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Abstract

This paper is devoted to the two-scale homogenization for a class of rate-indepen-
dent systems described by the energetic formulation or equivalently by an evolution-
ary variational inequality. In particular, we treat the classical model of linearized
elastoplasticity with hardening. The associated nonlinear partial differential inclu-
sion has periodically oscillating coefficients, and the aim is to find a limit problem
for the case that the period tends to 0.

Our approach is based on the notion of energetic solutions which is phrased in
terms of a stability condition and an energy balance of an energy-storage functional
and a dissipation functional. Using the recently developed method of weak and strong
two-scale convergence via periodic unfolding, we show that these two functionals have
a suitable two-scale limit, but now involving the macroscopic variable in the physical
domain as well as the microscopic variable in the periodicity cell. Moreover, relying
on an abstract theory of I'-convergence for the energetic formulation using so-called
joint recovery sequences it is possible to show that the solutions of the problem with
periodicity converge to the energetic solution associated with the limit functionals.

1 Introduction

Our aim is to provide homogenization results for evolutionary variational inequalities of
the type:
VoeQ: (Ag—L(t),v — q) + R(v) — R(q) > 0. (1.1)

Here Q is a Hilbert space with dual Q* the continuous linear operator A : Q — Q*
is symmetric and positive definite on the cone on which R is finite. The forcing ¢ lies
in C'([0,77,9%), and the dissipation functional R : Q — [0,00) is convex, lower semi-
continuous and positively homogeneous of degree 1, i.e., R(yq) = vR(q) for all v > 0 and
q € Q. The latter property of R leads to rate independence.

Problem (1.1) has many different equivalent formulations. For our purposes the energetic
formulation for rate-independent hysteresis problems is especially appropriate, cf. [MT99,
MTO04, Mie05]. This formulation is solely based on the energy-storage functional & :
[0,T]xQ — R defined via &(t,q) = £(Aq,q) — ({(t),q) and the dissipation functional R.
Thus, homogenization of an evolutionary problem can be reduced to some extent to the
homogenization of functionals. A function ¢ : [0,7] — Q is called an energetic solution
associated with the functionals € and R, if for all ¢ € [0, T] it satisfies the global stability
condition (S) and the energy balance (E):

(S) VqeQ: &(tq(t)) <&t q) +R(g—q(?));
(B) E(t.q(t)) + [ R(d(s))dt = £(0,¢(0)) — [5(€(s), q(s))ds.

We also say that ¢ solves the energetic formulation (S) & (E) associated with € and R.
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The purpose of this paper is to consider a family of energy functionals (€.). and of
dissipation functionals (R.). which are defined as integrals over a domain 0 C R¢ and
where the densities depend periodically on = with a period proportional to €. More
precisely, for a periodicity lattice A we denote by Y = Rd/A the periodicity torus. For a
tensor-valued mapping A : Y — Lin(RExR™) and a function p : YxR™ — R we define
the functionals

c(tu,z) = [ SCAE) (M), (") Y de — (1), u) and R.(2) = [, p(2, 2(x))dz
on the space Q = Hy, (Q)4xL*(Q)™

The task is now to describe the limiting behavior of the associated energetic solutions.
Because of the nonsmoothness and the hysteretic behavior of the evolution of the sys-
tems it will not be possible to find a homogenized limit equation in the classical sense.
This would mean to find limiting functionals defined on €2 again. Instead we will need
the so-called two-scale homogenization that decomposes solutions into macroscopic and
microscopic behavior.

The classical notion of two-scale convergence has been introduced by Nguetseng in 1989
(|Ngu89|) and further developed by Allaire in 1992 (|All92]). It was aimed at a better
description of sequences of oscillating functions and thus at the derivation of a new ho-
mogenization method. In [LNWO02|, an overview of the main homogenization problems
which have been studied by this technique is given. This concept is now applied in a
variety of quite different applications in continuum mechanics, see, e.g., |[HIM94, Vis96,
BLM96, Vis97, A1b00, EKK02, MS02|. Moreover, even in engineering this method is used
extensively for numerical simulations. There the unit periodicity cell is usually called a
“representative unit cell”.

To explain our results in some detail we introduce a few new notions. The two-scale
method relies on a micro-macro-decomposition of points x € R? via

7= No(w) + eR(z) with No(z) = ¢ [2], and Re(z) = {2},

where [z7], is the closest lattice point to = and {Z}, is the remainder, see Section 2.1 for
the exact details. The decomposition of functions is then done by the so-called periodic
unfolding introduced in [CDG02, CDD04, CDDO06|:

(Teu)(w,y) = vex(Ne(7)+eY),

where g, is the extention of u :  — R by 0 to all of R% Thus, functions in L?(Q) are
mapped to functions U = T.u € LP(R4xY).

In Section 2.2 we discuss this periodic unfolding operator together with a newly introduced
folding operator F. : LP(R?xY) — LP(€2), which is a kind of pseudo inverse as well as
the adjoint operator (when taking the dual p). In particular, we give special care to the
complications arising from the mismatch of 2 and a finite union of small cells of the type

e(A+Y).

In Section 2.3 we introduce our notion of weak and strong two-scale convergence:
2 .
ue XU <= T, — Uy in LP(RYxY),
2 .
u. > U = T, — Uy in LP(R*xY).



This definition is an adaptation of the definitions in [VisO4] to the case that {2 has a
boundary. Nevertheless, the convergences on the right-hand side are asked to occur in
LP(R¥xY), since the support of Z.u is in general not contained in OxY. We relate our
definitions to the ones which are used in [Ngu89, Al192, CD99, LNW02| and show that our
strengthening makes many relations more natural. For instance, it is easy to show that
the scalar product of a weakly two-scale convergent family and of a strongly convergent
family converges to the scalar product of the two limits.

In Section 2.4 we recall the classical results on the two-scale limits of sequences of gradients
and explicitly construct a gradient folding operator G. : Hy(Q)xL2(Q, HL (Y)) — H(Q)
such that for all (ug, U;) we have VG.(ug, Uy) =, Veug + V,Uy and G (ug, Uy) — ug in
H{(Q). Based on these results we provide the relevant two-scale T-limit results for the
functionals €.(¢,-) and R.. Under simple additional assumptions, the two-scale limits are

E(t,ug, U1, Z) = [,y 5{A(y) (05 O)), (o020 ) dy da — (6(1), uo)
and

R(Z) = [ouyrly, Z(z,y))dyda.

The convergence of €. and R. to E and R can be seen as a type of two-scale Mosco
convergence, i.e., [-convergence in the weak and in the strong topology, see [MRS06].
Recovery sequences (also called realizing sequences in [JKO94]) in the strong two-scale
convergence sense are obtained via our explicit operators F. and G..

In Section 3 we formulate our rate-independent evolution systems and we provide existence
and uniqueness theorems for energetic formulations associated with €. and R, on the one
hand and with E and R on the other hand. The importance is that we obtain uniform a
priori Lipschitz bounds for the energetic solutions ¢. = (ue, 2.) : [0, 7] — Q. The solutions
Q = (ug, U1, Z) : [0, T] — Q are defined on the space Q = H x Z with

H =Hy, (Q'<L*(QH, (Y)Y, Z = L L2(Y)™ = L (QxY)™,

with Hy () ={U € H'(Y) | [,U(y)dy =0}.

The final Section 4 establishes the relation between the solutions ¢. and ¢). The main
result is Theorem 4.3 and it states that if the initial data ¢.(0) strongly two-scale cross-

converge to Q°, written as ¢.(0) 2, Q° and defined as
ue = ug in Hy ()7, V. 2 Voug+V,Up in LX(Q,HL (Y)), 2 2 Z in L2(QxY),

then for all ¢ € [0,7] we have ¢.(t) L Q(t) where @ is the unique energetic solution
associated with E and R with the initial value Q(0) = QY. In terms of evolutionary
variational inequalities this means that the solutions ¢. = (u., 2.) of

(DE(t,q:), v—Ge) + Re(v) —R(g-) >0 forallv e Q
strongly two-scale cross-converge to the solution @ = (ug, Uy, Z) of

(DE(t,Q),V-Q)+ R(V) -~ R(Q) >0 forall V € Q,
if the initial conditions satisfy ¢.(0) =% Q(0) for € — 0.
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The crucial tool for proving this convergence is the abstract I'-convergence theory de-
veloped in [MRS06]. The main difficulty in the theory is to show that weak (two-scale)
limits of stable states are again stable. In [MRS06, Eqn. (2.16)| a sufficient condition is
provided that asks for the existence of a joint recovery sequence (q.). such that

lim sup E.(t, o)+ Re(Fe—2)—E.(t, ¢.) < E(t,Q)+R(Z—Z)—E(t,Q) and . "X Q,

e—0

where ¢. is a given family of stable states with ¢. ik Q@ and @ is an arbitrary test state,
cf. Prop. 4.5. In our situation this condition can be fulfilled by exploiting the quadratic
nature of the energies, which leads to some cancellation of differences of the energies,
namely E.(t,q.) — E.(t, ¢.) converges to E(t, @) —E(t,Q), if ¢. kS Q@ and ¢.—q. LZN @—Q
strong. Here it is important that our notion of weak and strong convergence allows us to
conclude convergence of scalar products, see Prop. 2.4(d).

As far as we know, this is the first homogenization work for a nonlinear and nonsmooth
evolutionary problems except for [Nes06]. The latter work treats more general evolu-
tion laws and is not restricted to the rate-independent setting. However, it is more
restrictive in the constitutive laws and proves the convergence only in an averaged sense
over microscopic phase shifts of the cells. Similar variational inequalities are treated in
[CPS04, Yos01], but with different constraints and without time dependence.

We hope that our methods simplify and clarify the theory of two-scale convergence and
thus provide ideas and tools for solving more general problems.

2 Two-scale convergence

We recall here the definition of the two-scale convergence and several important results
concerning this notion (see [Ngu89, All92, CD99, LNWO02|). In particular, the presented
results are based on |[CDGO02, Vis04|, where the notions of periodic unfolding (also called
‘two-scale decomposition’ in the latter work) and periodic folding, which is called ‘averag-
ing operator’ in [CDGO02, Sect. 5]. In the following subsections we take special care of the
problems that are associated with the fact that we want to work on a bounded domain 2
and that this is only approximately compatible with microscopic periodicity. This gives
rise to a certain notational complication but allows us a very precise and efficient defini-
tion of weak and strong two-scale convergence in Section 2.3. Note also Example 2.7 that
shows that this special care is necessary to avoid problems at the boundary.

2.1 Basic definitions of the two-scale variables

Let d € N be the space dimension. The periodicity in R? is expressed by a d-dimensional
periodicity lattice

A={X=30 kb | k= (ki ko, ..., kq) € Z},

where {b;,...,b4} is an arbitrary basis in R%. The associated unit cell is Y = {z =
Sy [y € [<1/2,1/2) } € RY such that R? is the disjoint union of the translated
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cells A4+Y, if X ranges all of A. Following [Vis04], we distinguish the unit cell from the
periodicity cell Y, which is obtained by identifying the opposite faces of Y, or we may set
Y = R?/y. Thus, Y has the structure of a torus. For most applications one may assume
that A = Z% Y = [-1/2,1/2)¢, and Y = R?/,4 = T¢, the d-dimensional standard torus.
However, our theory covers the general case. Yet, we will be slightly inconsistent and use
y to denote elements of Y and Y simultaneously by relying on the natural identification
between y+A € Y and y € Y.

On R? we define the mappings [-], and {-}, such that
i RE—= A, {}y i RY—=Y, z=[2], + {2}, forall z € R%

We also use the notation { -}, such that {z}, = zmod A € Y. Obviously a function f
defined on R is A-periodic if f(z) = f({z},) for z € R? and we may identify f with
a function f defined on Y. Note that LP(Y) and L?(Y) may be identified in contrast to
CH(Y) and C¥(Y) = CE,,.(Y). Similarly, we use H'(Y) = H}.(Y), which is different from
HY(Y). A non-standard space, which we will need in the sequel, is

() :={f e Y)| [y fly)dy=0}. (2.1)

We now introduce a small length-scale parameter € > 0 and want to study functions which
have fast periodic oscillations on the microscopic periodicity cell €Y. We decompose the
points z € Q C R? such that

x=N-(z) +eRe(x) with No(z) = [£], and R.(z) = {L}, .

Thus, N € €A denotes the macroscopic center of the small cell V;(x)+¢cY that contains
x and R, denotes the fine-scale part of x. With this we define a decomposition map D.
and a composition map S. (cf. [Vis04]) as follows

D . R — R¥xY . RixY — R4,
) r = (NM(2),R.(x)) T (@) = Ne(a)+ey,

where in the last sum some y € Y is identified with y € Y C RY. For the construction
of periodic unfolding operator and folding operator in the next subsection, the following
simple properties of D, and S, are essential:

D.(S:(z,y)) = (No(z),y) and S.(D.(x)) ==z for all (z,y) € RYxY. (2.2)

If Q does not coincide with R? then certain technicalities arise from the fact that the
image of D. is not contained in 2xY. Similarly, we note that S.(Q2xY) is not contained
in €2. To handle this, we introduce, for a fixed open domain €2, the following subsets of A:

A ={AeA|eM+Y)CQ} and AT ={AeA|eA+Y)NQ#£D}.

Using this, we define the domains 7 and QF via QF = int< Usenz 6()\—|—Y)>. Clearly,
we have Q7 C Q C QF. Moreover, we have [QF]F = QF, Q C N, giam(v) () and QF C

)

N¢ dgiam(y)(§2), where diam(Y") is the diameter of Y and Ns(A) denotes the é-neighborhood
of the set A.



Moreover, we set [2xY]. = S-1(Q) = {(z,vy) | S-(z,y) € Q} and note the relations
Q- xY C [QxY]. € QFxY, (2.3)
which will significantly be used later on. From now on we will assume that 2 satisfies
2 is open and bounded and [09| = 0. (2.4)

This guarantees that |Q\QZ [+]Q7\Q| — 0 for € — 0 which will be used later. To see this,
denote by ¢, the characteristic function of the set N giam(v)(02), then Q\QZ U QI\Q C
N: dgiam(y)(09) and for all x ¢ 0Q we have ¢.(x) — 0 for ¢ — 0. Hence, we conclude
I\ |+ 12\Q| < [ Nediam)(0Q)] = [ga ¢ dxz — 0 for ¢ — 0. The second condition in
(2.4) is certainly satisfied, if 2 has a Lipschitz boundary.

2.2 Folding and periodic unfolding operators

The notion of two-scale convergence is intrinsically linked with a suitable “two-scale em-
bedding” of the function space LP(2) into the two-scale space LP(2xY). Such a mapping
will be called a periodic unfolding operator. Moreover, for a two-scale function U defined
on 2xY it is desirable to find a function u. defined on 2 that has the corresponding mi-

croscopic behavior. A mapping from the two-scale space into the original function space
LP(Q2) will be called a folding operator.

The natural candidate for the periodic unfolding operator was introduced in [CDG02| and
reads

T.: LP(Q) — LP(RY%Y); v+ e 0 S, (2.5)

where ve, € LP(R?) is obtained from v by extending it by 0 outside of . By definition,
we immediately have the product rule:

Lilolol uelr(Q), veld(Q) — T(w)=(Tu)(Tv) € L(QxY). (26)

In general, the support of Zov is [2xY]. which is not contained in QxY. This discrepancy
in support is the main reason why we repeat the definitions of the operators and the
different versions of two-scale convergence in detail. Most previous work either deals with
Q) = R? or is not very precise about the supports. However, as was noted in [LNW02],
see also our Examples 2.3 and 2.7, we need to be careful here.

A variant of 7, that maps continuous functions u into continuous ones can be found in
[Vis04].

As candidates for folding operators simple choices are given in the form
F.:F(QxY) = FRY; U UoD,, and F.:F(QxY) — FR?Y:; U— UoD,, (2.7)

where D, is the simple decomposition D, : = +— (z, {f}y) Both of these choices are
not suitable, if for the function space “F” we choose L? since the image of 2 under D.
and D,, respectively, is a set of measure 0 in R¢xY. However, the folding operator F. is
well-defined as a mapping from C*(R%xY) into C*(R?) and has the big advantage that the
image of 2xY under D, is equal to €. In fact, this is the basis of the classical definition
of two-scale convergence, see (2.9).



The main point in this subsection is that we use a very particular folding operator F.
that is well adapted to the classical LP-spaces, namely

LP(Q2xY) = LP(Q; LP(Y)) = LP(Y; LP(Q2)) for p € [1,00).

These are the relevant ones for elliptic partial differential equations and our aim is to
avoid spaces involving continuous functions like L (€2, C(Y)) (on which F. is well-defined).
Our folding operator is a variant of the averaging operator U. defined in |[CDG02, Sect. 5|,
since we take special care on the domain €.

On LP(R?xY) we first define the classical projector to piecewise constant functions on
each e(A+Y) via

(PU) (x,y) = ][ L Uewie

where f, denotes the average over A, i.e., f, g(a)da = %
|P.U|l, < ||U|lp, and P.U — U in LP(QXH) for all U € L

Our folding operator F. is now defined as follows:
F.  IP(RI%Y) — LP(Q); U P(xU)oD.)|g  with x. = Xjaxy.- (2.8)

Note that the folding operator is defined for functions on the full space R¢xY and takes
values in the functions on 2. The construction with the characteristic function y. :
RIxY — {0, 1} guarantees that satisfies y. = P.x. and sppt(x. o D.) = Q, which follows
from the definition of [2xY]. and from (2.2).

a)da. Clearly (P.)? = P.,

Jas(
(2 )

The following proposition summarizes the properties of the folding operator and the pe-
riodic unfolding operator. We restrict ourselves to the case p € (1,00), and leave the
obvious generalizations for p = 1 and p = oo to the reader. In fact, in our application we
will only use p = p’ = 2, which is especially nice.

Proposition 2.1 Let p € (1,00) and p’ = p/(p—1). Then, the folding operator F. :
LP(R¢xY) — LP(Q) and the periodic unfolding operators T, : LP(Q) — LP(R?xY) and
7. : LP(Q) — LY (R?xY) satisfy

(a) | Tcull o rasy) = Ul ) and sppt(ZTeu) C [QxY]e for all u € LY (Q);

(b) [|FeUllur@) < IU||uo@axy) for all U € LP(R?xY);

(¢) F. is the adjoint of’ZA;, ie., F. = (']AZ)/;

(d) FeoT: =idip(q) and (I. 0 F.)* = T. o F. = x.P..

All these identities can be obtained by elementary calculations via decomposing R? into

Ureae(A+Y).

2.3 Weak and strong two-scale convergence

Following [Ngu89, Al192, CD99, LNW02]| a family (u.). in L?(Q) is called two-scale conver-

gent to a function U € LP(Q2xY) and write u, N U, if for all test functions ¢ : QxY — R
we have

e—0

lim (z, {& } dx—// (z,y)(z,y)dydx for all v € V. (2.9)
Q
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The choice of the set of test functions W is important here, cf. [LNW02|. The weakest
notion occurs if we take ¥ = C°(Q2xY), which corresponds to a kind of distributional
convergence. If p’ = p/(p—1) denotes the dual exponent to p € (1,00), the choice ¥ =
LY (Q,C(Y)) is advocated in [LNWO02|, since it guarantees weak convergence of (u.). to
fy U(-,y) dy in LP(§2). Note that two-scale convergence can also be defined using the
folding operator F. defined in (2.7)

ue 2 U = (e, Fh)g = (ue,voD.)q — (U, 1) axy.

Here we follow the notions from |[Vis04], but modify them to fit the case Q C RY, for
defining weak and strong two-scale convergence via the periodic unfolding operators 7.

Definition 2.2 Let (uc)ec(o.0) be a family in LP(Q2) with p € (1,00).

(a) We say that u. weakly two-scale converges to U € LP(QxY) and
write “u. 2 U in LP(QxY)”, if Toue — Usy in LP(RYXY).

(b) We say that u. strongly two-scale converges to U € LP(Q2xY) and
write “u. =% U in LP(QxY)”, if Tou. — Uy (strongly) in LP(RIxY).

As the supports of Z_u. are contained in [QxY]. C QF xY, it is clear that any possible
accumulation point U of (77). has its support in QxY. Because of [0Q] = 0 we have
LP(2xY) = LP(2xY) and hence accumulation points of (ZZu.). can be uniquely described
by elements in LP(2xY). Nevertheless, it is important that our definition involves a
convergence statement in LP(R?xY), i.e., we need to consider functions outside of Q2xY.
If the convergence was only asked for the restrictions on 2xY, then different notions
would occur.

Example 2.3 We choose Q = (0,1) andY = [0,1). Along the sequence e, = (k*—1)/k* —
0 we consider the functions

u., (r) = ay, for x € (1-1/k* 1) and 0 otherwise,
which satisfy |uc,|/12() = |ak|/k. The periodic unfolding Uy, = T;, u., € L*(RxY) reads
U(z,y) = ay if (x € (1-1/k* 1+(k—1)/k*) and y € (0,1/k))  and 0 else.

The support of Uy only has a small part in 0xY while the most part is in (Q \ Q)xY.
Hence, Uk}QxY

ay, = o(k*?) we have Uy,

has a much smaller norm, namely ||Uk‘ﬂxy||L2(QXy) = |ag|/k*?. Thus, for

}Qxy — 0 strongly in L?(2xY) which implies u, 20 in L2 (QxY).

However, u,, "R U holds if and only if a;, = O(k) and then U = 0. Moreover, u., 20U if
and only if ay = o(k) and U = 0 then.

Using the fact that the folding operator is the adjoint of the periodic unfolding operator,
we may equivalently define weak two-scale convergence in a way similar to the classical
definition (2.9), namely

ue R U in LP(QxY) = VYV el (QxY): [u.FVde— [, [,UVdyde. (2.10)
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Note that we have simply replaced the folding operator F. : U +— UoD. by the more
sophisticated version F. that allows us to take general L? functions. Moreover, the test
functions V' are allowed to have a support bigger than QxY. As we are interested in
e — 0, it suffices to consider V € L” (N5(Q)xY) for any § > 0, whereas § = 0 will lead to
a strictly weaker notion of convergence.

The definitions of weak and strong two-scale convergence are obtained by transferring
convergence to the classical weak and strong convergences in the classical space LP(Q2xY).

Proposition 2.4 Let p € (1,00) and p' = p/(p—1) and assume that ) satisfies (2.4).
(a) If u. 2 U in LP(QxY), then |te||Lr(q) is bounded for e — 0.
(b) If u. R U in LP(Q2xY), then u. £ (The reverse implication is in general not true).
(¢) If ue 2 U and |Jucl|ir@) — U@y, then ue = U.
(d) If u. 2 U in LP(QOxY) and v. =V in LY (QxY), then (ue, v — (U, Vaxy.
(e) For each U € LP(Q2xY) there exists a family (u.). such that u. 2%U in LP(QxY)
(simply take u. = F.Ue ).
(f) For each w € LP(Q) we have Tow 2=, Bw in LP(QxY),
where E : LP(Q2) — LP(QxY) is defined via Ev(x,y) = v(x).
(9) Forp e (1,00), q € (1, 00] (md%ﬂL% =1
let u. XU in LP(QxY) and v. =5V in LI(QXY), then v, X UV in LT (QxY).
If additionally u. =% U in LP(QxY), then uv. <5 UV in LT (Q2xY).

Proof: Parts (a), (¢), (d), and (g) are immediate consequences of the corresponding
results of weak and strong convergence in LP(Q2xY).

Property (b) will be a consequence of Prop. 2.5 below.

Property (e) follows as the projector P. on LP(Q2xY) satisfies P.U — U and the charac-
teristic function x. (cf. (2.8)) converges pointwise a.e. to xoxy-

For property (f) we use the fact that the unfolding operators 7. have norm 1 and that
for w € CY(Q) some calculation gives || 7w — Ew||paxy) < 2 diamY e [QY?||Vw||pe.
However, because of (2.4) the smooth functions are dense and the assertion follows. =

In fact, the difference between 2 and =2 disappears, if we a priori impose boundedness
of the sequence.

Proposition 2.5 Let (u.). be a bounded family in LP(QY) with p € (1,00). Then, the
following statements are equivalent:

(i) ue 2> U in LP(QxY), (i) Toue|, , — U in LP(QxY), (i) . 2 U in LP(QxY).

}Qxy

Proof: For the equivalence between (i) and (ii) see [LNW02, CDDO06|. The definition

of ™2 shows that (iii) implies (ii). Moreover, using (2.10) and the boundedness of (u.). it
is sufficient to show [, u.F.Vdz — [, fy UV dydx on the dense subset U = C°(2xY).
However, on ¥ we have ||F.¢p—F.¢||1ro) = O(¢) and thus (i) implies (iii). C
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The next result provides an improvement of part (g) in Prop. 2.4.

Proposition 2.6 Let p € [1,00) and let (u.): =, U in LP(QxY). Moreover, consider
a bounded sequence (m.). in L®(Q) such that Tom(x,y) — M(x,y) for a.e. x € QXY.

Then, meue = MU in LP(QxY).

Proof: By the assumption, U. = Z.u. is bounded in LP(Q2xY) and hence there is a
subsequence and a majorant g € LP(Q2xY) such that |U,, (z,y)| < g(z,y) and U, (x,y) —
U(xz,y) a.e. in QxY. Because of the assumptions on m. we find that 7;, (m. U, ) =
7., m., 1., U., also has a joint majorant and converges pointwise a.e. From this we conclude
7., me U., = MU in LP(Q2xY). Since the limit of all subsequences is the same the usual
contradiction argument provides the convergence of the whole family. [

The following example shows that the statement in Prop. 2.4(d) is not true if we do not
insist on the convergence of T.u. and Z.v. in LP(R?xY). In [LNW02, Thm. 11| a related
result to (c) is proved, namely [, Tu.v.dz — [, 7 [y UV dydz for all 7 € CZ(Q), where
the cut-off function 7 that is 0 near the boundary 02 is needed to compensate for the

usage of the weaker notion of two-scale convergence — defined in (2.9). In [LNWO02,
2

Thm. 11] strong two-scale convergence is implicitly defined by two-scale convergence —
and additional norm convergence, see Prop. 2.4(c).

Example 2.7 We take Q = (0,1), Y = [0,1), ¢, and u., as in Example 2.3. Moreover,
we let ay = k and ve, = uc,. Obviously, we have [ ., ve, dv = |[uc,[|f2(y = 1. However,

as shown above we have ’];kuak‘gxy — Ug =0 in L*(Q2xY). Hence, Prop. 2.4(d) does not
hold for the limits Ug and Vg defined in 1P(2xY) only.

2.4 'Two-scale convergence of gradients

We now deal with bounded sequences in W?(2). The two-scale convergence for the
associated gradients provides an additional structure. To formulate the result we define

Wi ) = {we W )| [ ul)dy=0)
Y
and note that LP(Q; WLP(Y)) is the set of functions V in LP(QxY) = LP(Q; LP(Q)) such
that fy V(z,y)dy = 0 for a.a. z € 2 and that V,V (in the sense of distributions) lies
again in LP(Q2xY).

Theorem 2.8 Let (v.). be a sequence in WYP(Q) such that v, — vy weakly in WYP(Q),

where p € (1,00). Then v, 2, Fuy in LP(QxY), and there exist a subsequence (v )e and
a function Vi € LP(Q; WEP(Y)) such that

Voo 2 EV,00+ V, Vi

10



Proof: Since v. — vy weakly in W'?(Q) implies by the compact embedding that v. — vy
(strongly) in LP(€2). Now using Propositions 2.1(a) and 2.4 we have ||Z;v. — Ewvgl, <

| Zz(ve—wvo) ||, + | Zzv0 — Evgl|, — 0. Thus, v, 2, Ewp is established.

The weak two-scale convergence of the gradients along a subsequence can be deduced by
exploiting the corresponding result from the classical two-scale convergence, see [Ngu89,
All92]. Since weak convergence in W'?(Q) implies boundedness of the gradients, the
desired result follows using Prop. 2.5. ]

Like for the strong two-scale convergence for functions we also need a density result
for gradients converging in the two-scale sense. These results will be used to construct
recovery sequences for the I' limits below. We first provide an explicit construction that
is based on a smoothing procedure using the heat kernels for R? and Y. After that we
provide a second construction which is based in ideas in [Vis04| and involves the solutions
of elliptic problems.

Proposition 2.9 Let p € (1,00) and Q C R as above. Then, for every function
(uo, Uy) € WHP(Q)xLP(Q; WLP(Y)) there exists a family (u.). in WP(Q) such that u. —

ug in WH(Q) and that Vu, =% EVug + V,U;.

Proof: It is sufficient to prove the result for ug = 0, since we may shift any sequence by
ug. Note that by Prop. 2.4(f) we have 7:Vuy =, EVuyg.

Hence it suffices to find for each V; € LP(; WLP(Y)) a family (v.). such that
v. — 0in W'?(Q) and V. =, V, Vi in LP(QxY).
For this we use the heat kernels Hga and Hy defined via
Hga(t,€) = gmparz exp (1617/(4t))  and  Hy(t,n) = 32\cp Hra(t, n+2).
For ¢ > 0 we now define the functions

The classical semigroup theory for the parabolic equation 0,V = ArdV + AyV implies
V(t,-) € C°(R4xY) for t > 0 and

Va,3 €N§IACa5>0Vt>0:  [DEDIV(E,)|[ipaxy) < C /12,

o(t) = [VyV (L) = VyVillLomaxy) — 0 for ¢\, 0.

We now define the two-scale function v(e,t,-) € WHP(Q) via v(e, t,x) = e V (¢, z, {f}y)
We will choose t = t. suitably to define v. = v(e, 1., ). As a first result we obtain

ooy < lQYPIIV (2o, oy < eCsobllV (te, )llwrmxy) < Cet?™?,

where k > (d+d)/p and Cs,, is the corresponding embedding constant for W*P(Q2xY)
into C°(QxY). Below we will choose t. such that etz"? — 0 for £ — 0 and thus we

conclude v. — 0 in LP(§2).
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For the gradients we obtain Vu.(e,z) = eV,V(t.,z,{L},) + V,V(t.,z, {f}y) Using
17V, — VyVilliexy) < || Zeve — Vi V(te, ) |lrxy) + 5(t5 with 0(t.) — 0 and recalling
Tou(z,y) = (uo So)(x,y) = u(Nz(x)+ey) it suffices to estimate

(Vv ) (2, y) — Vte, z,y)|

< €| VoV (te, No(2), )| + |V, V (te, No(2), y) — V, V (te, 2,y)]
< e|| VLV (te, ) lcogaxy) + ediam(Y)|| ViV, V (te, )|l coaxy)
< C1eCsob ||V (te, ) lwrrzmiaxyy < Coets /2,

Letting t. = &7 with v € (0,2/(24k)) we obtain Z.v. — V; in LP(2xY) and the result is
proved. [

The second construction is more direct and allows us to do unfolding and folding as well.
It is based on |Vis04, Thm. 6.1 but we take care of the problems with the boundary 0f.
For simplicity, we restrict to the case p = 2 and assume Dirichlet boundary conditions.
We define the intermediate space £ = L2(Q)xL?(R%xY)?, the two-scale Hilbert space
H = H}(Q)x L3R4, HL,(Y)), and the two norm-preserving linear operators

T . H)(Q) — L, F . H — L,
. U = (uazvu>7 . (U(],Ul) — (u07(Evmu0+va1)ex)7

For norm-preservation of F, we equip H. (Y) with the norm ”UlH%{}W(‘d) = ||VyUi |2y

In particular the images X5 := T.H'(Q2) and Xg = F.H are closed subspaces of L2 (Y).
We let QF and and Qf be the orthogonal projections onto Xf and A, respectively. Then,

we are able to define a gradient unfolding operator T\ = F-'QST., : HY(Q) — H and a
gradient folding operator G, via

H — HL (),
gE:{ o(€2)

(ug, Uy) +— T2 (@%‘ (Fs(uo, Ul)))- (2.12)

As the operators 7.V and G. are compositions of norm-preserving operators and orthog-
onal projections they have a norm not exceeding 1. The following result shows that the
definition of G, is such that it relates to solving an auxiliary elliptic problem and that it
provides a recovery sequence with strongly two-scale convergent gradients.

Proposition 2.10 For given (ug, Uy) € H the function G-(uo, Uy) is uniquely character-
ized as the solution v € HY(Q) of the weak elliptic problem

/(v — up) w + (VU — fa(Equo+VyU1)) -Vwdz =0 for all w € H{(S). (2.13)
Q

Moreover, for ¢ — 0, we have the convergences

G-(uo, U1) — ug in HY(Q)  and  VG.(uo, U1) % EVyug + V,Uy in L2(QxY). (2.14)
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Proof: At first, we fix ¢ and let v = G.(ug,U;) is such that T.v is the orthogonal
projection of F.(ug, U;) onto X& = T.H'(2). Denoting by (-,-), the scalar product in £
this means that for all w € H}(Q) we have

0 = (T.w—F(uop,Uy),Tew),
= Jolv —up) wdz + [pu,(T:(Vv) = Voug — V,Uh) - T.(Vw) dy da
= Jo(v—uw)wdz+ [,(Vv)- (Vw)dz — [, F-(Voue+V,Uy) - Vwdz.

Here we use the definitions of T. and F. as well as the properties of 7¢ in Prop. 2.1(a)
and (c). Clearly the last line give (2.13).

To show the desired convergence we recall that the operators G, : H — HY(Q) have a

norm bounded by 1. Hence, it suffices to proof the desired convergence on a dense subset,
namely C = C?(Q)xC%(QxY). For (ug,U,) € C we write u. = (G.(ug, U;)) in the form

u-(x) = ve(z) + g-(x)  with v.(z) = ug(z) + e Uy (z, { £ }
where g. is the solution of the weak elliptic problem

Jo 9:w+ V. - Vwdz = (. (w) for all w € H{(Q),

(2.15)
where (.(w) = [, (ug—ve)w + (fE(Equo—l—VyUl) — VUE) -Vwdz.

Clearly, the family (v.)ec(o1) is bounded in Hj(Q). Moreover, we have |[luo— 'U€||Loo <
Cie which implies v. — wo in H{(Q). Using Vu.(z) = Vue(z) + V,Uy(z, {£ }
eV, Ui (x { } ) and (ug,U;) € C we have || T.Vv. — (EVouo—V, Ul )ex|lL2mixy) < 025

ie., Vu. 2 EVug—V,U; in L2(QxY).

Hence, it suffices to show ||g.||u1(@) — 0, as this implies Vg, 2,0 in L2(QxY). From
(2.15) we have

||ga||%{1(9) < (uo—ve, Fo(EVeuo+V,Ur) — Ve )12
= ”uO_'Uef”Iz_,Z(Q) + ”EquO_l'VyUl) - Zv”%g([gdxy) S C1352-

This finishes the proof of the convergence result (2.14). m

Finally, let us note that we may extend the construction to functions u,u, € H(Q),
namely without Dirichlet boundary conditions. In fact, for uy € H'(€) we obtain a recov-
ery sequence u. = ug + G.(0,U;) by simply employing the above result and Prop. 2.4(f).

2.5 Two-scale I'-limits

We now discuss the question how functionals behave under two-scale convergence. This
relates strongly to the question of homogenization. The two-scale convergence results we
present here are well-known in the literature, but often they are not easily accessible.
Thus, we repeat here some simple versions which can be easily deduced by our theory and
which are sufficient for our application in the next section. For more advanced results we
refer to [A1192, CD99, CDD06|.
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Let W : YxR™ — R, := RU{oco} be a normal integrand, which means that for each
u € R™ the function y — W(y,u) is measurable and that for a.e. y € Y the function
u— W{(y,u) is lower semi-continuous. Recalling our definitions of 7¢, F., and of [Q2xY].
(cf. the line above (2.3)) we obtain the following central formulas

w ({2 }y’ r)) dz = f[gxy W(y, Tou (x,y)) dy dz for all u € LP(Q). (2.16)

This identity follows by a simple decomposition of QF into small cells N.(§)+cY and
using the definition of 7.

The next two lemmas are the basis of the two-scale I'-convergence for the functionals

LrP(Q) — Reo, LP(QxY) — R,
We: u HfW({f}y,u(x))dx and W: U  +— [W(y,U(z,y))dydz.
Q Qxy

Lemma 2.11 Assume that p € (1,00), that 2 is as above, and that W : YxR™ — R, is
a convex normal integrand, i.e., W(y,-) : R™ — Ry, is convex for a.e. y € Y. Moreover,
let W be bounded from below by W (y,u) > —h(y) for a.e. y € Y with h € L}(Q). Then,

. BU n IP(QxY) = W(U) < lim inf W. (u.).

Proof: We choose an increasing sequence Ay, k € N of open subsets of {2 such that
A CAp1 €92 and |Q\Ag| — 0 for £ — oo.

Then, for each k there exists ¢ such that Ay xY C Q- xY C [QxY]. for € € (0, ).

Now consider a family with u. *2 U. Using (2.16) and W > 0 we find

We(u) = [ Wy, Tu(z,y))dyde > [ W(y, Tuc(z,y))dyde — [ h(y)dy
[2xY)e ApxY O\ Ag

In the right-hand side we may pass to the limit inferior for ¢ — 0, as Z.u. — U in LP?(2xY)
and as W is a convex normal integrand. We obtain

hmme(uE > [ W(y,U(z,y))dydz — [ h(y
ArxY O\ Ay

Since k was arbitrary, we may consider now the limit £ — oo. The second term tends to
0 as |2\ Ax| — 0 whereas the first term converges to W (U). m

Lemma 2.12 Assume that p € (1,00), and that  is as above.

(a) Let W : YxR™ — R be a Caratheodory function, i.e., W(y,-) is continuous for a.e.
y €Y and W(-,u) is measurable for each u € R Moreover, assume that there is a
function h € LY(Y) and a constant C > 0 such that |W (y,u)| < h(y) + C(1+|u|)? for all
u € R™ and a.e. y €Y. Then,

ue S U inLP(QxY) = W({U)= lim W. (u.).

14



In particular, this implies that W.(F.Us) — W (U).

(b) Let W : YxR™ — R, be a normal integrand such that for a.e. y € Y the function
Wy, ) is convex and that |W (y,0)| < h(y) for some h € L(Y). Then,

W (U) = im W, (F.Us) for all U € LP(Q2xY).

Proof: ad (a). We let U. = Z.u,, then formula (2.16) gives

with fl Joey [ U, )W e )] dyde = W (L) ~WE),
and I3 = [ (y,U( ) dyde — [ W z,y))dydz.
We have I5 — 0 because of U, — U in LP(R?xY) and the strong continuity of the

functional R. For the later property we use the continuity of W (y,-) and the growth
restrictions, cf. [Dac89, Val8s].

For I3 — 0 we note that both integrals have the same integrand. Moreover, the difference
of the domains QxY and [Q2xY]. is contained in B, = (QF\Q)xY. By condition (2.4)
the Lebesgue measure of this set tends to 0, whence /5 — 0 and we conclude

115 <[5 My) + C(A+|Us(z, y)])" dy da — 0,

where again U, — U is used to obtain the equi-integrability of |U.|?.

ad (b). We again use (2.16) for u = F.U. and note that 7.F .Uy = x.P-Uex by Prop.
2.1(d). With this we find

Ws(fonx) = f W(yvpsch(xvy))dydx = f Xe(xu y)W(y7 PEUCX(x7 y))dyd.ﬁl]

[2xY]e RdxY
| xe(zy)  F Wy, Ux(y,8)dE dyde =) [ x=(§&y)W (y, Usx(y,§)) dydE
RixY Ne(z)+eY RixY
<@ WU)+ [ hy)dyde.
(Q@H\Q)xY

For <(1) we have used convexity of W (y,-) and Jensen’s inequality. The equality =) uses
the fact that the integrand is piecewise constant in z on each NV (z)+eY. For <(3) we use
X < Xaxy + X@r\)xy and Ues = 0 outside of QxY. Using h € LY(Y) and (2.4) we find
limsup, W.(F.Uex) < W(U). The opposite inequality liminf, W.(F.U) > W (U) was

established in Lemma 2.11. m

The following result states that the two-scale functional W' can be considered as the two-
scale I'-limit of the functionals W, in the sense of Mosco, i.e., it is the two-scale I'-limit
in the weak as well as in the strong topology.

Corollary 2.13 Let p € (1,00) and Q be as above. Moreover, let W : YxR™ — R be a
convez, normal integrand satisfying the bounds W (y,u) > —h(y) and W(y,0) < h(y) for
all u € R™ and a.a. y € Y with h € L'(Y). Then, we have

(i) Lower estimate: u. 2 U in LP(QxY) = W (U) < liminf._o W.(u.).
(1i) Recovery sequence: YU € LP(2xY) I (ue)e: ue 2, U and W(U) = lim._o Wc(u,).
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Remark 2.14 It is possible to generalize the above results to the case that the density
W also depends on the macroscopic variable © € Q. The central identity (2.16) is easily
generalized to

Jo W. )de = [ig,y. We(S:(z,y), Tou(z,y))dydz  for all u € LP(Q).

Thus, if we want to realize a general Caratheodory functions W : QxYxR™ — R, in the
two-scale limit functional W, we define W, via the approximate energy density

We(x,u) { }y, with We(z,y,u) = JCNE(:E)%Y W&, y,u)dE,
instead of the traditionally used W (z, {£ }y’ . Note that W satisfies W.(S.(x,y),u) =
Wa(x,y, u) — Wiz, y,u) a.e. fore — 0.

Under some mild additional conditions it is then possible to pass to the limit as in Lemmas
2.11 and 2.12, see also Prop. 2.6. This also resolves the difficulties addressed in [CDG02,
Thm. 2|. This will be subject of future research.

2.6 Two-scale cross-convergence

Finally we present a result concerning functional involving gradients. For families ((u., 2.))-
in WhP(Q)xLP(Q) we define the notions of weak and strong two-scale cross-convergence
as follows:

Ue — U in WhP(Q),
(ue, 2.) "X (ug, Uy, Z) in X, < Vue 2 EVug + V, Uy in LP(QxY),
Rz in LP(QxY),
Ue — Ug in WhP(Q),
(ue, 2.) 25 (u, Uy, Z) in X, < Vue 2% EVug + V,U; in LP(QxY),
27 in LP(QxY),

where X, = WP (Q)xLP(Q; WEP(Y))xLP(QxY). The final result on two-scale I'-convergence
now provides relations between the functionals

O (u,2) = fﬂgb({f}y,u(x),Vu(x),z(x))dx and
D (ug, Uy, Z) = fQXy¢(y,UQ(ZL'),VUo(l’)+va1(l’,y),Z(l’,y))dl’.

Proposition 2.15 Let p € (1,00) and let Q C R? be a bounded domain with Lipschitz
boundary. Assume that ¢ : YxRFxRF*IxR™ — R is a Caratheodory function (measur-
able in y € Y and continuous in (u, F,z) € REXRF>*IxR™ — R) satisfying the bound
lo(y,u, A, z)| < h(y ) + C(1+|u|+|A|+|z|)P for h € LY(Y). Then, we have

(ue, za) S (uo, Uy, Z) in X, = @ (ue,2) — ®(up, Uy, 2).
Moreover, if ¢(y, ) is convex for a.a. y € Y, we also have
W2

(uey 22) = (ug, Uy, Z) in X, =  ®(up, Uy, Z) < limiéifq)a(ua,za).
e—
The proof is a direct consequence of combining Lemmas 2.11 and 2.12(a).
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3 Evolutionary variational inequality

3.1 Abstract result

For the convenience of the reader we recall the standard existence and uniqueness results
for evolutionary variational inequalities, see, e.g., |BS96, Vis94, Mie05|. We start with a
Hilbert space Q with dual Q* and dual pairing (-, -) : Q*xQ — R and a positive semidefinite
operator A € Lin(Q,Q*), i.e., A = A* and (Agq,q) > 0 for all ¢ € Q. For a function
(€ CY([0,T],Q%) we define the energy functional

£(1,0) = 50Aq.q) — {£(t),)

Moreover, let a dissipation functional R : Q — [0,00] be given that is convex, lower
semi-continuous and positively homogeneous of degree 1, viz.,

R(vq) =vR(q) for ally >0 and q € Q.

The energetic formulation (S) & (E) of the rate-independent hysteresis problem associated
with € and R is based on the global stability condition (S) and the energy balance (E):

(S): E(t,q(t)) < E(t,q) +R(g—q(t)) for every q € Q,
(E): &(t,q(t)) + Dissx(q; [0,t]) = €(0,4¢(0)) + fot 0s€(s,q(s))ds,

where Dissx(g; [, s]) = [T R(¢(t))dt and 9,€(s,q(s)) = —(0(s),q(s)). We call ¢ : [0,T] —
Q satisfying (S) and (E) for all t € [0, 7] an energetic solution associated with (€, R).

The stability condition can be formulated in terms of the sets of stable states
8(t) ={q e Ql&(t q) < &(t,q) + R(q — q) for every g€ Q}.

Now, (S) just means ¢(t) € 8(t).

There are several equivalent formulation for (S) & (E), for instance the subdifferential
inclusion 0 € OR(§(t)) + D,E(t, ¢(t)) or the variational inequality

(Aq(t)—L(t),v—q(t)) + R(v) — R(¢(t)) > 0 for every v € Q. (3.1)

For these equivalences, we refer to [MT04, Mie05|, where also a proof of the following
existence and uniqueness result can be found.

Theorem 3.1 Let { € C'([0,T],Q%) and qy € $(0). Moreover, assume that the following
coercivity condition holds:

Ja >0V € Q with R(v) <oo: (Av,v) > allv|?. (3.2)
Then, the energetic problem (S) & (E) has a unique solution ¢ € C¥P([0,T],Q) with

Lipo- (¢
lg(t) — q(s)]|o < p%()ﬁ —s|  for all s,t €10,T].
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For the reader’s convenience we repeat the main argument for the a priori estimate.
Assume that for ¢ the derivative ¢(t) exists. Using (3.1) with v = 0 we find (Aq(t) —
0(t),—q(t)) — R(4(t)) < 0. For a sequence t, — t where (3.1) holds we test with v =
u(t), divide by p and consider the limit g — oo. Using 1-homogeneity of R we obtain
(Aq(t,) — 0(tn),q(t)) + R(¢(t)) < 0. Adding this to the above estimate gives

(Aq(ta)—€(t2)) — (Aa()—£(), 4()) < 0.

Assuming t,, > t we may divide the above inequality and pass to the limit to find (Aqg(t) —
é(t), q(t)) < 0. For t, <t we find the opposite inequality. Since we may approach t by
sequences from both sides, this implies (A¢(t), §(t)) = (£(t),¢(t)). Now, (3.2) leads to the
desired result of|q(t)|| < |[€(t)]]+.

3.2 Elastoplasticity with periodic coefficients

In this section we formulate the continuum mechanics that describes the rate-independent
evolution of an elastoplastic body under prescribed loading. This model is the classical
one introduced by Moreau and is still used in many engineering applications, cf. [Mor76,
HR99.

The body occupies a domain @ C R, which is assumed to be a nonempty connected
bounded open set with Lipschitz boundary 0. As above we have a length scale parameter
¢ and a periodicity lattice A with unit cell Y € R% With v : Q — R? we denote the
displacement of the body and z : 2 — R™ denotes a vector of internal variables which
will account for inelastic effects due to plastic strains and plastic hardening.

The material properties are assumed to be periodic with respect to the microscopic lattice
e\, which leads to the dependence on {E} The energy functional €. is based on a
stored-energy density W : ydexdem — ]R (y,e,z) — W(y,e,z), where Rg;n‘f {Ae€

R A=AT} and e = e(u) = 5(Vut+Vu") € Rg;nﬁl is the linearized strain tensor. With
this, €. takes the form

(tu,2) /W{}y, >>dx—<6<>u>
Wlth fQ fap t LIZ‘ dﬂ? + f@Q gap(tug) dgv

where f,, and g,, are the applied, time-dependent loading in the volume and on the
surface, respectively. We assume that they satisfy f,, € C1([0,T],L*(;R?)) and g., €
CL([0,T], L2(082; R?)), such that £ € CL([0,T], HL(£; RY)*).

For the stored energy W we assume that it is a quadratic form in (e, z), namely

Wiy.ez) = —<<A )9 ()

where A(y) : Rg;nﬁl xR™ — RIUXR™ is a positive semidefinite linear operator and

((9), ( ) = Z” 1 €€ + > i zrzk is the scalar product on REM X R™.

The d1881pat10n potential R, is deﬁned via a dissipation density p : YxR™ — [0, 0o] in the
form R( pr ({ } ) ) dz. Rate-independence is imposed by assuming that
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p(y,-) is positively homogeneous of degree 1 (for short: 1-homogeneous). Note that p is
not assumed to be symmetric (i.e., p(y, —2) # p(y, 2) is allowed), since this freedom is
necessary to model hardening.

Our precise assumptions on the material data A and p are

A € L®(Y,Lin(REIXR™)) with A(y) = A(y)" >0, (3.3a)
p:Y —[0,00] is a convex, normal integrand and p(y, -) is 1-homogeneous, (3.3b)

3a > 0V,.y €YV (5) € REUXR™ with p(y,z) < co:

T aw©. ) =8l

Remark 3.2 Here we describe the exact setting for the linearized theory of elastoplas-
ticity which is the motivation of this work. However, in the sequel of the paper we do not
rely on the further specifications given here.

(3.3¢)

The basis of linearized elastoplasticity is the additive split of the strain into an elastic
part eq = e(u) — p and an plastic part p = B(y)z, where B(y) : R™ — RX? is a linear
mapping. Then, W is taken in the form

W(y, e, z) = (Cy)(e=B(y)z), e~B(y)z),, , + (HY)z, 2)m,

where C(y) : R&:Y — R is the symmetric (fourth order) elasticity tensor and H(y)
A CB )

denotes the hardening tensor. This means that A has the block structure (_B*C HAB*CB

The typical case of isotropic hardening may be written in the way that z = (p, h), where
p € (R¥d)y = { A e R tr A =0} is the (deviatoric) plastic strain (i.e., B(y)(p, h) = p)

Sym Sym

and h € R is the isotropic hardening parameter and H(y) is taken as k(y) > 0. Moreover,
p is assumed to have the form

oy, (b, 1)) = { r(y)h for h >0 and p € h¥(y),

oo otherwise,

where 7(y) > 0 and X(y) C (RE9)* is the compact and convex elastic domain (with O%(y)

sym

being the yield surface) at the point y € Y for the the initial hardening state h = 1.

The coercivity assumption (3.3c) then follows if we assume that there exist positive con-
stants ¢ and C' such that for a.a. y € Y we have the estimates

k(y) > ¢, (C(y)e,e) > cle|? for all e, |o| < C for all o € X(y).

Note that the restriction p(y, (p, h)) < oo implies |p| < Ch.

Finally, we fix the function spaces by prescribing Dirichlet boundary conditions u = 0
along the part I'p;, of OI'. This defines the underlying Hilbert space

Q =Hyp, (Q)'xL*(Q)™ with Hy, () ={ueH(Q)|un,, =0}

The domain €2 and the Dirichlet boundary part I'p;, are specified further in the next result
to guarantee coercivity of the energy E..
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Proposition 3.3 (Korn’s inequality) Let Q C R? be a connected, open, bounded set
with Lipschitz boundary I'. Moreover, let I'py. be a measurable subset of T", such that
fFD' 1da > 0. Then there exists a constant Ckom > 0, such that

Jo le(w)]?dz > C'Kom||u||H1(Q) for all we Hy, ()% (3.4)

Clearly, we may write &.(t,e,2) = $(A(Y), (Y)) — (1), (%)), where A, : Q — Q% is

z
symmetric and positive semi-definite. Moreover, combining assumption (3.3¢) and Korn’s

inequality, we find for all (€) € Q with R.(z) < oo the coercivity estimate
(A", () = al(“Nteq = all(DIE with o = @min{l, Ckom}.  (3.5)

We call ¢. = (ug, z:) : [0,7] — Q an energetic solution associated with (€., R.), if for
all t € [0, T] the stability condition (S°) and the energy balance (EF) hold:
(S%) E.(t, ue(t) ( )) < E.(t, u, “) + R.(Z—2z.(t)) for every (u, “) €9,

(3.6)
(E9) &t ualt), (1) + [y Re ))ds = €.(0, u.(0) )— Jo e ))ds.

Applying the abstract Theorem 3.1 we immediately obtain the followmg existence and
uniqueness result which contains an a priori Lipschitz bound that is independent of £ > 0.

Proposition 3.4 Let ¢ € CY([0,T], (Hy, ()%)*). Then for all ¢ > 0 and all stable
(u?, 20) € Q there ewists a unique solution (u.,z.) € C¥P([0,T],Q) of (S°) & (E°) with

(ORI

(u-(0), 2.(0)) = (u?, 2). Moreover, all these solutions satisfy

1(ue(t), z:(0) = (uels), 22(5) [l < 220D ft—s|  for all t,s € [0,T],  (3.7)
where « is defined in (3.5) and is independent of €.

3.3 The two-scale homogenized problem

Instead of the functionals €. and R. we may consider their two-scale limits. As the
energy storage functional depends on the gradient of u, we use the notion of two-scale
cross-convergence introduced in Section 2.6 on the space

Q = HxZ with H = H},_(Q)‘xL*(Q,H.,(¥))? and Z = L*(QxY)™.

We use U = (ug, Uy) for the elements in H and Z for the internal elements lying in Z.
The functionals E and R are defined via

E(t,U,Z) = [q.y 3(AWy) ( ) (é(g))» — (£(t), uo
where €(U) = e, (ug) + e,(U1) = 3(V,uo+(Vu ) )+ 2V, Ui +(V,U1)7),
Again we define the energetic formulation for E and R on @ via the global stability

condition (S) and the energy balance (E). As above, a mapping (U, Z) : [0,T] — HXZ =
Q is called an energetic solution associated with E and R if for all ¢ € [0,T] we have

(S) E(t,U(t ) Z( )) < E(t, z7 Z) +R(Z—Z(t )) for all (U, Z) S sz

(E) E(t,U(t —i—fo ))ds = E(0,U(0 fo ))ds. (3:8)
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Using the abstract existence Theorem 3.1 we again obtain the following result as soon as
we have established the coercivity assumption (3.2) for the energy E.

Proposition 3.5 Let { € C¥P([0,T1, (Hy, ()%)*). Then for all stable Q° = (U°, Z°) €
Q. (S) & (E) has a unique solution @ = (U Z) e CHP([0,T], Q) with Q(0) = Q°.

Proof: It remains to prove that A : Q — QF, which is defined via E(t,U, Z) =
KA. (4 )>Q ), uo)m1, satisfies (3.2),

Ja >0V (U,Z) € Q with R(Z) <oo: (A(3).(3))q = alU, 2)llg (3.9)
By our Assumption (3.3c), we immediately obtain the lower estimate
(A(2): (7)) = all(€U), 2) |2y for all (U, 2Z) € Q. (3.10)
Next, we use an orthogonality condition for the two-scale limit of gradients. If Vu, i
EV,up+ V,U; in L2(2xY), then
Jaxy | Vato(2)+V, Ui (2, y)*dyde = [, [Vuo(z)[*dz + [o, . [V, Ui(2,y)[* dyda.

The mixed terms drop out, since EVug(z, -) is constant on Y, while V,U;(z, -) has average
0 as it is a derivative of a periodic function. For the symmetric strains we similarly obtain

18((uo, UD) L2 (@y) = leo) £z + lley(Un) L2 (auxy)-
With Ky = 272 min{ |A\|* |0 # A € A} we have the Korn-Poincaré type inequalities:
YV e HL(Y): lley(V)liEegy = KyllVIRa, and lley(V)liEaq > 511V VI,

This follows easily by writing V(y) = >, V3e?™¥ and using Plancherel’s identity. In-
serting these estimates into (3.10) and employing Korn’s inequality for ug we obtain

<A( ) ( )>Q = a<CKorn||u0||H1(Q 1+2K1ZJ fQ U (2 )||12{1(y) dz + ”ZHI%Z(Qxy))’

which provides the desired estimate (3.9). n

4 Convergence results

This final section addresses the question under which conditions the solutions (u., z.) of
(S%) & (Ef) have a two-scale limit (U, Z) which is a solution of (S)& (E). The convergence
is taken in the sense of two-scale cross-convergence and we can build on our theory in
Section 4.3.

In particular, the results of Section 2.5 state that E and R are the ['-limits of the families
(E:)e and (R.)., respectively, in the Mosco sense.
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Proposition 4.1 Let Q C R? be bounded with Lipschitz boundary. Moreover, let E., R.,
E, and R be defined as above such that (3.3) and ¢ € C°([0,T1], (Hy, (2)%)*) hold. Then,

for each t € [0, T] we have the following convergences

w2c { E(t> U, U1> Z) S lim inf&—>0 8a(t> Ue, ZE)? (41&)

£y € - ’U’Z = ~ 1 i
(te, 22) (uo, U1, Z) € Q R(Z) < liminf. o R.(z.);

V(UQ, Ul,Z) € Q 3 ((ug,ze))g :

SzC . I3 ) €y ~E ) ) ) ) 41b
(e, ze) =, (uo, U1, Z) in Q and Ec(t, ue, z2) — E(t,ug, Uy, Z) ( )
ng(ze) — R(Z)7

where for the recovery sequence in (4.1b) we may take (ue, z.) = (uo+G-(0, Uy ), F.Z) with
F. and G. as defined in (2.8) and (2.12), respectively.

Here it is important that G. maps into Hj(€2), such that ug+ G.(0,U) € Hf, (Q)%.

Our convergence result for the solutions (u.,z.) € CUP([0,7],Q) of (S°) & (Ef) to a
solution (U, Z) € CYP([0,T],Q) will be an adapted and simplified variant of the two
abstract Theorems 3.1 and 3.3 in [MRS06|. The abstract theory is formulated on one
single space Q but in fact, the results there are easily generalized to the setting needed
here. The following remark gives the alternative way of embedding everything into one
big function space Q.

Remark 4.2 To show that our situation is included exactly in this setting we choose
Q=HxZ with H=HL_(QxL}R%HL (Y)) and Z = L*(RIxY)

and define an e-dependent embedding (u, z) — (Q.u,U.u, T.z), where the Q. : Hf, (Q)* —
Hf, ()% andU : Hf, () — L*(R% H,(Y)) can be defined as indicated in [CDG02]. De-
fine H, as the subspace of H, ()¢ containing the functions u such that J%(/\er) u(x)dr =
0 for all A € AZ, see Section 2.1. Then, let Q. be the orthogonal projection to the or-

thogonal complement of H. and set U.u = %(id—Qa)u. Finally, we define the functionals

in Q via

/éa(t,u(), [/]\1,2) —_= { aa(t?U’?Z) If (u07ﬁl7/Z\) - (u, Qau,,];Z)’

o0 else,
€ 5 2| E(tuo,Un,2) if sppt(T,Z) € Q
8O(t,U0,U1,Z):{ (,U(), Ls ) 1 Spp( 1 )C X%’
o0 else,
R(Z Re(z) if 2="Tz, R R(Z) if sppt(Z) C QxY,
ya<z>:{ (2) RO(Z):{ (2) if sppt(2)
oo else, oo else.

Hence, under the additional assumption that for all considered functions the corresponding
functionals have finite values, we have concluded that weak and strong convergence in Q
is equivalent to weak or strong two-scale convergence of families (u., z.). in Q towards a

limit (UQ, Ul,Z) €Q.
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Now we are able to formulate the main result of this paper. It states that the solutions
(ue, z:)e of the e-periodic problem (S°) & (Ef) strongly two-scale cross-converge to a so-
lution (U, Z) of the two-scale homogenized problem (S) & (E) under the sole assumption
that the initial conditions strongly two-scale cross-converge.

Theorem 4.3 Let (ue,z.) : [0,T7] — Q be the solution for (S°) & (E°) as obtained in
Prop. 3.4. Assume that the initial data satisfy

(1:(0), 2.(0)) 25 Q° = (u°,U°, 2°) in Q.

Then Q° is stable (i.e., Q° € S(0)) and

VEe0,T]:  (uc(t), 2 () 2% Q1) = (uo(t), Ur(t), Z(1)) in Q,

where Q : [0, T] — Q is the unique solution of (S) & (E) with initial condition Q(0) = Q"
as provided in Prop. 3.5.

Recall the definition of the stable sets

8c(t) = {(u,2) € Q| V(w,2) € Q: E.(t, U, 2) < E(0, W, 2)—R(3—2) },
St)={(U,2)eQ|V(U,Z)eQ: E(t,U,Z) < E(0,U,Z2)—-R(Z-Z2) }.

Remark 4.4 In [MRSO06] the convergence of the initial condition and of the solutions is
formulated in terms of the underlying topology, which in the present setting means weak
two-scale cross-convergence. However, the abstract theory assumes convergence of the ini-
tial energies and proves convergence of the energies E.(t,u-(t), 2.(t)) — E(t,U(t), Z(t)).
Because of uniform convexity (cf. (3.9)) we see that weak convergence and energy con-
vergence implies strong convergence. The details of this argument are worked out at the
end of the proof of Theorem 4.3. See also [Vis84] for general arguments of this type.

The main difficulty in the proof of the desired result is to prove that the weak limit of
stable states is again stable. In [MRS06| this property is reduced to a property which
postulates the existence of suitable joint recovery sequences for a combination of €, and
R.. In our setting this reads as follows.

Proposition 4.5 For t € [0,T] assume (u., z.) € 8.(t) and (uz, z.) = (uo, Uy, Z) in Q.
(a) Then, for each (ﬂo,ﬁl,Z) € Q there exists a joint recovery family (U, z:). with
(e, %) X (U, Uy, Z) in Q such that

limsup [E.(t, U, 2.)+Re(Ze—2)—Ec(t, ue, 2.)] < E(t,U, Z)+R(Z—2Z)—E(t,U, Z).

e—0
(4.2)
(b) As a consequence (ug, Uy, Z) € S(t).

Proof: ad (a). We give the joint recovery sequence explicitly in the form
(77€7E€> = (Ug, Zs) + (ﬂo—uo + 95(0, (71—U1) , fe(Z—Z))
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Note that the arguments for G. and F. do not depend on ¢. Hence, by Prop. 2.10 and
Prop. 2.4 we obtain the important relation
(e, 22) — (ue, 2.) = (Uo—up+G(0, Ui —U,) , Fo(Z—2)) 22 (@y—uo, Uy—Uy, Z—7). (4.3)

In turn, this implies the obvious convergence (u., z.) ey (o, Uy, Z).

From (4.3) and Lemma 2.12(b) we obtain R.(Z.—z.) — R(Z—Z2).

For the energies we use the quadratic nature and obtain

(1 2)Ec(t e, 2) = 3 o (A EL) (), (T2 Y e — (1), ).
The last term obviously converges to ({(t),up—ug) by the usual weak convergence in

HL (Q)4. Under the integral we have a quadratic form, where the right factor weakly
Tbir

two-scale converges to (E(;}:Z(])) in L2(QxY). The left-hand factor is a product of the

multiplicator m. = A { } and a strongly two-scale convergent sequence with limit
(¢ (g_ U)) in L2(QxY). As Tom.(z,y) = A(y) Prop. 2.6 implies

A({2}) (€T =2 ACT-DY) in L2(QxY).

Zetze Z—7

Since a scalar product of a weakly and a strongly converging sequence converges (see
Prop. 2.4(d)), we conclude

&(t, e, 5) 8ot ue, 2.) — E(t,U, Z)—E(t,U, Z).
Thus, we have established (4.2) in the stronger version that the limsup is a limit and the
“S” iS “:77

ad (b). This is a direct consequence of part (a). Let (U, Z) be the limit of stable states
and take any test state (U Z) € Q. Now take the joint recovery sequence obtained in
part (a) and insert (., z:) into the stability condition for (u., z.), namely

0 S ge(ta ﬂ&Z:) + Re(ze_zs> - Ss(ta Ueg, Zs)-

As the right-hand side converges we conclude 0 < E(t,U, Z)+R(Z—2Z)—E(t,U, Z) and
stability is established as (U, Z) was arbitrary. ]

Proof: [of Theorem 4.3|

By Prop. 3.4 we know that the family (u., z.). is uniformly bounded in CYP([0,77], Q).
As closed balls in Q are weakly compact and have a metrizable topology, the Arzela-
Ascoli theorem can be applied in CY([0, T'], Queax) and we find a subsequence (e;)ren with
0 < g, — 0 such that

Vi€ [0,T]: (ue,(t), 2, (1) X (U(t), Z(1)) in Q.

By the lower semi-continuity of the norm, we have (U, Z) € CYP([0, 7], Q) and it remains

to show that (U, Z) is a solution of (S) & (E). As the initial condition (U°, Z°) is known
the solution is unique and we even conclude that the whole family converges (by the
standard argument via contradiction).
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By Prop. 4.5 we know that (U(t), Z(t)) is stable for all ¢ € [0, T], hence (S) is satisfied
and we have to establish the energy balance (E) in (3.8). For this, we pass to the limit
e — 0in (E9), cf. (3.6). The first term on the right-hand side converges, as the energy
€:(0,u:(0),2:(0)) converges applying the strong two-scale cross-convergence and Prop.
2.15. The second term converges by Lebesgue’s dominated convergence theorem as the
integrands are uniformly bounded and converge pointwise.

To treat the left-hand side of (E¢) we let e.(t) = E.(t, u:(t), 2-(t)) and d.( fo ))ds.
By the above, we know that r.(t) = e.(t) + d.(t) converges to ry(t), Whl(‘h is the hmlt
of the right-hand side. We let e*(¢) = limsup,_e-(t) and d.(t) = liminf._,d.(¢) and
conclude €*(t) + d.(t) = ro(t). Now we use the lower estimates for the functionals. For
the stored energy we use (4.1a) to obtain

E(t,U(t),Z(t)) < liren_jglf e.(t) < limsupe.(t) = e*(t).

e—0

For the dissipation integral we use fo (Z(s))ds = sup Z R(Z(t;)—Z(t;—1)), where
the supremum is taken over all finite partitions of [0, ¢]. Agaln by (4. la) we find

S R(Z(t)—Z(t-1)) < liminfo_o 30| Re(ze(t))—2(tj-1)) (4.4)
< liminf._o [ Re(2(s))ds = d.(t). '

Thus, recalling e* 4+ d, = rg we proved the lower energy estimate

E(t,U(t) +f0 s))ds < e*(t) + d.(t) = E(0,U(0) — Jote( ))ds.

The upper energy estimate (just replace “<” by “>") follows from the already established
stability of (U, Z), see [IMTL02, Thm.2.5| or [MMO05, Thm.4.4]. Thus, (E) holds and,
moreover, we also conclude that the inequality in (4.4) must be an equality. This in turn
implies that E(t,U(t), Z(t)) = e*(t) = lim._ E(t, u-(t), z:(t)).

As the value of t € [0,7] is kept from now on, we omit it in the rest of the proof. From
the above and using the weak two-scale convergence ¢. = (ue, z.) E Q = (ug, Uy, Z) we
want to conclude g, 2, Q.

For this, we define g. = (ug+ G.(0,U1), F.Z) € Q, which satisfies ¢ % Q. Moreover, we
have

SNz—aelld < $(A(G—ac), (@—q-))
- 8a(t>%) - 8a(t>% + <<~Aa% Ea qe— Qa>>
—e¢*—E(t,Q)+0=0.

For the convergence note that the first term was treated above, that the second term

converges because of « 320 and Prop. 2.15, and that the third term converges as a scalar
product, since the left-hand term is strongly convergent and while the right-hand term
weakly converges to 0, see Prop. 2.4(d). Finally, we conclude by noting that

(Te(Vue), 22) = (EV2uo+VyUs, Z)[lL2@ixy) <
||( (Vu& vua)aza_EE)HLz(Rdxy)_"éa < ||(U€,ZE)—(a5,/Z\5)”Q—|-5€—>O

with 6. = ||(Z: (Vue) ) — (EVuo+V,Ui, Z)|[r2mixyy — 0 because of g. 52, Q. This

establishes q. 2, ) and we are done. [
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