevant ones for ellipti
 partial di�erential equations and our aim is toavoid spa
es involving 
ontinuous fun
tions like Lp(Ω,C(Y)) (on whi
h F̂ε is well-de�ned).Our folding operator is a variant of the averaging operator Uε de�ned in [CDG02, Se
t. 5℄,sin
e we take spe
ial 
are on the domain Ω.On Lp(Rd×Y) we �rst de�ne the 
lassi
al proje
tor to pie
ewise 
onstant fun
tions onea
h ε(λ+Y ) via

(PεU)(x, y) = −

∫

Nε(x)+εY

U(ξ, y)dξ,where −∫
A
denotes the average over A, i.e., −∫

A
g(a)da = 1

|A|

∫
A
g(a)da. Clearly (Pε)

2 = Pε,
‖PεU‖p ≤ ‖U‖p, and PεU → U in Lp(Ω×Y) for all U ∈ Lp(Ω×Y).Our folding operator Fε is now de�ned as follows:

Fε : Lp(Rd×Y) → Lp(Ω); U 7→ Pε(χεU) ◦ Dε)|Ω with χε = χ[Ω×Y]ε. (2.8)Note that the folding operator is de�ned for fun
tions on the full spa
e Rd×Y and takesvalues in the fun
tions on Ω. The 
onstru
tion with the 
hara
teristi
 fun
tion χε :
Rd×Y → {0, 1} guarantees that satis�es χε = Pεχε and sppt(χε ◦ Dε) = Ω, whi
h followsfrom the de�nition of [Ω×Y]ε and from (2.2).The following proposition summarizes the properties of the folding operator and the pe-riodi
 unfolding operator. We restri
t ourselves to the 
ase p ∈ (1,∞), and leave theobvious generalizations for p = 1 and p = ∞ to the reader. In fa
t, in our appli
ation wewill only use p = p′ = 2, whi
h is espe
ially ni
e.Proposition 2.1 Let p ∈ (1,∞) and p′ = p/(p−1). Then, the folding operator Fε :
Lp(Rd×Y) → Lp(Ω) and the periodi
 unfolding operators Tε : Lp(Ω) → Lp(Rd×Y) and
T̃ε : Lp′(Ω) → Lp′(Rd×Y) satisfy(a) ‖Tεu‖Lp′(Rd×Y) = ‖u‖Lp′(Ω) and sppt(Tεu) ⊂ [Ω×Y]ε for all u ∈ Lp′(Ω);(b) ‖FεU‖Lp(Ω) ≤ ‖U‖Lp(Rd×Y) for all U ∈ Lp(Rd×Y);(
) Fε is the adjoint of T̂ε, i.e., Fε =

(
T̂ε

)′;(d) Fε ◦ Tε = idLp(Ω) and (Tε ◦ Fε)
2 = Tε ◦ Fε = χεPε.All these identities 
an be obtained by elementary 
al
ulations via de
omposing Rd into

∪λ∈Λε(λ+Y ).2.3 Weak and strong two-s
ale 
onvergen
eFollowing [Ngu89, All92, CD99, LNW02℄ a family (uε)ε in Lp(Ω) is 
alled two-s
ale 
onver-gent to a fun
tion U ∈ Lp(Ω×Y) and write uε
2
⇀ U , if for all test fun
tions ψ : Ω×Y → Rwe have

lim
ε→0

∫

Ω

uε(x)ψ(x,
{

x
ε

}
Y
)dx =

∫

Ω

∫

Y

U(x, y)ψ(x, y)dydx for all ψ ∈ Ψ. (2.9)7



The 
hoi
e of the set of test fun
tions Ψ is important here, 
f. [LNW02℄. The weakestnotion o

urs if we take Ψ = C∞
c (Ω×Y), whi
h 
orresponds to a kind of distributional
onvergen
e. If p′ = p/(p−1) denotes the dual exponent to p ∈ (1,∞), the 
hoi
e Ψ =

Lp′(Ω,C(Y)) is advo
ated in [LNW02℄, sin
e it guarantees weak 
onvergen
e of (uε)ε to∫
Y
U(·, y) dy in Lp(Ω). Note that two-s
ale 
onvergen
e 
an also be de�ned using thefolding operator Fε de�ned in (2.7)

uε
2
⇀ U ⇐⇒ 〈uε, Fεψ〉Ω = 〈uε, ψ◦Dε〉Ω → 〈U, ψ〉Ω×Y.Here we follow the notions from [Vis04℄, but modify them to �t the 
ase Ω ( Rd, forde�ning weak and strong two-s
ale 
onvergen
e via the periodi
 unfolding operators Tε.De�nition 2.2 Let (uε)ε∈(0,ε0) be a family in Lp(Ω) with p ∈ (1,∞).(a) We say that uε weakly two-s
ale 
onverges to U ∈ Lp(Ω×Y) andwrite �uε

w2
⇀ U in Lp(Ω×Y)�, if Tεuε ⇀ Uex in Lp(Rd×Y).(b) We say that uε strongly two-s
ale 
onverges to U ∈ Lp(Ω×Y) andwrite �uε
s2
−→ U in Lp(Ω×Y)�, if Tεuε → Uex (strongly) in Lp(Rd×Y).As the supports of Tεuε are 
ontained in [Ω×Y]ε ⊂ Ω+

ε ×Y, it is 
lear that any possiblea

umulation point U of (Tε)ε has its support in Ω×Y. Be
ause of |∂Ω| = 0 we have
Lp(Ω×Y) = Lp(Ω×Y) and hen
e a

umulation points of (Tεuε)ε 
an be uniquely des
ribedby elements in Lp(Ω×Y). Nevertheless, it is important that our de�nition involves a
onvergen
e statement in Lp(Rd×Y), i.e., we need to 
onsider fun
tions outside of Ω×Y.If the 
onvergen
e was only asked for the restri
tions on Ω×Y, then di�erent notionswould o

ur.Example 2.3 We 
hoose Ω = (0, 1) and Y = [0, 1). Along the sequen
e εk = (k3−1)/k4 →
0 we 
onsider the fun
tions

uεk
(x) = ak for x ∈ (1−1/k2, 1) and 0 otherwise,whi
h satisfy ‖uεk

‖L2(Ω) = |ak|/k. The periodi
 unfolding Uk = Tεk
uεk

∈ L2(R×Y) reads
Uk(x, y) = ak if (

x ∈ (1−1/k2, 1+(k−1)/k2) and y ∈ (0, 1/k)
) and 0 else.The support of Uk only has a small part in Ω×Y while the most part is in (Ω+

εk
\ Ω)×Y.Hen
e, Uk

∣∣
Ω×Y

has a mu
h smaller norm, namely ‖Uk

∣∣
Ω×Y

‖L2(Ω×Y) = |ak|/k3/2. Thus, for
ak = o(k3/2) we have Uk

∣∣
Ω×Y

→ 0 strongly in L2(Ω×Y) whi
h implies uk
2
⇀ 0 in L2(Ω×Y).However, uεk

w2
⇀ U holds if and only if ak = O(k) and then U ≡ 0. Moreover, uεk

s2
−→ U ifand only if ak = o(k) and U ≡ 0 then.Using the fa
t that the folding operator is the adjoint of the periodi
 unfolding operator,we may equivalently de�ne weak two-s
ale 
onvergen
e in a way similar to the 
lassi
alde�nition (2.9), namely

uε
w2
⇀ U in Lp(Ω×Y) ⇐⇒ ∀V ∈ Lp′(Ω×Y) :

∫
Ω
uε FεV dx →

∫
Ω

∫
Y
U V dydx. (2.10)8



Note that we have simply repla
ed the folding operator Fε : U 7→ U◦Dε by the moresophisti
ated version Fε that allows us to take general Lp fun
tions. Moreover, the testfun
tions V are allowed to have a support bigger than Ω×Y. As we are interested in
ε→ 0, it su�
es to 
onsider V ∈ Lp′(Nδ(Ω)×Y) for any δ > 0, whereas δ = 0 will lead toa stri
tly weaker notion of 
onvergen
e.The de�nitions of weak and strong two-s
ale 
onvergen
e are obtained by transferring
onvergen
e to the 
lassi
al weak and strong 
onvergen
es in the 
lassi
al spa
e Lp(Ω×Y).Proposition 2.4 Let p ∈ (1,∞) and p′ = p/(p−1) and assume that Ω satis�es (2.4).(a) If uε

w2
⇀ U in Lp(Ω×Y), then ‖uε‖Lp(Ω) is bounded for ε→ 0.(b) If uε
w2
⇀ U in Lp(Ω×Y), then uε

2
⇀ U . (The reverse impli
ation is in general not true).(
) If uε

w2
⇀ U and ‖uε‖Lp(Ω) → ‖U‖Lp(Ω×Y), then uε

s2
−→ U .(d) If uε

w2
⇀ U in Lp(Ω×Y) and vε

s2
−→ V in Lp′(Ω×Y), then 〈uε, vε〉Ω → 〈U, V 〉Ω×Y.(e) For ea
h U ∈ Lp(Ω×Y) there exists a family (uε)ε su
h that uε

s2
−→ U in Lp(Ω×Y)(simply take uε = FεUex).(f) For ea
h w ∈ Lp(Ω) we have Tεw

s2
−→ Ew in Lp(Ω×Y),where E : Lp(Ω) → Lp(Ω×Y) is de�ned via Ev(x, y) = v(x).(g) For p ∈ (1,∞), q ∈ (1,∞] and 1

p
+ 1

q
= 1

r
,let uε

w2
⇀ U in Lp(Ω×Y) and vε

s2
−→ V in Lq(Ω×Y), then uεvε

w2
⇀ UV in Lr(Ω×Y).If additionally uε

s2
−→ U in Lp(Ω×Y), then uεvε

s2
−→ UV in Lr(Ω×Y).Proof: Parts (a), (
), (d), and (g) are immediate 
onsequen
es of the 
orrespondingresults of weak and strong 
onvergen
e in Lp(Ω×Y).Property (b) will be a 
onsequen
e of Prop. 2.5 below.Property (e) follows as the proje
tor Pε on Lp(Ω×Y) satis�es PεU → U and the 
hara
-teristi
 fun
tion χε (
f. (2.8)) 
onverges pointwise a.e. to χΩ×Y.For property (f) we use the fa
t that the unfolding operators Tε have norm 1 and thatfor w ∈ C1(Ω) some 
al
ulation gives ‖Tεw − Ew‖Lp(Ω×Y) ≤ 2 diamY ε |Ω|1/p‖∇w‖L∞.However, be
ause of (2.4) the smooth fun
tions are dense and the assertion follows.In fa
t, the di�eren
e between 2

⇀ and w2
⇀ disappears, if we a priori impose boundednessof the sequen
e.Proposition 2.5 Let (uε)ε be a bounded family in Lp(Ω) with p ∈ (1,∞). Then, thefollowing statements are equivalent:(i) uε

2
⇀ U in Lp(Ω×Y), (ii) Tεuε

∣∣
Ω×Y

⇀ U in Lp(Ω×Y), (iii) uε
w2
⇀ U in Lp(Ω×Y).Proof: For the equivalen
e between (i) and (ii) see [LNW02, CDD06℄. The de�nitionof w2

⇀ shows that (iii) implies (ii). Moreover, using (2.10) and the boundedness of (uε)ε itis su�
ient to show ∫
Ω
uεFεV dx →

∫
Ω

∫
Y
UV dy dx on the dense subset Ψ = C∞

c (Ω×Y).However, on Ψ we have ‖Fεψ−Fεψ‖Lp(Ω) = O(ε) and thus (i) implies (iii).9



The next result provides an improvement of part (g) in Prop. 2.4.Proposition 2.6 Let p ∈ [1,∞) and let (uε)ε
s2
−→ U in Lp(Ω×Y). Moreover, 
onsidera bounded sequen
e (mε)ε in L∞(Ω) su
h that Tεmε(x, y) → M(x, y) for a.e. x ∈ Ω×Y.Then, mεuε

s2
−→MU in Lp(Ω×Y).Proof: By the assumption, Uε = Tεuε is bounded in Lp(Ω×Y) and hen
e there is asubsequen
e and a majorant g ∈ Lp(Ω×Y) su
h that |Uεk

(x, y)| ≤ g(x, y) and Uεk
(x, y) →

U(x, y) a.e. in Ω×Y. Be
ause of the assumptions on mε we �nd that Tεk
(mεk

Uεk
) =

Tεk
mεk

Tεk
Uεk

also has a joint majorant and 
onverges pointwise a.e. From this we 
on
lude
Tεk

mεk
Uεk

⇀ MU in Lp(Ω×Y). Sin
e the limit of all subsequen
es is the same the usual
ontradi
tion argument provides the 
onvergen
e of the whole family.The following example shows that the statement in Prop. 2.4(d) is not true if we do notinsist on the 
onvergen
e of Tεuε and Tεvε in Lp(Rd×Y). In [LNW02, Thm. 11℄ a relatedresult to (
) is proved, namely ∫
Ω
τuεvε dx →

∫
Ω
τ

∫
Y
UV dy dx for all τ ∈ C∞

c (Ω), wherethe 
ut-o� fun
tion τ that is 0 near the boundary ∂Ω is needed to 
ompensate for theusage of the weaker notion of two-s
ale 
onvergen
e 2
⇀ de�ned in (2.9). In [LNW02,Thm. 11℄ strong two-s
ale 
onvergen
e is impli
itly de�ned by two-s
ale 
onvergen
e 2

⇀and additional norm 
onvergen
e, see Prop. 2.4(
).Example 2.7 We take Ω = (0, 1), Y = [0, 1), εk, and uεk
as in Example 2.3. Moreover,we let ak = k and vεk

= uεk
. Obviously, we have ∫

uεk
vεk

dx = ‖uεk
‖2

L2(Ω) = 1. However,as shown above we have Tεk
uεk

∣∣
Ω×Y

→ UΩ ≡ 0 in L2(Ω×Y). Hen
e, Prop. 2.4(d) does nothold for the limits UΩ and VΩ de�ned in Lp(Ω×Y) only.2.4 Two-s
ale 
onvergen
e of gradientsWe now deal with bounded sequen
es in W1,p(Ω). The two-s
ale 
onvergen
e for theasso
iated gradients provides an additional stru
ture. To formulate the result we de�ne
W1,p

av (Y) = {w ∈ W1,p(Y) |

∫

Y

w(y)dy = 0 }and note that Lp(Ω; W1,p
av (Y)) is the set of fun
tions V in Lp(Ω×Y) = Lp(Ω; Lp(Ω)) su
hthat ∫

Y
V (x, y) dy = 0 for a.a. x ∈ Ω and that ∇yV (in the sense of distributions) liesagain in Lp(Ω×Y).Theorem 2.8 Let (vε)ε be a sequen
e in W1,p(Ω) su
h that vε ⇀ v0 weakly in W1,p(Ω),where p ∈ (1,∞). Then vε

s2
−→ Ev0 in Lp(Ω×Y), and there exist a subsequen
e (vε′)ε′ anda fun
tion V1 ∈ Lp(Ω; W1,p

av (Y)) su
h that
∇vε′

w2
⇀ E∇xv0 + ∇yV1.10



Proof: Sin
e vε ⇀ v0 weakly in W1,p(Ω) implies by the 
ompa
t embedding that vε → v0(strongly) in Lp(Ω). Now using Propositions 2.1(a) and 2.4 we have ‖Tεvε − Ev0‖p ≤

‖Tε(vε−v0)‖p + ‖Tεv0 −Ev0‖p → 0. Thus, vε
s2
−→ Ev0 is established.The weak two-s
ale 
onvergen
e of the gradients along a subsequen
e 
an be dedu
ed byexploiting the 
orresponding result from the 
lassi
al two-s
ale 
onvergen
e, see [Ngu89,All92℄. Sin
e weak 
onvergen
e in W1,p(Ω) implies boundedness of the gradients, thedesired result follows using Prop. 2.5.Like for the strong two-s
ale 
onvergen
e for fun
tions we also need a density resultfor gradients 
onverging in the two-s
ale sense. These results will be used to 
onstru
tre
overy sequen
es for the Γ limits below. We �rst provide an expli
it 
onstru
tion thatis based on a smoothing pro
edure using the heat kernels for Rd and Y. After that weprovide a se
ond 
onstru
tion whi
h is based in ideas in [Vis04℄ and involves the solutionsof ellipti
 problems.Proposition 2.9 Let p ∈ (1,∞) and Ω ⊂ Rd as above. Then, for every fun
tion

(u0, U1) ∈ W1,p(Ω)×Lp(Ω; W1,p
av (Y)) there exists a family (uε)ε in W1,p(Ω) su
h that uε ⇀

u0 in W1,p(Ω) and that ∇uε
s2
−→ E∇u0 + ∇yU1.Proof: It is su�
ient to prove the result for u0 ≡ 0, sin
e we may shift any sequen
e by

u0. Note that by Prop. 2.4(f) we have Tε∇u0
s2
−→ E∇u0.Hen
e it su�
es to �nd for ea
h V1 ∈ Lp(Ω; W1,p
av (Y)) a family (vε)ε su
h that

vε ⇀ 0 in W1,p(Ω) and ∇vε
s2
−→ ∇yV1 in Lp(Ω×Y).For this we use the heat kernels HRd and HY de�ned via

HRd(t, ξ) = 1
(4πt)d/2 exp

(
|ξ|2/(4t)

) and HY(t, η) =
∑

λ∈ΛHRd(t, η+λ).For t > 0 we now de�ne the fun
tions
V (t, x, y) =

∫
Rd

∫
Y
HRd(t, x−ξ)HY(t, y−η)(V1)ex(ξ, η)dηdξ. (2.11)The 
lassi
al semigroup theory for the paraboli
 equation ∂tV = ∆RdV + ∆YV implies

V (t, ·) ∈ C∞(Rd×Y) for t > 0 and
∀α, β ∈ Nd

0 ∃Cα,β > 0 ∀ t > 0 : ‖Dα
xDβ

yV (t, ·)‖Lp(Rd×Y) ≤ C / t(|α|+|β|)/2,

δ(t) = ‖∇yV (t, ·) −∇yV1‖Lp(Rd×Y) → 0 for tց 0.We now de�ne the two-s
ale fun
tion v(ε, t, ·) ∈ W1,p(Ω) via v(ε, t, x) = ε V (t, x,
{

x
ε

}
Y
).We will 
hoose t = tε suitably to de�ne vε = v(ε, tε, ·). As a �rst result we obtain

‖vε‖Lp(Ω) ≤ ε|Ω|1/p‖V (tε, ·)‖C0(Ω×Y) ≤ εCSob‖V (tε, ·)‖Wk,p(Ω×Y) ≤ Cεt−k/2
ε ,where k > (d+d)/p and CSob is the 
orresponding embedding 
onstant for Wk,p(Ω×Y)into C0(Ω×Y). Below we will 
hoose tε su
h that ε t−k/2

ε → 0 for ε → 0 and thus we
on
lude vε → 0 in Lp(Ω). 11



For the gradients we obtain ∇vε(ε, x) = ε∇xV (tε, x,
{

x
ε

}
Y
) + ∇yV (tε, x,

{
x
ε

}
Y
). Using

‖Tε∇vε −∇yV1‖Lp(Ω×Y) ≤ ‖Tεvε −∇yV (tε, ·)‖Lp(Ω×Y) + δ(tε) with δ(tε) → 0 and re
alling
Tεu(x, y) = (u ◦ Sε)(x, y) = u(Nε(x)+εy) it su�
es to estimate

|(Tε∇vε)(x, y) − V (tε, x, y)|

≤ ε|∇xV (tε,Nε(x), y)| + |∇yV (tε,Nε(x), y) −∇yV (tε, x, y)|

≤ ε‖∇xV (tε, ·)‖C0(Ω×Y) + εdiam(Y )‖∇x∇yV (tε, ·)‖C0(Ω×Y)

≤ C1εCSob‖V (tε, ·)‖Wk+2,p(Ω×Y) ≤ C2ε t
−(k+2)/2
ε .Letting tε = εγ with γ ∈ (0, 2/(2+k)) we obtain Tεvε ⇀ V1 in Lp(Ω×Y) and the result isproved.The se
ond 
onstru
tion is more dire
t and allows us to do unfolding and folding as well.It is based on [Vis04, Thm. 6.1℄ but we take 
are of the problems with the boundary ∂Ω.For simpli
ity, we restri
t to the 
ase p = 2 and assume Diri
hlet boundary 
onditions.We de�ne the intermediate spa
e L = L2(Ω)×L2(Rd×Y)d, the two-s
ale Hilbert spa
e

H = H1
0(Ω)×L2(Rd,H1

av(Y)), and the two norm-preserving linear operators
Tε :

{
H1

0(Ω) → L,

u 7→ (u, Tε∇u),
Fε :

{
H → L,

(u0, U1) 7→ (u0, (E∇xu0+∇yU1)ex),For norm-preservation of Fε we equip H1
av(Y) with the norm ‖U1‖2

H1
av(Y) = ‖∇yU1‖L2(Y).In parti
ular the images X ε

T
:= TεH

1(Ω) and X ε
F

= FεH are 
losed subspa
es of L2
av(Y).We let Qε

T
and and Qε

F
be the orthogonal proje
tions onto X ε

T
and X ε

F
, respe
tively. Then,we are able to de�ne a gradient unfolding operator T (1)

ε = F−1
ε Qε

F
Tε : H1

0(Ω) → H and agradient folding operator Gε via
Gε :

{
H → H1

0(Ω),

(u0, U1) 7→ T−1
ε

(
Qε

T

(
Fε(u0, U1)

))
.

(2.12)As the operators T (1)
ε and Gε are 
ompositions of norm-preserving operators and orthog-onal proje
tions they have a norm not ex
eeding 1. The following result shows that thede�nition of Gε is su
h that it relates to solving an auxiliary ellipti
 problem and that itprovides a re
overy sequen
e with strongly two-s
ale 
onvergent gradients.Proposition 2.10 For given (u0, U1) ∈ H the fun
tion Gε(u0, U1) is uniquely 
hara
ter-ized as the solution v ∈ H1

0(Ω) of the weak ellipti
 problem
∫

Ω

(v − u0)w +
(
∇v − Fε(E∇xu0+∇yU1)

)
· ∇wdx = 0 for all w ∈ H1

0(Ω). (2.13)Moreover, for ε→ 0, we have the 
onvergen
es
Gε(u0, U1) ⇀ u0 in H1

0(Ω) and ∇Gε(u0, U1)
s2
−→ E∇xu0 + ∇yU1 in L2(Ω×Y). (2.14)

12



Proof: At �rst, we �x ε and let v = Gε(u0, U1) is su
h that Tεv is the orthogonalproje
tion of Fε(u0, U1) onto X ε
T

= TεH
1(Ω). Denoting by 〈·, ·〉L the s
alar produ
t in Lthis means that for all w ∈ H1

0(Ω) we have
0 = 〈 Tεv − Fε(u0, U1) ,Tεw〉L

=
∫
Ω
(v − u0)wdx+

∫
Rd×Y

(Tε(∇v) −∇xu0 −∇yU1) · Tε(∇w)dydx

=
∫
Ω
(v − u0)wdx+

∫
Ω
(∇v) · (∇w)dx−

∫
Ω
Fε(∇xu0+∇yU1) · ∇wdx.Here we use the de�nitions of Tε and Fε as well as the properties of Tε in Prop. 2.1(a)and (
). Clearly the last line give (2.13).To show the desired 
onvergen
e we re
all that the operators Gε : H → H1(Ω) have anorm bounded by 1. Hen
e, it su�
es to proof the desired 
onvergen
e on a dense subset,namely C = C2

c(Ω)×C2
c(Ω×Y). For (u0, U1) ∈ C we write uε = (Gε(u0, U1)) in the form

uε(x) = vε(x) + gε(x) with vε(x) = u0(x) + ε U1(x,
{

x
ε

}
Y
),where gε is the solution of the weak ellipti
 problem

∫
Ω
gεw + ∇gε · ∇wdx = ℓε(w) for all w ∈ H1

0(Ω),where ℓε(w) =
∫
Ω
(u0−vε)w +

(
Fε(E∇xu0+∇yU1) −∇vε

)
· ∇wdx.

(2.15)Clearly, the family (vε)ε∈(0,1) is bounded in H1
0(Ω). Moreover, we have ‖u0−vε‖L∞ ≤

C1ε whi
h implies vε ⇀ u0 in H1
0(Ω). Using ∇vε(x) = ∇u0(x) + ∇yU1(x,

{
x
ε

}
Y
) +

ε∇xU1(x,
{

x
ε

}
Y
) and (u0, U1) ∈ C we have ‖Tε∇vε − (E∇xu0−∇yU1)ex‖L2(Rd×Y) ≤ C2ε,i.e., ∇vε

s2
−→ E∇xu0−∇yU1 in L2(Ω×Y).Hen
e, it su�
es to show ‖gε‖H1(Ω) → 0, as this implies ∇gε

s2
−→ 0 in L2(Ω×Y). From(2.15) we have

‖gε‖2
H1(Ω) ≤ ‖(u0−vε,Fε(E∇xu0+∇yU1) −∇vε)‖2

L

= ‖u0−vε‖2
L2(Ω) + ‖E∇xu0+∇yU1) − Tε∇‖2

L2(Rd×Y)
≤ C3ε

2.This �nishes the proof of the 
onvergen
e result (2.14).Finally, let us note that we may extend the 
onstru
tion to fun
tions u, u0 ∈ H1(Ω),namely without Diri
hlet boundary 
onditions. In fa
t, for u0 ∈ H1(Ω) we obtain a re
ov-ery sequen
e uε = u0 + Gε(0, U1) by simply employing the above result and Prop. 2.4(f).2.5 Two-s
ale Γ-limitsWe now dis
uss the question how fun
tionals behave under two-s
ale 
onvergen
e. Thisrelates strongly to the question of homogenization. The two-s
ale 
onvergen
e results wepresent here are well-known in the literature, but often they are not easily a

essible.Thus, we repeat here some simple versions whi
h 
an be easily dedu
ed by our theory andwhi
h are su�
ient for our appli
ation in the next se
tion. For more advan
ed results werefer to [All92, CD99, CDD06℄. 13



Let W : Y×Rm → R∞ := R∪{∞} be a normal integrand, whi
h means that for ea
h
u ∈ Rm the fun
tion y 7→ W (y, u) is measurable and that for a.e. y ∈ Y the fun
tion
u 7→ W (y, u) is lower semi-
ontinuous. Re
alling our de�nitions of Tε, Fε, and of [Ω×Y]ε(
f. the line above (2.3)) we obtain the following 
entral formulas

∫
Ω
W

({
x
ε

}
Y
, u(x)

)
dx =

∫
[Ω×Y]ε

W (y, Tεu (x, y))dydx for all u ∈ Lp(Ω). (2.16)This identity follows by a simple de
omposition of Ω+
ε into small 
ells Nε(ξ)+εY andusing the de�nition of Tε.The next two lemmas are the basis of the two-s
ale Γ-
onvergen
e for the fun
tionals

Wε:





Lp(Ω)→ R∞,

u 7→
∫
Ω

W (
{

x
ε

}
Y
, u(x))dx and W :





Lp(Ω×Y)→ R∞,

U 7→
∫

Ω×Y

W (y, U(x, y))dydx.Lemma 2.11 Assume that p ∈ (1,∞), that Ω is as above, and that W : Y×Rm → R∞ isa 
onvex normal integrand, i.e., W (y, ·) : Rm → R∞ is 
onvex for a.e. y ∈ Y. Moreover,let W be bounded from below by W (y, u) ≥ −h(y) for a.e. y ∈ Y with h ∈ L1(Ω). Then,
uε

w2
⇀ U in Lp(Ω×Y) =⇒ W (U) ≤ lim inf

ε→0
Wε(uε).Proof: We 
hoose an in
reasing sequen
e Ak, k ∈ N of open subsets of Ω su
h that

Ak ⊂ Ak+1 ⋐ Ω and |Ω\Ak| → 0 for k → ∞.Then, for ea
h k there exists ε0 su
h that Ak×Y ⊂ Ω−
ε ×Y ⊂ [Ω×Y]ε for ε ∈ (0, ε0).Now 
onsider a family with uε

w2
⇀ U . Using (2.16) and W ≥ 0 we �nd

Wε(uε) =
∫

[Ω×Y]ε

W (y, Tεuε(x, y))dydx ≥
∫

Ak×Y

W (y, Tεuε(x, y))dydx −
∫

Ω\Ak

h(y)dy.In the right-hand side we may pass to the limit inferior for ε → 0, as Tεuε ⇀ U in Lp(Ω×Y)and as W is a 
onvex normal integrand. We obtain
lim inf

ε→0
Wε(uε) ≥

∫
Ak×Y

W (y, U(x, y))dydx −
∫

Ω\Ak

h(y)dy.Sin
e k was arbitrary, we may 
onsider now the limit k → ∞. The se
ond term tends to
0 as |Ω\Ak| → 0 whereas the �rst term 
onverges to W (U).Lemma 2.12 Assume that p ∈ (1,∞), and that Ω is as above.(a) Let W : Y×Rm → R be a Caratheodory fun
tion, i.e., W (y, ·) is 
ontinuous for a.e.
y ∈ Y and W (·, u) is measurable for ea
h u ∈ Rd. Moreover, assume that there is afun
tion h ∈ L1(Y) and a 
onstant C > 0 su
h that |W (y, u)| ≤ h(y) + C(1+|u|)p for all
u ∈ Rm and a.e. y ∈ Y. Then,

uε
s2
−→ U in Lp(Ω×Y) =⇒ W (U) = lim

ε→0
Wε(uε).14



In parti
ular, this implies that Wε(FεUex) → W (U).(b) Let W : Y×Rm → R∞ be a normal integrand su
h that for a.e. y ∈ Y the fun
tion
W (y, ·) is 
onvex and that |W (y, 0)| ≤ h(y) for some h ∈ L1(Y). Then,

W (U) = lim
ε→0

Wε(FεUex) for all U ∈ Lp(Ω×Y).Proof: ad (a). We let Uε = Tεuε, then formula (2.16) gives
Wε(uε) =

∫
[Ω×Y]ε

W (y, Uε(x, y))dydx = W (U) + Iε
1 + I2

εwith Iε
1 =

∫
Ω×Y

[
W (y, Uε(x, y))−W (y, U(x, y))

]
dydx = W (Uε) − W (U),and Iε

2 =
∫
[Ω×Y]ε

W (y, Uε(x, y))dydx−
∫
Ω×Y

W (y, Uε(x, y))dydx.We have Iε
1 → 0 be
ause of Uε → Uex in Lp(Rd×Y) and the strong 
ontinuity of thefun
tional R. For the later property we use the 
ontinuity of W (y, ·) and the growthrestri
tions, 
f. [Da
89, Val88℄.For Iε

2 → 0 we note that both integrals have the same integrand. Moreover, the di�eren
eof the domains Ω×Y and [Ω×Y]ε is 
ontained in Bε =
(
Ω+

ε \Ω
−
ε

)
×Y. By 
ondition (2.4)the Lebesgue measure of this set tends to 0, when
e Iε

2 → 0 and we 
on
lude
|Iε

2 | ≤
∫

Bε
h(y) + C(1+|Uε(x, y)|)pdydx→ 0,where again Uε → U is used to obtain the equi-integrability of |Uε|p.ad (b). We again use (2.16) for u = FεUex and note that TεFεUex = χεPεUex by Prop.2.1(d). With this we �nd

Wε(FεUex) =
∫

[Ω×Y]ε

W (y,PεUex(x, y))dydx =
∫

Rd×Y

χε(x, y)W (y,PεUex(x, y))dydx

≤(1) ∫

Rd×Y

χε(x, y) −
∫

Nε(x)+εY

W (y, Uex(y, ξ))dξ dydx =(2) ∫

Rd×Y

χε(ξ, y)W (y, Uex(y, ξ))dydξ

≤(3) W (U) +
∫

(Ω+
ε \Ω)×Y

h(y)dydx.For ≤(1) we have used 
onvexity ofW (y, ·) and Jensen's inequality. The equality =(2) usesthe fa
t that the integrand is pie
ewise 
onstant in x on ea
h Nε(x)+εY . For ≤(3) we use
χε ≤ χΩ×Y + χ(Ω+

ε \Ω)×Y and Uex = 0 outside of Ω×Y. Using h ∈ L1(Y) and (2.4) we �nd
lim supε Wε(FεUex) ≤ W (U). The opposite inequality lim infε Wε(FεUex) ≥ W (U) wasestablished in Lemma 2.11.The following result states that the two-s
ale fun
tional W 
an be 
onsidered as the two-s
ale Γ-limit of the fun
tionals Wε in the sense of Mos
o, i.e., it is the two-s
ale Γ-limitin the weak as well as in the strong topology.Corollary 2.13 Let p ∈ (1,∞) and Ω be as above. Moreover, let W : Y×Rm → R be a
onvex, normal integrand satisfying the bounds W (y, u) ≥ −h(y) and W (y, 0) ≤ h(y) forall u ∈ Rm and a.a. y ∈ Y with h ∈ L1(Y). Then, we have(i) Lower estimate: uε

w2
⇀ U in Lp(Ω×Y) =⇒ W (U) ≤ lim infε→0 Wε(uε).(ii) Re
overy sequen
e: ∀U ∈ Lp(Ω×Y) ∃ (uε)ε: uε

s2
−→ U and W (U) = limε→0 Wε(uε).15



Remark 2.14 It is possible to generalize the above results to the 
ase that the density
W also depends on the ma
ros
opi
 variable x ∈ Ω. The 
entral identity (2.16) is easilygeneralized to

∫
Ω
Wε(x, u(x))dx =

∫
[Ω×Y]ε

Wε(Sε(x, y), Tεu(x, y))dydx for all u ∈ Lp(Ω).Thus, if we want to realize a general Caratheodory fun
tions W : Ω×Y×Rm → R∞ in thetwo-s
ale limit fun
tional W , we de�ne Wε via the approximate energy density
Wε(x, u) = Ŵε(x,

{
x
ε

}
Y
, u) with Ŵε(x, y, u) = −

∫
Nε(x)+εY

W (ξ, y, u)dξ,instead of the traditionally used W (x,
{

x
ε

}
Y
, u). Note that Wε satis�es Wε(Sε(x, y), u) =

Ŵε(x, y, u) →W (x, y, u) a.e. for ε→ 0.Under some mild additional 
onditions it is then possible to pass to the limit as in Lemmas2.11 and 2.12, see also Prop. 2.6. This also resolves the di�
ulties addressed in [CDG02,Thm. 2℄. This will be subje
t of future resear
h.2.6 Two-s
ale 
ross-
onvergen
eFinally we present a result 
on
erning fun
tional involving gradients. For families ((uε, zε))εin W1,p(Ω)×Lp(Ω) we de�ne the notions of weak and strong two-s
ale 
ross-
onvergen
eas follows:
(uε, zε)

w2c
⇀ (u0, U1, Z) in Xp ⇐⇒





uε ⇀ u0 in W1,p(Ω),

∇uε
w2
⇀ E∇u0 + ∇yU1 in Lp(Ω×Y),

zε
w2
⇀ Z in Lp(Ω×Y),

(uε, zε)
s2c
−→ (u0, U1, Z) in Xp ⇐⇒






uε ⇀ u0 in W1,p(Ω),

∇uε
s2
−→ E∇u0 + ∇yU1 in Lp(Ω×Y),

zε
s2
−→ Z in Lp(Ω×Y),where Xp = W1,p(Ω)×Lp(Ω; W1,p

av (Y))×Lp(Ω×Y). The �nal result on two-s
ale Γ-
onvergen
enow provides relations between the fun
tionals
Φε(u, z) =

∫
Ω
φ(

{
x
ε

}
Y
, u(x),∇u(x), z(x))dx and

Φε(u0, U1, Z) =
∫
Ω×Y

φ(y, u0(x),∇u0(x)+∇yU1(x, y), Z(x, y))dx.Proposition 2.15 Let p ∈ (1,∞) and let Ω ⊂ Rd be a bounded domain with Lips
hitzboundary. Assume that φ : Y×Rk×Rk×d×Rm → R is a Caratheodory fun
tion (measur-able in y ∈ Y and 
ontinuous in (u, F, z) ∈ Rk×Rk×d×Rm → R) satisfying the bound
|φ(y, u, A, z)| ≤ h(y) + C(1+|u|+|A|+|z|)p for h ∈ L1(Y). Then, we have

(uε, zε)
s2c
−→ (u0, U1, Z) in Xp =⇒ Φε(uε, zε) → Φ(u0, U1, Z).Moreover, if φ(y, ·) is 
onvex for a.a. y ∈ Y, we also have

(uε, zε)
w2c
⇀ (u0, U1, Z) in Xp =⇒ Φ(u0, U1, Z) ≤ lim inf

ε→0
Φε(uε, zε).The proof is a dire
t 
onsequen
e of 
ombining Lemmas 2.11 and 2.12(a).16



3 Evolutionary variational inequality3.1 Abstra
t resultFor the 
onvenien
e of the reader we re
all the standard existen
e and uniqueness resultsfor evolutionary variational inequalities, see, e.g., [BS96, Vis94, Mie05℄. We start with aHilbert spa
e Q with dual Q∗ and dual pairing 〈·, ·〉 : Q∗×Q → R and a positive semide�niteoperator A ∈ Lin(Q,Q∗), i.e., A = A∗ and 〈Aq, q〉 ≥ 0 for all q ∈ Q. For a fun
tion
ℓ ∈ C1([0, T ],Q∗) we de�ne the energy fun
tional

E(t, q) =
1

2
〈Aq, q〉 − 〈ℓ(t), q〉.Moreover, let a dissipation fun
tional R : Q → [0,∞] be given that is 
onvex, lowersemi-
ontinuous and positively homogeneous of degree 1, viz.,

R(γq) = γR(q) for all γ ≥ 0 and q ∈ Q.The energeti
 formulation (S) & (E) of the rate-independent hysteresis problem asso
iatedwith E and R is based on the global stability 
ondition (S) and the energy balan
e (E):
(S) : E(t, q(t)) ≤ E(t, q̃) + R(q̃−q(t)) for every q̃ ∈ Q,

(E) : E(t, q(t)) + DissR(q; [0, t]) = E(0, q(0)) +
∫ t

0
∂sE(s, q(s))ds,where DissR(q; [r, s]) =

∫ s

r
R(q̇(t))dt and ∂sE(s, q(s)) = −〈ℓ̇(s), q(s)〉. We 
all q : [0, T ] →

Q satisfying (S) and (E) for all t ∈ [0, T ] an energeti
 solution asso
iated with (E,R).The stability 
ondition 
an be formulated in terms of the sets of stable states
S(t) = { q ∈ Q | E(t, q) ≤ E(t, q̂) + R(q̂ − q) for every q̂ ∈ Q }.Now, (S) just means q(t) ∈ S(t).There are several equivalent formulation for (S) & (E), for instan
e the subdi�erentialin
lusion 0 ∈ ∂R(q̇(t)) + DqE(t, q(t)) or the variational inequality
〈Aq(t)−ℓ(t), v−q̇(t)〉 + R(v) − R(q̇(t)) ≥ 0 for every v ∈ Q. (3.1)For these equivalen
es, we refer to [MT04, Mie05℄, where also a proof of the followingexisten
e and uniqueness result 
an be found.Theorem 3.1 Let ℓ ∈ C1([0, T ],Q∗) and q0 ∈ S(0). Moreover, assume that the following
oer
ivity 
ondition holds:

∃α > 0 ∀ v ∈ Q with R(v) <∞ : 〈Av, v〉 ≥ α‖v‖2. (3.2)Then, the energeti
 problem (S) & (E) has a unique solution q ∈ CLip([0, T ],Q) with
‖q(t) − q(s)‖Q ≤

LipQ∗(ℓ)

α
|t− s| for all s, t ∈ [0, T ].17



For the reader's 
onvenien
e we repeat the main argument for the a priori estimate.Assume that for t the derivative q̇(t) exists. Using (3.1) with v = 0 we �nd 〈Aq(t) −
ℓ(t),−q̇(t)〉 − R(q̇(t)) ≤ 0. For a sequen
e tn → t where (3.1) holds we test with v =

µ(̇t), divide by µ and 
onsider the limit µ → ∞. Using 1-homogeneity of R we obtain
〈Aq(tn) − ℓ(tn), q̇(t)〉 + R(q̇(t)) ≤ 0. Adding this to the above estimate gives

〈
(
Aq(tn)−ℓ(tn)

)
−

(
Aq(t)−ℓ(t)

)
, q̇(t)〉 ≤ 0.Assuming tn > t we may divide the above inequality and pass to the limit to �nd 〈Aq̇(t)−

ℓ̇(t), q̇(t)〉 ≤ 0. For tn < t we �nd the opposite inequality. Sin
e we may approa
h t bysequen
es from both sides, this implies 〈Aq̇(t), q̇(t)〉 = 〈ℓ̇(t), q̇(t)〉. Now, (3.2) leads to thedesired result α‖q̇(t)‖ ≤ ‖ℓ(t)‖∗.3.2 Elastoplasti
ity with periodi
 
oe�
ientsIn this se
tion we formulate the 
ontinuum me
hani
s that des
ribes the rate-independentevolution of an elastoplasti
 body under pres
ribed loading. This model is the 
lassi
alone introdu
ed by Moreau and is still used in many engineering appli
ations, 
f. [Mor76,HR99℄.The body o

upies a domain Ω ⊂ Rd, whi
h is assumed to be a nonempty 
onne
tedbounded open set with Lips
hitz boundary ∂Ω. As above we have a length s
ale parameter
ε and a periodi
ity latti
e Λ with unit 
ell Y ⊂ Rd. With u : Ω → Rd we denote thedispla
ement of the body and z : Ω → Rm denotes a ve
tor of internal variables whi
hwill a

ount for inelasti
 e�e
ts due to plasti
 strains and plasti
 hardening.The material properties are assumed to be periodi
 with respe
t to the mi
ros
opi
 latti
e
εΛ, whi
h leads to the dependen
e on {

x
ε

}
Y
. The energy fun
tional Eε is based on astored-energy density W : Y×Rd×d

sym×Rm → R; (y, e, z) 7→ W (y, e, z), where Rd×d
sym = {A ∈

Rd×d |A = AT } and e = e(u) = 1
2
(∇u+∇uT) ∈ Rd×d

sym is the linearized strain tensor. Withthis, Eε takes the form
Eε(t, u, z) =

∫

Ω

W (
{

x
ε

}
Y
, e(u)(x), z(x))dx− 〈ℓ(t), u〉with 〈ℓ(t), u〉 =

∫
Ω
u(x) · fap(t, x)dx+

∫
∂Ω
u(ξ) · gap(t, ξ)dξ,where fap and gap are the applied, time-dependent loading in the volume and on thesurfa
e, respe
tively. We assume that they satisfy fap ∈ C1([0, T ],L2(Ω; Rd)) and gap ∈

C1([0, T ],L2(∂Ω; Rd)), su
h that ℓ ∈ C1([0, T ],H1(Ω; Rd)∗).For the stored energy W we assume that it is a quadrati
 form in (e, z), namely
W (y, e, z) =

1

2

〈〈
A(y)

(
e

z

)
,
(

e

z

)〉〉
,where A(y) : Rd×d

sym×Rm → Rd×d
sym×Rm is a positive semide�nite linear operator and〈〈(

e

z

)
,
(

ee

ez

)〉〉
=

∑d
i,j=1 eij ẽij +

∑m
k=1 zkz̃k is the s
alar produ
t on Rd×d

sym×Rm.The dissipation potential Rε is de�ned via a dissipation density ρ : Y×Rm → [0,∞] in theform Rε(ż) =
∫
Ω
ρ(

( {
x
ε

}
Y

)
, ż(x)) dx. Rate-independen
e is imposed by assuming that18



ρ(y, ·) is positively homogeneous of degree 1 (for short: 1-homogeneous). Note that ρ isnot assumed to be symmetri
 (i.e., ρ(y,−ż) 6= ρ(y, ż) is allowed), sin
e this freedom isne
essary to model hardening.Our pre
ise assumptions on the material data A and ρ are
A ∈ L∞(Y,Lin(Rd×d

sym×Rm)) with A(y) = A(y)T ≥ 0, (3.3a)
ρ : Y → [0,∞] is a 
onvex, normal integrand and ρ(y, ·) is 1-homogeneous, (3.3b)
∃ α̂ > 0 ∀a.a.y ∈ Y ∀

(
e

z

)
∈ Rd×d

sym×Rm with ρ(y, z) <∞ :
〈〈

A(y)
(
e

z

)
,
(

e

z

)〉〉
≥ α̂|

(
e

z

)
|2.

(3.3
)Remark 3.2 Here we des
ribe the exa
t setting for the linearized theory of elastoplas-ti
ity whi
h is the motivation of this work. However, in the sequel of the paper we do notrely on the further spe
i�
ations given here.The basis of linearized elastoplasti
ity is the additive split of the strain into an elasti
part eel = e(u) − p and an plasti
 part p = B(y)z, where B(y) : Rm → Rd×d
sym is a linearmapping. Then, W is taken in the form

W (y, e, z) =
〈
C(y)(e−B(y)z), e−B(y)z

〉
d×d

+ 〈H(y)z, z〉m,where C(y) : Rd×d
sym → Rd×d

sym is the symmetri
 (fourth order) elasti
ity tensor and H(y)denotes the hardening tensor. This means that A has the blo
k stru
ture (
A

−B∗C

CB

H+B∗CB

).The typi
al 
ase of isotropi
 hardening may be written in the way that z = (p, h), where
p ∈ (Rd×d

sym)0 = {A ∈ Rd×d
sym | trA = 0 } is the (deviatori
) plasti
 strain (i.e., B(y)(p, h) = p)and h ∈ R is the isotropi
 hardening parameter and H(y) is taken as κ(y) > 0. Moreover,

ρ is assumed to have the form
ρ(y, (ṗ, ḣ)) =

{
r(y)ḣ for ḣ ≥ 0 and ṗ ∈ ḣΣ(y),

∞ otherwise,where r(y) > 0 and Σ(y) ⊂ (Rd×d
sym)∗0 is the 
ompa
t and 
onvex elasti
 domain (with ∂Σ(y)being the yield surfa
e) at the point y ∈ Y for the the initial hardening state h = 1.The 
oer
ivity assumption (3.3
) then follows if we assume that there exist positive 
on-stants c and C su
h that for a.a. y ∈ Y we have the estimates

κ(y) ≥ c, 〈C(y)e, e〉 ≥ c|e|2 for all e, |σ| ≤ C for all σ ∈ Σ(y).Note that the restri
tion ρ(y, (p, h)) <∞ implies |p| ≤ Ch.Finally, we �x the fun
tion spa
es by pres
ribing Diri
hlet boundary 
onditions u = 0along the part ΓDir of ∂Γ. This de�nes the underlying Hilbert spa
e
Q = H1

ΓDir
(Ω)d×L2(Ω)m with H1

ΓDir
(Ω) = { u ∈ H1(Ω) | uΓDir

= 0 }.The domain Ω and the Diri
hlet boundary part ΓDir are spe
i�ed further in the next resultto guarantee 
oer
ivity of the energy Eε. 19



Proposition 3.3 (Korn's inequality) Let Ω ⊂ Rd be a 
onne
ted, open, bounded setwith Lips
hitz boundary Γ. Moreover, let ΓDir be a measurable subset of Γ, su
h that∫
ΓDir

1da > 0. Then there exists a 
onstant CKorn > 0, su
h that
∫
Ω
|e(u)|2 dx ≥ CKorn‖u‖2

H1(Ω) for all u ∈ H1
ΓDir

(Ω)d. (3.4)Clearly, we may write Eε(t, e, z) = 1
2

〈〈
Aε

(
u
z

)
,
(

u
z

)〉〉
− 〈ℓ̃(t),

(
e

z

)
〉, where Aε : Q → Q∗ issymmetri
 and positive semi-de�nite. Moreover, 
ombining assumption (3.3
) and Korn'sinequality, we �nd for all (

e

z

)
∈ Q with Rε(z) <∞ the 
oer
ivity estimate

〈〈
Aε

(
u
z

)
,
(

u
z

)〉〉
≥ α̂‖

(
e(u)

z

)
‖2

L2(Ω) ≥ α‖
(

u
z

)
‖2

Q with α = α̂min{1, CKorn}. (3.5)We 
all qε = (uε, zε) : [0, T ] → Q an energeti
 solution asso
iated with (Eε,Rε), if forall t ∈ [0, T ] the stability 
ondition (Sε) and the energy balan
e (Eε) hold:
(Sε) Eε(t, uε(t), zε(t)) ≤ Eε(t, ũ, z̃) + Rε(z̃−zε(t)) for every (ũ, z̃) ∈ Q,

(Eε) Eε(t, uε(t), zε(t)) +
∫ t

0
Rε(żε(s))ds = Eε(0, uε(0), zε(0))−

∫ t

0
〈ℓ(s), u(s)〉ds.

(3.6)Applying the abstra
t Theorem 3.1 we immediately obtain the following existen
e anduniqueness result whi
h 
ontains an a priori Lips
hitz bound that is independent of ε > 0.Proposition 3.4 Let ℓ ∈ CLip([0, T ], (H1
ΓDir

(Ω)d)∗). Then for all ε > 0 and all stable
(u0

ε, z
0
ε) ∈ Q there exists a unique solution (uε, zε) ∈ CLip([0, T ],Q) of (Sε) & (Eε) with

(uε(0), zε(0)) = (u0
ε, z

0
ε ). Moreover, all these solutions satisfy

‖(uε(t), zε(t)) − (uε(s), zε(s))‖Q ≤ LipQ∗((ℓ,0))
α

|t−s| for all t, s ∈ [0, T ], (3.7)where α is de�ned in (3.5) and is independent of ε.3.3 The two-s
ale homogenized problemInstead of the fun
tionals Eε and Rε we may 
onsider their two-s
ale limits. As theenergy storage fun
tional depends on the gradient of u, we use the notion of two-s
ale
ross-
onvergen
e introdu
ed in Se
tion 2.6 on the spa
e
Q = H×Z with H = H1

ΓDir
(Ω)d×L2(Ω,H1

av(Y))d and Z = L2(Ω×Y)m.We use U = (u0, U1) for the elements in H and Z for the internal elements lying in Z.The fun
tionals E and R are de�ned via
E(t, U, Z) =

∫
Ω×Y

1
2

〈〈
A(y)

(
be(U)

Z

)
,
(

be(U)
Z

)〉〉
− 〈ℓ(t), u0〉,where ê(U) = ex(u0) + ey(U1) = 1

2
(∇xu0+(∇xu0)

T) + 1
2
(∇yU1+(∇yU1)

T),

R(Z) =
∫

Ω×Y
ρ(y, Z(x, y))dydx.Again we de�ne the energeti
 formulation for E and R on Q via the global stability
ondition (S) and the energy balan
e (E). As above, a mapping (U,Z) : [0, T ] → H×Z =

Q is 
alled an energeti
 solution asso
iated with E and R if for all t ∈ [0, T ] we have
(S) E(t, U(t), Z(t)) ≤ E(t, Ũ , Z̃) + R(Z̃−Z(t)) for all (Ũ , Z̃) ∈ H×Z,

(E) E(t, U(t), Z(t)) +
∫ t

0
R(Ż(s))ds = E(0, U(0), Z(0)) −

∫ t

0
〈ℓ(s), u0(s)〉ds.

(3.8)20



Using the abstra
t existen
e Theorem 3.1 we again obtain the following result as soon aswe have established the 
oer
ivity assumption (3.2) for the energy E.Proposition 3.5 Let ℓ ∈ CLip([0, T ], (H1
ΓDir

(Ω)d)∗). Then for all stable Q0 = (U0, Z0) ∈
Q, (S) & (E) has a unique solution Q = (U,Z) ∈ CLip([0, T ],Q) with Q(0) = Q0.Proof: It remains to prove that A : Q → Q∗, whi
h is de�ned via E(t, U, Z) =
1
2

〈
A

(
U
Z

)
,
(

U
Z

)〉
Q
− 〈ℓ(t), u0〉H1, satis�es (3.2),

∃α > 0 ∀ (U,Z) ∈ Q with R(Z) <∞ :
〈
A

(
U
Z

)
,
(

U
Z

)〉
Q
≥ α‖(U,Z)‖2

Q. (3.9)By our Assumption (3.3
), we immediately obtain the lower estimate
〈
A

(
U
Z

)
,
(

U
Z

)〉
Q
≥ α̂‖(ê(U), Z)‖2

L2(Ω×Y) for all (U,Z) ∈ Q. (3.10)Next, we use an orthogonality 
ondition for the two-s
ale limit of gradients. If ∇uε
w2
⇀

E∇xu0 + ∇yU1 in L2(Ω×Y), then
∫
Ω×Y

|∇xu0(x)+∇yU1(x, y)|2dydx =
∫
Ω
|∇u0(x)|2 dx+

∫
Ω×Y

|∇yU1(x, y)|2 dydx.The mixed terms drop out, sin
e E∇u0(x, ·) is 
onstant on Y, while∇yU1(x, ·) has average
0 as it is a derivative of a periodi
 fun
tion. For the symmetri
 strains we similarly obtain

‖ê((u0, U1))‖
2
L2(Ω×Y) = ‖e(u0)‖

2
L2(Ω) + ‖ey(U1)‖

2
L2(Ω×Y).With KY = 2π2 min{ |λ|2 | 0 6= λ ∈ Λ } we have the Korn-Poin
aré type inequalities:

∀V ∈ H1
av(Y): ‖ey(V )‖2

L2(Y) ≥ KY‖V ‖2
L2(Y) and ‖ey(V )‖2

L2(Y) ≥
1
2
‖∇yV ‖2

L2(Y).This follows easily by writing V (y) =
∑

Λ Vλe
2iπλ·y and using Plan
herel's identity. In-serting these estimates into (3.10) and employing Korn's inequality for u0 we obtain

〈
A

(
U
Z

)
,
(

U
Z

)〉
Q
≥ α̂

(
CKorn‖u0‖2

H1(Ω) + KY

1+2KY

∫
Ω
‖U1(x, ·)‖2

H1(Y) dx+ ‖Z‖2
L2(Ω×Y)

)
,whi
h provides the desired estimate (3.9).4 Convergen
e resultsThis �nal se
tion addresses the question under whi
h 
onditions the solutions (uε, zε) of

(Sε) & (Eε) have a two-s
ale limit (U,Z) whi
h is a solution of (S)& (E). The 
onvergen
eis taken in the sense of two-s
ale 
ross-
onvergen
e and we 
an build on our theory inSe
tion 4.3.In parti
ular, the results of Se
tion 2.5 state that E and R are the Γ-limits of the families
(Eε)ε and (Rε)ε, respe
tively, in the Mos
o sense.21



Proposition 4.1 Let Ω ⊂ Rd be bounded with Lips
hitz boundary. Moreover, let Eε, Rε,
E, and R be de�ned as above su
h that (3.3) and ℓ ∈ C0([0, T ], (H1

ΓDir
(Ω)d)∗) hold. Then,for ea
h t ∈ [0, T ] we have the following 
onvergen
es

(uε, zε)
w2c
⇀ (u0, U1, Z) ∈ Q =⇒

{
E(t, u0, U1, Z) ≤ lim infε→0 Eε(t, uε, zε),

R(Z) ≤ lim infε→0 Rε(zε);
(4.1a)

∀ (u0, U1, Z) ∈ Q ∃ ((uε, zε))ε :

(uε, zε)
s2c
−→ (u0, U1, Z) in Q and {

Eε(t, uε, zε) → E(t, u0, U1, Z),

Rε(zε) → R(Z),

(4.1b)where for the re
overy sequen
e in (4.1b) we may take (uε, zε) = (u0+Gε(0, U1),FεZ) with
Fε and Gε as de�ned in (2.8) and (2.12), respe
tively.Here it is important that Gε maps into H1

0(Ω), su
h that u0 + Gε(0, U1) ∈ H1
ΓDir

(Ω)d.Our 
onvergen
e result for the solutions (uε, zε) ∈ CLip([0, T ],Q) of (Sε) & (Eε) to asolution (U,Z) ∈ CLip([0, T ],Q) will be an adapted and simpli�ed variant of the twoabstra
t Theorems 3.1 and 3.3 in [MRS06℄. The abstra
t theory is formulated on onesingle spa
e Q̂ but in fa
t, the results there are easily generalized to the setting neededhere. The following remark gives the alternative way of embedding everything into onebig fun
tion spa
e Q̂.Remark 4.2 To show that our situation is in
luded exa
tly in this setting we 
hoose
Q̂ = Ĥ×Ẑ with Ĥ = H1

ΓDir
(Ω)d×L2(Rd; H1

av(Y)) and Ẑ = L2(Rd×Y)and de�ne an ε-dependent embedding (u, z) 7→ (Qεu,Uεu, Tεz), where theQε : H1
ΓDir

(Ω)d →
H1

ΓDir
(Ω)d and U : H1

ΓDir
(Ω)d → L2(Rd; H1

av(Y)) 
an be de�ned as indi
ated in [CDG02℄. De-�ne Hε as the subspa
e of H1
ΓDir

(Ω)d 
ontaining the fun
tions u su
h that −∫
ε(λ+Y )

u(x)dx =

0 for all λ ∈ Λ−
ε , see Se
tion 2.1. Then, let Qε be the orthogonal proje
tion to the or-thogonal 
omplement of Hε and set Uεu = 1

ε
(id−Qε)u. Finally, we de�ne the fun
tionalsin Q̂ viâ

Eε(t, u0, Û1, Ẑ) =

{
Eε(t, u, z) if (u0, Û1, Ẑ) = (u,Qεu, Tεz),

∞ else,
Ê0(t, u0, Û1, Ẑ) =

{
E(t, u0, U1, Z) if sppt(Û1, Ẑ) ⊂ Ω×Y,

∞ else,
R̂ε(Ẑ) =

{
Rε(z) if Ẑ = Tεz,

∞ else, R̂0(Z) =

{
R(Z) if sppt(Z) ⊂ Ω×Y,

∞ else.Hen
e, under the additional assumption that for all 
onsidered fun
tions the 
orrespondingfun
tionals have �nite values, we have 
on
luded that weak and strong 
onvergen
e in Q̂is equivalent to weak or strong two-s
ale 
onvergen
e of families (uε, zε)ε in Q towards alimit (u0, U1, Z) ∈ Q. 22



Now we are able to formulate the main result of this paper. It states that the solutions
(uε, zε)ε of the ε-periodi
 problem (Sε) & (Eε) strongly two-s
ale 
ross-
onverge to a so-lution (U,Z) of the two-s
ale homogenized problem (S) & (E) under the sole assumptionthat the initial 
onditions strongly two-s
ale 
ross-
onverge.Theorem 4.3 Let (uε, zε) : [0, T ] → Q be the solution for (Sε) & (Eε) as obtained inProp. 3.4. Assume that the initial data satisfy

(uε(0), zε(0))
s2c
−→ Q0 = (u0, U0, Z0) in Q.Then Q0 is stable (i.e., Q0 ∈ S(0)) and

∀ t ∈ [0, T ] : (uε(t), zε(t))
s2c
−→ Q(t) = (u0(t), U1(t), Z(t)) in Q,where Q : [0, T ] → Q is the unique solution of (S) & (E) with initial 
ondition Q(0) = Q0as provided in Prop. 3.5.Re
all the de�nition of the stable sets

Sε(t) = { (u, z) ∈ Q | ∀(ũ, z̃) ∈ Q: Eε(t, ũ, z̃) ≤ Eε(0, ũ, z̃)−Rε(z̃−z) },

S(t) = { (U,Z) ∈ Q | ∀(Ũ , Z̃) ∈ Q: E(t, Ũ , Z̃) ≤ E(0, Ũ , Z̃)−R(Z̃−Z) }.Remark 4.4 In [MRS06℄ the 
onvergen
e of the initial 
ondition and of the solutions isformulated in terms of the underlying topology, whi
h in the present setting means weaktwo-s
ale 
ross-
onvergen
e. However, the abstra
t theory assumes 
onvergen
e of the ini-tial energies and proves 
onvergen
e of the energies Eε(t, uε(t), zε(t)) → E(t, U(t), Z(t)).Be
ause of uniform 
onvexity (
f. (3.9)) we see that weak 
onvergen
e and energy 
on-vergen
e implies strong 
onvergen
e. The details of this argument are worked out at theend of the proof of Theorem 4.3. See also [Vis84℄ for general arguments of this type.The main di�
ulty in the proof of the desired result is to prove that the weak limit ofstable states is again stable. In [MRS06℄ this property is redu
ed to a property whi
hpostulates the existen
e of suitable joint re
overy sequen
es for a 
ombination of Eε and
Rε. In our setting this reads as follows.Proposition 4.5 For t ∈ [0, T ] assume (uε, zε) ∈ Sε(t) and (uε, zε)

w2c
⇀ (u0, U1, Z) in Q.(a) Then, for ea
h (ũ0, Ũ1, Z̃) ∈ Q there exists a joint re
overy family (ũε, z̃ε)ε with

(ũε, z̃ε)
w2c
⇀ (ũ0, Ũ1, Z̃) in Q su
h that

lim sup
ε→0

[
Eε(t, ũε, z̃ε)+Rε(z̃ε−zε)−Eε(t, uε, zε)

]
≤ E(t, Ũ , Z̃)+R(Z̃−Z)−E(t, U, Z).(4.2)(b) As a 
onsequen
e (u0, U1, Z) ∈ S(t).Proof: ad (a). We give the joint re
overy sequen
e expli
itly in the form

(ũε, z̃ε) = (uε, zε) + (ũ0−u0 + Gε(0, Ũ1−U1) , Fε(Z̃−Z)).23



Note that the arguments for Gε and Fε do not depend on ε. Hen
e, by Prop. 2.10 andProp. 2.4 we obtain the important relation
(ũε, z̃ε)−(uε, zε) = (ũ0−u0+Gε(0, Ũ1−U1) , Fε(Z̃−Z))

s2c
−→ (ũ0−u0, Ũ1−U1, Z̃−Z). (4.3)In turn, this implies the obvious 
onvergen
e (ũε, z̃ε)

w2c
⇀ (ũ0, Ũ1, Z̃).From (4.3) and Lemma 2.12(b) we obtain Rε(z̃ε−zε) → R(Z̃−Z).For the energies we use the quadrati
 nature and obtain

Eε(t, ũε, z̃ε)−Eε(t, uε, zε) = 1
2

∫
Ω

〈〈
A(

{
x
ε

}
Y
)
(

e(euε−uε)
ezε+zε

)
,
(

e(euε−uε)
ezε+zε

)〉〉
dx− 〈ℓ(t), ũε−uε〉.The last term obviously 
onverges to 〈ℓ(t), ũ0−u0〉 by the usual weak 
onvergen
e in

H1
ΓDir

(Ω)d. Under the integral we have a quadrati
 form, where the right fa
tor weaklytwo-s
ale 
onverges to (
ee(eU+U)

eZ+Z

) in L2(Ω×Y). The left-hand fa
tor is a produ
t of themultipli
ator mε = A(
{

·
ε

}
Y
) and a strongly two-s
ale 
onvergent sequen
e with limit

(
ee(eU−U)

eZ−Z

) in L2(Ω×Y). As Tεmε(x, y) = A(y) Prop. 2.6 implies
A(

{
·
ε

}
Y
)
(

e(euε−uε)
ezε+zε

) s2
−→ A

(
ee(eU−U)

eZ−Z

) in L2(Ω×Y).Sin
e a s
alar produ
t of a weakly and a strongly 
onverging sequen
e 
onverges (seeProp. 2.4(d)), we 
on
lude
Eε(t, ũε, z̃ε)−Eε(t, uε, zε) → E(t, Ũ , Z̃)−E(t, U, Z).Thus, we have established (4.2) in the stronger version that the limsup is a limit and the�≤� is �=�.ad (b). This is a dire
t 
onsequen
e of part (a). Let (U,Z) be the limit of stable statesand take any test state (Ũ , Z̃) ∈ Q. Now take the joint re
overy sequen
e obtained inpart (a) and insert (ũε, z̃ε) into the stability 
ondition for (uε, zε), namely

0 ≤ Eε(t, ũε, z̃ε) + Rε(z̃ε−zε) − Eε(t, uε, zε).As the right-hand side 
onverges we 
on
lude 0 ≤ E(t, Ũ , Z̃)+R(Z̃−Z)−E(t, U, Z) andstability is established as (Ũ , Z̃) was arbitrary.Proof: [of Theorem 4.3℄By Prop. 3.4 we know that the family (uε, zε)ε is uniformly bounded in CLip([0, T ],Q).As 
losed balls in Q are weakly 
ompa
t and have a metrizable topology, the Arzela-As
oli theorem 
an be applied in C0([0, T ],Qweak) and we �nd a subsequen
e (εk)k∈N with
0 < εk → 0 su
h that

∀ t ∈ [0, T ] : (uεk
(t), zεk

(t))
w2c
⇀ (U(t), Z(t)) in Q.By the lower semi-
ontinuity of the norm, we have (U,Z) ∈ CLip([0, T ],Q) and it remainsto show that (U,Z) is a solution of (S) & (E). As the initial 
ondition (U0, Z0) is knownthe solution is unique and we even 
on
lude that the whole family 
onverges (by thestandard argument via 
ontradi
tion). 24



By Prop. 4.5 we know that (U(t), Z(t)) is stable for all t ∈ [0, T ], hen
e (S) is satis�edand we have to establish the energy balan
e (E) in (3.8). For this, we pass to the limit
ε → 0 in (Eε), 
f. (3.6). The �rst term on the right-hand side 
onverges, as the energy
Eε(0, uε(0), zε(0)) 
onverges applying the strong two-s
ale 
ross-
onvergen
e and Prop.2.15. The se
ond term 
onverges by Lebesgue's dominated 
onvergen
e theorem as theintegrands are uniformly bounded and 
onverge pointwise.To treat the left-hand side of (Eε) we let eε(t) = Eε(t, uε(t), zε(t)) and dε(t) =

∫ t

0
Rε(zε(s))ds.By the above, we know that rε(t) = eε(t) + dε(t) 
onverges to r0(t), whi
h is the limitof the right-hand side. We let e∗(t) = lim supε→0 eε(t) and d∗(t) = lim infε→0 dε(t) and
on
lude e∗(t) + d∗(t) = r0(t). Now we use the lower estimates for the fun
tionals. Forthe stored energy we use (4.1a) to obtain

E(t, U(t), Z(t)) ≤ lim inf
ε→0

eε(t) ≤ lim sup
ε→0

eε(t) = e∗(t).For the dissipation integral we use ∫ t

0
R(Ż(s)) ds = sup

∑N
j=1 R(Z(tj)−Z(tj−1)), wherethe supremum is taken over all �nite partitions of [0, t]. Again by (4.1a) we �nd

∑N
j=1 R(Z(tj)−Z(tj−1)) ≤ lim infε→0

∑N
j=1 Rε(zε(tj)−zε(tj−1))

≤ lim infε→0

∫ t

0
Rε(żε(s))ds = d∗(t).

(4.4)Thus, re
alling e∗ + d∗ = r0 we proved the lower energy estimate
E(t, U(t), Z(t)) +

∫ T

0
R(Ż(s))ds ≤ e∗(t) + d∗(t) = E(0, U(0), Z(0)) −

∫ t

0
〈ℓ(s), u0(s)〉ds.The upper energy estimate (just repla
e �≤� by �≥�) follows from the already establishedstability of (U,Z), see [MTL02, Thm. 2.5℄ or [MM05, Thm. 4.4℄. Thus, (E) holds and,moreover, we also 
on
lude that the inequality in (4.4) must be an equality. This in turnimplies that E(t, U(t), Z(t)) = e∗(t) = limε→0 Eε(t, uε(t), zε(t)).As the value of t ∈ [0, T ] is kept from now on, we omit it in the rest of the proof. Fromthe above and using the weak two-s
ale 
onvergen
e qε = (uε, zε)

w2c
⇀ Q = (u0, U1, Z) wewant to 
on
lude qε s2c

−→ Q.For this, we de�ne q̂ε = (u0 + Gε(0, U1),FεZ) ∈ Q, whi
h satis�es q̂ε s2c
−→ Q. Moreover, wehave

α
2
‖q̂ε−qε‖2

Q ≤ 1
2

〈〈
Aε(q̂ε−qε), (q̂ε−qε)

〉〉

= Eε(t, qε) − Eε(t, q̂ε) +
〈〈
Aεq̂ε−ℓ, qε−q̂ε

〉〉

→ e∗ − E(t, Q) + 0 = 0.For the 
onvergen
e note that the �rst term was treated above, that the se
ond term
onverges be
ause of � s2c
−→� and Prop. 2.15, and that the third term 
onverges as a s
alarprodu
t, sin
e the left-hand term is strongly 
onvergent and while the right-hand termweakly 
onverges to 0, see Prop. 2.4(d). Finally, we 
on
lude by noting that

‖(Tε(∇uε), zε) − (E∇xu0+∇yU1, Z)‖L2(Rd×Y) ≤

‖(Tε(∇uε−∇ûε), zε−ẑε)‖L2(Rd×Y) + δε ≤ ‖(uε, zε)−(ûε, ẑε)‖Q + δε → 0with δε = ‖(Tε(∇ûε), ẑε) − (E∇xu0+∇yU1, Z)‖L2(Rd×Y) → 0 be
ause of q̂ε s2c
−→ Q. Thisestablishes qε s2c

−→ Q and we are done. 25
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