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AbstratWe study the Bayesian problem of sequential testing of two simple hy-potheses about the loal drift of an observed di�usion proess. The optimalstopping time is found as the �rst time when the a posteriori probability pro-ess leaves the region de�ned by two stohasti boundaries depending on theobservation proess. It is shown that under some nontrivial relationships onthe oe�ients of the observed di�usion the problem admits a losed formsolution. The method of proof is based on embedding the initial probleminto a two-dimensional optimal stopping problem and solving the equivalentfree-boundary problem by means of the smooth-�t onditions.1. IntrodutionThe problem of sequential testing of two simple hypotheses about the loal drift
µ(x) of an observed di�usion proess seeks to determine as soon as possible andwith minimal error probabilities if the true drift oe�ient is either µ0(x) or µ1(x).This problem admits two di�erent formulations (see Wald [20℄). In the Bayesianformulation it is assumed that the drift oe�ient µ(x) has an a priori given distri-bution, and in the variational formulation no probabilitsi assumption is made aboutthe unknown drift µ(x). In this paper we only study the Bayesian formulation.By means of the Bayesian approah, Wald and Wolfowitz [21℄-[22℄ proved the opti-mality of the sequential probability ratio test (SPRT) in the variational formulationof the problem for sequenes of i.i.d. observations. Dvoretzky, Kiefer and Wolfowitz[2℄ pointed out that if the (ontinuous time) likelihood ratio proess has stationaryindependent inrements, then the SPRT remains optimal in the variational problem.Mikhalevih [12℄ and Shiryaev [18℄ (see also [19; Chapter IV℄) obtained an expliitsolution of the Bayesian problem for an observed Wiener proess by reduing theinitial optimal stopping problem to a free-boundary problem for an ordinary se-ond order operator. A omplete proof of the statement of [2℄ (under some mildassumptions) was given by Irle and Shmitz [7℄. Peskir and Shiryaev [14℄ obtainedan expliit solution of the Bayesian problem of testing hypotheses about the in-tensity of an observed Poisson proess by solving a free-boundary problem for adi�erential-di�erene operator. Sequential testing problems for a ompound Pois-son proess having exponentially distributed jumps were expliitly solved in [4℄.Reently, Dayanik and Sezer [1℄ obtained a solution of the Bayesian sequential test-ing problem for a general ompound Poisson proess. A �nite horizon version ofthe Wiener sequential testing problem was studied in [5℄. The main purpose of this1



paper is to present a solution of the problem of testing hypotheses about the lo-al drift of an observed di�usion proess in the Bayesian formulation. In this asethe optimal Bayes stopping time is the �rst time when the a posteriori probabilityproess leaves the region de�ned by two stohasti boundaries depending on theobservation proess.In the present paper we make an embedding of the initial Bayesian problem intoan extended optimal stopping problem for a two-dimensional (time-homogeneousstrong) Markov di�usion proess (onsisting of the a posteriori probability proessand the observation proess). We show that the ontinuation region (for the aposteriori probability proess) is determined by two stohasti boundaries dependingon the observation proess where the behavior of the boundaries is haraterized bythe signal/noise ratio proess. In order to �nd analyti expressions for the valuefuntion and the stopping boundaries under some speial nontrivial relationshipson oe�ients of the observed di�usion, we formulate an equivalent free-boundaryproblem. By applying smooth-�t onditions we show that the free-boundary problemadmits an expliit solution and the boundaries are uniquely determined from aoupled system of transendental equations. Then we verify that the solution of thefree-boundary problem turns out to be a solution of the initial extended optimalstopping problem.2. Formulation and solution of the Bayesian problemIn the Bayesian formulation of the problem (see [19; Chapter IV, Setion 2℄ for thease of Wiener proess) it is assumed that we observe a trajetory of the di�usionproess X = (Xt)t≥0 with drift µ0(x)+θ(µ1(x)−µ0(x)) where the random parameter
θ may be 1 or 0 with probability π or 1 − π , respetively.2.1. For a preise probabilisti formulation of the Bayesian problem it is onvenientto assume that all our onsiderations take plae on a probability spae (Ω,F , Pπ)where the probability measure Pπ has the following struture:

Pπ = πP1 + (1 − π)P0 (2.1)for any π ∈ [0, 1]. Let θ be a random variable taking two values 1 and 0 withprobabilities Pπ[θ = 1] = π and Pπ[θ = 0] = 1 − π , and let W = (Wt)t≥0 be astandard Wiener proess started at zero under Pπ . It is assumed that θ and W areindependent.It is further assumed that we observe a ontinuous proess X = (Xt)t≥0 with the(open) state spae E ⊆ R and solving the stohasti di�erential equation:
dXt = [µ0(Xt) + θ(µ1(Xt) − µ0(Xt))] dt + σ(Xt) dWt (X0 = x) (2.2)where the funtions µi(x) and σ(x) are Lipshitz ontinuous on E , i.e., there existsa onstant C > 0 suh that:

[µi(x) − µi(x
′)]2 + [σ(x) − σ(x′)]2 ≤ C[x − x′]2 (2.3)2



for all x, x′ ∈ E and i = 0, 1 . Thus, from [11; Theorem 4.6℄ it follows that under�xed θ = i equation (2.2) has a unique strong solution, and hene, Pπ[X ∈ · |θ =
i] = Pi[X ∈ · ] is the distribution law of a homogeneous di�usion proess (startingat some �xed point x ∈ E ) with drift µi(x) and di�usion oe�ient σ2(x) for
i = 0, 1 . We will also assume that either µ0(x) < µ1(x) or µ0(x) > µ1(x) holds and
σ2(x) > 0 for all x ∈ E . Let π and 1 − π play the role of a priopi probabilities ofthe statistial hypotheses:

H1 : θ = 1 and H0 : θ = 0 (2.4)respetively.Being based upon the ontinuous observation of X our task is to test sequentiallythe hypotheses H1 and H0 with a minimal loss. For this, we onsider a sequentialdeision rule (τ, d) where τ is a stopping time of the observed proess X (i.e.,a stopping time with respet to the natural �ltration FX
t = σ{Xs | 0 ≤ s ≤ t}generated by the proess X for t ≥ 0), and d is an FX

τ -measurable funtion takingon values 0 and 1 . After stopping the observations at time τ , the terminal deisionfuntion indiates whih hypothesis should be aepted aording to the followingrule: if d = 1 we aept H1 , and if d = 0 we aept H0 . The problem onsists ofomputing the risk funtion:
V (π) = inf

(τ,d)
Eπ[τ + aI(d = 0, θ = 1) + bI(d = 1, θ = 0)] (2.5)and �nding the optimal deision rule (τ∗, d∗), alled the π -Bayes deision rule,at whih the in�mum in (2.5) is attained. Here Eπ[τ ] is the average ost of theobservations, and aPπ[d = 0, θ = 1] + bPπ[d = 1, θ = 0] is the average loss due to awrong terminal deision, where a > 0 and b > 0 are some given onstants.2.2. By means of standard arguments (see [19; pages 166-167℄) one an redue theBayesian problem (2.5) to the optimal stopping problem:

V (π) = inf
τ

Eπ[τ + ga,b(πτ )] (2.6)for the a posteriori probability proess πt = Pπ[θ = 1|FX
t ] for t ≥ 0 with Pπ[π0 =

π] = 1 . Here ga,b(π) = aπ∧b(1−π) for π ∈ [0, 1], and the optimal deision funtionis given by d∗ = 1 if πτ∗ ≥ c, and d∗ = 0 if πτ∗ < c, where here and in the sequelwe set c = b/(a + b).2.3. Sine for i = 0, 1 ondition (2.3) is assumed to be satis�ed, by means ofGirsanov theorem for di�usion-type proesses [11; Theorem 7.19℄ we get that theloglikelihood ratio proess Z = (Zt)t≥0 de�ned as logarithm of the Radon-Nikodymderivative:
Zt = log

d(P1|F
X
t )

d(P0|FX
t )

(2.7)(here Pi|F
X
t denotes the restrition of Pi to FX

t for i = 0, 1) takes the form:
Zt =

∫ t

0

µ1(Xs) − µ0(Xs)

σ2(Xs)
dXs −

1

2

∫ t

0

µ2
1(Xs) − µ2

0(Xs)

σ2(Xs)
ds (2.8)3



for all t ≥ 0 . Aording to the arguments in [19; pages 180-181℄, the a posterioriprobability proess (πt)t≥0 an be expressed as:
πt =

(
π

1 − π
eZt

) /(
1 +

π

1 − π
eZt

) (2.9)and, by virtue of It�'s formula (see, e.g., [11; Theorem 4.4℄), it solves the equation:
dπt =

µ1(Xt) − µ0(Xt)

σ(Xt)
πt(1 − πt) dW t (π0 = π) (2.10)where, by means of P. Lévy's theorem [17; Chapter IV, Theorem 3.6℄, the innovationproess W = (W t)t≥0 de�ned by:

W t =

∫ t

0

dXs

σ(Xs)
−

∫ t

0

(
µ0(Xs)

σ(Xs)
+ πs

µ1(Xs) − µ0(Xs)

σ(Xs)

)
ds (2.11)is a standard Wiener proess. Therefore, from (2.11) it follows that the proess

X = (Xt)t≥0 admits the representation:
dXt = [µ0(Xt) + πt(µ1(Xt) − µ0(Xt))] dt + σ(Xt) dW t (X0 = x). (2.12)Let us suppose that the signal/noise ratio funtion r(x) de�ned by:

r(x) =
µ1(x) − µ0(x)

σ(x)
(2.13)is also Lipshitz ontinuous, i.e. there exists a onstant C ′ > 0 suh that ondition:

[r(x) − r(x′)]2 ≤ C ′[x − x′]2 (2.14)holds for all x, x′ ∈ E , and there are onstants r∗ and r∗ suh that the inequalities:
0 < r∗ ≤ r(x) ≤ r∗ < ∞ (2.15)are satis�ed for all x ∈ E . Hene, by means of Remark to [11; Theorem 4.6℄ (seealso [13; Theorem 5.2.1℄), we onlude that the proess (πt, Xt)t≥0 turns out to bea unique strong solution of the (two-dimensional) stohasti di�erential equation(2.10)+(2.12), and thus, by virtue of [13; Theorem 7.2.4℄, it is a (time-homogeneousstrong) Markov proess with respet to its natural �ltration whih obviously oin-sides with (FX

t )t≥0 . Therefore, the in�mum in (2.6) is taken over all stopping timesof (πt, Xt)t≥0 being a Markovian su�ient statisti in the problem (see [19; Chap-ter II, Setion 15℄).2.4. For the problem (2.6) let us onsider the following extended optimal stoppingproblem for the Markov proess (πt, Xt)t≥0 :
V (π, x) = inf

τ
Eπ,x[τ + ga,b(πτ )] (2.16)4



where Pπ,x is a measure of the di�usion proess (πt, Xt)t≥0 starting at the point
(π, x) and solving the (two-dimensional) equation (2.10)+(2.12), and the in�mumin (2.16) is taken over all stopping times τ of the proess (πt, Xt)t≥0 suh that
Eπ,x[τ ] < ∞ for all (π, x) ∈ [0, 1] × E .2.5. Now let us determine the struture of the optimal stopping time in the problem(2.16).(i) First, applying applying It�-Tanaka-Meyer formula (see, e.g., [8; Chapter V,(5.52)℄ or [16; Chapter IV, Theorem 51℄) to the funtion ga,b(π) = aπ ∧ b(1−π), weget:

ga,b(πt) = ga,b(π) +

∫ t

0

(ga,b)π(πs) ds +
1

2

∫ t

0

∆π(ga,b)π(πs) dℓc
s(π) + N c

t (2.17)where ∫ t

0
∆π(ga,b)π(πs)dℓc

s(π) = (−b − a)ℓc
t(π), the proess (ℓc

t(π))t≥0 is the loaltime of (πt)t≥0 at the point c given by:
ℓc
t(π) = lim

ε↓0

1

2ε

∫ t

0

I(c − ε < πs < c + ε) r2(Xs)π
2
s(1 − πs)

2 ds (2.18)as a limit in probability, and for any (FX
t )t≥0 -stopping time τ satisfying Eπ,x[τ ] < ∞the proess (N c

τ∧t,F
X
t , Pπ,x)t≥0 de�ned by N c

τ∧t =
∫ τ∧t

0
(ga,b)π(πs)I(πs 6= c)r(Xs)πs

(1 − πs)dW s is a ontinuous (uniformly integrable) martingale.Let us �x some (π, x) from the ontinuation region C and let τ∗ = τ∗(π, x) de-note the optimal stopping time in the problem (2.16). By applying Doob's optionalsampling theorem (see, e.g., [9; Chapter I, Theorem 1.39℄ or [17; Chapter II, Theo-rem 3.1℄) and by using (2.17), it follows that:
V (π, x) = Eπ,x[τ∗ + ga,b(πτ∗)] = ga,b(π) + Eπ,x

[
τ∗ −

1

2
(a + b)ℓc

τ∗
(π)

] (2.19)and hene, by virtue of general optimal stopping theory for Markov proesses (see[19; Chapter III℄), we have:
V (π, x) − ga,b(π) = Eπ,x

[
τ∗ −

1

2
(a + b)ℓc

τ∗
(π)

]
< 0. (2.20)Then taking any π′ suh that π < π′ ≤ c or c ≤ π′ < π and using the expliitexpression (2.9), from (2.17)-(2.18) we obtain:

V (π′, x) − ga,b(π
′) ≤ Eπ′,x

[
τ∗ −

1

2
(a + b)ℓc

τ∗
(π′)

]
≤ Eπ,x

[
τ∗ −

1

2
(a + b)ℓc

τ∗
(π)

](2.21)and thus, by means of (2.20), we see that (π′, x) ∈ C . Therefore, aording to thegeneral optimal stopping theory (see, e.g., [19℄ and [15℄), these arguments (togetherwith the easily proved onavity of the funtion π 7→ V (π, x) on [0, 1], see also5



[10℄) show that there exists a ouple of funtions (g0(x), g1(x)), x ∈ E , suh that
0 ≤ g0(x) ≤ c ≤ g1(x) ≤ 1 , and the ontinuation region for the optimal stoppingproblem (2.16) is an open set of the form:

C = {(π, x) ∈ [0, 1] × E | π ∈ 〈g0(x), g1(x)〉} (2.22)and the stopping region is the losure of the set:
D = {(π, x) ∈ [0, 1] × E | π ∈ [0, g0(x)〉 ∪ 〈g1(x), 1]}. (2.23)(ii) Now for given (π, x) ∈ C let us take x′ ∈ E suh that x′ < x if x < c or x < x′ if

x > c. Then using the fats that (πt, Xt)t≥0 is a time-homogeneous Markov proessand τ∗ = τ∗(π, x) does not depend on x′ , from (2.17)-(2.18) we obtain:
V (π, x′) − ga,b(π) ≤ Eπ,x′

[
τ∗ −

1

2
(a + b)ℓc

τ∗
(π)

] (2.24)
≤ Eπ,x

[
τ∗ −

1

2
(a + b)ℓc

τ∗
(π)

]
= V (π, x) − ga,b(π)and hene, by means of (2.20), we see that (π, x′) ∈ C . Therefore, we may onludein (2.22)-(2.23) that the boundary x 7→ g0(x) is inreasing (dereasing) and theboundary x 7→ g1(x) is dereasing (inreasing) on E when the funtion r(x) isinreasing (dereasing), respetively.(iii) Next, let us observe that the value funtion V (π, x) from (2.16) and the bound-aries (g0(x), g1(x)) from (2.22)-(2.23) also depend on r(x) and denote them here by

V∗(x, π) and V ∗(π, x) and (A∗, B∗) and (A∗, B∗) when r(x) = r∗ and r(x) = r∗ forall x ∈ E , respetively. Using the fat that x 7→ V (π, x) is an inreasing (dereas-ing) funtion when r(x) is inreasing (dereasing) on E , and V (π, x) = ga,b(π) forall π ∈ [0, g0(x)] ∪ [g1(x), 1], we onlude that 0 < A∗ ≤ g0(x) ≤ A∗ < c < B∗ ≤
g1(x) ≤ B∗ < 1 for all x ∈ E . Here we note that if r∗ = r∗ then A∗ = g0(x) = A∗and B∗ = g1(x) = B∗ for all x ∈ E , where 0 < A∗ < A∗ < c < B∗ < B∗ < 1 areuniquely determined from the system (4.85) in [19; Chapter IV℄.2.6. Summarizing the fats proved in Subsetion 2.5 above we may onlude thatthe following optimal deision rule is optimal in the extended problem (2.16):

τ∗ = inf{t ≥ 0 | πt /∈ 〈g0(Xt), g1(Xt)〉} (2.25)
d∗ =

{
1, if πτ∗ = g1(Xτ∗)
0, if πτ∗ = g0(Xτ∗)

(2.26)(whenever Eπ,x[τ∗] < ∞) where the two boundaries (g0(x), g1(x)), x ∈ E , satisfythe following properties:
g0(x) : E → [0, 1] is ontinuous and inreasing (dereasing) (2.27)
g1(x) : E → [0, 1] is ontinuous and dereasing (inreasing) (2.28)
A∗ ≤ g0(x) ≤ A∗ < c < B∗ ≤ g1(x) ≤ B∗ for all x ∈ E (2.29)6



whenever r(x) is an inreasing (dereasing) funtion on E , respetively. Here
(A∗, B∗) and (A∗, B∗) satisfying 0 < A∗ < A∗ < c < B∗ < B∗ < 1 are the op-timal stopping points for the orresponding in�nite horizon problem with r(x) = r∗and r(x) = r∗ for all x ∈ E , respetively, uniquely determined from the system oftransendental equations (4.85) in [19; Chapter IV℄.2.7. Let us further assume that the state spae of the proess X = (Xt)t≥0 is
E = 〈−ζ,∞〉 for some ζ ∈ R �xed, and under onditions of Subsetions 2.1 and 2.3the relationship:

µi(x) =
ηiσ

2(x)

x + ζ
(2.30)holds for all x ∈ E and some onstants ηi ∈ R, i = 0, 1 , suh that η0 6= η1 and

η0 + η1 = 1 . Let us de�ne the proess Y = (Yt)t≥0 by:
Yt = log

πt

1 − πt

−
1

η
log

x + ζ

Xt + ζ
(2.31)with η = 1/(η1 − η0). From the struture of (2.31) it is easily seen that there isa one-to-one orrespondene between the proesses (πt, Xt)t≥0 and (πt, Yt)t≥0 , andthus, the latter is also a (time-homogeneous strong) Markov proess with respet toits natural �ltration, whih oinides with (FX

t )t≥0 . Deriving the expression for Xtfrom (2.31) and substituting it into (2.10), we obtain:
dπt =

σ
(
(x + ζ)e−ηYt [πt/(1 − πt)]

η − ζ
)

η(x + ζ)e−ηYt [πt/(1 − πt)]η
πt(1 − πt) dW t (π0 = π). (2.32)Di�erentiating by It�'s formula the expression (2.31) and using the representations(2.10) and (2.12) as well as the assumption (2.30) with η0 6= η1 and η0 + η1 = 1 , weget dYt = 0 and thus:

Yt = log
π

1 − π
(2.33)for all t ≥ 0 .2.8. By means of standard arguments it is shown that under the assumptions ofSubsetion 2.7 the optimal stopping problems (2.6) and (2.16) are equivalent to:

Ṽ (π, y) = inf
τ

Eπ[τ + ga,b(πτ )] (2.34)where the in�mum is taken over all stopping times τ of the proess (πt, Yt)t≥0 suhthat Eπ[τ ] < ∞ for all (π, y) ∈ [0, 1]×R and y = log[π/(1− π)] for eah π ∈ 〈0, 1〉and x ∈ E = 〈−ζ,∞〉 �xed. It also follows that there exists a ouple of funtions
(h0(y), h1(y)), y ∈ R, suh that the ontinuation region C from (2.22) is equivalentto:

C̃ = {(π, y) ∈ [0, 1] × R | π ∈ 〈h0(y), h1(y)〉} (2.35)and the set D from (2.23) is equivalent to:
D̃ = {(π, y) ∈ [0, 1] × R | π ∈ [0, h0(y)〉 ∪ 〈h1(y), 1]} (2.36)7



for eah y ∈ R and x ∈ E �xed.2.9. If the assumption (2.30) with η0 6= η1 and η0 + η1 = 1 holds, then by meansof standard arguments it is shown that the in�nitesimal operator L̃ of the proess
(πt, Yt)t≥0 from (2.32)-(2.33) ats on a funtion F ∈ C2,0(〈0, 1〉 × R) like:

(L̃F )(π, y) =
r2(x; π, y)

2
π2(1 − π)2∂2F

∂π2
(π, y) (2.37)with

r(x; π, y) =
σ ((x + ζ)e−ηy[π/(1 − π)]η − ζ)

η(x + ζ)e−ηy[π/(1 − π)]η
(2.38)for all (π, y) ∈ 〈0, 1〉 ∈ R and eah x ∈ E = 〈−ζ,∞〉 �xed.Now let us use the results of general theory of optimal stopping problems for on-tinuous time Markov proesses (see, e.g., [6℄, [19; Chapter III, Setion 8℄ and [15℄)to formulate the orresponding free-boundary problem for the unknown value fun-tion (π, y) 7→ Ṽ (π, y) from (2.16) (with ga,b(π) = aπ ∧ b(1 − π)) and the ouple ofboundaries (h0(y), h1(y)), y ∈ R, from (2.35)-(2.36):

(L̃Ṽ )(π, y) = −1 for (π, y) ∈ C̃ (2.39)
Ṽ (π, y)

∣∣
π=h0(y)+

= ah0(y), Ṽ (π, y)
∣∣
π=h1(y)−

= b(1 − h1(y)) (2.40)
∂Ṽ

∂π
(π, y)

∣∣
π=h0(y)+

= a,
∂Ṽ

∂π
(π, y)

∣∣
π=h1(y)−

= −b (2.41)
Ṽ (π, y) = ga,b(π) for (π, y) ∈ D̃ (2.42)
Ṽ (π, y) ≤ ga,b(π) for (π, y) ∈ C̃ (2.43)where C̃ and D̃ are given by (2.35) and (2.36), and the instantaneous stoppingonditions (2.40) and the smooth-�t onditions (2.41) are assumed to be satis�ed forall y ∈ R and eah x ∈ E �xed.Note that by Dynkin's superharmoni haraterization of the value funtion (see[3℄ and [19℄) it follows that Ṽ (π, y) from (2.34) is the largest funtion satisfying(2.39)-(2.40) and (2.42)-(2.43) for eah y ∈ R and x ∈ E �xed.2.10. Integrating the equation (2.39) with some h1(y) ∈ 〈c, 1〉 �xed for any given

y ∈ R and using the boundary onditions (2.40)-(2.41), we obtain:
Ṽ (π, y; h1(y)) = b(1 − h1(y)) −

∫ h1(y)

π

∫ h1(y)

u

2

r2(x; v, y)v2(1 − v)2
dvdu (2.44)with r(x; π, y) given by (2.38) for all π ∈ 〈0, h1(y)] and eah x ∈ E = 〈−ζ,∞〉�xed.From (2.44) it is easily seen that for any y ∈ R given and �xed the funtion π 7→

Ṽ (π, y; h1(y)) is onave on 〈0, 1〉 , and hene Ṽ (h′
1(y), y; h′′

1(y)) < Ṽ (h′
1(y), y; h′

1(y))for 0 < h′
1(y) < h′′

1(y) < 1 . This means that for di�erent h′
1(y) and h′′

1(y) the urves8



π 7→ Ṽ (π, y; h′
1(y)) and π 7→ Ṽ (π, y; h′′

1(y)) have no points of intersetion on thewhole interval π ∈ 〈0, h′
1(y)]. From (2.44) it also follows that Ṽ (π, y; h1(y)) →

−∞ as π ↓ 0 for all h1(y) ∈ [c, 1〉 and Ṽ (π, y; 1−) < 0 for all π ∈ 〈0, 1〉 and
Ṽ (1−, y; 1−) = 0 . In this ase, for some h̃1(y) ∈ 〈c, 1〉 the urve π 7→ Ṽ (π, y; h̃1(y))intersets the line π 7→ aπ at some point h0(y) ∈ 〈0, c〉 . Sine for di�erent h′

1(y) ∈

〈c, 1〉 the urves π 7→ Ṽ (π, y; h′
1(y)) do not interset eah other on the intervals

〈0, h′
1(y)〉 , we may onlude that there exists a unique point h1(y) obtained bymoving the point h′

1(y) from h̃1(y) and suh that in some point h0(y) ∈ 〈0, c〉the boundary onditions (2.40)-(2.41) hold. It thus follows that the boundaries
(h0(y), h1(y)) are uniquely determined from the system:

b + a =

∫ h1(y)

h0(y)

2

r2(x; u, y)u2(1 − u)2
du (2.45)

b(1 − h1(y)) = ah0(y) −

∫ h1(y)

h0(y)

∫ h1(y)

u

2

r2(x; v, y)v2(1 − v)2
dvdu (2.46)for eah y ∈ R and x ∈ E = 〈−ζ,∞〉 �xed.2.11. Making use of the fats proved above we are now ready to formulate the mainresult of the paper.Theorem 2.1. Suppose that onditions (2.3) and (2.14)-(2.15) hold for all x ∈

E = 〈−ζ,∞〉 and some ζ ∈ R �xed, and assumption (2.30) is satis�ed with η0 6= η1and η0 + η1 = 1. Then in the Bayesian problem (2.6)+(2.16)+(2.34) of testing twosimple hypotheses (2.4) for the proess (2.2) the value funtion has the expression:
V (π) = V (π, x) = Ṽ (π, y) =

{
Ṽ (π, y; h1(y)), if π ∈ 〈h0(y), h1(y)〉

ga,b(π), if π ∈ [0, h0(y)] ∪ [h1(y), 1]
(2.47)and the optimal π -Bayes deision rule is expliitly given by:

τ∗ = inf{t ≥ 0 | πt /∈ 〈h0(y), h1(y)〉} (2.48)
d∗ =

{
1, if πτ∗ = h1(y)

0, if πτ∗ = h0(y)
(2.49)where the two boundaries (h0(y), h1(y)) are haraterized as a unique solution of theoupled system of equations (2.45)-(2.46) for y = log[π/(1−π)] and eah π ∈ 〈0, 1〉and x ∈ E �xed.Proof. It remains to show that the funtion (2.47) oinides with the value funtion(2.34) and that the stopping time τ∗ from (2.48) with the boundaries (h0(y), h1(y)),

y ∈ R, spei�ed above is optimal. Let us denote by Ṽ (π, y) the right-hand side ofthe expression (2.47). It follows by onstrution from the previous setion that thefuntion Ṽ (π, y) solves the system (2.39)-(2.42). Thus, applying It�'s formula to9



Ṽ (πt, y), we obtain:
Ṽ (πt, y) = Ṽ (π, y) +

∫ t

0

(L̃Ṽ )(πs, y)I(πs 6= h0(y), πs 6= h1(y)) ds + M̃t (2.50)where the proess (M̃t)t≥0 de�ned by:
M̃t =

∫ t

0

∂Ṽ

∂π
(πs, y)I(πs 6= h0(y), πs 6= h1(y)) r(Xt)πs(1 − πs) dW s (2.51)is a ontinuous loal martingale under Pπ with respet to (FX

t )t≥0 .By using the arguments above it an be veri�ed that (L̃Ṽ )(π, y) ≥ −1 for all
(π, y) ∈ 〈0, 1〉 × R suh that π 6= h0(y) and π 6= h1(y). Moreover, by means ofstandard arguments and using the onstrution of Ṽ (π, y) above it an be hekedthat the property (2.43) also holds that together with (2.39)-(2.40)+(2.42) yields
Ṽ (π, y) ≤ ga,b(π) for all (π, y) ∈ [0, 1] × R. Observe that the time spent by theproess π at the boundaries (h0(y), h1(y)), y ∈ R, is of Lebesgue measure zero,that allows to extend (L̃Ṽ )(π, y) arbitrarily to π = h0(y) and to π = h1(y) andthus to ignore the indiators in (2.50)-(2.51). Hene, from the expressions (2.50)and the struture of the stopping time in (2.48) it follows that the inequalities:

τ + ga,b(πτ ) ≥ τ + Ṽ (πτ , y) ≥ Ṽ (π, y) + M̃τ (2.52)hold for any stopping times τ of the proess (πt)t≥0 started at π ∈ [0, 1] and foreah y ∈ R.Let (τn)n∈N be an arbitrary loalizing sequenes of stopping times for the proesses
(M̃t)t≥0 . Taking in (2.52) the expetation with respet to the measure Pπ , bymeans of the optional sampling theorem (see, e.g., [9; Chapter I, Theorem 1.39℄ or[17; Chapter II, Theorem 3.1℄), we get:
Eπ [τ ∧ τn + ga,b(πτ∧τn

)] ≥ Eπ

[
τ ∧ τn + Ṽ (πτ∧τn

, y)
]
≥ Ṽ (π, y) + Eπ

[
M̃τ∧τn

]
= Ṽ (π, y)(2.53)for all (π, y) ∈ [0, 1]×R. Hene, letting n go to in�nity and using Fatou's lemma,for any stopping times τ suh that Eπ[τ ] < ∞ we obtain that the inequalities:

Eπ [τ + ga,b(πτ )] ≥ Eπ

[
τ + Ṽ (πτ , y)

]
≥ Ṽ (π, y) (2.54)are satis�ed for all (π, y) ∈ [0, 1] × R.By virtue of the fat that the funtion Ṽ (π, y) together with the boundaries h0(y)and h1(y) satisfy the system (2.39)-(2.43), by the struture of the stopping time τ∗in (2.48) and the expressions (2.50) it follows that the equalities:

τ∗ ∧ τn + ga,b(πτ∗∧τn
) = τ∗ ∧ τn + Ṽ (πτ∗∧τn

, y) = Ṽ (π, y) + M̃τ∗∧τn
(2.55)hold for all (π, y) ∈ [0, 1] × R and any loalizing sequene (τn)n∈N of (M̃t)t≥0 .Note that, by means of standard arguments and using the struture of the proess10



(2.32) and of the stopping time (2.48), we have Eπ[τ∗] < ∞ for all π ∈ [0, 1]. Hene,letting n go to in�nity and using onditions (2.39)-(2.40), we an apply the Lebesguebounded onvergene theorem for (2.55) to obtain the equality:
Eπ [τ∗ ∧ τn + ga,b(πτ∗∧τn
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