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Abstract

Modulation theory with periodic traveling waves is a powerful, but not
rigorous tool to derive a thermodynamic description for the atomic chain. We
investigate the validity of this theory by means of several numerical experi-
ments.

1 Introduction

We consider an atomic chain with N identical particles, whose dynamics is given
by a large system of ODEs. The focus of this study numerical investigation of the
macroscopic limit N — oo in case that the microscopic motion generates tempera-
ture on the macroscopic scale. This phenomenon leads on the macroscopic scale to
a coupling of very high oscillations and slowly varying processes.

The atomic chain with nearest neighbour interaction, see Figure 1, consists of iden-
tical particles with unit mass. These are located on the real axis and are labeled by
the index a. Let N be the number of particles, which may be finite (in this case
a € {1, ..., N}) or even infinite (i.e. & € Z). For any «, let z,(t) and v, (t) = Z4(t)

To—1 Tq To+t1 To+2

Ta
Figure 1: The atomic chain with nearest neighbour interaction.

denote the position and velocity, respectively, of the atom « at time t. Moreover,
let 74 (t) be the distance of atoms a + 1 and «; i.e.

To(t) = Tar1(t) — za(t). (1)
The dynamics in the atomic chain is governed by NEWTON’s equations
Ba(t) = ©(2asi(t) — za(t)) — @' (alt) — 2ans(t)), (2)

where ® is the atomic interaction potential. For our purposes it is convenient to
consider distance and velocity as the independent variables. Eliminating z in (2) we
find

Falt) = i () = va(t), Galt) = @'(ra(t)) = @' (ra1(t)). (3)

The system (2) describes the evolution of the atomic chain on the microscopic scale,
and thus we call ¢t and a the microscopic time and particle index, respectively. If
the particle number NV is very large, we are not interested in the complete solution
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of (2), but rather in its thermodynamic properties. This means, we shall describe
the evolution of the thermodynamic fields like mass density, momentum, pressure,
temperature, energy, and entropy on a macroscopic scale.

Here we consider the macroscopic scale that results from the hyperbolic scaling (cf.
Figure 2) as follows. We introduce the scaling parameter £ and define the macro-
scopic time ¢ as well as the macroscopic particle index @ by

t = et, a = ea. (4)
Moreover, we define the macroscopic space T by T = ez. This fixes the scaling of

6] as

v
Sk J

Figure 2: The hyperbolic scaling.

all other quantities: In particular, since there holds z/t = 7/t and z/a = T /@, the
distance r as well as the velocity v remain unscaled.

The macroscopic description of the atomic chain is very complicated, if the atomic
data exhibit oscillations on the microscopic scale, because in this case we have
to describe the macroscopic evolution of temperature and entropy. A micro-macro
transition is a theory, which can derive macroscopic evolution equations directly from
(2). Unfortunately, no rigorous mathematical theory can do this without further
assumptions. However, we can use modulation theory in order to establish a micro-
macro transition at least formally.

The modulation theory used here, cf. Section 2.2 and the references therein, relies on
periodic traveling waves of the atomic chain, because these can describe temperature
in form of microscopic oscillations. A traveling wave is an exact solution of (2), which
satisfies the ansatz

zo(t) = ra+vt+X(ka+wt>. (5)

Here 7, v, k and w are four parameters and X is the wave profile. Motivated by
its physical meaning we call r the mean distance, v the mean velocity, k the wave
number, and w the frequency. A micro-macro transition results, if we allow the
parameters to vary on the macroscopic scale. The macroscopic evolution of the
traveling wave parameter is governed by a system of modulation equations, which
turns out to be

r —v

0 v - 0 —|—p _

57 | & (t, oz)+ﬁ &) = o (6)
S +g



These four equations may be interpreted as the macroscopic conservation laws of
mass, momentum, wave number and entropy. Finally, the system (6) implies the
conservation law of energy

% (%qﬂ + U) (¢, @) + 88—& (vp+wg)(t, @) = 0. (7)
The system (6) consists of four equations for seven variables. It is closed by the
equation of state and a GIBBS equation, which both are closely related to travelling
waves. The equation of state provides the internal energy U as function of the mean
distance r, the wave number k£ and the entropy S. All other constitutive relations
are in turn determined by the GIBBS equation, which reads

dU = wdS —pdr — gdk. (8)

As mentioned above, the validity of the modulation system (6) with (8) for arbitrary
potentials is not justified up to now. Only for very special potential some rigorous
result are available (see [DHMO04] and below). However, our numerical simulations
indicate, that (6) and (8) describe in fact the macroscopic evolution of (2) in many
situations.

All considerations which follow are restricted to convex interaction potentials, be-
cause we can establish the micro-macro transition only for these ones. In most cases
we consider the ToDA-potential ([Tod70, Tod81]),

O(r) = exp(l—r)+r—1, (9)

which makes (2) completely integrable, cf. [Hén74, DM98|. However, the numerical
results indicate that the integrability does not influence the validity of modulation
theory, cf. Section 3.

In this study we consider two classes of initial value problems for (2). At first
we consider finite chains with periodic boundary conditions. Secondly, we solve
microscopic RIEMANN problems in the infinite chain. For this we start with a single
jump discontinuity in the initial data, i.e. we set

r_. fora<0 v fora<0
Ta(o)_{m_ fora>0 "’ UQ(O)_{UJF fora >0’ (10)

where ro and vy are constants. As we will see, this kind of initial data generates
self-similar solutions on the macroscopic scale, which consists of several waves like
shocks and rarefaction waves.

The investigation of shocks in the atomic chain started already in 1978. In [HS78],
HoLiAN and STRAUB considered the infinite chain with RIEMANN initial data r, =
r_and v, =v_ > 0. They found by numerical experiments, that from these initial
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data there result two shock waves having sharp fronts and finite speeds +cg, on the
macroscopic scale. In particular, for large N the atoms remain at rest outside the
space-time cone €2, where

0 = {(ta) : —epl<a<eyl). (11)

However, inside {2 the atoms perform high oscillations in form of a modulated wave
train. Moreover, the behaviour in the center of €2, that is

Qeent = {(f, 6) Dt K A <KL —I-cspf}, (12)

depends on whether the value of v_ is smaller or larger than a critical value vy;;.
While for v_ < vey all atoms within Q.. are at rest, for v_ > vy they perform
binary oscillations, i.e. for large N then there holds

To(t) & Toio(t), va(t) = vaya(t). (13)

These numerical observations could later be justified rigorously for the ToDA chain,
see [HFM81], [VDO91], and [Kam91]. Finally, in [DKKZ96] the rarefaction problem
for the ToDA chain was solved. However, all these rigorous results use the complete
integrability of (9), and do thus not cover other potentials. An explanation of
the above mentioned phenomena in terms of modulation theory was proposed by
FiLip and Venakides. In [FV99] they study the modulation equations for small
perturbations of the harmonic chain and determine the evolution of the modulated
traveling wave by means of a numerical scheme.

In this study we present an approach for the numerical justification of modulation
theory, which can be applied for all atomic interaction potentials, and which hope-
fully provides a better understanding of the underlying microscopic dynamics. Our
main purposes are:

1. We perform detailed numerical studies on initial value problems for (2). In
particular, we study the convergenceof the numerical data for N — oc.

2. We compare the microscopic oscillations in the numerical data with the pre-
dictions coming from the traveling wave ansatz (5). We will identify many
situations, in which the microscopic oscillations coincide with their macro-
scopic predictions.

3. We study the macroscopic evolution of the modulated traveling wave param-
eters as well as the other thermodynamic quantities.

This paper is organized as follows: We start with two numerical simulations to
illustrate the basic problems and questions. In Section 2.1 we summarize some
basic facts about traveling waves in the atomic chain. In particular, we introduce
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their thermodynamic properties, which become important in modulation theory. In
2.2 we proceed with a brief overview on the modulation theory as it is developed in
[FV99, DHMO04, Her04], and describe the equation of state and the GIBBS-equation.

Section 3 contains the numerical simulations: In 3.1 we explain the numerical meth-
ods and techniques that we have used, and in 3.2 and 3.3 we present the numerical

results for several initial value problems. Finally, we discuss our result in Section
4.

Two numerical experiments

In order to motivate the considerations of the next section, we present at first two
numerical simulations. The details of the implementation as well as the final inter-
pretation of the results are, however, contained in Section 3.

Example E1
Distances, Time=0.0 Velocities, Time=0.0
+0.56
+0.50 -0.22
-1.00
0. 1. 0. 1.

Figure 3: Cold initial data for Example E'1: The atomic distances and velocities are
plotted against the macroscopic particle index a. <

In the first example we initialize the atomic chain with cold initial data. This means
we choose two functions 7;,; and vi,;, which depend on @, and set

76(0) = mini(ea), Va(0) = vini(e) for « = 1...N, (14)

where N is a fixed particle number and ¢ = 1/N is the scaling parameter. In this
example r;,; and vy,; are given by

1 1
Tmi(@) = 0.5 and vy (@) = 3 sin (27a@) + 5 cos (4ma). (15)

We refer to the ansatz (14) as cold initial data, because for large N there are no
oscillations on the microscopic scale, see Figure 14. From the physical point of view
this absence of oscillations means that there is no temperature.

Next we solve NEWTON’s equations (2) for different particle numbers N, whereas we
close (2) by imposing periodic boundary conditions, i.e. we suppose ry1(t) = r1(¢)
and vy(t) = vy (t). We compute the solution in a fixed macroscopic time interval
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Distances, Time=0.125 Velocities, Time=0.125

+1.22 +0.48
N v\f o /\/\/
+0.00 -0.33
0. 1. 0. 1.
Distances, Time=0.25 Velocities, Time=0.25
+1.02 +0.54
- \/J . M
-0.03 -0.45
0. 1. 0. 1.
Distances, Time=0.375 Velocities, Time=0.375
+1.01 +0.54
- h - W
+0.42 -0.97
0. 1. 0. 1.
Distances, Time=0.5 Velocities, Time=0.5
+0.97 +0.43
H
+0.50 S -0.06
]
+0.03 'Eb -0.56
0. 1.
Velocities, Time=0.75
+1.16
+0.90
+0.59 ~0.22
+0.03 -1.34
0. 1

Figure 4: The atomic distances and velocities for Example E1: For several macro-
scopic times ¢ the data are plotted against @, Bright and dark colors correspond to
N =100 and N = 16000, respectively. At ¢ ~ 0.5 the atomic data start to oscillate
on the microscopic scale, so that temperature is created. ¢

[0, tena] With feng = 0.7. The hyperbolic scaling then determines the corresponding
microscopic time by teng = Ntend.

The atomic distances and velocities for later times are shown in Figure 4, where
bright and dark colors correspond to N = 100 and N = 16000, respectively. Note
that all data are plotted against the macroscopic particle index @. The numerical



results can be interpreted as follows:

1. Until £ ~ 0.5 the atomic data remain cold and converge for N — oo to
macroscopic functions, so that in the limit we obtain in any point (f, E) unique
values for distance and velocity.

2. At time ¢ ~ 0.5 the atomic data start to oscillate. These oscillations can be
interpreted as temperature. From the mathematical point of view the oscil-
lations prevent that the limit N — oo can be described completely in terms
of functions, but only by means of measures. Even if we are interested only
in the mean distance and the mean velocity, the oscillations remain important
because they dissipate energy, i.e. they transform macroscopic energy into
internal energy.



Example E2

Here we study the evolution of initial data with temperature, i.e. with microscopic
oscillations, by setting

Distances, Time=0.0 Velocities, Time=0.0
+2.00 +0.50
+0.50 +0.00
-1.00 -0.50
0 1. 0 1

Figure 5: Initial data with temperature for Example E2, plotted against &. ©

Distances, Time=0.2, N=2000 Distances, Time=0.2, N=4000
+2.42

+2.42

+0.57

+0.57

-1.28 -1.28

+3.07 +3.09

+0.95 +0.96 | *

0. 1.
Distances, Time=0.6, N=4000

-1.16 -1.16

+4.03 +4.04
+1.50 +1.50
—1.04 L -1.04 e
0. 1.
Distances, Time=0.8, N=4000
+2.24 +2.24
+0.54 +0.54
-1.17 -1.17

Figure 6: Atomic distances for example E2, plotted against a. Different rows cor-
respond to different macroscopic times, left and right column to N = 2000 and
N = 4000, respectively. Compare with the atomic velocities in Figure 7. ¢



Velocities, Time=0.2, N=2000 Velocities, Time=0.2, N=4000

+2.44 TR +2.44

+0.00 | +0.00

—-2.44 -2.44

+2.71 +2.71

+0.00

+0.00

271 2711

Velocities, Time=0.6, N=2000
+2.47 O +2.48

ESoin

+0.00 +0.00 |*

-2.48 —-2.48

+2.70 +2.70

+0.00 1, +0.00

-2.70 -2.70

Figure 7: Atomic velocities for Example F2. ¢

va(0) = ~cos(2meq), To(0) = - — S(—1) (16)
2 2 2
We observe in Figure 5 that the initial atomic distances are oscillating on the mi-
croscopic scale, and we mention that for all £ > 0 the velocities become likewise
oscillating. In Section 3 we identify this kind of initial data as modulated binary
oscillations.

Similarly as in the previous example, we have solved NEWTON’s equations for dif-
ferent particle numbers but for fixed macroscopic final time t,,q = 0.8. Then we
have plotted the resulting atomic data against @, see the Figures 6 and 7. Note that
the data for N = 2000 and N = 4000 are arranged in the left and right column,
respectively. We see that the atomic data are oscillating on the microscopic scale.
Therefore we shall describe them by measures and not by functions. The dark col-
ored curves in the Figures 6 and 7 represent the local mean values of the atomic
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Phase Space, L-Pos= +0.15 Phase Space, L-Pos= +0.27

Phase Space, L-Pos= +0.03
+3.00 +3.00 +3.00
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Distance Distance

Distance

Figure 8: Local distribution functions in the microscopic phase space for Example

E2.¢

data, whose computation we will describe in Section 3. However, we observe almost
the same structure of oscillations for all particles numbers. For that reason we can
expect that the atomic data converge for N — oo in the sense of YOUNG-measures
to a unique limit measure. Moreover, the local mean values converge for N — oo in

the sense of functions.

In the last step we investigate the fine structure of the microscopic oscillations in
more detail. We fix a macroscopic point Qg = (fo, 60) and consider the window
Fo, around (fo, 60), which consists of all microscopic points close to Q. This reads

Fo, = {(t a) : (et, ea) =~ (t, @) }- (17)

In particular, the window Fg, is very small in macroscopic units, but contains a
large number of time steps as well as particles. Next we evaluate the distribution
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functions of the atomic data within Fg,, see Section 3 for the details. For our
purposes it is convenient to consider the distribution functions in the microscopic
phase space, which is the plane spanned by distance and velocity.

Figure 8 contains density plots of the distribution functions in nine selected windows,
where Black and White indicate a high and low, respectively, probability for finding
a particle. All windows are located at ¢ = 0.9; the corresponding @-coordinate can
be read off in Figure 8 from the headlines as “L-pos”. In Figure 8 we see (i) that
the support of every distribution functions is contained in closed curves, and (i7)
that the distribution functions vary on the macroscopic scale.

In what follows we have mainly three objectives:

1. First we derive a suitable descriptions for microscopic oscillations similar to
those from Figure 8. In particular, it turns out that such oscillations corre-
spond to traveling waves, and that they depend only on four parameters.

2. In Section 2.2 we introduce the modulation equations, which govern the macro-
scopic evolution of the traveling wave parameter.

3. Since there is no rigorous justification of the modulation equations, except for
some very special cases, see [DHMO04, Her04], we perform detailed numerical
experiments in order to investigate their validity.

2 Foundations

2.1 Periodic Traveling Waves

In this section we summarize the most important properties of traveling waves.
At first we mention that the traveling wave profile X in (5) is determined by a
difference-differential equation. Plugging the ansatz (5) into (2) we find

d2
W iaX(p) = ¥(rX(p+k) - X)) = @' (r+X(p) - X(p ~ B), (19)
where ¢ = ka + wt denotes the phase. Note that v does not appear in (18), because
(2) is invariant under GALILEI transformations.

Here we do not address the non-trivial existence problem for solutions of (18), but
refer to the literature, as for instance [FW94, AG96, FP99, FV99, PP00]. In order to
describe a micro-macro transition with temperature we use solely periodic traveling
waves, because they can describe the microscopic oscillations from the numerical
simulations. Since the periodicity length ¢, of traveling waves can be chosen
arbitrarily, we always suppose @per = 1.
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Next we describe the thermodynamic properties of traveling waves, because they
determine the equation of state, which provides the closure for (6). To this end we
introduce two further 1-periodic profile functions R and V by

. d
= a0
R and V are related to the oscillating atomic distances and velocity in an exact
traveling wave via

V() X(p),  R(p)=X(p+k/2) - X(p—k/2), (19)

To(t) = 1+ R(ka +wt+k/2), vu(t) = v+ wV(ka + wt). (20)

Most of the thermodynamic quantities are defined as mean values of the oscillating
atomic data in a traveling wave:

1

W = /q)(r + R(p))de specific internal potential energy density,
0
1
p = - / ®'(r+R(p))de  pressure = negative specific force density,
0
1
0)2 2 . . . . .
K = ) / Vip) de specific internal kinetic energy density,
0
and
T = 2K kinetic temperature,
Fr = K-W specific internal action density,
U = K+W specific internal energy density,
1
E = 51)2 +U  specific energy density.

Note that all these quantities are constants when we consider exact traveling waves.
However, in modulation theory they become fields in ¢ and @, whose evolution is
described by the modulation system (6).

There are other important thermodynamic quantities, which are not related directly
to the atomic data, because they have no microscopic counterpart. It turns out that
S and g, which are defined by

S = w / V() do,
° (21)
/

(V(e + k/2) + V(e — k/2)) ®'(r + R(¢)) do

N | —

g = -

can be interpreted as the macroscopic entropy density and entropy fluz, respectively,
cf. [DHMO04, Her04].
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2.2 Summary on modulation theory

Modulation theory is a powerful tool which provides an effective dynamical model
on the macroscopic scale. We mention that modulation theory was developed in the
context of partial differential equations, see the examples in [Whi74], and that it
can be applied to other discrete systems, see for instance [HLM94].

The modulation theory for the atomic chain with hyperbolic scaling relies on peri-
odic traveling waves, and leads to a macroscopic theory, which is complex enough
to describe the generation of temperature as well as the transport of heat. There
are other reasonable scalings for the atomic chain, for which a macroscopic modu-
lation equation is known. Examples are the KdV-scaling in [FP99, SW00|, which
leads to a macroscopic KORTEWEG-DE VRIES equations, and the NSE-scaling in
[GM04b, GM04a|, where the macroscopic evolution is governed by the nonlinear
SCHROEDINGER equation.

The main idea behind modulation theory is the construction of approzimate solu-
tions of the microscopic system (5) by allowing the traveling wave parameter to vary
on the macroscopic scale. A modulated traveling waves is an approximate solution of
NEWTON’s equations which satisfies the following ansatz for the atomic positions:

To(t) = éX(et, ea) + X(et, eq; é@(st, ea)> + O(e), (22)

where X and © are two macroscopic functions. The modulated traveling waves
parameters are now fields in ¢ and @. They are determined as derivatives of X and
O via

of@) = 20w, @) = o (5 ), (23)
W@ =22Fa), k(D)= oo (f ). (24)

The function X serves to model the microscopic oscillations and provides the link
to traveling waves. In particular,

X(i, o) = X(r(t, @), vt @), k(, @), w(t, a); ¢), (25)
where X is a family of traveling wave profiles, which depends on the parameters r,
v, k, and w, as well as on the phase variable . In order to ensure that (22) yields
in fact approximate solutions of (2), we cannot choose X and © arbitrary, but we
have to satisfy some restrictions. By means of the Principle of least action it can
be shown, but only formally, that the modulated parameters have to satisfy the
modulation equations (6), see [FV99, DHMO04, Her04| for the details.

In [DHMO4] it is proved, that any such family X of traveling waves provides an
equation of state F' = F(r, k, w) together with the following variant of the GiBBS
equation

dF = Sdw + pdr + gdk. (26)
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By means of the formal Legendre transform Sdw = dwS — wdS we can replace the
frequency w by the entropy S, and there result U = U(r, k, S) as equation of state
and the GIBBS equation (8), see [DHMO4].

Up to now the modulation theory is not completely understood, because some serious
problems remain open:

1. In modulation theory we suppose that traveling waves depend on four in-
dependent parameters. It was proved in [FV99] that for convex interaction
potentials there always exists families of traveling with four independent pa-
rameters. However, presently there is no corresponding uniqueness result.

2. There is no rigorous result which guaranties (i) that the equation of state is
unique, and (77) that the modulations system is hyperbolic or even strictly
hyperbolic.

3. For almost all potentials the equation of state is not known explicitly.

4. There is no rigorous justification of the modulation system, except for the
harmonic chain and the hard-sphere model (see [Mie05, DHMO04, Her04]).

Next we describe the modulation theory for cold data. We say the atomic data are
cold, if there exist two macroscopic fields r and v, such that

ro(t) = r(et, ea), vu(t) = v(et, ea). (27)

Note that here £ and w have no meaning, because the temperature is zero. We can
read off from (3) the corresponding macroscopic evolution directly, namely

71 (0) €)= 75 (vin) €0 = *

This nonlinear and hyperbolic system is equivalent to the first two equations of (6),
if we use U = ®(r) as the equation of state.

A further special case is the harmonic chain, where
®(d) = c0+c1d+c—22d2, (29)

for which all traveling waves can be given explicitly, cf. [DHMO04]. In particular,
there results the following equation of state

1
Ulr,k, S) = coy+ar+ 5027‘2 + w(k)S. (30)

Note that the frequency w is related to the wave number k& by the harmonic disper-
sion relation

w(k) = +/cosin(wk)/m. (31)
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According to (6) and (30), the modulation equations for the harmonic chain read

7i | k| O 55 | wiy |€D =0 .
s W'(k)S

and are thus decoubled into two 2 X 2-systems.

3 Numerical Simulations

In this section we present numerical simulations in order to investigate the validity
of the micro-macro transition and the modulation equations (6). To this end we
study the following two classes of initial value problems:

1. Class S: Smooth initial data and periodic boundary conditions.

2. Class R: Microscopic RIEMANN problems.

In almost all simulation the atomic interaction potential is given by the TobDA
potential (9). However, other nonlinear and convex interaction potentials lead to
similar results (see for instance Example S2), so that integrability seems to be not
important in the thermodynamic limit.

3.1 Methods and Techniques

Numerical integrator, initial data and time steps

For the numerical integration of (2) we use the VERLET method, which is a sym-
plectic integrator of second order, see [HLW02, SYS97]. The one-step formulation
of the VERLET method reads

| | Con,

20 = O oy 4 ?po(lz), (33)
| DR, -

Pt U§Z)+§(po(f+l)+ng))’ (34)
o0 = (ol o) - @ () - a2,). )

Here h = At is the microscopic time step size, and the upper index (i) denotes the
ith time step. Recall that for given NV the particle index « takes values in {1...N}.

For initial value problems of the class S we use periodic boundary conditions, i.e.
we impose

2\ = x](\;') — L and x](\;zrl —z¥ 41, (36)
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where the value of the total length L is fixed by the initial data.

We cannot expect the modulation theory to be valid for all classes of atomic initial
data, but we have to restrict our considerations to initial data in form of modulated
traveling waves. For the sake of simplicity we consider solely initial data in form of
modulated binary oscillations. Modulated binary oscillations are modulated trav-
eling waves, in which the wave number is not modulated, but constant with value
1/2. These have the advantage that the explicit knowledge of the profile functions
is not necessary. In order to initialize the chain with modulated binary oscillations,
we choose four macroscopic functions r°44, r°v*» and v°%4 y* which all depend
only on @, and we set

r2dd(eq) falls « odd,
ra(0) = {rifl‘i’en(sa) falls « even, (37)
v (eq) falls « odd,
va(0) = {viﬁl‘i’en(sa) falls « even. (38)
In the case of periodic boundary conditions, the functions r°dd, peven godd apd

v are 1-periodic, whereas for Riemann problems all these function have a jump

discontinuity within the interval (0, 1). Note that the initial data (37) are cold, if

odd even and v

and Ol'lly if r =7r odd _ peven,

We mention, that the class of modulated binary oscillation is not stable under the
evolution. In other words, even if we start with unmodulated wave numbers we find
non-constant wave numbers for all times £ > 0.

For all simulations we solve NEWTON’s equations (2) with the VERLET-method (33)
within a given macroscopic time interval [0, enq]. Since we always use a constant
time step size At, the number of time steps is proportional to the particle number.
We choose At small in comparison to the smallest inverse frequency t;, of the
linearized problem. The value of ¢;, can be approximated by the period tgo of the
linearized binary oscillator, i.e.

/ / 2n (39)
lin ~ B0 = —F———-

d"(7)
Here 7 denotes the local mean value of the atomic distances, and can be estimated
during the computation. In all simulation we have ensured that there hold At/tgo <
0.01 during the whole computation.

Windows in space-time
In order to study the macroscopic behavior of the atomic chain for large N we shall

pass from the enormous amount of microscopic data to the characteristic macro-
scopic quantities, which are
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1. the macroscopic fields of the local mean values, and

2. local distribution functions of the atomic data.

The main tool for computing the macroscopic data are space-time windows which
are very small on the macroscopic scale, but which contain a lot of particles as well
as time steps. In the sequel let F be a window, i.e.

F = 7 xIT, (40)

where I7 and I are sets of time steps and particle indices, respectively. IZ and I
read

= {z'f—A$+1, i 1, z'f}, (41)
JE— {af — AL ., o 1,0, " +1, .., ozf—i-Ag}. (42)
where i’ is a time steps, o’ is a particle index, and A%, A% are two integers

satisfying
1< AL, AL < N. (43)

If ¥ denotes the microscopic time corresponding to i, the window F contains all
microscopic data around the macroscopic point Z7, where

z7 = (et ed?). (44)

For any atomic observable 1 we can now compute the mean value () - of 9 with
respect two F. If ¢ is a one-particle observables there immediately results

1 . .
Wr = TFo7 0 p(ri, o), (45)
d AT (2AF +1) (i,%;f ( )
and if the values von ¢ depend on the data of more than one particle, similar

formulas for (1) - may be easily derived.

Next we describe how we compute the distribution functions of the atomic data
within a window . We consider solely the distribution functions in the microscopic
phase phase, that we have introduced in Section 2 as the plane spanned by atomic
distance and atomic velocity. For any window F we choose a rectangle B” in the
microscopic phase space

BT = {(r,v):rf-<r§rf vl <v <ol }, (46)
and decompose it into M7 x M7 equal and pairwise disjunct sub-rectangles

B” = U By m» (47)

my=1.MF ,my=1.M7F
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N : number of particles N,

ma_final_time : macroscopic final time fepq,
mi_final_time : microscopic final time tgnq = Ntend,
mi_time delta : length of microscopic time steps At,
mi_time_steps : number of microscopic time steps,
mv_win t len : parameter A% for MV-windows,
mv_win p len : value of 247 + 1 for MV-windows,

df win_t_len : parameter A% for DF-windows,

df win p len : value of 247 + 1 for DF-windows,

df win_prm . parameter M7 = M7 for DF-windows.

Table 1: Meaning of the numerical parameters. ©

where M7 and M7 are two integers controlling the resolution. We approximate the
atomic distribution function within F by a M7 x M7 -matrix W7 whose components

W7 ... are given by
Wim = Wt 0)eF: (00, 00) e BE .} (48)

Here # means the number of elements, and x” is a normalization constant. It is
obvious, that the Matrix W7 approximates the distribution function of the atomic
data only if the rectangle B” is sufficiently large. In particular, for all (i, o) € F
the point (ro(,i), vo(,i)) should be an element of B”. For this reason we shall determine
the bounds of B not a-priori, but during the numerical computation.

For practical purposes it is convenient to distinguish between two kinds of space-
time windows - M V-windows to compute the means values, and DF-windows for the
evaluation of distribution functions. MV-windows should be rather large, in order
to prevent oscillations in the mean values. On the other hand, DV-windows should
be rather small, so that the fine structure of the microscopic oscillations become as
clear as possible.

The traveling wave within a window

The micro-macro transition from Section 2 relies on the hypothesis, that all oscil-
lations of the atomic data can be described in terms of modulated traveling waves.
Here we describe, how we can check this hypothesis in our numerical simulations.
As in the previous section, we use space-time windows, which again are small on the
macroscopic scale, but very large in microscopic units.

If the atomic oscillations are equivalent to those from modulated traveling waves,
the microscopic distributions functions within any space-time window F must be
equivalent to the distribution function of an exact traveling wave. Of course, the
parameters of this exact traveling wave may depend on the window F.
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As discussed in Section 2, for any F we have to identify four traveling wave param-
eters, namely the specific length rx, die mean velocity vz, the wave number kx and
a fourth parameter, which might be either the frequency ws, the parameter v, the
entropy Sz, or the temperature 7T's.

The values of the specific length and of the mean velocity are fixed by their physical
meaning: rz and v result as the local mean values of the atomic distances and
velocities, respectively, i.e. we set

rE = (") g, vE = (V) g (49)

Similarly, the temperature T is computed as the twofold mean internal kinetic
energy, which reads

Tr = ((v=(0)p)" )y = ("), — ()" (50)

The determination of wave number k » and frequency wz is not so obvious, because
they have no immediate physical interpretation on the microscopic scale. For this
reason we introduce auziliary observables ¥y and ¥, and set

]{7]: = <\Ilk>]_-, wWr = <\Ilw>]_-. (51)

The auxiliary variables in our simulations are given by

ang (20, P0)

(\Ilk)o(f) = o mod 1, (52)
© e (P“(iil)’ Péi))

U)o = , 53

(), — (53

where

PP = Qi -f with Q¥ = (r{,v("),

and ang (P;, P;) denotes the angle between the vectors P, = (r1, v;)" and P, =
(7‘2, 'UQ)T, i.e.

179 + ’U1’U2>

Note that Wy takes values in [0, 1], and that W, is non-negative. The formulas
(51)—(53) were tested with exact traveling wave solutions, for which they reproduce
the right values for kr and wz. Finally, we define S consistent to Section 2 by
Sy := Tr/wz. In the next step we use the values rx, vr, kr and T in order to
associate to any window F' an exact traveling wave with these parameters. For that
purpose we use an approximation scheme for traveling waves as it is described in
[DHO5]". This scheme provides

!To be more precise, we use the T-scheme from [DHO05], which allow the prescription of the
temperature.
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Atomic observable

distance
velocity
negative force
energy

energy flux

specific length
macroscopic
velocity
pressure
macroscopic
energy density
macroscopic
energy flux

frequency
entropy
heat flux
entropy flux

Definition

ra(t) = Tat1(t) — za(?)

Ua(t) = Za(t)

Pa(t) = —®'(ra(?))

ea(t) = §(vay1(t))” + (ra(t))
fa(t) = —va(t) ®'(ra(t))

Table 2: Selected atomic observables.¢

mean value
r7 = (distance) -

vy = (velocity) -
pr = (neg. force) -

e = (energy)

fr = (energy flux) -

field

wg is mean value
S]: = T]:/u)]:
qr = fr — pruF
9r = qr/wr

TW-mean value

rFV = (distance) 5
UJTEW (velocity) 7"

pr" = (neg. forceﬁfW
ez = (energy) "
IW — (energy flux) "
TW-field

wrV from T—Scheme

SEY =T
~ I - p;W g

W JwiW

TW_

Table 3: Mean values and derived fields.¢

1. two profile functions R and Vz, which give the atomic distances and veloci-
ties, respectively, of the exact traveling wave,

2. a frequency wr

but satisfies a dlspersmn relation.

Employing w7"

W, which does not result from the auxiliary observable (53),

and the profile functions R and Vx we can

1. derive the corresponding distribution function in the microscopic phase space,

2. define an entropy S7" by S7V =

20

TW /, ,TW
Sg" JwE",



3. compute for any observable 1 a corresponding T'W-mean value («p)jTEW. For

instance, for the pressure p7" there results

1

pr =- / ®'(rr + Re(p + kr/2)) do. (54)

Since we use rr, vr, kr and T to determine an exact traveling wave, the following
identities are satisfied by construction

R =g, vpY = vg kp = ky and TRV = Ty (55)

However, it is not ensured by our definitions that there hold wr = w7V, Sr = STV,
or (1) = (1) for all observables . The validity of these identities have to be
checked!

In Table 2 we have summarized the most important atomic observables. The corre-
sponding mean values and further derived quantities are described in Table 3.

From now on we call the distribution functions, which result directly from the atomic
data, the microscopic distribution functions. Since the traveling wave parameters rz,
vr, kr, and Tx vary only on the macroscopic scale, we call the distribution functions,
which result from the profile functions R and Vx, the macroscopic predictions.
Moreover, to distinguish between the different notions of mean values, we refer to
(), and ()1 as fields and TW-fields, respectively.

Since for any macroscopic point P = (f, a) there is a space-time window Fp around
P,ie. P = Z7P we are allowed to interpret all macroscopic fields as well as all
TW-fields as functions which depend on ¢ and @.

We summarize this section: In order to check the hypothesis about the atomic
oscillations in the numerical simulations, we shall compare

1. microscopic distribution functions with their macroscopic predictions,

2. various fields with their corresponding TW-fields.

The microscopic oscillations can be described in terms of modulated traveling waves,
if and only if all comparisons yield a positive result.

3.2 Smooth data

The results of the numerical simulations will be presented graphically. As in section
2, we always plot the atomic data as well as the macroscopic fields against the
macroscopic particle index @ € [0, 1] for fixed macroscopic time ¢. Moreover, the
microscopic distribution functions are always presented as density plots.
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N = 2000/4000

ma_final time = 5.0E-01 mi_final time 1.0E+03
/2.0E+03

mi_time_delta = 1.0E-02 mi_time_steps 100000
/200000

mv_win t_len = 3577/5059 mv_win p_len 5/10

df win t len = 3577/5059 df win p len 10/20

df _win_prm = 100

Table 4: Numerical parameters for Example S1. ¢

Wave Number, Time=0.4, N=2000 Wave Number, Time=0.4, N=4000

+0.65 +0.65 3
s &5
+0.50 +0.50
+0.35 +0.35
0. 1. 0. 1.
Frequency, Time=0.4, N=2000 Frequency, Time=0.4, N=4000
+0.88 R +0.88f
+0.56 +0.56 | Fis
+0.25 t= +0.25

0.
Wave Number,

0. 1.
Wave Number, Time=0.8, N=4000

+0.70 +0.70

+0.50 +0.50

+0.30 LEF
0 1

-Frequency, Time=0.8, N=4000

+0.30 LA
0

+0.94 +0.95

+0.57

+0.57 | ST
S
+0.19 +0.19 L=

Figure 9: Computation of wave number and frequency for Example S1. We see
the oscillating values of the auxiliary observables as well as their macroscopic
mean values. The left and right column correspond to N = 2000 and N = 4000,
respectively. ¢

Example S1

We return to the second Example from Section 2. In particular, the initial data for
Example S1 are given by Equation (16) and Figure 5 from Section 2. Note that at
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Energy, Time=0.4, N=2000 Energy, Time=0.4, N=4000

+6.54 . +6.55
+3.78 +3.79
+1.02 & +1.02
0. 1. 0. 1.
Temperature, Time=0.4, N=2000 Temperature, Time=0.4, N=4000
+3.83 +3.83
+2.66 +2.66
+1.49 +1.49
0 1. 0. 1
Energy, Time=0.8, N=2000 Energy, Time=0.8, N=4000
+6.56 ot L +6.61
+3.81 +3.84
m".\;;w’:.‘.igz’ .‘A:‘;%
+1.06 L +1.06 e ] =
0. 1. . 1.
Temperature, Time=0.8, N=2000 Temperature, Time=0.8, N=4000
+2.66 i‘-ﬁ / +2.65 i’j r
+2.00 : +1.99 .
+1.35 U +1.34 U
0 1. 0 1

Figure 10: Atomic energy E and macroscopic temperature 1" for Example S1. ¢

+2.24 +2.70

+0.54 +0.00

-2.70

-1.17

Figure 11: The vertical lines mark the a-coordinate of the macroscopic points,
where we evaluate the microscopic distribution functions in Figure 12. There holds
t=080

t = 0 we modulate only the macroscopic velocity v, but neither the specific length
r, nor the wave number k£ or the internal energy U.

The atomic distances and velocities for £ > 0 are presented in Figures 6 and 7, and
Figure 10 shows the oscillating atomic energy, their macroscopic mean value, and
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Figure 12: Local distribution functions for Example S1 with N = 4000 correspond-
ing to the nine macroscopic points from Figure 11. Gray and Orange correspond to
microscopic distribution functions and macroscopic predictions, respectively. ¢

The computation of wave number and frequency is illustrated in Figure 9. We
see for different times (f = 0.4 and ¢ = 0.8) and for different particle numbers
(N = 2000 and N = 4000) the values of the auxiliary observables ¥; and Wg.
Again we observe high oscillations in the atomic data, which converge for N — oo
to a YOUNG-measure. However, the local mean values of the auxiliary observables
converge to macroscopic functions, which give the fields of wave number and the

In the next step we compare the microscopic distribution functions with their macro-
scopic predictions in nine selected macroscopic points. These nine points are exactly
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Pressure

Frequency

+2.32 /\ +0.53
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Figure 13: Comparison between macroscopic fields (black) and corresponding TW-
fields (orange). There hold N = 4000 and ¢ = 0.8. ©

the same as in Figure 8, and we have marked their positions by the vertical lines
in Figure 11. The size of the underlying space-time windows can be read off from
Table 4.

Figure 12 shows the density plots from Figure 8 together with some orange drawn
dots, which correspond to the macroscopic predictions, and which are obtained as
follows. Let a window F be fixed. The values r#, vF, kr and T’ determine an exact
traveling wave with profiles functions Rr and V£, see the previous subsection, and
[DHO5| for more details. Then we compute for twenty different values ¢; of the
phase the corresponding points ); in the microscopic phase space, where

Qi =

and ¢; = /20, 7 = 1...20. Finally, we have drawn the points @; with orange color
into the density plots of the microscopic distribution functions.

(rr +Re(pi +kr/2), vr +wrVr(p:)) (56)

The nine plots of Figure 12 reveal (7) that the curve (56) coincides with the support of
the microscopic distribution functions, and (i) that the distance between @;,; and
Q; is related to the gray level of the microscopic distribution functions. From this we
conclude that microscopic distribution functions and macroscopic predictions are in
fact the same. This implies that the macroscopic evolution of all fields is governed
by the modulation equations (6).

Finnaly, in Figure 13 we compare some macroscopic fields with their corresponding
TW-fields. Note that we have plotted the values of the TW-fields in only 25 points.
Recall that the definitions of the various fields and TW-fields are given in Table
3. In particular, all fields result immediately from the atomic data, whereas all
TW-fields depend only on the four macroscopic fields r™, o™ kTW and TTW. We
observe a perfect correspondence between fields and TW-fields, which gives another
confirmation for the validity of modulation theory.
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The modulation equations for the harmonic chain, see Equation (32), split into two
independent subsystems. The first one describes the evolution of the mechanical
fields mass and momentum, whereas the second one is related to wave number and
entropy. Consequently, if we would initialize the harmonic chain with the initial
data 16, the wave number and the entropy would remain constant for all times.
As the current example shows, in the nonlinear case there is in general a coupling
between all four modulation equations.
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Example

In this example we study the evolution of smooth initial data for an interaction
potential, that is not integrable. To this end we add a term of fourth order to the

S2

TobaA-potential, namely

The initial data are shown in Figure 14. There holds v°%(@) = v*"*2(a) = 0 and

+1.50

+0.25

-1.00

+1.65

+0.38 iz

-0.89

+1.34

B(r) = exp((1—7))—(1—r)+ —(r—1)"

Distances, Time=0.0

+0.00

40

Velocities, Time=0.0

Figure 14: Modulated atomic initial data for Example S2. ¢

Distances, Time=0.1, N=2000

+0.33 | s

-0.68

+2.14

+0.61 | Fmn

-0.93

Figure 15: Evolution of the atomic distances for Example S2. The left and right
column correspond to N = 2000 and N = 8000, respectively. The dark colored

+1.68

+0.39

-0.90

+1.35

+0.33 | Gehen

-0.68

+3.15

+0.96

~123b

functions represent the local mean values. ¢
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Velocities, Time=0.1, N=2000 Velocities, Time=0.1, N=8000
+2.06

+2.05

+0.00

+0.00

—-2.05 -2.06

+1.76 +1.76

+0.00 +0.00

-1.76 -1.76
0. 1.
Velocities, Time=0.9, N=8000
+2.47 +2.92 .’
+0.00 -0.05
—2.47 R ~3.03
0 1. 0 1

atomic velocities to Figure 15. ¢

+1.35 +1.76

+0.33 +0.00

-0.68 -1.76

Figure 17: The vertical lines mark the @-coordinate of the macroscopic points, for
which we evaluate the microscopic distribution functions in Figure 18. There holds
t=0.5. ¢

1 1 1
rodd(@) = 1+ 3 sin(2ra), r"(a) = 573 sin(27@).

Note the modulation of the internal energy U, which leads to a modulation of
frequency w and entropy S. However, the fields r, v and k are constant in the initial
data. The solution of NEWTON’s equation for different particle numbers (N = 2000
and N = 8000) and for various times (¢ = 0.1, £ = 0.5, and ¢ = 0.9) is shown in
Figures 15 and 16.

Until ¢ ~ 0.5 we observe the same qualitative behaviour as in Example S1: The
atomic data converge for N — oo to a YOUNG-measure, which implies that the local
mean values converge in the sense of functions. Furthermore, the atomic oscillations
are again bounded by sharp envelopes. In Figure 18 we compare the microscopic
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Figure 18: Local distribution functions in the microscopic phase space for Example
S2 with N = 8000 and ¢ = 0.5, evaluated in the macroscopic points from Figure 17:
Gray and Orange correspond to microscopic distributions and macroscopic predic-
tions, respectively. Interpretation: Until ¢ = 0.5 all microscopic oscillations can

be described by modulated traveling waves. ¢
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Figure 19: Comparison between macroscopic fields (black) and corresponding TW-
fields (orange). There holds N = 8000 and ¢ = 0.5. ©

distribution functions with their macroscopic predictions in nine selected points at
t = 0.5, see Figure 17. We mention that we have used the same approach for this
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Figure 20: The vertical lines mark the @-coordinate of the macroscopic points, for
which we evaluate the microscopic distribution functions in Figure 21. There holds

t=0.9.0¢
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Figure 21: Local distribution functions in the microscopic phase space for Example
S2 with N = 8000 and ¢ = 0.9, evaluated in the macroscopic points from Fig-
ure 20: Gray and Orange correspond to microscopic distributions and macroscopic
predictions, respectively. Interpretation: After the formation of shocks, the mi-
croscopic oscillations exhibit a more complicated structure and can thus not longer

be described by modulated traveling waves. ¢

comparison as in the previous example, so that the orange drawn dots approximate
the curve (56). As in Example S1, we observe a perfect correspondence between
microscopic oscillations and macroscopic predictions. Similarly, Figure 19 yields the

perfect matching of fields and TW-fields.

At t = 0.9 we can identify a region, about 0.4 < @ < 1.1), where the microscopic
oscillations exhibit a different behaviour. In Figure 21 we see that the support of
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Figure 22: The formation of shocks in Example S2 with N = 8000. ¢

N = 2000/8000

ma_final time = 0.9E+00 mi final time = 1.8E+03
/7.2E+03

mi_time_ delta = 2.0E-02 mi_time_steps = 90000
/360000

mv_win t_len = 2236/4472 mv_winplen = 10/40

df win t len = 2236/4472 df win p len = 40/89

df _win_prm = 100

Table 5: Numerical parameters for Example S2. ¢

the microscopic distribution functions are not longer contained in closed curves, but
fill a set with positive measure. We conclude, that the microscopic oscillations in
this region can not be described by modulated traveling waves.

Figure 22 provides an explanation for this phenomenon. We have plotted various
macroscopic fields for £ = 0.5 and ¢ = 0.6. We observe that the gradients of all fields
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become steeper and steeper, so that finally there appear shocks, i.e. macroscopic
discontinuities. These shocks are the reason, that modulated traveling waves fail
to describe the microscopic oscillations. Consequently, the macroscopic evolution
is not longer governed by the modulation equations (6). In what follows we will
continue the investigation of macroscopic shocks.
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Example S3

Velocities, Time=0.75

Distances, Time=0.75
+1.17 ; +1.21
+0.57 -0.21
-0.03 -1.63

Figure 23: The atomic distances and velocities for Example S3 with ¢ = 0.75 and
N = 16000. The vertical lines mark the a-coordinate of the macroscopic points, for
which we evaluate the microscopic distribution functions in Figure 24. ¢
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Figure 24: Local distribution functions for Example S3 with N = 16000 corre-
sponding to the macroscopic points from Figure 23. Gray and Orange correspond
to microscopic distribution functions and macroscopic predictions, respectively. In-
terpretation: Since the shocks result from cold data, the microscopic oscillations

have the form of modulated traveling waves. ¢
We revisit the first Example of Section 2, where we have considered modulated cold
initial data that create temperature during the evolution, see Figures 3 and 4.

We study now the fine structure of the microscopic oscillations, which appear in the
regions with temperature. To this end we compare in six selected points at ¢ = 0.75
the microscopic distribution functions with their macroscopic predictions, see Figure
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N = 16000

ma_final time = 7.5E-01 mi_final time = 1.2E+04
mi_time delta = 1.0E-02 mi_time_steps = 1200000
mv_win t_len = 9486 mv_winp_len = 80
df wint len = 9486 df winp_len = 126
df _win_prm = 100

Table 6: Numerical parameters for Example S3. ¢

23. The results are shown in Figure 24, and again we observe a perfect correspon-
dence between microscopic distribution functions and macroscopic predictions. We
conclude, that the modulation equations are able to describe macroscopic shocks
which are generated by cold data, because these shocks lead to microscopic oscil-
lations in form of modulated traveling waves. Recall the previous example, which
has shown that the modulation equations may fail, if there appear shocks from data
with temperature.
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Example S4

Distances, Time=0.0 Velocities, Time=0.0
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+3.711 . +0.89 v . . .
+2.001} -0.02
+0.29 —0.94L"
0. 1

Figure 25: The atomic distances and velocities for Example S4 at times ¢ = 0.0 and
t=0.02. ¢
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Figure 26: Local microscopic distribution functions for Example S4 in three se-
lected points at ¢ = 0.02. Interpretation: Since ® is non-convex, the microscopic
oscillations can not be described by modulated traveling waves. ¢

N = 2000

ma_final time = 2.0E-02 mi_final time = 4.0E+01
mi_time delta = 2.5E-03 mi_time_steps = 16000
df wint len = 4000 df winp_len = 5
df _win_prm = 75

Table 7: Numerical parameters for Example S4. ¢

Up to now we have considered only convex interaction potentials. This restriction
is essential, as the current example shows. We consider the following double-well
potential

®(r) = +2cosh (2 —r) —sinh (1)(r — 2)%, (58)
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which has two stable equilibria at » = 1 and r = 3, and one unstable equilibrium at
r = 2. Note that ® is concave in the vicinity of » = 2. We initialize the chain with
cold initial data,

1
T‘Odd(a) _ re""“(a) _ 2, UOdd(a) _ Ueven(a) - E(;OS (271'6),

and study the atomic evolution for small times ¢ < 0.02, see Figure 25. Figure 26
contains the density plots of the resulting microscopic oscillations in three selected
points at £ = 0.02. We observe that cold data produce immediately temperature in
form of microscopic oscillations. However, these oscillations can not be described by
modulated traveling waves, because they exhibit a completely different structure.
In particular, the supports of the distribution functions are not contained in closed
curves, which corresponds to the absence of sharp envelopes in Figure 25.

This result is not surprising, because for non-convex interaction potentials ®, the
system (28) is not hyperbolic (in the regions of concavity it is even elliptic).
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3.3 RIEMANN problems

For the numerical solution of RIEMANN problems we use the following boundary
conditions

xéi) = :Ul(i) + xz(i) — xéi) and xz(\;)ﬂ = xz@ + xl(\;)—l - :c](\;)_2 (59)

These boundary conditions are appropriate, because we restrict the initial data to
modulated binary oscillations. However, they can produce reasonable results only
for sufficiently small times: If the first macroscopic wave arrives at the boundary of
the computational domain, we shall stop the numerical computations.

Example R1

Here we study the evolution of cold initial data with a single jump discontinuity. In
particular we set v°d4(@) = v (a) = 0, and

odd/—=\ __ even /—\ __ 0 falls 6<05,
ref@) = ") = { 1 falls @ > 0.5.

The resulting atomic data are depicted in Figure 27, where all computations are

Distances, Time=0.0 Velocities, Time=0.0
+1.00
+0.50 +0.00
+0.00
0. 0.5 1. 0. 0.5 1.
Distances, Time=0.15 Velocities, Time=0.15
+1.00 ‘ +1.28
+0.50 +0.64
+0.00 1 +0.00 ;
0. 02 04 06 08 1. 0. 02 04 06 08 1.
Distances, Time=0.3 Velocities, Time=0.3
+1.00 +1.28
+0.50 +0.64
+0.00 +0.00
0 02 04 06 08 1. 0. 02 04 06 08 1.

Figure 27: The atomic distances and velocities for Example R1 with ¢ = 0.0, ¢ = 0.15
and ¢ = 0.3. The vertical lines separate waves from constant states. ¢

carried out for 16000 particles. The results can be interpreted as follows:
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Figure 28: Various macroscopic fields for Example R1 (for fixed macroscopic times
as function of @). Vertical lines again separate waves from constant states. ©

1. There is a cold rarefaction wave, which runs to the left. On the left hand side

2. We find a second, right going wave, which has a head and a rear front. Within
this wave the motion generates microscopic oscillations, but there are no os-

of this wave no microscopic motion can be observed on the macroscopic scale.

cillations outside this wave.

3. Between the two waves there appears a new constant state with cold data.
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Figure 29: see Figure 28. ©
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+0.000 L4 +0.000 -/
0. 0.

Figure 30: The vertical lines mark the @-coordinate of the macroscopic points, for

which we evaluate the microscopic distribution functions in Figure 31. There holds
t=03. ¢

N = 16000
ma_final time = 3.0E-01 mi_final time = 4.8E+03
mi_time delta = 4.0E-03 mi_time_steps = 1200000
mv_win t_len = 9486 mv_winp_len = 80
df wint len = 9486 df winp_len = 126
df _win_prm = 100

Table 8: Numerical parameters for Example R1. ¢

Note that our concept of waves is borrowed from the theory of hyperbolic pde’s, so
that every wave connects two constant states. In particular, we interpret the region
with temperature as a single wave with head and rear front.
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Figure 31: Local distribution functions in the microscopic phase space for Example
R1, evaluated in the macroscopic points from Figure 30: Gray and Orange corre-
spond to microscopic distributions and macroscopic predictions, respectively. ¢

Figures 28 and 29 show various macroscopic fields, and allow the following interpre-
tations:

1. All macroscopic fields exhibit self similar profiles, i.e. they depend only on
¢:=(a—0.5)/t

2. Within the constant state between the waves we find non-constant values for
wave number and frequency. However, this values have no physical mean-
ing, because the temperature vanishes in this region. Similarly, there is no
reasonable interpretation for the jump of wave number in the first wave.

3. Within the second wave, the temperature 7' as well as the entropy S increase
with ¢. Finally, at the head front of the second wave, both fields jump back

to zero.

4. All macroscopic fields exhibit the same qualitative behavior, i.e. there are
smooth within the second wave, continuous at the rear front, but discontinuous
at the head front. In the context of hyperbolic systems such waves are called

composile waves.

In Figure 30 we fix six macroscopic points at £ = 0.3 for which we compare in Figure
31 the microscopic distribution functions with their macroscopic predictions. Again
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we observe a perfect coincidence between microscopic distribution functions and
macroscopic predictions. Thus we conclude that the microscopic oscillations are in
fact given by modulated traveling waves.

The appearance of composite waves contradicts the classical LAX-Theory for regular
hyperbolic systems (which means the system is strictly hyperbolic and all eigenvalues
are either linearly degenerate or genuinely nonlinear). According to this theory
there should be another constant state separating the rarefaction fan from the jump
discontinuity. Up to now there is no satisfactory explanation for the appearance
of composite waves, because we expect the modulation system to be regular in the
sense from above. However, we think that the appearance of composite waves is
caused by the fact, that the modulation system is not fully satisfied across the
jump discontinuity. To be more precise, we think that it is impossible to find four
independent jump conditions which are satisfied across the shock?. If this conjecture
is right, the composite wave cannot be explained within the classical theory for
hyperbolic systems.

2We have no doubt that the jump conditions of mass, momentum and energy are satisfied, but
we believe that there holds no further jump condition.
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Example R2

In this example we study the contact problem between a cold state and a binary
oscillation. To initialize the chain we choose v°%(a) = v°"*(a) = 0 and

,’,,odd(a) _ {—1 falls Ol<0.5,

+1 falls @ > 0.5,

reven(a) . +3 falls a < 0.5,
N +1 falls @ > 0.5.

Figure 32 shows the atomic data for N = 4000 at the macroscopic times ¢ = 0.0,

Distances, Time=0.0 Velocities, Time=0.0
+3.00
+1.00 —_— +0.00
-1.00
0. 0.5 1. 0. 0.5 1.
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Distances, Time=0.4 Velocities, Time=0.4
+4.39 +2.72 i
+1.70 +0.21
-0.99 -2.29
02 04 06 08 . 0. 02 04 06 08 1.

Figure 32: The atomic distances and velocities for Example R2, depicted for ¢ = 0.0,
t = 0.2 and t = 0.4. The vertical lines separate waves from constant states. ¢

N = 4000
ma_final time = 4.0E-01 mi_final time = 1.6E+03
mi_time delta = 1.0E-02 mi_time_steps = 160000
mv_win_t_len = 2529 mv_winp_len = 10
df wint len = 2529 df winp_len = 20
df _win_prm = 100

Table 9: Numerical parameters for Example R2. ¢
t = 0.2 and t = 0.4. We observe the creation of three waves each with two fronts:
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Figure 33: Various macroscopic fields for Example R2 with ¢ = 0.2 and £ = 0.4. The
vertical lines separate waves from constant states. ¢

The first wave runs to the left, the second wave spreads out both to the left and to
the right, and the third wave goes to the right. There is a constant state between
the second and the third wave, whereas the width of the constant state between the
first two waves is almost zero. However, the transition between the first and the
second wave can be read off from the envelopes of the microscopic oscillations.

We have depicted the profiles of various macroscopic fields in Figure 33. Again we
observe self similarity, so that all macroscopic fields depend only on ¢ = (@ — 0.5) /%.
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+4.39 +2.72
+1.70 +0.21
-0.99 -2.29

Figure 34: The vertical lines mark the @-coordinate of the macroscopic points, for
which we evaluate the microscopic distribution functions in Figure 35. There holds
t=04. o

Due to the qualitative behavior of these profiles we classify all three waves as com-
posite waves.

By construction, the third waves contacts a region with zero temperature. Surpris-
ingly, the same is right for the first two waves, because the temperature vanishes
in the constant state in between. In particular, the temperature increases with ¢
within the first wave, then it jumps to zero, jumps back to a positive value, and
finally it decreases with ¢ within the second wave. A similar qualitative behavior
can be observed for all other macroscopic fields.

In Figure 35 we compare microscopic distribution functions and their macroscopic
predictions in nine selected macroscopic points, which cover all three waves, see
Figure 34. Again we find a perfect matching between the microscopic and the
macroscopic data.
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Figure 35: Local distribution functions in the microscopic phase space for Example
R2, evaluated in the macroscopic points from Figure 34: Gray and Orange corre-
spond to microscopic distributions and macroscopic predictions, respectively. ¢
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Example R3

In this example we consider a RIEMANN-problem with oscillating data at both sides
of the initial jump. We set v°%(@) = v*¥** (@) = 0 and

rodd(z) = {0 falls @ < 0.38,

2 falls @ > 0.38,

povenia) = f 1 falls @ < 0.38,
3 falls @ > 0.38,

so that the initial jump is located at @ = 0.38. There resulting atomic data for
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Figure 36: The atomic distances and velocities for Example R3, depicted for ¢ = 0.0,
t = 0.22 and ¢ = 0.44. The vertical lines separate waves from constant states. ¢

N = 16000
ma_final time = 4.4E-01 mi_final time = 7.04E+03
mi_time_delta = 2.0E-02 mi_time_steps = 352000
mv_win_t_len = 2782 mv_winp_len = 40
df wint len = 475 df win p_len = 1
df _win _prm = 100

Table 10: Numerical parameters for Example R3. ¢
N = 16000 are represented in Figure 36, and Figure 37 contains the corresponding
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Figure 37: Various macroscopic fields for Example R3 with ¢ = 0.22 and ¢ = 0.44.
The vertical lines separate waves from constant states. <

profiles of N = 16000 various macroscopic fields. We can identify four consecutive
waves, which all are separated by constant states. At first we study the third and
the fourth wave, which we classify as rarefaction waves. Note that the temperature
remains constant within the fourth wave. We choose nine macroscopic points behind
the second wave, see Figure 38, and compare the microscopic distributions with
their macroscopic predictions. The results are presented in Figure 39. We observe
a perfect matching between microscopic and macroscopic data, and we conclude
that the microscopic oscillations in this region are again determined by modulated
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Figure 38: The vertical lines mark the @-coordinate of the macroscopic points, for
which we evaluate the microscopic distribution functions, see Figures 39 and 40.
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Figure 39: Local distribution functions in the microscopic phase space for Example
R3, evaluated for six macroscopic points behind the second wave, cf. Figure 38.
Gray and Orange correspond to microscopic distributions and macroscopic predic-
tions, respectively. Interpretation: The microscopic oscillations in this region can

be described by modulated traveling waves. ¢

traveling waves.

The microscopic oscillations within the first two waves cannot be described by mod-
ulated traveling waves, so that here the modulation theory fails. To justify this
assertion we shall consider Figure 40, where we compare again microscopic distri-
butions with their macroscopic predictions. This comparison is carried out in nine
macroscopic points, which are very close to each other, so that the macroscopic

predictions almost coincide.
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Figure 40: Local distribution functions in the microscopic phase space for Example
R3, evaluated in the neighborhood of the macroscopic point (f =0.44, a = 0.17),
cf. Figure 38. Gray and Orange as in Figure 39. Note that all distribution func-
tions describe the temporal statistics of a single particle. Interpretation: The
microscopic distributions oscillate around the macroscopic predictions. ¢

In contrast to the preceding examples, here the underlying space-time windows

contain only one particle. Therefore, all microscopic distributions in Figure 40
describe the temporal statistics of a single particle. These one-particle distributions

do no longer equal the macroscopic predictions: The distribution functions rather
oscillate around the macroscopic predictions. We mention that the same behaviour

can be found within the second wave.

The data from Figure 40 suggest, that every one-particle distribution function is
still determined by a traveling wave. However, these traveling waves now vary on
the microscopic scale. We thus suppose, that the microscopic oscillations within the
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first wave should be described in terms of WIGNER-measures, which allow the fast
modulation of wave number and frequency. We mention that WIGNER-measures
provide a complete and rigorous description of the thermodynamic limit for the
harmonic chain. For the details we refer to [Mac02, Mac03, Mie05]
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4 Conclusions

In the previous section we have studied the validity of modulation theory, and have
observed the following phenomena:

1. If all macroscopic fields are smooth, the oscillations in the atomic data can
be described in terms of modulated traveling waves, and the macroscopic dy-
namics is governed by the modulation system (6).

2. Moreover, we can use modulated traveling wavesto describe the microscopic
oscillations, which emerge when cold data evolve shocks.

3. If the shocks evolve from data with temperature, the microscopic oscillations
exhibit a more complicated structure, and modulation theory fails in this case.

Recall that these propositions are valid only under the following restrictions:

(i) The interaction potential ® is convex.
(ii) The macroscopic scale results from the hyperbolic scaling (4).

(iii) The initial data are given in form of modulated binary oscillations or, more
general, in form of modulated traveling waves.

All in all we can conclude that the modulation theory provides the right thermody-
namic description for a wide class of problems. In particular, the theory is able to
describe the creation of temperature from cold data as well as the transport of heat
in a nonlinear medium.

However, the macroscopic system (6) is not completely understood, because all
properties of (6) are determined by the equation of state U = U(r, k, S). This
equation of state depends on the interaction potential ®, and is almost never given
explicitly. For that reason we cannot characterize the macroscopic solutions of (6)
without relying on the corresponding microscopic solution of NEWTON’s equations
(2). In particular, it remains a challenging problem to find a macroscopic theory
that describes the solutions of RIEMANN problems.

Acknowledgement. We like to thank Alexander Mielke for several fruitful dis-
cussions.
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