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Abstract. The stable approximate solution of ill-posed linear operator equations
in Hilbert spaces requires regularization. Tight bounds for the noise-free part of
the regularization error are constitutive for bounding the overall error. Norm
bounds of the noise-free part which decrease to zero along with the regularization
parameter are called pro�le functions and are subject of our analysis. The inter-
play between properties of the regularization and certain smoothness properties
of solution sets, which we shall describe in terms of source-wise representations is
crucial for the decay of associated pro�le functions. On the one hand, we show
that a given decay rate is possible only if the underlying true solution has appro-
priate smoothness. On the other hand, if smoothness �ts the regularization, then
decay rates are easily obtained. If smoothness does not �t, then we will measure
this in terms of some distance function. Tight bounds for these allow us to obtain
pro�le functions. Finally we study the most realistic case when smoothness is
measured with respect to some operator which is related to the one governing the
original equation only through a link condition. In many parts the analysis is done
on geometric basis, extending classical concepts of linear regularization theory in
Hilbert spaces. We emphasize intrinsic features of linear ill-posed problems which
are frequently hidden in the classical analysis of such problems.

1. Introduction

We study noisy linear operator equations

(1.1) yδ = Ax† + δξ (‖ξ‖ ≤ 1) ,

where A : X → Y is some bounded linear operator mapping between in�nite-
dimensional separable Hilbert spaces X and Y and δ > 0 denotes the noise level.
The spaces X and Y are equipped with norms ‖ · ‖. The same norm symbol is also
used for associated operator norms.

We assume that A is injective and that the range R(A) is not closed in Y . Then
the linear operator equation Ax = y has a unique solution x = x† ∈ X, for every
y ∈ R(A), but the equation is ill-posed since A−1 is an unbounded operator. Thus
regularization is required in order to �nd stable approximate solutions of the operator
equation based on noisy data yδ ∈ Y . We consider general linear regularization
schemes based on a family of piecewise continuous functions gα(t) (0 < t ≤ a :=
‖A∗A‖) for regularization parameters 0 < α ≤ α. The family gα determines the
regularization method. Once a regularization gα is chosen, the approximate solution
to (1.1) is given by

xδα = gα(A
∗A)A∗yδ.

For such approximate solution xδα we obtain an obvious error bound, using the
intermediate quantity xα = gα(A

∗A)A∗y = gα(A
∗A)A∗Ax†, as

(1.2) e(x†, α, δ) := ‖xδα−x†‖ ≤ ‖x†−xα‖+ δ‖gα(A∗A)A∗‖ for all 0 < α ≤ α.

The second summand on the right is independent of the underlying true solution.
Therefore the accuracy of the regularized solution is basically determined by tight
bounds on the norm of the residual ‖x† − xα‖ = ‖rα(A∗A)x†‖, where we denote
by rα(t) := 1 − t gα(t) (0 < t ≤ a) the residual or bias functions related to the
regularization method gα. Bounds which are increasing functions in α > 0 will give
rise to what we call pro�le functions.
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The outline is as follows. In Section 2 we recall the basic underlying quantities,
namely general linear regularization methods for operator equations in Hilbert space
and the concept of solution smoothness in terms of general source conditions. Then,
in Section 3 we associate pro�le functions to any given regularization and to any set
of smooth solutions and discuss their existence. The rate at which pro�le functions
decay to zero turns out to be crucial and is the objective of our analysis. It will
become clear that this rate depends on the underlying regularization as well as on
the solution smoothness. In Section 4 we indicate situations when maximal rates of
decay occur, regardless of the underlying solution smoothness, namely due to the
limited quali�cation of the regularization method. We close this part by showing
that decay rates imply solution smoothness.

The constructive part of obtaining explicit descriptions of pro�le functions, as de-
pendent on the quali�cation of the regularization and smoothness properties of the
solution with respect to the operator A is carried out in Sections 5 and 6 for several
degrees of generality. We start in Section 5 with the easiest case, when solution
smoothness is measured in terms of general source conditions given through func-
tions of A∗A. This is then extended to the situation where a source condition is
satis�ed only approximately, measured in terms of a speci�c concept of distance
functions. Tight upper bounds for such distance functions imply pro�le functions.

We close the analysis with Section 6 discussing the situation when solution smooth-
ness is measured with respect to a self-adjoint operator G : X → X with non-closed
range which is di�erent from A∗A. In this case an assumption, linking A∗A and G,
will allow us to draw conclusions on the decay rate of the associated pro�le functions.

In many parts the analysis is done on geometric basis, extending classical concepts
as used in the theory of linear ill-posed equations in Hilbert space. By doing so
we not only extend previous results to a more general situation, but we aim at
emphasizing intrinsic features of the problems under consideration. Such features
are often hidden in the classical analysis of linear ill-posed problems.

2. General linear regularization methods and general smoothness

As mentioned in the introduction, pro�le functions will be assigned to regularization
methods and solution sets of equation (1.1). We start with the notion of a general
linear regularization scheme. Then we turn to the description of solution smoothness
in terms of general source conditions.

The basic underlying objects are index functions, and we recall the following de�ni-
tion, as known in the literature (e.g. [8, 16, 3]).

De�nition 2.1. A real function ϕ(t) (0 < t ≤ t̄) is called index function if it is
continuous, strictly increasing and satis�es the limit condition limt→0+ ϕ(t) = 0.

2.1. General regularization methods.

De�nition 2.2. A family of functions gα(t) (0 < t ≤ a), de�ned for parameters
0 < α ≤ α, is called regularization if they are piece-wise continuous in α and the
following three properties are satis�ed:
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(i) For each 0 < t ≤ a there is convergence |rα(t)| → 0 as α→ 0.
(ii) There is a constant γ1 such that |rα(t)| ≤ γ1 for all 0 < α ≤ α.
(iii) There is a constant γ∗ such that

√
t |gα(t)| ≤ γ∗/

√
α for all 0 < α ≤ α.

Example 2.3. The most famous method of regularization is the Tikhonov method

with gα(t) = 1/ (t+ α) , which satis�es the properties of De�nition (2.2) for the
constants γ1 = 1 and γ∗ = 1/2 and arbitrarily large α > 0.

Example 2.4. Another common regularization method is spectral cut-o�, which is
given as

gα(t) =

{
0 (0 < t < α)

1/t (α ≤ t ≤ a)
with respective residual rα(t) =

{
1 (0 < t < α)
0 (α ≤ t ≤ a)

.

Obviously this obeys the properties from De�nition 2.2 with γ1 = γ∗ = 1. Also for
that method, the upper bound α for the regularization parameter can be selected
arbitrarily.

Example 2.5. Iterative regularization methods, as for instance Landweber iteration,
where for some 0 < µ < 1/‖A∗A‖ we let

xδn :=
n−1∑
j=0

(I − µA∗A)jA∗yδ, n = 1, 2, . . . ,

are covered by this approach when assigning n := b1/αc (0 < α < 1). Thus with this
identi�cation we obtain gα(t) := 1/t (1− (1− µt)n) and the corresponding residual
rα(t) := (1− µt)b1/αc (0 < α < 1), hence obviously γ1 = 1. It remains to bound γ∗.
Bernoulli's inequality yields 1− nµt ≤ (1− µt)n, which can be used to bound

√
tgα(t) = 1/

√
t (1− (1− µt)n) ≤ (1/t (1− (1− µt)n))1/2 ≤ √

µn .

By the de�nition of n this yields γ∗ =
√

2µ.

We mention the following technical result from [23, Lemma 2.1], see also [6, Proof
of Proposition 4.13].

Lemma 2.6. Let gα(t) (0 < t ≤ a, 0 < α ≤ ᾱ) be a regularization with constant γ∗.
If 0 < t ≤ min {α, a}, then

∣∣r(4γ2
∗α)(t)

∣∣ ≥ 1/2.

The above requirements (i) � (iii) are made to ensure convergence of regularization
methods for any given element x† ∈ X. However, these are not enough to describe
rates of convergence.

As introduced in the papers [15] and [16] � [18], we measure the quali�cation of any
regularization method in terms of index functions ψ.

De�nition 2.7. Let ψ(t) (0 < t ≤ a) be an index function. A regularization gα for
the operator equation (1.1) is said to have quali�cation ψ with constant γ ∈ (0,∞)
if

(2.1) sup
0<t≤a

|rα(t)|ψ(t) ≤ γ ψ(α) for all 0 < α ≤ a .
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This de�nition generalizes the concept of quali�cation of a regularization method
as a �nite number or in�nity, as for example used in [6]. We remark that a �rst
systematic discussion of the interrelations between solution smoothness and that
traditional concept of quali�cation was given in [28, 29].

For Tikhonov regularization (see Example 2.3) we can give su�cient conditions
for ψ being a quali�cation in di�erent ways, as this is formulated in the following
proposition. For more details and proofs we refer to [17, 18] and [3].

Proposition 2.8. The index function ψ(t) (0 < t ≤ a) is a quali�cation of Tikhonov
regularization with constant γ = 1 if either (a) ψ(t)/t is non-increasing on (0, a] or
(b) ψ(t) is concave on (0, a].

If there exists an argument t̂ ∈ (0, a) such that (c) ψ(t)/t is non-increasing on
(0, t̂ ] or (d) ψ(t) is concave on (0, t̂ ], then ψ is a quali�cation with constant γ =
ψ(a)/ψ(t̂ ).

2.2. Measuring solution smoothness. In a wide sense the smoothness of ex-
pected solutions x† to (1.1) can be written as a property of the form x† ∈ M with
M ⊆ R(G) for some `smoothing' linear operator G : X → X, where G is assumed to
be positive self-adjoint with non-closed range R(G) (see also [3], [20]). Speci�cally,
here we shall assume that the solution x† belongs to a set

(2.2) Gτ (R) := {x ∈ X : x = τ(G)w, ‖w‖ ≤ R}

with some index function τ(t) (0 < t ≤ ‖G‖).
As the following lemma asserts such set is closed in X and even compact whenever
G is compact.

Lemma 2.9. For a positive self-adjoint bounded linear operator G : X → X and
an index function τ(t) (0 < t ≤ ‖G‖) the set Gτ (R) from (2.2) is closed in X.
Moreover, Gτ (R) is a compact subset of X whenever G is a compact operator.

Proof. First we show that Gτ (R) is a closed subset in X. We show that the image
{x ∈ X : x = Gw, w ∈ X, ‖w‖ ≤ R} of the centered ball with radius R in
X with respect to any bounded positive self-adjoint linear operator G : X → X
is a closed subset of X. Since τ(G) has the same properties as a consequence
of the boundedness of any index function τ , this shows the closedness of Gτ (R).
Consider a convergent sequence of images Gxn → y0 ∈ X with ‖xn‖ ≤ R. Since
any closed ball in X is weakly precompact and weakly closed, there is a weakly
convergent subsequence xnk ⇀ x0 with ‖x0‖ ≤ R. Since every continuous operator G
is also weakly continuous and hence weakly closed, this implies the weak convergence
Gxnk ⇀ Gx0 thus y0 = Gx0 which shows the required closedness. Moreover, for
compact G it is evident that τ(G) : X → X is a compact operator and then
Gτ (R) is a precompact subset of X. Since Gτ (R) is closed in X, this implies the
compactness and proves the lemma. �

In our analysis below for index functions τ we shall assign pairs (G, τ) Hilbert spaces
XG
τ having Gτ (1) as their unit balls. In particular, we use the shortcut H := A∗A
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and consider Hilbert spaces XH
ϕ for index functions ϕ with the set Hϕ(1) as unit

ball, where we de�ne

(2.3) Hϕ(R) := {x ∈ X : x = ϕ(A∗A)w, ‖w‖ ≤ R} .
Corresponding norms will be denoted by ‖ · ‖XG

τ
and ‖ · ‖XH

ϕ
, respectively. This

construction is basically due to [7].

3. Profile functions

In this section we shall introduce the notion of a pro�le function, discuss the problem
of existence and show that their decay is related to smoothness of the underlying
solution x† of equation (1.1).

3.1. De�nition and existence. Having chosen a linear regularization method gα,
and having �xed a setM ⊂ X of possible solutions to (1.1) we assign pro�le functions
as follows.

De�nition 3.1. An index function f : (0, α] → (0,∞) is called pro�le function for
(M, gα) whenever

(3.1) sup
x∈M

‖rα(A∗A)x‖ ≤ f(α) for all 0 < α ≤ α .

In the de�nition we suppress the dependence of pro�le functions f on the operator
A, governing the equation (1.1). IfM := {x} ∈ X is a singleton, then we shall write
(x, gα), instead of ({x} , gα). Note that the bound (3.1) is required only for α ≤ α,
which is useful for asymptotic considerations as δ → 0 in (1.1).

The character of possible pro�le functions f for (M, gα) is closely connected with
three ingredients and their interplay. In this context, properties of the regularization
gα as �rst component and of the set M ⊂ X expressing the solution smoothness as
second components meet as third component the smoothing behavior of the operator
A in equation (1.1) which leads to the non-closedness of the range R(A).

Remark 3.2. Once a pro�le function f(α) as above is found, together with property
(iii) of De�nition 2.2 this allows us to continue the estimate (1.2) to derive

(3.2) e(x†, α, δ) ≤ f(α) +
γ∗ δ√
α

for all 0 < α ≤ α ,

uniformly for x† ∈M. The bound on the right in (3.2) can be minimized with respect
to the choice of α depending on δ. To this end we consider the index function

Θ(α) :=
√
α f(α) (0 < α ≤ α).

Let α∗ = α∗(δ) = Θ−1(δ) (0 < δ ≤ Θ(ᾱ)). Then we obtain uniformly for x† ∈ M
that

(3.3) e(x†, α∗, δ) ≤ (1 + γ∗)f(α∗),

Thus the function f(Θ−1(δ)) yields a convergence rate of the regularization gα for
x† as δ → 0. This rate is achieved by an a priori parameter choice α∗ = α∗(δ).
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First we shall establish that pro�le functions exist for any regularization gα and
compact subsets M ⊂ X.

Proposition 3.3. Let gα be any regularization and M ⊂ X be compact. Then there
is a pro�le function for (M, gα).

Proof. From the properties (i) and (ii) of De�nition 2.2 we deduce for α→ 0 point-
wise convergence rα(A

∗A)x → 0 for all x ∈ X (see, e.g., [6, Theorem 4.1]). This
convergence is uniform on compact sets M ⊂ X. Hence we have

h(α) := sup
x∈M

‖rα(A∗A)x‖ → 0 as α→ 0.

Its increasing majorant h̄(α) := sup
0<s≤α

h(s), which is well-de�ned for su�ciently small

positive α, satis�es lim
α→0

h̄(α) = 0. If h̄(α) is continuous and non-vanishing, then it is

a pro�le function. Otherwise, suppose h̄(s) = 0 for some s > 0. We �x some t > 0
with h̄(t) > 0 and let

h̃(x) :=


h̄(x), x > t,

h̄(t), s < x ≤ t,

x/s h̄(t), 0 < x ≤ s,

which, when continuous, de�nes an index function. �

Thus if G is compact and τ is an index function, then for any regularization gα there
are pro�le functions for (Gτ (R), gα), where the sets Gτ (R) were de�ned in (2.2).

On the other hand, there cannot exist pro�le functions for (M, gα), where M :=
{x ∈ X : ‖x‖ ≤ 1} is the unit ball in X. Their existence would imply that ‖rα(A∗A)‖ →
0 as α → 0 and hence that the range R(A) were closed, which would be contrary
to the ill-posedness of the problem under consideration (see, e.g., [25] and [6, Chap-
ter 3.1]). More generally, extending this argument, pro�le functions cannot exist for
(M, gα), whenever M possesses an interior point.

However, there are pro�le functions for non-compact sets. In Proposition 5.1 be-
low pro�le functions for (Hϕ(R), gα) will be obtained, where the operator A may
be compact (ill-posedness of type II in the sense of Nashed, [22]) or non-compact
(ill-posedness of type I). In the latter case this yields non-compact setsM = Hϕ(R).
Another speci�c example of pro�le functions for the non-compact set M = {x ∈
L∞(0, 1) : ‖x‖L∞(0,1) ≤ R} ⊂ X = L2(0, 1) for the Tikhonov regularization and mul-
tiplication operators A mapping in L2(0, 1) can be taken from [11]. This is not by
chance and some explanation will be given in Remark 5.2, below. Roughly speak-
ing, if smoothness properties of M are appropriate for the underlying operator A
from equation (1.1), then pro�le functions exist for (M, gα), regardless of their com-
pactness. In this respect, compactness of M may be viewed as universal (problem
independent) smoothness.

3.2. Decay rates yield solution smoothness. To exhibit the fact that a decay
rate of a pro�le function implies solution smoothness in the sense of Section 2.2
we start with the following result, which extends analysis in [23]. We recall that
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the operator H = A∗A admits a spectral resolution with a family (Eλ)0<λ≤a of

projections, which is assumed to be such that λ 7→ d‖Eλx†‖2 is left continuous, thus
represents a (spectral) measure. From Lemma 2.6 we derive the following estimate.

Lemma 3.4. Let gα be a regularization with constant γ∗ as in property (iii) of
De�nition 2.2. The following estimate holds true.

(3.4) ‖r(4γ2
∗α)x

†‖ ≥ 1

2

(∫ α

0

d‖Eλx†‖2

)1/2

for all 0 < α ≤ min
{
a, ᾱ/4γ2

∗
}
.

Before turning to the main result of this section we state the following lemma.

Lemma 3.5. Suppose ϕ(t) (0 < t ≤ t̄) is an index function. There is a sequence
fn(t) (0 < t ≤ t̄) of step functions of the form

∑m
j=1 cjχ(0,αj)(t) converging to 1/ϕ(t)

point-wise and fn(t) ≤ 1/ϕ(t).

Proof. Given any such ϕ and n ∈ N large enough n ≥ n0, we let f(t) = 1/ϕ(t)
and truncate at tn = f−1(n) < t̄ to obtain gn(t) (0 ≤ t ≤ t), which is a non-
increasing bounded continuous function on the closed interval [0, t̄]. Thus there is
a step function fn(t) of the required form, satisfying |fn(t)− gn(t)| ≤ 1/n. The
sequence fn(t) (0 < t ≤ t̄), n = n0, n0 + 1, . . . converges point-wise to f . �

Given a regularization gα with constant γ∗ and any index function h(t) (0 < t ≤ a),
we can assign a non-negative measure Φh on (0, a] by letting

Φh[0, α) := h(4γ2
∗α) (0 < 4γ2

∗α ≤ a).

With this notation we can formulate the following result.

Theorem 3.6. Let gα(t) (0 < t ≤ a) for the parameters 0 < α ≤ ᾱ be a regu-
larization with constant γ∗. We assume that the index function f(α) (0 < α ≤ ᾱ)
is a pro�le function for (x†, gα) with associated measure Φ = Φf2, restricted to the
interval J∗ := (0,min {a, ᾱ/4γ2

∗ , a}]. Then the following assertions are true:

(a) If ψ is any index function such that 1/ψ ∈ L2(J∗, dΦ), then necessarily x† ∈
XH
ψ .

(b) We have x† ∈ XH
ψ for every index function ψ for which t 7→ 1/(ψ2((f 2)−1(t))) ∈

L1
loc(J∗, dt), i.e., it is locally integrable.

Proof. Using Lemma 3.4 and the fact that f(α) (0 < α ≤ ᾱ) is assumed to be a
pro�le function for (x†, gα) we conclude that the estimate

(3.5)
1

4

∫ α

0

d‖Eλx†‖2 ≤ ‖r(4γ∗α)x
†‖2 ≤ f 2(4γ2

∗α) =

∫ α

0

dΦ(λ) (α ∈ J∗)

is valid.

Now let ψ be any index function such that 1/ψ(t) ∈ L2(J∗, dΦ). By Lemma 3.5 we
can �nd a sequence fn(t) of step functions on J∗, converging to 1/ψ2(t) point-wise.
Using (3.5) and the particular form of fn we deduce that

1

4

∫
J∗

fn(λ)d‖Eλx†‖2 ≤
∫
J∗

fn(λ)dΦ(λ) ≤
∫
J∗

1

ψ2(λ)
dΦ(λ).
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By Fatou's Lemma we conclude that also 1/ψ(t) ∈ L2(J∗, d‖Eλx†‖2) and

‖1/ψ‖L2(J∗,d‖Eλx†‖2) ≤ 2‖1/ψ‖L2(J∗,dΦ).

Consequently,

‖x†‖2
XH
ψ

=

∫ a

0

1

ψ2(λ)
d‖Eλx†‖2

=

∫
J∗

1

ψ2(λ)
d‖Eλx†‖2 +

∫
(0,a]\J∗

1

ψ2(λ)
d‖Eλx†‖2

≤ 4‖1/ψ‖2
L2(J∗,dΦ) +

1

minλ∈(0,a]\J∗ ψ
2(λ)

‖x†‖2 <∞,(3.6)

because the second summand on the right is �nite, which proves assertion (a).

We may use a change of measure to establish assertion (b). The proof is complete.
�

Remark 3.7. If the interval J∗ coincides with (0, a], then the second summand on
the right in (3.6) does not appear and we get a bound ‖x†‖XH

ψ
≤ 2‖1/ψ‖L2((0,a],dΦ).

The following elementary observation is useful.

Lemma 3.8. Suppose ψ, ψ1 and f, f1 are pairs of index functions which are re-
lated by some common strictly increasing function g as f(t) = f1(g(t)) and ψ(t) =
ψ1(g(t)) on the respective domains of de�nition. Then it holds true that f(ψ−1(t)) =
f1(ψ

−1
1 (t)).

Theorem 3.6 covers the cases which were known before.

Example 3.9 ([23]). If the pro�le function f for (x†, gα) is a monomial f(α) = αν

for some ν > 0, then we we can draw the following conclusion. For every monomial
ψ(t) = tµ we obtain 1/ψ2((f 2)−1(t)) = t−µ/ν , which is integrable on every �nite
interval for µ < ν. Hence we deduce that necessarily x† ∈ XH

ψ for all 0 < µ < ν.

Example 3.10 ([14, Theorem 8]). If the pro�le function f for (x†, gα) is of logarithmic
type, say f(α) = log−ν(1/α) (0 < α < 1) for some ν > 0, then by using Lemma 3.8
we also deduce that necessarily x† ∈ XH

ψ for all functions ψ(t) = log−µ(1/t) (0 < t <
1) with µ < ν, because both are related to the respective functions from Example 3.9
through g(t) := log−1(1/t) (0 < t < 1).

For the discussion of results of converse nature as presented in this subsection we
also refer to the recent book [1].

4. Lower bounds for profile functions

In general pro�le functions f(α) can decrease to zero arbitrarily fast as α tends to
zero. This is for instance the case when gα is chosen as spectral cut-o� in Example 2.4
and x† is an eigenelement of A∗A, in which case ‖rα(A∗A)x†‖ ≡ 0 for α small enough.

However, for many regularization methods there is a maximal speed of convergence
‖rα(A∗A)x†‖ → 0 as α → 0, for any x† 6= 0, regardless of its smoothness. This
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phenomenon is related to saturation, as this was studied e.g. in [23, 24], and in
more generality in [15], from which the present approach is taken. The impact of
limited quali�cation on pro�le functions can be seen under an additional convexity
assumption.

Theorem 4.1. Let gα be any regularization with residual rα. Suppose that for all
0 < t ≤ a the functions

(4.1) α 7→ |rα(t)| (0 < α ≤ α)

are increasing, and for all 0 < α ≤ α the functions

(4.2) t 7→ |rα(t)|2 (0 < t ≤ a)

are convex. Let ψ̄ be given as

(4.3) ψ̄(α) := inf
0<t≤a

|rα(t)| (0 < α ≤ α).

Then for each 0 6= x ∈ X we have

(4.4) ψ̄(α) ≤ 1

‖x‖
‖rα(A∗A)x‖ for all 0 < α ≤ α.

Hence ψ̄ is a non-decreasing lower bound to any pro�le function for (x0, gα) uni-
formly for all elements x0 ∈ X of the unit sphere, i.e., with ‖x0‖ = 1.

Sketch of a proof. To prove that ψ̄ is a lower bound to any pro�le function for (x0, gα)
we use a Jensen-type inequality (see e.g. [15]), which yields that under (4.2) we have

ψ̄(α) ≤
∣∣rα(‖Ax‖2/‖x‖2)

∣∣ ≤ ‖rα(A∗A)x‖
‖x‖

for all 0 < α ≤ α.

Moreover, under (4.1) the function ψ̄ is non-decreasing. This completes the proof.
�

Remark 4.2. In many cases, the above function ψ̄(α) turns out to be a quali�cation
of the regularization gα. In such a case it is maximal quali�cation.

We shall exhibit the above result at some examples.

Example 4.3. For Tikhonov regularization as in Example 2.3 we easily verify that
the assumptions are satis�ed. We conclude that ψ̄(α) = α/(α + a) with ψ̄(α) ≥
α/(2a) (0 < α < a). In this case this corresponds to the maximal quali�cation
which is ψ(α) = α.

Example 4.4. The n-fold iterated Tikhonov regularization, which has rα(t) = (α/(α+
t))n as its residual function also satis�es the assumptions from Theorem 4.1, and
ψ̄(α) = (α/(α+ a))n ≥ (α/(2a))n. This method corresponds to the maximal known
quali�cation ψ(α) = αn.

As in [15] we close with the following example, which is interesting as it shows that
regularization, which has arbitrary classical quali�cation in the form ψ(t) = tq for
any 0 < q < ∞, still has a limited rate of decay for the pro�le functions, although
these can decay exponentially fast.

9



Example 4.5. Landweber iteration from Example 2.5 also satis�es all the assump-
tions. The function ψ̄, letting 0 < b := 1/(1 − µa) < ∞, turns out to be ψ̄(α) =
(1− µa)b1/αc ≥ exp(−b/α) (0 < α < 1).

Finally we stress that spectral cut-o� as in Example 2.4 does not ful�ll the above
assumptions. Moreover, formally we would obtain the lower bound ψ̄(α) ≡ 0, which
is trivial.

Remark 4.6. Lower bounds for pro�le functions are related to the saturation phe-
nomenon as we shall brie�y sketch. The following estimate is shown in the cause of
the proof of the theorem in [15].

(4.5) sup
‖ξ‖≤1

e(x†, gα, δ) ≥ max
{
‖rα(A∗A)x†‖, δ/

√
α
}

(0 < α ≤ ᾱ).

Thus, if ψ̄(α) is a lower bound as in (4.4), then for any x† with ‖x†‖ = 1 we derive
that

sup
‖ξ‖≤1

e(x†, gα, δ) ≥ max
{
ψ̄(α), δ/

√
α
}
≥ ψ̄(Θ−1(δ)) (0 < α ≤ ᾱ)

with Θ(t) :=
√
t ψ̄(t) (0 < t ≤ α). Hence, the function ψ̄(Θ−1(δ)) is a lower bound

for the error at x†, no matter how smooth the true solution x† ∈ X was.

The functions ψ̄ derived in the Examples 4.3 � 4.5 can be seen to be the saturation
rates caused by the limited quali�cations of the underlying regularization methods.

5. Impact of solution smoothness

As stressed earlier, the behavior of pro�le functions is determined by both, the
chosen regularization gα and the underlying solution smoothness. As introduced
in Section 2.2 we measure this in terms of smoothness conditions of the form x† ∈
Gτ (R), see (2.2), determined by an operator G and an index function τ . The impact
of such smoothness assumption on the decay rate of pro�le functions is easiest seen
if G is a function of A∗A.

5.1. G as a function of A∗A. To obtain pro�le functions f for the regularization
method gα the concept of general source conditions, as expressed in

(5.1) x† = ψ(A∗A)w (w ∈ X, ‖w‖ ≤ R),

for some index functions ψ(t) (0 < t ≤ a) was used recently (see, e.g., [14, 16, 17,
27]). We note that (5.1) is a speci�c smoothing condition (2.2) with τ(G) = ψ(A∗A)
(cf. [3] for further discussion of such conditions).

We are going to �nd pro�le functions f uniformly for sets Hψ(R), as de�ned by
formula (2.3), provided the corresponding function ψ is a quali�cation of the chosen
regularization gα.

Proposition 5.1. Let the index function ψ be a quali�cation of the regularization
method gα with constant 0 < γ < ∞. Then uniformly for each x† ∈ Hψ(R) the
inequality

(5.2) ‖xα − x†‖ ≤ γ Rψ(α) for all 0 < α ≤ a

10



is valid. Hence f(α) := γ Rψ(α) is a pro�le function for (Hψ(R), gα).

Proof. From spectral theory (see, e.g., [6, Formula (2.47)]) we have with (5.1) that

‖xα − x†‖ = ‖rα(A∗A)x†‖ = ‖rα(A∗A)ψ(A∗A)w‖ ≤ R sup
0<t≤a

|rα(t)|ψ(t) .

Taking into account inequality (2.1) this yields (5.2), and proves the proposition. �

Remark 5.2. This proposition can be reformulated as follows. Suppose that we are
given a pair (M, gα) of a solution set M and a regularization gα. If we can �nd an
index function ψ on (0, a] that is both a quali�cation for gα and a smoothness forM ,
i.e., M ⊆ Hψ(R) for some R, then there is a pro�le function for (M, gα). In addition
the index function ψ provides a decay rate. Although this is a simple observation it
explains the existence of pro�le functions for non-compact sets M , as discussed at
the end of Section 3.1.

5.2. Approximate source conditions. An important extension of the above con-
cept is obtained by relaxing requirement (5.1). In this context, we restrict ourselves
to a �xed index function ϕ(t) (0 < t ≤ a) as benchmark function. We suppose that
the solution x† ∈ X of (1.1) is not smooth enough to satisfy a condition (5.1) with
ϕ instead of ψ even if R ≥ 0 is arbitrary large. The injectivity of A implies the
injectivity of ϕ(A∗A) for any index function ϕ. Hence the range R(ϕ(A∗A)) is dense
in X. Consequently, for all 0 ≤ R <∞ the element x† satis�es such a general source
condition in an approximate manner as x† = ϕ(A∗A)w + ξ ( ‖w‖ ≤ R, ξ ∈ X),
where the norm of the perturbation ‖ξ‖ tends to zero as R tends to in�nity.

In the following we shall con�ne to this situation, when

(5.3) x† 6∈ R(ϕ(A∗A)).

The quality of the approximation of x† by elements from Hϕ(1) can be be expressed
by favor of the distance function

(5.4)

ρx†(t) = ρ
(H,ϕ)

x†
:= dist(tx†, Hϕ(1)) = inf

{
‖tx† − ϕ(H)v‖ : v ∈ X, ‖v‖ ≤ 1

}
(t > 0).

If the reference to the benchmark (H,ϕ) is clear, as in the following lemma, then
we shall omit the super-script.

Lemma 5.3. Under the assumption (5.3) the functions ρx†(t) (t > 0) and ρx†(t)/t (t >
0) are both index functions. Moreover, we have we have lim

t→∞
ρx†(t) = ∞.

Proof. The idea of the proof is standard in regularization theory. For each t > 0 the
value ρx†(t)/t = dist(x†, Hϕ(1/t)) is obtained from constrained minimization, and
Lagrange multipliers can be used to determine this value. Hence, given x† ∈ X let

Fx†(λ) := ‖x† − ϕ(A∗A)v‖2 + λ‖v‖2.

At given λ its minimizer with respect to v ∈ X is

vλ :=
[
ϕ2(A∗A) + λI

]−1
ϕ(A∗A)x†,
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which has to obey the side constraint χ(λ) = 1/t, where setting

(5.5) χ(λ) := ‖
[
ϕ2(A∗A) + λI

]−1
ϕ(A∗A)x†‖.

Based on the injectivity of ϕ(A∗A) spectral calculus yields that the function χ(λ) (λ >
0) is positive, continuous and strictly decreasing to zero as λ → ∞. Moreover, un-
der (5.3) we have lim

λ→0+
χ(λ) = ∞. Therefore for all t > 0 the function λ(t) :=

χ−1(1/t) exists and is an index function. Hence we obtain

(5.6) ρx†(t)/t = ‖x† − ϕ(A∗A)vλ(t)‖ = λ(t) ‖
[
ϕ2(A∗A) + λ(t)I

]−1
x†‖ (t > 0),

which is the composition of two index functions in t. As a consequence, both func-
tions ρx†(t)/t and ρx†(t) have that property. On the other hand, we have

lim
t→∞

ρx†(t) = lim
t→∞

t

(
ρx†(t)

t

)
= ∞ ,

since ρx†(t)/t as an index function cannot tend to zero as t → ∞. This completes
the proof. �

Remark 5.4. By using distance functions of the form

(5.7) d(R) := dist(x†, Hϕ(R)) = Rρx†(1/R) (0 < R <∞)

error estimates for for the Tikhonov regularization were already studied in [10] and
[5], see also [2, 9] and [13] for variants thereof.

The fundamental estimate for pro�le functions under approximate source conditions
is as follows:

Theorem 5.5. Let gα be a regularization method with quali�cation ϕ and constant
γ. If the solution x† to equation (1.1) obeys (5.3), then
(5.8)

‖xα − x†‖ ≤ max {γ, γ1}
1

t
(ρx†(t) + ϕ(α)) for all t > 0 and 0 < α ≤ a.

Thus the function

(5.9) f(α) := 2 max {γ, γ1}
ϕ(α)

ρ−1
x†

(ϕ(α))
(0 < α ≤ a)

is a pro�le function for (x†, gα).

Proof. First we establish (5.8). For any v ∈ X with ‖v‖ ≤ 1 we can estimate

‖xα − x†‖ =
1

t
‖rα(A∗A)tx†‖

=
1

t
‖rα(A∗A) tx† − rα(A

∗A)ϕ(A∗A)v + rα(A
∗A)ϕ(A∗A)v‖

≤ 1

t

(
‖rα(A∗A)(tx† − ϕ(A∗A)v)‖ + ‖rα(A∗A)ϕ(A∗A)v‖

)
≤ 1

t

(
γ1‖tx† − ϕ(A∗A)v‖ + ‖rα(A∗A)ϕ(A∗A)‖

)
≤ 1

t

(
γ1 ‖tx† − ϕ(A∗A)v‖+ γ ϕ(α)

)
.
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Since this estimate remains true if we substitute ‖tx†−ϕ(A∗A)v‖ by its in�mum over
all v from the unit ball of X and since ϕ is a quali�cation of the used regularization
method, we obtain

‖x† − xα‖ ≤ max {γ, γ1}
1

t
(ρx†(t) + ϕ(α)) for all t > 0 and 0 < α ≤ a,

which proves estimate (5.8). Since this estimate is valid for all t > 0 and we have
by Lemma 5.3 for the index function ρx† the limit condition lim

t→∞
ρx†(t) = ∞, we can

equate the two terms in brackets of the right-hand side of (5.8). Taking into account
the strict monotonicity of function ρx†(t) (t > 0) this yields (5.9). �

Remark 5.6. We notice that the upper bound in (5.8) cannot be improved by other
values of t, because it is the balance of a strictly increasing function ρx†(t)/t and for
any α under consideration a decreasing function ϕ(α)/t with respect to t.

We also mention that the same arguments yield a slightly di�erent bound

‖x† − xα‖ ≤
(γ + γ1)

t
max {ρx†(t), ϕ(α)} for all t > 0 and 0 < α ≤ a,

which is better if the constants γ and γ1 di�er. This implies that in all estimates
below the expression 2 max {γ, γ1} can be replaced by (γ + γ1).

Remark 5.7. Since the denominator ρ−1
x†

(ϕ(α)) in (5.9) expresses an index function
tending to zero as α tends to zero, the decay rate of f(α) → 0 as α → 0 is always
lower than the corresponding rate of the benchmark function ϕ, i.e., ϕ(α) = o(f(α))
as α → 0. In particular, one has to choose a su�ciently good benchmark function
and a regularization with high enough quali�cation to achieve by that way the best
possible rate for given x†.

5.3. Approximate source conditions for solutions in source-wise repre-

sentation. It is worthwhile to discuss the situation when x† has a source-wise
representation (5.1) but the benchmark function ϕ is chosen in such a way that
x† 6∈ R(ϕ(A∗A)). This can happen in the following case only.

Lemma 5.8. Suppose x† obeys (5.1). If x† 6∈ R(ϕ(A∗A)) then necessarily (ϕ/ψ) (t) →
0 as t→ 0.

Proof. Suppose ϕ(t) 6= o(ψ(t)). Then there is C < ∞ such that ψ(t) ≤ Cϕ(t) for
small 0 < t ≤ t̄. Given 0 < ε ≤ t̄ we can bound∫ a

ε

1

ϕ2(λ)
d‖Eλx†‖2 =

∫ t̄

ε

1

ϕ2(λ)
d‖Eλx†‖2 +

∫ a

t̄

1

ϕ2(λ)
d‖Eλx†‖2

≤ C

∫ t̄

ε

1

ψ2(λ)
d‖Eλx†‖2 + sup

λ≥t̄

ψ2(λ)

ϕ2(λ)

∫ a

t̄

1

ψ2(λ)
d‖Eλx†‖2

≤ max

{
C, sup

λ≥t̄

ψ2(λ)

ϕ2(λ)

}∫ a

ε

1

ψ2(λ)
d‖Eλx†‖2

≤ max

{
C, sup

λ≥t̄

ψ2(λ)

ϕ2(λ)

}
‖x†‖2

XH
ψ
.
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Letting ε → 0 we obtain ‖x†‖XH
ϕ
< ∞, thus x† ∈ R(ϕ(A∗A)), which completes the

proof. �

If, slightly stronger but geometrically intuitive, we assume that the quotient (ϕ/ψ) (t)
is strictly increasing, then we can give a clear picture for the resulting function ρx†(t)
for t > 0 su�ciently small.

Theorem 5.9. We suppose that x† obeys (5.1) and that the quotient (ϕ/ψ) (t) is an
index functions for 0 < t ≤ a. Then we can estimate the distance function as

(5.10) ρx†(t) ≤ ϕ

((
ϕ

ψ

)−1

(Rt)

)
for all 0 < t ≤ 1

R

ϕ(a)

ψ(a)
.

Proof. The proof is carried out using the analysis from the proof of Lemma 5.3
and we shall make use of the notation introduced there. As there let λ(t) :=
χ−1(1/t) (t > 0) with function χ from (5.5). Then for x† = ψ(A∗A)v with ‖v‖ ≤ R
representation (5.6) allows for the following bound

ρx†(t) = tλ(t)‖
[
ϕ2(A∗A) + λ(t)I

]−1
x†‖ ≤ (Rt)λ(t)‖

[
ϕ2(A∗A) + λ(t)I

]−1
ψ(A∗A)‖

= (Rt) sup
0<s≤a

λ(t)ψ(s)

ϕ2(s) + λ(t)
= (Rt) sup

0<u≤ϕ2(a)

λ(t)

u+ λ(t)
ψ((ϕ2)−1(u)) ,

where we make the crucial observation that u 7→ λ(t)/(u + λ(t)) is the residual of
Tikhonov regularization. To continue we introduce the auxiliary function

(5.11) κ(s) :=
ψ((ϕ2)−1(s))√

s
=

(
ψ

ϕ

)(
(ϕ2)−1(s)

)
(0 < s ≤ ϕ2(a)).

It is clear that 1/κ(s) is an index function, hence lim
s→0+

κ(s) = ∞. Also, the function

κ(u)/
√
u is decreasing whenever κ is. Hence Proposition 2.8 (a) applies and allows

us to conclude the estimate

(5.12) ρx†(t) ≤ (Rt)ψ((ϕ2)−1(λ(t))) (t > 0) ,

noting that ψ((ϕ2)−1(s)) for su�ciently small s > 0 is an index function.

Next we shall establish for su�ciently small t > 0 an upper bound λ̃(t) for λ(t)

which then will yield estimate (5.10). Indeed, let λ̃(t) be obtained as inverse

(5.13) λ̃(t) = κ−1(1/(Rt)).

It is enough to show that λ(t) ≤ λ̃(t). To this end notice that κ was decreasing,
hence u 7→ (ψ((ϕ2)−1(u))

√
u)/u is so, and we derive, again using arguments as above

that for 0 < t ≤ 1
R
ϕ(a)
ψ(a)

the estimate

κ(λ̃(t)) ≤ 1

Rt
=
χ(λ(t))

R
≤ ‖

[
ϕ2(A∗A) + λ(t)I

]−1
ϕ(A∗A)ψ(A∗A)‖

≤ 1

λ(t)
sup

0<u≤ϕ2(a)

λ(t)

u+ λ(t)
ψ((ϕ2)−1(u))

√
u ≤ 1

λ(t)
ψ((ϕ2)−1(λ(t)))

√
λ(t)

= κ(λ(t)) .
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Consequently, λ(t) ≤ λ̃(t), and we arrive at

(5.14) ρx†(t) ≤ (Rt)ψ((ϕ2)−1(λ(t))) ≤ (Rt)ψ((ϕ2)−1(λ̃(t))) =

√
κ−1

(
1

Rt

)
.

It is a routine matter to check that both versions in the right hand side of (5.14)
are equal. Indeed, starting from the identity ψ(u)/ϕ(u) = ψ(u)/ϕ(u), a variable
substitution u := (ϕ/ψ)−1 (Rt) yields

1

Rt
=
ψ
(
(ϕ/ψ)−1 (Rt)

)
ϕ
(
(ϕ/ψ)−1 (Rt)

) = κ

(
ϕ2

((
ϕ

ψ

)−1

(Rt)

))
,

completing the proof. �

Corollary 5.10. Suppose that ϕ is a quali�cation for gα with constant γ. Under
the assumptions of Theorem 5.9 there is some α > 0 such that

(5.15) f(α) := 2 max{γ, γ1}Rψ(α) (0 < α ≤ α)

is a pro�le function for (Hψ(R), gα).

Proof. For proving that (5.15) is a pro�le function for (Hψ(R), gα) we use the es-
timate (5.8) of Theorem 5.5 and the bound (5.10) which together yield for some
su�ciently small t > 0 the error bound

‖xα − x†‖ ≤ max {γ, γ1}
1

t

(
ϕ

((
ϕ

ψ

)−1

(Rt)

)
+ ϕ(α)

)
(0 < t ≤ t, 0 < α ≤ a).

Then for su�ciently small α > 0 there is some t∗ = t∗(α) ∈ (0, t ] satisfying the equa-
tion

ϕ

((
ϕ
ψ

)−1

(Rt∗)

)
= ϕ(α), namely t∗ = ϕ(α)/(Rψ(α)) implying

‖xα − x†‖ ≤ 2 max {γ, γ1}
ϕ(α)

t∗
= 2 max {γ, γ1} Rψ(α).

This, however, completes the proof. �

Example 5.11. For monomials ϕ(t) = tν and ψ(t) = tη with ν, η > 0, everything can
be made explicit. Lemma 5.8 states that (5.3) is valid if and only if 0 < η < ν,
which in the case of monomials is equivalent to saying that (ϕ/ψ)(t) is an index
function. We obtain the bound ρx†(t) ≤ (Rt)ν/(ν−η) .

The global properties required for the quotient function ϕ/ψ on (0, a] are rather
strong assumptions in Theorem 5.9 used for obtaining the estimate (5.15) in Corol-
lary 5.10. On the other hand, in [13] and [5] by a completely di�erent technique
there have been developed error estimates of type (5.15) with some other constant
which only need local properties of ϕ/ψ on an arbitrarily small interval (0, ε]. In
order to show that our approach is powerful enough to work with such weaker as-
sumptions, we conclude this section with a local variant of Theorem 5.9 yielding the
results of Corollary 5.10 with di�erent constant under the local assumption on the
quotient function.
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Theorem 5.12. We suppose that x† obeys (5.1) and that ϕ, ψ are index functions
on (0, a]. Moreover, it is assumed that there exists some 0 < ε ≤ a such that the
quotient function ϕ/ψ is an index function on the interval (0, ε]. Then with the

constants Cε = ψ(a)
ψ(ε

≥ 1 and Kε = ψ(a)
ψ(ε

ϕ(a)
ϕ(ε

) ≥ 1 we can estimate the distance

function as

(5.16) ρx†(t) ≤
Cε
Kε

ϕ

((
ϕ

ψ

)−1

(RKε t)

)
for all 0 < t ≤ t

and su�ciently small t > 0. If, moreover, ϕ is a quali�cation for gα with constant
γ, then there is ᾱ > 0 such that the function

(5.17) f(α) := 2 max{γ, γ1}KεRψ(α) (0 < α ≤ ᾱ)

is a pro�le function for (Hψ(R), gα).

Sketch of a proof. We follow the proof of Theorem 5.9, but the local version of the
estimate (5.12) is obtained using Proposition 2.8 (c) with t̂ = ϕ2(ε) as

ρx†(t) ≤ (Rt)Cε ψ((ϕ2)−1(λ(t)))

for su�ciently small t > 0. Moreover, instead of (5.13) in the local variant we have
to set

λ̃(t) = κ−1(1/(RKε t)) ,

which is well-de�ned for t ∈ (0, t ] with t > 0 su�ciently small. Then as in the

original proof it can be shown that λ(t) ≤ λ̃(t) for 0 < t ≤ t again based on
Proposition 2.8 (c). Precisely, we have the estimate

κ(λ̃(t)) =
1

RKεt
=
χ(λ(t))

RKε

≤ 1

Kε

‖
[
ϕ2(A∗A) + λ(t)I

]−1
ϕ(A∗A)ψ(A∗A)‖

=
1

Kελ(t)
sup

0<u≤ϕ2(a)

λ(t)

u+ λ(t)
ψ((ϕ2)−1(u))

√
u ≤ 1

λ(t)
ψ((ϕ2)−1(λ(t)))

√
λ(t)

= κ(λ(t)) .

Finally, we arrive at

ρx†(t) ≤ (Rt)Cε ψ((ϕ2)−1(λ(t))) ≤ (Rt)Cε ψ((ϕ2)−1(λ̃(t))) =
Cε
Kε

√
κ−1

(
1

RKεt

)
which proves (5.16). For proving (5.17) we use the estimate (5.8) of Theorem 5.5
yielding here for su�ciently small t > 0 and α > 0, and since Cε

Kε
≤ 1,

‖xα − x†‖ ≤ max {γ, γ1}
1

t

(
ϕ

((
ϕ

ψ

)−1

(RKε t)

)
+ ϕ(α)

)
.

Now we choose t∗ = t∗(α) such that the equation

ϕ

((
ϕ

ψ

)−1

(RKε t∗)

)
= ϕ(α)

holds. This is possible for su�ciently small α > 0 and yields t∗ = ϕ(α)
ψ(α)

1
RKε

. Hence

we obtain the pro�le function (5.17) as required. �
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6. Linking scales by range inclusions

Since the initial study of linear inverse problems in Hilbert scales (see [21]) it is well
known that the operator G measuring smoothness of the solution x† must be linked
to the operator A governing equation (1.1) in order to obtain error bounds. There
are various ways to establish such a link and we will investigate its impact on pro�le
functions, next.

Again we start with the benchmark function ϕ and assume in addition that

(6.1) x† ∈ Gτ (R)

with Gτ (R) de�ned by (2.2). Moreover, we impose the following link condition,
precisely that there are an index function σ(t) (0 < t ≤ ‖G‖) and a constant C <∞
such that

(6.2) ‖σ(G)v‖ ≤ C‖ϕ(A∗A)v‖ for all v ∈ X.

Remark 6.1. There is an extensive analysis in [3] of linking conditions in various
ways. In particular it is shown as Proposition 2.1 in [3] that the validity of condi-
tion (6.2) with some positive C is equivalent to the range inclusion

(6.3) R(σ(G)) ⊆ R(ϕ(A∗A)) .

We mention the following consequence of (6.2) (see e.g. [19]). Given Hilbert spaces
X and Z with Z ⊂ X let J : Z → X be the canonical embedding, leaving elements
from Z invariant.

Lemma 6.2. Under (6.2) the canonical embedding JH,ϕG,σ : XG
σ → XH

ϕ is norm bounded
by C and we have

(6.4) Gσ(R) ⊆ Hϕ(C R).

Proof. It is well known that for any pair S, T of operators a relation ‖Sv‖ ≤ ‖Tv‖
implies ‖T−1v‖ ≤ ‖S−1v‖, whenever the right hand sides are �nite. Thus (6.2)
implies for any x ∈ XG

σ with ‖x‖XG
σ
≤ 1 that ‖x‖XH

ϕ
≤ C and hence (6.4). �

We will distinguish two scenarios and we start with the easier one and state

Proposition 6.3. Let gα be a regularization which has quali�cation ϕ with constant
γ and assume that x† obeys (6.1). If condition (6.2) is valid for an index function
σ, and if there is K <∞ such that τ(t)/σ(t) ≤ K (0 < t ≤ ‖G‖), then the function

(6.5) f(α) := γ C K Rϕ(α) (0 < α ≤ a)

is a pro�le function for (Gτ (R), gα).

Proof. From τ(t)/σ(t) ≤ K (0 < t ≤ a) we deduce from Lemma 6.2 that Gτ (R) ⊆
Gσ(KR), which is equivalent to ‖τ(G)x‖ ≤ K ‖σ(G)x‖ for all x ∈ X. Furthermore,
in the light of Lemma 6.2, the link condition (6.2) implies Gσ(KR) ⊆ Hϕ(CKR),
and any pro�le function for Hϕ(CKR) provides us with a pro�le function for Gτ (R),
such that the proof can be completed using Proposition 5.1. �
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Thus we are left with the case when

(6.6) (σ/τ)(t) → 0 as t→ 0.

Then we have XG
σ ⊂ XG

τ and the canonical embedding JG,τG,σ : XG
σ → XG

τ is norm
bounded. The question is whether one can use condition (6.2) to draw conclusions
for the behavior of pro�le functions in this case.

Suppose we assume a linking condition (6.3), but smoothness is measured as x† ∈
Gτ (R) with respect to a di�erent index function τ . Can we establish an index
function ψ, assigned to a triplet (σ, τ, ϕ), such that the following range implication
holds true:

(6.7) R(σ(G)) ⊆ R(ϕ(H)) =⇒ R(τ(G)) ⊆ R(ψ(H))?

In speci�c situations this problem was already posed (cf. [13, Formula (5.10) on
p. 815]) and partially answered previously (cf. [3, Corollary 2.3]). Most prominently,
the Heinz-Kato inequality (see [6, Proposition 8.21]) yields

R(G) ⊆ R(H) =⇒ R(Gµ) ⊆ R(Hµ)

for 0 < µ ≤ 1, as a consequence of operator monotonicity. In fact this can be
extended to more general situations in which operator monotone functions occur. It
is convenient to draw the following diagram.

(6.8)

G:XG
σ

JG,τG,σ−−−→ XG
τ

JIG,τ−−−→ XyJH,ϕG,σ

yJH,ψG,τ

yI
H:XH

ϕ

JH,ψH,ϕ−−−→ XH
ψ?

JIH,ψ−−−→ X

Under (6.6) the upper row shows embeddings which are bounded. Using Lemma 6.2

the embedding JH,ϕG,σ is norm bounded by C, provided the link condition (6.2) holds
true. Plainly the identity I : X → X has norm equal to one. The question ad-
dressed in this diagram is whether we can describe an index function ψ such that
the corresponding embedding JH,ψG,τ is norm bounded, say by some constant L <∞.
Diagram (6.8) also suggests that the resulting function ψ will describe smoothness,
not covered by ϕ, and approximate source conditions must be used to obtain results.

Remark 6.4. If the embedding JH,ψG,τ were norm bounded, say by some constant
L < ∞, then Gτ (R) ⊆ Hψ(LR), and any pro�le function for (Hψ(LR), gα) would
also be a pro�le function for (Gτ (R), gα).

As the diagram (6.8) clearly indicates, interpolation properties may help to �nd
suitable index function ψ. The implication (6.7) of range inclusions is indeed true
if operator monotonicity occurs and we shall mention the following result from [19].

Theorem 6.5. Let x† obey (6.1). We assume that G and A∗A are linked by (6.2),
where we suppose that σ is such that there is an extension σ(t) (0 < t ≤ b) with
σ(b) ≥ ϕ(a) and this extension is an index function. Moreover, given an index
function τ(t) (0 < t ≤ ‖G‖) we assign the index function

(6.9) ψ(t) := τ(σ−1(ϕ(t))) (0 < t ≤ a).

18



Then the implication (6.7) is satis�ed whenever the function τ 2((σ2)−1(t)) (0 < t ≤
ϕ2(a)) is operator monotone.

Precisely, the norm bound

(6.10) ‖JH,ψG,τ : XG
τ → XH

ψ ‖ ≤ max {1, C}

with C from (6.2) is valid.

Now we return to the analysis of pro�le functions. To establish these the full strength
of the implication (6.7) is not necessary. But we shall also indicate its strength in
Corollary 6.11, below. However, the function ψ from (6.9) will occur, nonetheless.

There are in principle two ways to use the link conditions (6.2) or (6.3), respectively,
to obtain pro�le functions. One can either transfer all information to the scale gen-
erated by the operator G or to the scale generated by H := A∗A. Both ways �nally
provide the same asymptotic results but under assumptions of di�erent strength.
We start with the �rst approach which requires weaker assumptions.

Lemma 6.6. The link condition (6.2) implies

(6.11) ρ
(H,ϕ)

x†
(t) ≤ 1

C
ρ

(G,σ)

x†
(Ct) for all 0 < t <∞.

Proof. Plainly, condition (6.2) yields Gσ(1/C) ⊆ Hϕ(1) and we obtain

ρ
(H,ϕ)

x†
(t) = dist(tx†, Hϕ(1)) ≤ dist(tx†, Gσ(1/C))

=
1

C
dist(Ctx†, Gσ(1)) =

1

C
ρ

(G,σ)

x†
(Ct).

�

With this preparation we can state the main result of this section.

Theorem 6.7. Let gα be a regularization method with quali�cation ϕ and constant
γ for the operator equation (1.1) with solution x† the smoothness of which is char-
acterized by the conditions (5.3) and (6.1) with some index functions ϕ and τ . We
suppose the link condition (6.2) with some index function σ for connecting A∗A and
G. If the function

(6.12) (σ/τ)(t) (0 < t ≤ ‖G‖) is an index function ,

then there is some ᾱ > 0 for which the function ψ(t) (0 < t ≤ ᾱ) from (6.9) is an
index function, and

(6.13) f(α) := 2 max{γ, γ1} max{1, C}R ψ(α) (0 < α ≤ ᾱ)

is a pro�le function for (Gτ (R), gα).

Remark 6.8. If we assume (6.3) instead of (6.2), then C := ‖(ϕ(A∗A))−1τ(G)‖ <∞
and the function f from (6.13) is a pro�le function with the constant C.
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Proof of Theorem 6.7. For an arbitrary x† ∈ Gτ (R) using the bound (5.8) and
Lemma 6.6 we obtain for all 0 < α ≤ a

‖xα−x†‖ ≤ max{γ, γ1}
1

t

(
ρ

(H,ϕ)

x†
(t) + ϕ(α)

)
≤ max{γ, γ1}

1

t

(
1

C
ρ

(G,σ)

x†
(Ct) + ϕ(α)

)
.

By exploiting Theorem 5.9 in the scale generated by G we can continue and bound

(6.14) ‖xα − x†‖ ≤ max{γ, γ1}
1

t

(
1

C
σ

((σ
τ

)−1

(RCt)

)
+ ϕ(α)

)
for 0 < α ≤ 1

RC

(
σ
τ

)
(‖G‖). There is some 0 < ᾱ ≤ ‖G‖/C for which we can equate

both summands on the right of formula (6.14) whenever 0 < α ≤ ᾱ. This leads to

t∗ = t∗(α) :=
1

R

ϕ(α)

τ(σ−1(Cϕ(α)))
(0 < α ≤ ᾱ).

Moreover by (6.12) we have that τ(σ−1(Ct)) ≤ max{1, C} τ(σ−1(t)) for 0 < t ≤ α.
Thus we can estimate for 0 < α ≤ ᾱ

‖xα − x†‖ ≤ 2 max{γ, γ1}
ϕ(α)

t∗
≤ 2 max{γ, γ1}Rτ(σ−1(Cϕ(α))) .

Consequently we obtain

‖xα − x†‖ ≤ 2 max{γ, γ1} max {1, C} Rψ(α) (0 < α ≤ ᾱ),

completing the proof. �

Remark 6.9. The results of Theorem 6.7 with an appropriately modi�ed constant
in (6.13) can also be obtained under the weaker assumption that

(σ/τ)(t) (0 < t ≤ ε) is an index function ,

for arbitrarily small ε > 0 instead of the global assumption (6.12). This is an
immediate result of the opportunity of localization as outlined in Theorem 5.12 and
its proof.

As mentioned above, we can also try to transfer the information from the link
conditions (6.2) and (6.3) to the scale generated by H = A∗A.

We recall the de�nition of the function ψ in formula (6.9) in the context of Theo-
rem 6.5. The following observation is useful.

Lemma 6.10. Let the functions τ, σ and ϕ, ψ be as in Theorem 6.5. If the quotient
σ/τ is an index function on (0, ‖G‖] then ϕ/ψ is an index function on (0, a].

Proof. We assign s = s(t) := σ−1(ϕ(t)) (0 < t ≤ a), thus s ∈ (0, b]. With this
identi�cation we obtain

ϕ(t)

ψ(t)
=

σ(s)

ψ(ϕ−1(σ(s)))
=

σ(s)

τ(σ−1(σ(s)))
=
σ(s)

τ(s)
.

�

Keeping this lemma in mind we can prove the following counterpart of Theorem 6.7.
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Theorem 6.11. Assume that the regularization gα has quali�cation ϕ with constant
γ and that σ/τ is an index function on (0, ‖G‖]. Under the assumptions of Theo-
rem 6.5, in particular the operator monotonicity of the function τ 2((σ2)−1(t)) (0 <
t ≤ ϕ2(a)), the function

(6.15) f(α) = 2 max {γ, γ1} max {1, C} Rψ(α) (0 < α ≤ a)

is a pro�le function for (Gτ (R), gα).

Proof. Let L := max {1, C}. The estimate (6.10) of Theorem 6.5 yields the inclusion
Gτ (R) ⊂ Hψ(LR). Thus pro�le functions for (Hψ(LR), gα) are also pro�le functions
for (Gτ (R), gα). By Lemma 6.10 the function ϕ(t)/ψ(t) (0 < t ≤ a) is an index

function and we can apply Theorem 5.9 to bound the distance function ρ
(H,ψ)

x†
as

ρ
(H,ψ)

x†
(t) ≤ ϕ

((
ϕ

ψ

)−1

(LRt)

)
(0 < t ≤ ϕ(a)

LRψ(a)
).

Corollary 5.10 provides us with the pro�le function as given in (6.15). �

Example 6.12. Again, let us discuss the situation when the index functions are in the
form of monomials, precisely we assume that σ(t) = tµ, τ(t) = t. Then the operator
monotonicity as required in Corollary 6.11 is ful�lled whenever µ ≥ 1, which can be
deduced from the Heinz-Kato inequality. If the link condition (6.2) is assumed to
hold for ϕ(t) = tν , and if the regularization has quali�cation ϕ, then we arrive at a
pro�le function f(α) = Cαν/µ, uniformly for x† satisfying (5.3) and (6.1).
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