Uniqueness in determining polygonal sound-hard obstacles with a single incoming wave

Johannes Elschner ${ }^{1}$, Masahiro Yamamoto ${ }^{2}$
submitted: 2nd June 2005

1 Weierstrass Institute	2	Department of Mathematical Sciences
for Applied Analysis and Stochastics		The University of Tokyo
Mohrenstrasse 39		$3-8-1$ Komaba Meguro
10117 Berlin	Tokyo 153	
Germany	Japan	
e-mail: elschner@wias-berlin.de	e-mail: myama@ms.u-tokyo.ac.jp	

No. 1038
Berlin 2005

2000 Mathematics Subject Classification. 35R30, 35B60.
Key words and phrases. inverse scattering problem, uniqueness, sound-hard, polygonal obstacle.

Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Mohrenstraße 39
10117 Berlin
Germany

Fax: $\quad+49302044975$
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

Abstract. We consider the two dimensional inverse scattering problem of determining a sound-hard obstacle by the far field pattern. We establish the uniqueness within the class of polygonal domains by a single incoming plane wave.

§1. Introduction and the main result.

Let $D \subset \mathbb{R}^{2}$ be a bounded domain such that $\mathbb{R}^{2} \backslash \bar{D}$ is connected, and let $k>0$ be the wave number. We consider scattering by the sound-hard obstacle D :

$$
\begin{gather*}
\Delta u+k^{2} u=0 \quad \text { in } \mathbb{R}^{2} \backslash \bar{D}, \quad \partial_{\nu} u=0 \quad \text { on } \partial D \tag{1.1}\\
u=u^{i}+u^{s}, \quad u^{i}(x)=\exp (i k x \cdot d), \quad d \in S^{1} \equiv\left\{x \in \mathbb{R}^{2} ;|x|=1\right\}, \tag{1.2}
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} \sqrt{|x|}\left(\partial_{|x|} u^{s}(x)-i k u^{s}(x)\right)=0 \tag{1.3}
\end{equation*}
$$

Here we set $i=\sqrt{-1}$, and $d \in S^{1}$ is the direction of the incoming plane wave $\exp (i k x \cdot d)$. Throughout this paper, we exclusively assume that an obstacle D under consideration is a polygonal domain, that is, the boundary ∂D is composed of finitely many open segments and points (i.e., vertices).

Let $k>0$ and $d \in S^{1}$ be arbitrarily fixed. There exists a unique solution $u(x)=$ $u(D)(x) \in H_{l o c}^{1}\left(\mathbb{R}^{2} \backslash \bar{D}\right)$ to (1.1) - (1.3) (e.g., Chapter 9 in McLean [17]), and $u(D)$ is smooth on any compact set in $\mathbb{R}^{2} \backslash \bar{D}$. Moreover, its far field pattern $u_{\infty}(D)$ is defined by

$$
\begin{equation*}
u^{s}(D)(x)=|x|^{-1 / 2} \exp (i k|x|)\left\{u_{\infty}(D)(x /|x|)+O\left(|x|^{-1}\right)\right\} \quad \text { as }|x| \longrightarrow \infty \tag{1.4}
\end{equation*}
$$

(e.g., Colton and Kress [6]). There is a vast literature on acoustic and electromagnetic scattering problems, and we refer the reader to Colton, Coyle and Monk [5], Colton and Kress [6], Kirsch [13], Lax and Phillips [15], Potthast [19], for example. In this paper, we will discuss the uniqueness in
Inverse scattering problem with sound-hard obstacles. Let D_{1}, D_{2} be bounded polygonal domains such that $\mathbb{R}^{2} \backslash \overline{D_{1}}$ and $\mathbb{R}^{2} \backslash \overline{D_{2}}$ are connected. Does

$$
\begin{equation*}
u_{\infty}\left(D_{1}\right)(x)=u_{\infty}\left(D_{2}\right)(x), \quad x \in S^{1} \tag{1.5}
\end{equation*}
$$

imply $D_{1}=D_{2}$?
Now we state our uniqueness result.
Theorem. Let $k>0$ and $d \in S^{1}$ be arbitrarily fixed. Then (1.5) implies $D_{1}=D_{2}$.
Cheng and Yamamoto [3] proved the uniqueness by two incoming plane waves under an extra "non-trapping" condition, which could be removed in Elschner and Yamamoto [10]. A similar uniqueness result for the impedance boundary condition was obtained in Cheng and Yamamoto [4]. The above theorem asserts that we need not change incoming
directions, so that a single choice of $d \in S^{1}$ already yields the uniqueness in the inverse Neumann problem. Earlier results in the sound-hard case concern the uniqueness for general C^{2}-domains and infinitely many incident waves (see Theorem 5.6 in Colton and Kress [6]) and the uniqueness for balls with a single incident direction (Yun [22]).

In the case of sound-soft obstacles where the boundary condition on ∂D is replaced by $u=0$, Alessandrini and Rondi [1] recently proved that the far field pattern for a single incident direction determines polygonal (and even polyhedral) domains uniquely. Further uniqueness results for the inverse Dirichlet problem in general domains can be found in [6, Theorems 5.1 and 5.2], Colton and Sleeman [7], Kirsch and Kress [14], Liu [16], Sleeman [21]. Moreover, see Chapter 6 in Isakov [12], and Isakov [11], Rondi [20].

The proof of our uniqueness result is carried out in Section 3 and combines arguments in Cheng and Yamamoto [3] with an idea similar to the proof of Lemma 3.7 in Alessandrini and Rondi [1]. Section 2 is devoted to a sequence of preliminary results, which are needed in the proof of the theorem and are partly taken from [3].

§2. Preliminaries.

Henceforth, for two distinct points $P, Q \in \mathbb{R}^{2}$, let $P Q$ denote the (non-empty) open segment with the boundary points P and Q. Moreover, for a polygonal domain D and a segment $P Q \in \mathbb{R}^{2} \backslash \bar{D}$ with $Q \in \partial D$, by $\angle(P Q, \partial D)$ we denote the least angle among the two angles in $\mathbb{R}^{2} \backslash \bar{D}$ formed by $P Q$ and ∂D at Q. We note that the polygonal domains under consideration are always the complements of unbounded domains.
Lemma 1. Let $\Omega \subset \mathbb{R}^{2}$ be a polygonal domain, and let $O A$ be one of its sides such that Ω is located at one side of $O A$. Let Π be the symmetric transform in \mathbb{R}^{2} with respect to the extended straight line of $O A$. Let $v \in H^{1}(\Omega)$ satisfy $\partial_{\nu} v=0$ on $O A$ and $\Delta v+k^{2} v=0$ in Ω. We set

$$
V\left(x_{1}, x_{2}\right)= \begin{cases}v\left(x_{1}, x_{2}\right), & \left(x_{1}, x_{2}\right) \in \Omega \\ v\left(\Pi\left(x_{1}, x_{2}\right)\right), & \left(x_{1}, x_{2}\right) \in \Pi(\Omega)\end{cases}
$$

Then $V \in H^{1}(\Omega \cup \Pi(\Omega) \cup O A)$ and $\Delta V+k^{2} V=0$ in $\Omega \cup \Pi(\Omega) \cup O A$. Moreover if $\partial_{\nu} v=0$ on any other side $B C$ of $\partial \Omega$, then $\partial_{\nu} v=0$ on $\Pi(B C)$.

The proof is directly done by the definition of H^{1}-solutions and the even extension of v with respect to $O A$.

Lemma 2. Let u satisfy (1.1) - (1.3). Then there do not exist two infinite straight half-lines $L_{1}, L_{2} \in \mathbb{R}^{2} \backslash \bar{D}$ such that L_{1}, L_{2} are not parallel and $\partial_{\nu} u=0$ on $L_{1} \cup L_{2}$.

Proof of Lemma 2. We set $u^{s}(x)=u(x)-\exp (i k x \cdot d)$. Then we can prove

$$
\lim _{|x| \rightarrow \infty}\left|\nabla u^{s}(x)\right|=0
$$

(e.g., Lemma 9 in Cheng and Yamamoto [3]). Now assume contrarily that there exist such non-parallel infinite straight half-lines $L_{1}, L_{2} \in \mathbb{R}^{2} \backslash \bar{D}$. Without loss of generality, we can set $L_{1}=\left\{\left(x_{1}, \alpha_{1} x_{1}\right) ; x_{1}>0\right\}$ and $L_{2}=\left\{\left(x_{1}, \alpha_{2} x_{1}\right) ; x_{1}>0\right\}$ with $\alpha_{1} \neq \alpha_{2}$. Therefore by $\partial_{\nu} u=0$ on $L_{1} \cup L_{2}$, we obtain

$$
\lim _{|x| \rightarrow \infty, x \in L_{j}}\left|\partial_{\nu} \exp (i k x \cdot d)\right|=0, \quad j=1,2 .
$$

That is,

$$
\lim _{|x| \rightarrow \infty, x \in L_{j}}\left|i k\left(d \cdot\binom{-\alpha_{j}}{1}\right) \exp (i k x \cdot d)\right|=0, \quad j=1,2 .
$$

Hence, since $k \neq 0$, we have

$$
d \cdot\binom{-\alpha_{j}}{1}=0, \quad j=1,2
$$

Since $\alpha_{1} \neq \alpha_{2}$ and $|d|=1$, this is impossible. Thus the proof of Lemma 2 is complete.
Lemma 3. Let $E \subset \mathbb{R}^{2}$ be a domain and let $v \in H_{l o c}^{1}(E)$ satisfy $\Delta v+k^{2} v=0$ in E. Let $L_{0} \subset L \subset E$ be two segments. Then $\partial_{\nu} v=0$ on L_{0} implies $\partial_{\nu} v=0$ on L.

This follows easily from the fact that the solution v to the homogeneous Helmholtz equation is real analytic in E (e.g., [6]).

We will further state two lemmas, which are proved similarly to Lemmas 6 and 7 in Cheng and Yamamoto [3]. We omit the proofs.

Lemma 4. Let $A=(\varepsilon, 0), O=(0,0), B=(\varepsilon \cos \theta, \varepsilon \sin \theta), E=\left\{x \in \mathbb{R}^{2} ; 0<\arg x<\right.$ $\theta,|x|<\varepsilon\}$ for $\varepsilon>0$ and $0<\theta<2 \pi$. We take $P \in E$ and set $\phi=\angle A O P \in(0, \theta)$. We assume that

$$
\begin{equation*}
\frac{\phi}{\theta} \notin \mathbb{Q} . \tag{2.1}
\end{equation*}
$$

Moreover, let $\widehat{E} \subset \mathbb{R}^{2}$ be an unbounded domain such that $E \subset \widehat{E}$. If $v \in H_{l o c}^{1}(\widehat{E})$ satisfies

$$
\begin{gather*}
\Delta v+k^{2} v=0 \quad \text { in } \widehat{E} \tag{2.2}\\
\partial_{\nu} v=0 \quad \text { on } O A \cup O B \tag{2.3}\\
\partial_{\nu} v=0 \quad \text { on } O P, \tag{2.4}
\end{gather*}
$$

then $v(x)-\exp (i k x \cdot d)$ does not satisfy the Sommerfeld radiation condition (1.3).
Lemma 5. Let the sector E and the points A, B, O be defined as in Lemma 4, and let $P \in E$ and $\phi=\angle A O P \in(0, \theta)$. Let $v \in H^{1}(E)$ satisfy (2.2) - (2.4) and let us assume that

$$
\frac{\phi}{\theta}=\frac{n}{m} \in \mathbb{Q},
$$

where $m, n \in \mathbb{N}, 1 \leq n \leq m-1$, and the greatest common divisor of m and n is one. Then:
(i) There exist $m-1$ points $P^{j} \in E, 1 \leq j \leq m-1$, such that $\angle A O P^{j}=\frac{j}{m} \theta$ and $\partial_{\nu} v=0$ on $O P^{j}$.
(ii) There exists a point $Q \in E$ such that $\angle A O P=\angle B O Q$ and $\partial_{\nu} v=0$ on $O Q$.

By $\lambda_{2}(\Omega)$ we denote the second smallest eigenvalue of $-\Delta$ in a bounded domain Ω with the homogeneous Neumann boundary condition. We note that the smallest eigenvalue is always 0 . Now we derive a lower bound for $\lambda_{2}(\Omega)$ for a triangular domain Ω. Henceforth $\triangle P Q R$ denotes the interior of the triangle with the vertices P, Q, R (which are assumed to be not collinear).

Lemma 6. Let $\operatorname{diam}(\triangle P Q R)=\max \{|P Q|,|P R|,|Q R|\}$. Then there exists an absolute constant $c_{0}>0$ such that

$$
\lambda_{2}(\triangle P Q R) \geq \frac{c_{0}}{|\operatorname{diam}(\triangle P Q R)|^{2}}
$$

for an arbitrary triangle $\triangle P Q R$.
The lower estimate is related with the constant in the Poincaré inequality, and there are many papers on this topic. Two relevant papers are Payne and Weinberger [18] and Bebendorf [2], where an explicit expression for the constant c_{0} is given for a general convex domain, and a gap in the proof in [18] is fixed in [2]. For completeness, we will give an easy proof for triangles which does not specify the contant $c_{0}>0$, but is sufficient for our purpose.

Proof of Lemma 6. Without loss of generality, let $P Q$ be the longest side, and we choose P as the origin $O=(0,0)$ and take the $x_{1} x_{2}$-coordinates such that $Q=$ $(q, 0)$ with $q>0$ and $R=(r, h)$ with $h>0$. Since $P Q$ is the longest side, we have $\operatorname{diam}(\triangle P Q R)=q$ and $0 \leq r \leq q$. In fact, if $r>q$, then $|P R|=\sqrt{r^{2}+h^{2}}>q$, which is impossible because $\operatorname{diam}(\triangle P Q R)=q$.

By the maximum-minimum principle (e.g., Courant and Hilbert [8]), we have

$$
\begin{aligned}
& \lambda_{2}(\triangle P Q R)=\inf \left\{\frac{\int_{\triangle P Q R}\left(\left|\frac{\partial u}{\partial x_{1}}\right|^{2}+\left|\frac{\partial u}{\partial x_{2}}\right|^{2}\right) d x_{1} d x_{2}}{\int_{\triangle P Q R} u^{2} d x_{1} d x_{2}} ;\right. \\
& \left.u \neq 0, \in H^{1}(\triangle P Q R), \quad \int_{\triangle P Q R} u d x_{1} d x_{2}=0\right\}
\end{aligned}
$$

Introducing the new independent variables $y_{1}=x_{1} / q$ and $y_{2}=x_{2} / h$, we set $v\left(y_{1}, y_{2}\right)=$ $u\left(x_{1}, x_{2}\right), Q_{1}=(1,0), R_{1}=(\rho, 1), \rho=r / q \in[0,1]$. Then, by $\frac{q^{2}}{h^{2}} \geq 1$ and the maximumminimum principle, we obtain

$$
\begin{aligned}
& \lambda_{2}(\triangle P Q R)=\frac{1}{q^{2}} \inf \left\{\frac{\int_{\triangle O Q_{1} R_{1}}\left(\left|\frac{\partial v}{\partial y_{1}}\right|^{2}+\frac{q^{2}}{h^{2}}\left|\frac{\partial v}{\partial y_{2}}\right|^{2}\right) d y_{1} d y_{2}}{\int_{\triangle O Q_{1} R_{1}} v^{2} d y_{1} d y_{2}} ;\right. \\
& \left.v \neq 0, \in H^{1}\left(\triangle O Q_{1} R_{1}\right), \quad \int_{\triangle O Q_{1} R_{1}} v d y_{1} d y_{2}=0\right\} \\
\geq & \frac{1}{q^{2}} \inf \left\{\frac{\int_{\triangle O Q_{1} R_{1}}\left(\left|\frac{\partial v}{\partial y_{1}}\right|^{2}+\left|\frac{\partial v}{\partial y_{2}}\right|^{2}\right) d y_{1} d y_{2}}{\int_{\triangle O Q_{1} R_{1}} v^{2} d y_{1} d y_{2}} ;\right. \\
& \left.v \neq 0, \in H^{1}\left(\triangle O Q_{1} R_{1}\right), \quad \int_{\triangle O Q_{1} R_{1}} v d y_{1} d y_{2}=0\right\} \\
= & \frac{1}{q^{2}} \lambda_{2}\left(\triangle O Q_{1} R_{1}\right) .
\end{aligned}
$$

Since $\triangle O Q_{1} R_{1}$ is parametrized by $\rho \in[0,1]$, we denote $\lambda_{2}\left(\triangle O Q_{1} R_{1}\right)$ by $\lambda_{2}(\rho)$. By Courant and Hilbert [8, Chapter VI.2.6], we see that $\lambda_{2}(\rho)$ is a continuous function in ρ and $\lambda_{2}(\rho)>0$ for $\rho \in[0,1]$. Therefore $c_{0} \equiv \min _{0 \leq \rho \leq 1} \lambda_{2}(\rho)>0$, which completes the proof of Lemma 6.

We conclude this section with the following fundamental property of a connected set; see Theorem 3.19.9 in Dieudonné [9, p.70] for the proof.

Lemma 7. Let E be a metric space, $A \subset E$ a subset, $B \subset E$ a connected set such that $A \cap B \neq \emptyset$ and $(E \backslash A) \cap B \neq \emptyset$. Then $\partial A \cap B \neq \emptyset$.

§3. Proof of Theorem.

First Step. Assume contrarily that $D_{1} \neq D_{2}$. For simplicity, we set

$$
u_{j}=u\left(D_{j}\right), \quad j=1,2 .
$$

By the Rellich theorem (e.g., Lemma 2.11 in [6]), we see from $u_{\infty}\left(D_{1}\right) \equiv u_{\infty}\left(D_{2}\right)$ that (e.g., Theorem 2.13 in [6])

$$
\begin{equation*}
u_{1}=u_{2} \quad \text { in the unbounded connected component of } \mathbb{R}^{2} \backslash \overline{\left(D_{1} \cup D_{2}\right)}, \tag{3.1}
\end{equation*}
$$

which is denoted by Ω. Moreover, we note that if $\partial \Omega \subset \overline{D_{1}} \cup \overline{D_{2}}$, then $\overline{D_{1}}=\overline{D_{2}}=\mathbb{R}^{2} \backslash \Omega$. This follows from the fact that both $\mathbb{R}^{2} \backslash \overline{D_{1}}$ and $\mathbb{R}^{2} \backslash \overline{D_{2}}$ are connected. Indeed, we obviously have $\Omega \subset \mathbb{R}^{2} \backslash\left(\overline{D_{1}} \cup \overline{D_{2}}\right) \subset \mathbb{R}^{2} \backslash \overline{D_{j}}, j=1,2$, and if there exists $x_{j} \in \mathbb{R}^{2} \backslash \overline{D_{j}}$ such that $x_{j} \notin \Omega$, we obtain $\partial \Omega \cap\left(\mathbb{R}^{2} \backslash \overline{D_{j}}\right) \neq \emptyset$ by Lemma 7 .

Hence, by $D_{1} \neq D_{2}$, there exists an open segment $P Q$ which is on $\partial \Omega \cap\left(\mathbb{R}^{2} \backslash \overline{D_{1}}\right)$ or on $\partial \Omega \cap\left(\mathbb{R}^{2} \backslash \overline{D_{2}}\right)$. Without loss of generality, we may assume the former case and so

$$
\begin{equation*}
\text { there is an open segment } P Q \subset \partial \Omega \cap\left(\mathbb{R}^{2} \backslash \overline{D_{1}}\right) \text { with } \partial_{\nu} u_{1}=0 \text { on } P Q \text {, } \tag{3.2}
\end{equation*}
$$

in view of (3.1) and $\partial_{\nu} u_{2}=0$ on ∂D_{2}. Then, by Lemma 3, we have $\partial_{\nu} u_{1}=0$ on the maximum extension of $P Q$, provided that the extension is in $\mathbb{R}^{2} \backslash \overline{D_{1}}$.

Henceforth we set

$$
\left\{\begin{array}{l}
\mathcal{G}_{1}=\{S ; S \text { is a finite open segment extended to maximum length } \tag{3.3}\\
\text { in } \left.\mathbb{R}^{2} \backslash \overline{D_{1}} \text { such that } \partial_{\nu} u_{1}=0 \text { on } S\right\} \\
\mathcal{G}_{2}=\left\{S ; S \text { is an infinite open segment in } \mathbb{R}^{2} \backslash \overline{D_{1}}\right. \text { such that } \\
\left.\partial_{\nu} u_{1}=0 \text { on } S\right\}
\end{array}\right.
$$

We now prove the following crucial
Lemma 8. The set \mathcal{G}_{1} is non-empty and consists of finitely many segments.
Proof of Lemma 8. If the segment $P Q$ from (3.2) cannot be extended to an infinite half-line in $\mathbb{R}^{2} \backslash \overline{D_{1}}$, then Lemma 3 implies that the extension of $P Q$ is in \mathcal{G}_{1}, hence $\mathcal{G}_{1} \neq \emptyset$.
If $P Q$ can be extended to an infinite open segment in $\mathbb{R}^{2} \backslash \overline{D_{1}}$, then by $P Q \subset \partial \Omega \cap$ $\left(\mathbb{R}^{2} \backslash \overline{D_{1}}\right.$), it follows that there exists a vertex R of $\partial \Omega$ such that $R \in \mathbb{R}^{2} \backslash \overline{D_{1}}$. In fact, any side of $\partial \Omega$ is a finite segment, and so the side containing $P Q$ has to be separated from the infinite extended line of $P Q$ at some point R. Then R is a vertex of $\partial \Omega$.

Hence there exists another point R_{1} such that the segment $R R_{1} \subset \partial \Omega \cap\left(\mathbb{R}^{2} \backslash \overline{D_{1}}\right)$ is not parallel to $P Q$, and by (3.1) and $\partial_{\nu} u_{2}=0$ on ∂D_{2}, we have $\partial_{\nu} u_{1}=0$ on $R R_{1}$. If $R R_{1}$ can be extended to an infinite open segment in $\mathbb{R}^{2} \backslash \overline{D_{1}}$, then Lemma 3 yields two non-parallel infinite half-lines in $\mathbb{R}^{2} \backslash \overline{D_{1}}$ where $\partial_{\nu} u_{1}=0$. This contradicts Lemma 2. Consequently, $R R_{1}$ cannot be extended to an infinite open segment in $\mathbb{R}^{2} \backslash \overline{D_{1}}$, so that $\mathcal{G}_{1} \neq \emptyset$.

Next we will prove the finiteness of \mathcal{G}_{1}. The proof is similar to [3]. Assume on the contrary that \mathcal{G}_{1} contains infinitely many segments. Then we can choose sequences of points $\left\{P_{j}\right\}_{j \in \mathbb{N}}$ and $\left\{Q_{j}\right\}_{j \in \mathbb{N}}$ such that

$$
\begin{equation*}
P_{j} \neq P_{j^{\prime}} \quad \text { if } j \neq j^{\prime}, \quad P_{j}, Q_{j} \in \partial D_{1}, P_{j} Q_{j} \in \mathbb{R}^{2} \backslash \overline{D_{1}} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{\nu} u_{1}=0 \quad \text { on } P_{j} Q_{j}, \quad j \in \mathbb{N} \tag{3.5}
\end{equation*}
$$

Here we note that $\left\{Q_{j}\right\}_{j \in \mathbb{N}}$ may not be mutually distinct.
Since the length of the curve ∂D_{1} is finite and $P_{j} \neq P_{j^{\prime}}$ if $j \neq j^{\prime}$, we can choose subsequences $\left\{P_{j}\right\}_{j \in \mathbb{N}}$ and $\left\{Q_{j}\right\}_{j \in \mathbb{N}}$, which are denoted by the same letters, such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} P_{j}=P_{\infty}, \quad \lim _{j \rightarrow \infty} Q_{j}=Q_{\infty} \tag{3.6}
\end{equation*}
$$

Without loss of generality, by further taking subsequences of $\left\{P_{j}\right\}_{j \in \mathbb{N}}$ and $\left\{Q_{j}\right\}_{j \in \mathbb{N}}$, we may assume that

$$
\begin{align*}
& P_{j}, Q_{j}, j \in \mathbb{N} \text {, are located at one side of } P_{\infty}, Q_{\infty} \text { respectively } \\
& \text { and } P_{j} \text { are not vertices of } D_{1} . \tag{3.7}
\end{align*}
$$

Then we note that

$$
\begin{equation*}
P_{j} P_{j+1}, \quad Q_{j} Q_{j+1} \subset \partial D_{1} \quad \text { for sufficiently large } j \in \mathbb{N} \tag{3.8}
\end{equation*}
$$

Moreover, we can verify that

$$
\begin{equation*}
\frac{\angle\left(Q_{j} P_{j}, \partial D_{1}\right)}{\pi} \neq \frac{1}{2}, \in \mathbb{Q}, \quad j \in \mathbb{N} \tag{3.9}
\end{equation*}
$$

provided that we extract subsequences if necessary.
In fact, let $\frac{\angle\left(Q_{j} P_{j}, \partial D_{1}\right)}{\pi} \notin \mathbb{Q}$ for some $j \in \mathbb{N}$. Then, by Lemma 4 , the scattered field $u_{1}(x)-\exp (i k x \cdot d)$ cannot satisfy (1.3), which is a contradiction. Next let us assume without loss of generality that $\frac{\angle\left(Q_{m} P_{m}, \partial D_{1}\right)}{\pi}=\frac{\pi}{2}$ for $m \in \mathbb{N}$. Then, since $\partial_{\nu} u_{1}=0$ on $P_{m} Q_{m}$ for $m \in \mathbb{N}$, and $\lim _{m \rightarrow \infty}\left|P_{m+1} P_{m}\right|=0$, we repeat applications of Lemma 1 with respect to the symmetry axes $P_{m} Q_{m}, m \in \mathbb{N}$, so that we can prove the following: There is a family $\left\{\ell_{j}\right\}_{j \in \mathbb{N}}$ of segments with $\partial_{\nu} u_{1}=0$ on $\ell_{j}, \ell_{j} \| P_{m} Q_{m}$ for all $j, m \in \mathbb{N}$, and such that $\cup_{j \in \mathbb{N}} \ell_{j}$ is dense in the set $U \equiv\left\{P ;\left|P P_{\infty}\right|<\delta\right\} \cap\left(\mathbb{R}^{2} \backslash \overline{D_{1}}\right)$ with sufficiently small $\delta>0$. Since the Laplace operator is invariant with respect to a rotation, we may take $\ell_{j}, j \in \mathbb{N}$, parallel to the x_{2}-axis, and may assume that, near P_{∞}, the boundary
∂D_{1} is on the x_{1}-axis. Then $\left|\partial_{\nu} u_{1}\right|=\left|\frac{\partial u_{1}}{\partial x_{1}}\right|=0$ on ℓ_{j} for all $j \in \mathbb{N}$. Hence, since $\frac{\partial u_{1}}{\partial x_{1}}$ is continuous in $\mathbb{R}^{2} \backslash \overline{D_{1}}$, we have that $\frac{\partial u_{1}}{\partial x_{1}}=0$ in the open set $U \subset \mathbb{R}^{2} \backslash \overline{D_{1}}$ defined above. Since $\Delta\left(\frac{\partial u_{1}}{\partial x_{1}}\right)+k^{2}\left(\frac{\partial u_{1}}{\partial x_{1}}\right)=0$ in U, by the classical unique continuation, we then see that $u_{1}\left(x_{1}, x_{2}\right)=v\left(x_{2}\right)$ for $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \backslash \overline{D_{1}}$. Moreover, from (1.2) we obtain $\frac{\partial v}{\partial x_{2}}(0)=0$. Therefore, by (1.1), v($\left.x_{2}\right)=\alpha \cos k x_{2}$ for some $\alpha \in \mathbb{C}$. On the other hand, condition (1.4) yields that $\lim _{|x| \rightarrow \infty}\left|u_{1}\left(x_{1}, x_{2}\right)-\exp (i k x \cdot d)\right|=0$, that is, $\lim _{|x| \rightarrow \infty}\left|\alpha \cos k x_{2}-\exp (i k x \cdot d)\right|=0$. In particular, we can set $x=\left(x_{1}, \frac{\pi}{2 k}\right)$ and let $x_{1} \rightarrow \infty$. Then $\lim _{x_{1} \rightarrow \infty}\left|\exp \left(i k\left(x_{1} d_{1}+\frac{\pi}{2 k} d_{2}\right)\right)\right|=0$, which is impossible. Thus the proof of (3.9) is complete.

By [3], under condition (3.9), we can construct triangles $\triangle P_{j} P_{j+1} R_{j} \subset \mathbb{R}^{2} \backslash \overline{D_{1}}$, $j \in \mathbb{N}$, which satisfy

$$
\begin{gather*}
\Delta u_{1}+k^{2} u_{1}=0 \quad \text { in } \quad \triangle P_{j} P_{j+1} R_{j} \tag{3.10}\\
\partial_{\nu} u_{1}=0 \quad \text { on } \partial\left(\triangle P_{j} P_{j+1} R_{j}\right) \tag{3.11}
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \operatorname{diam}\left(\triangle P_{j} P_{j+1} R_{j}\right)=0 \tag{3.12}
\end{equation*}
$$

For completeness, we will give the construction of the triangles at the end of the proof of Lemma 8.

Then we can yield a contradiction as follows, which completes the proof of Lemma 8. If u_{1} identically vanishes in $\triangle P_{j} P_{j+1} R_{j}$ for some $j \in \mathbb{N}$, then the classical unique continuation yields that $u_{1}=0$ in $\mathbb{R}^{2} \backslash \overline{D_{1}}$. On the other hand, (1.4) means that $\lim _{|x| \rightarrow \infty}\left|u_{1}\left(x_{1}, x_{2}\right)-\exp (i k x \cdot d)\right|=0$, which is not compatible with $u_{1} \equiv 0$. Therefore u_{1} does not vanish identically in $\triangle P_{j} P_{j+1} R_{j}$ for any $j \in \mathbb{N}$. Hence $k^{2}>0$ is an eigenvalue of $-\Delta$ in $\triangle P_{j} P_{j+1} R_{j}$ with the homogeneous Neumann boundary condition.

By Lemma 6, we have

$$
\lambda_{2}\left(\triangle P_{j} P_{j+1} R_{j}\right) \geq c_{0}\left|\operatorname{diam}\left(\triangle P_{j} P_{j+1} R_{j}\right)\right|^{-2}
$$

where $c_{0}>0$ does not depend on j. In terms of (3.12), we then obtain

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \lambda_{2}\left(\triangle P_{j} P_{j+1} R_{j}\right)=\infty \tag{3.13}
\end{equation*}
$$

Since $k \neq 0$ and $\lambda_{2}\left(\triangle P_{j} P_{j+1} R_{j}\right)$ is the smallest positive eigenvalue of $-\Delta$ with the boundary condition $\partial_{\nu} u=0$, we see that $k^{2} \geq \lambda_{2}\left(\triangle P_{j} P_{j+1} R_{j}\right), j \in \mathbb{N}$, in terms of (3.10) and (3.11). This is impossible by (3.13). To complete the proof of Lemma 8, we now give
Construction of $\triangle P_{j} P_{j+1} R_{j}$ satisfying (3.10) - (3.12).
We consider the following two cases separately.
Case a. $P_{\infty}=Q_{\infty}$.
Case b. $P_{\infty} \neq Q_{\infty}$.

Case a. By extracting a subsequence if necessary, we can assume that $Q_{j} \neq Q_{j^{\prime}}$ if $j \neq j^{\prime}$. Otherwise $Q_{j}=Q_{\infty}$ for $j \in \mathbb{N}$, which is impossible because $P_{j} P_{\infty}=P_{j} Q_{j} \subset$ $\mathbb{R}^{2} \backslash \overline{D_{1}}$. By $Q_{j} \neq Q_{j^{\prime}}$ if $j \neq j^{\prime}$, we may assume that Q_{j} are not vertices of ∂D_{1}, by extracting a subsequence if necessary. Hence, by (3.7) and (3.8), we have $P_{j} P_{\infty}$, $Q_{j} Q_{\infty} \subset \partial D_{1}$. Hence, since $P_{j} Q_{j} \subset \mathbb{R}^{2} \backslash \overline{D_{1}}$ by (3.4), we see that the three points P_{j}, Q_{j}, P_{∞} are not collinear, that is, they form a triangle. Moreover $\triangle P_{j} Q_{j} P_{\infty} \subset \mathbb{R}^{2} \backslash \overline{D_{1}}$. Therefore, setting $R_{j}=P_{\infty}$ for $j \in \mathbb{N}$, we see that $\triangle P_{j} Q_{j} P_{\infty}$ satisfies (3.10), (3.11) and (3.12). In fact, (3.10) and (3.11) are straightforward from (3.4) - (3.6). Finally, since $\lim _{j \rightarrow \infty}\left|P_{j} P_{\infty}\right|=\lim _{j \rightarrow \infty}\left|Q_{j} P_{\infty}\right|=0$ by (3.6), the lengths of all the sides of $\triangle P_{j} Q_{j} P_{\infty}$ tend to 0 as $j \rightarrow \infty$, so that (3.12) follows.

Case b. Let L be the side of D_{1} including $P_{\infty} P_{j}, j \in \mathbb{N}$. With (3.6) and (3.7), by further taking subsequences, we can assume that

$$
\begin{equation*}
\left|P_{j} P_{\infty}\right| \text { and }\left|Q_{j} Q_{\infty}\right| \text { are monotonically decreasing in } j \in \mathbb{N} . \tag{3.14}
\end{equation*}
$$

In terms of (3.6), if we choose the minor angle or the major angle suitably, then

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \angle\left(Q_{j} P_{j}, L\right)=\angle\left(Q_{\infty} P_{\infty}, L\right) \tag{3.15}
\end{equation*}
$$

By (3.9), there exist $m_{j}, n_{j} \in \mathbb{N}$ such that the greatest common divisor of m_{j} and n_{j} is one, $n_{j} / m_{j} \neq 1 / 2,1 \leq n_{j} \leq m_{j}-1$ and

$$
\begin{equation*}
\angle\left(Q_{j} P_{j}, L\right)=\frac{n_{j}}{m_{j}} \pi, \quad j \in \mathbb{N} \tag{3.16}
\end{equation*}
$$

In view of (3.15), the sequence $n_{j} / m_{j}, j \in \mathbb{N}$, converges. We have the two cases:
Case b-(i). $\sup _{j \in \mathbb{N}} m_{j}=\infty$.
Case b-(ii). $\sup _{j \in \mathbb{N}} m_{j}<\infty$.
Case b-(i). We choose a subsequence if necessary, so that $m_{j}>2$ and $m_{j} \rightarrow \infty$ as $j \rightarrow \infty$. Since D_{1} is a polygon, we can choose a point A such that $\triangle P_{\infty} A P_{1} \subset \mathbb{R}^{2} \backslash \overline{D_{1}}$.

Henceforth $j \in \mathbb{N}$ are arbitrary but sufficiently large. We can apply Lemma 5 twice, choosing $(O, A, B, P)=\left(P_{j}, P_{1}, P_{\infty}, Q_{j}\right),\left(P_{j+1}, P_{1}, P_{\infty}, Q_{j+1}\right)$. Then there exist points $R_{j} \in \mathbb{R}^{2} \backslash \overline{D_{1}}$ such that $\angle R_{j} P_{j+1} P_{j}=\frac{1}{m_{j+1}} \pi, \angle R_{j} P_{j} P_{j+1}=\frac{1}{m_{j}} \pi$ and $\partial_{\nu} u_{1}=0$ on $R_{j} P_{j+1} \cup R_{j} P_{j}$. Since $P_{j} P_{j+1} \subset P_{\infty} P_{1}$ and $\angle R_{j} P_{j+1} P_{j} \rightarrow 0, \angle R_{j} P_{j} P_{j+1} \rightarrow 0$ as $j \rightarrow \infty$, we see that $\triangle P_{j} P_{j+1} R_{j} \subset \triangle P_{\infty} A P_{1} \subset \mathbb{R}^{2} \backslash \overline{D_{1}}$ for large $j \in \mathbb{N}$. Therefore (3.10) and (3.11) follow. Since $\angle R_{j} P_{j} P_{j+1} \rightarrow 0$ and $\angle R_{j} P_{j+1} P_{j} \rightarrow 0$ as $j \rightarrow \infty$, we see that $P_{j} P_{j+1}$ is the longest side for large j. Therefore (3.12) also follows.

Case b- (ii). If necessary, we can again choose subsequences, so that we can assume that for some $m, n \in \mathbb{N}$,

$$
\begin{equation*}
\angle\left(Q_{j} P_{j}, L\right)=\frac{n}{m} \pi, \quad j \in \mathbb{N}, \quad \frac{n}{m} \neq \frac{1}{2} \tag{3.17}
\end{equation*}
$$

in terms of (3.9) and (3.15).
In this case, $P_{j} Q_{j} Q_{j+1} P_{j+1}$ forms a quadrilateral, because $P_{j} Q_{j} \| P_{j+1} Q_{j+1}$. Henceforth $P_{j} Q_{j} Q_{j+1} P_{j+1}$ means the interior of the quadrilateral. Then we can prove that, for all j sufficiently large,

$$
\begin{equation*}
P_{j} Q_{j} Q_{j+1} P_{j+1} \subset \mathbb{R}^{2} \backslash \overline{D_{1}} \tag{3.18}
\end{equation*}
$$

In fact, we may assume that P_{j} and Q_{j} are on one side of the polygonal boundary ∂D_{1} respectively. Then the trapezoidal domain $T_{j}=P_{j} Q_{j} Q_{\infty} P_{\infty}$ lies entirely in $\mathbb{R}^{2} \backslash \overline{D_{1}}$ if j is large enough. This follows from the fact that T_{j} cannot contain an open segment of ∂D_{1} with one end point on the closed segment $\overline{P_{\infty} Q_{\infty}}$. Otherwise $P_{\infty} Q_{\infty}$ cannot be approached by the segments $P_{m} Q_{m} \subset \mathbb{R}^{2} \backslash \overline{D_{1}}$ as $m \rightarrow \infty$. Thus (3.18) follows.

Let L_{j} be the infinite half-line starting at P_{j} such that L_{j} is not parallel to $P_{j} Q_{j}$ and the angle between L_{j} and L is $\frac{n}{m} \pi$. Since $\angle\left(Q_{j} P_{j}, \partial D_{1}\right)=\frac{n}{m} \pi \neq \frac{\pi}{2}$ by (3.9), such a straight line L_{j} exists. Then $L_{j+1}, P_{j} P_{j+1}$ and the half-line passing Q_{j} and starting at P_{j}, or $L_{j}, P_{j} P_{j+1}$ and the half-line passing Q_{j+1} and starting at P_{j+1} form a triangle $\triangle P_{j} P_{j+1} R_{j}$. By (3.6) and $P_{\infty} \neq Q_{\infty}$, we have

$$
\begin{equation*}
\inf _{j \in \mathbb{N}}\left|P_{j} Q_{j}\right|>0 \tag{3.19}
\end{equation*}
$$

Moreover, we see that $\angle R_{j} P_{j+1} P_{j}=\angle R_{j} P_{j} P_{j+1}=\frac{n}{m} \pi$, so that $\left|P_{j} R_{j}\right|=\left|P_{j+1} R_{j}\right|$ and

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left|P_{j} R_{j}\right|=\lim _{j \rightarrow \infty} \frac{\left|P_{j} P_{j+1}\right|}{2}\left(\cos \frac{n}{m} \pi\right)^{-1}=0 \tag{3.20}
\end{equation*}
$$

by $\lim _{j \rightarrow \infty}\left|P_{j} P_{j+1}\right|=0$.
It follows from (3.19) and (3.20) that R_{j} is on the segment $P_{j} Q_{j}$ or $P_{j+1} Q_{j+1}$. Therefore (3.18) implies that $\triangle P_{j} P_{j+1} R_{j} \subset \mathbb{R}^{2} \backslash \overline{D_{1}}, j \in \mathbb{N}$. Then Lemma 5 yields $\partial_{\nu} u_{1}=0$ on $P_{j+1} R_{j}$, and so (3.10) and (3.11) follow. Finally, by (3.6) and (3.20), condition (3.12) is seen. Thus the construction of $\triangle P_{j} P_{j+1} R_{j}$ satisfying (3.10) - (3.12) is complete.

Second Step. In this step, we will prove that the set \mathcal{G}_{2} defined in (3.3) is not empty. More precisely, we will find an infinite straight half-line Σ such that $\Sigma \subset \mathbb{R}^{2} \backslash \overline{D_{1}}$ and $\partial_{\nu} u_{1}=0$ on Σ. We will use an idea similar to the proof of Lemma 3.7 in Alessandrini and Rondi [1]. By Lemma 8, we can set $\mathcal{G}_{1}=\left\{S_{1}, \ldots, S_{N}\right\}$, where $S_{j}, 1 \leq j \leq N$, are finite segments. We note that, recalling (3.3),

$$
\begin{align*}
& S_{j} \subset \mathbb{R}^{2} \backslash \overline{D_{1}}, \text { the both end points are on } \partial D_{1} \text { and } \\
& \partial_{\nu} u_{1}=0 \quad \text { on } S_{j}, 1 \leq j \leq N \tag{3.21}
\end{align*}
$$

Let Ω_{∞} be the unbounded connected component of $\left(\mathbb{R}^{2} \backslash \overline{D_{1}}\right) \backslash \cup_{j=1}^{N} S_{j}$. Note that the latter set has only one unbounded component since its boundary is a bounded set. In fact, outside a sufficiently large disk, there cannot be a continuous curve connecting points from two different components, which would intersect the boundary of $\left(\mathbb{R}^{2} \backslash \overline{D_{1}}\right) \backslash$ $\cup_{j=1}^{N} S_{j}$ in view of Lemma 7.

We obviously have

$$
\begin{equation*}
\Omega_{\infty} \cap \bigcup_{j=1}^{N} S_{j}=\emptyset \tag{3.22}
\end{equation*}
$$

Choose a point $P \in \partial \Omega_{\infty}$ lying on a segment S of \mathcal{G}_{1}. We note that $P \in \mathbb{R}^{2} \backslash \overline{D_{1}}$. Let G^{+}be the unbounded connected component of $\left(\mathbb{R}^{2} \backslash \overline{D_{1}}\right) \backslash S$, and let G^{-}be its bounded connected component. Here the bounded component G^{-}is also uniquely determined.

In fact, the segment S cannot divide the connected open set $\mathbb{R}^{2} \backslash \overline{D_{1}}$ into more than two connected components; compare the first steps in the proof of Jordan's curve theorem in [9, Chap. 9, Appendix 4].

Let Π be the symmetric transform with respect to the extended straight line \widetilde{S} of S, and let us define E^{+}as the connneced component of $G^{+} \cap \Pi\left(G^{-}\right)$and E^{-}as the connected component of $G^{-} \cap \Pi\left(G^{+}\right)$whose closures contain P. We set $E=E^{+} \cup E^{-} \cup S$. Then ∂E consists of segments of $\partial D_{1}, \Pi\left(\partial D_{1}\right)$ and their end points, and since u_{1} is symmetric with respect to \widetilde{S}, by Lemma 1 we have $\partial_{\nu} u_{1}=0$ on ∂E. Since G^{-}is bounded and $E^{+}=\Pi\left(E^{-}\right)$, we see that E^{+}is also bounded. Therefore, since Ω_{∞} is the complement of some closed bounded connected set, it follows that $\mathbb{R}^{2} \backslash E^{+}$and Ω_{∞} contain $\{x ;|x|>\rho\}$ for sufficiently large $\rho>0$, that is, $\left(\mathbb{R}^{2} \backslash E^{+}\right) \cap \Omega_{\infty} \neq \emptyset$.

Moreover, we have $E^{+} \cap \Omega_{\infty} \neq \emptyset$. In fact, for sufficiently small $\varepsilon>0$, we see that $B_{\varepsilon}(P) \equiv\left\{x \in \mathbb{R}^{2} ;|x-P|<\varepsilon\right\} \cap E^{+} \neq \emptyset$ by the definition of E^{+}, because $P \in S \subset \partial G^{-}$ and Π is the symmetric transform with respect to \widetilde{S}. Furthermore, by $P \in \partial \Omega_{\infty}$, we have $B_{\varepsilon}(P) \cap \Omega_{\infty} \neq \emptyset$.

Consequently, by Lemma 7, we obtain

$$
\begin{equation*}
\partial E^{+} \cap \Omega_{\infty} \neq \emptyset \tag{3.23}
\end{equation*}
$$

Moreover, since ∂E^{+}is composed of finitely many segments and points, there exists an open segment $\ell \subset \Omega_{\infty} \cap \partial E^{+}$such that $\partial_{\nu} u_{1}=0$ on ℓ. Henceforth by a ray we mean an infinite open straight half-line. Using Lemma 3 and (3.22), it is now easy to see that the segment ℓ can be extended to a ray $\Sigma \subset \mathbb{R}^{2} \backslash \overline{D_{1}}$ belonging to the set \mathcal{G}_{2}. In fact, assume contrarily that the extension of ℓ to maximum length in $\mathbb{R}^{2} \backslash \overline{D_{1}}$ belongs to \mathcal{G}_{1}, so that $\ell \subset \cup_{j=1}^{N} S_{j}$. Then $\ell \subset \Omega_{\infty} \cap\left(\cup_{j=1}^{N} S_{j}\right)$, which contradicts (3.22).
Third Step. In this step, we will find a ray $\Sigma_{1} \in \mathcal{G}_{2}$ which is not parallel to Σ.
Case 1. Let the ray $\Sigma \supset \ell$ lie entirely in Ω_{∞}. Then, since ∂E^{+}is bounded and forms the boundary of a polygonal domain, there exist a point $P_{0} \in \Sigma$ and a segment $\ell_{0} \subset \Omega_{\infty} \cap \partial E^{+}$starting at P_{0}, which is not on Σ. Again, by Lemma 3 and (3.22), the extension Σ_{1} of ℓ_{0} belongs to \mathcal{G}_{2}. Note that Σ_{1} is not parallel to Σ.
Case 2. Let $\Sigma \not \subset \Omega_{\infty}$. Then there exists an intersection point of the ray Σ with $\cup_{j=1}^{N} S_{j}$. Since \mathcal{G}_{1} consists of finitely many segments, the set of the intersection points of Σ and $\cup_{j=1}^{N} S_{j}$ is also finite. Hence there is a "last" intersection point P_{0}, so that the subray $\Sigma_{0} \subset \Sigma$ starting at P_{0} lies entirely in Ω_{∞}. In fact, $\Sigma_{0} \cap \cup_{j=1}^{N} S_{j}=\emptyset$, and so $\Sigma_{0} \subset\left(\mathbb{R}^{2} \backslash \overline{D_{1}}\right) \backslash \cup_{j=1}^{N} S_{j}$. Since Ω_{∞} is the unbounded connected component of $\left(\mathbb{R}^{2} \backslash \overline{D_{1}}\right) \backslash \cup_{j=1}^{N} S_{j}$, we have that $\Sigma_{0} \subset \Omega_{\infty}$. Let $S_{0} \in \mathcal{G}_{1}$ be a segment with $P_{0} \in S_{0}$.

We now repeat the reflection argument in the second step with S_{0} in place of S, and obtain the corresponding bounded polygonal domains: $E_{0}^{-}, E_{0}^{+}=\Pi_{0}\left(E_{0}^{-}\right)$and $E_{0}=E_{0}^{-} \cup E_{0}^{+} \cup S_{0}$, where Π_{0} is the symmetric transform with respect to the extended straight line of S_{0}. Arguing as in the proof of (3.23), with replacing P by P_{0} and Ω_{∞} by Σ_{0}, we have that $E_{0}^{+} \cap \Sigma_{0} \neq \emptyset$ and $\left(\mathbb{R}^{2} \backslash E_{0}^{+}\right) \cap \Sigma_{0} \neq \emptyset$. Since Σ_{0} is connected, Lemma 7 yields that $\partial E_{0}^{+} \cap \Sigma_{0} \neq \emptyset$.

Since ∂E_{0}^{+}is the boundary of a bounded polygonal domain, there exist a point $Q_{0} \in \partial E_{0}^{+} \cap \Sigma_{0}$ and a segment $\ell_{0} \subset \Omega_{\infty} \cap \partial E_{0}^{+}$which starts at Q_{0} and is not on Σ_{0}. Again by Lemma 3 and (3.22), similarly to the second step, we can conclude that the segment ℓ_{0} can be extended to a ray $\Sigma_{1} \in \mathcal{G}_{2}$, which is not parallel to Σ.

Thus, in terms of Lemma 2, the assumption $D_{1} \neq D_{2}$ yields a contradiction. Hence, by the reduction to absurdity, the proof of the theorem is complete.

Acknowledgements. The first author gratefully acknowledges the support by the Department of Mathematical Sciences of the University of Tokyo during his stay in February of 2005. The paper was completed while the second author was visiting the Weierstrass Institute of Applied Analysis and Stochastics in March of 2005, and he thanks the institute for the kind invitation. His research was partly supported by Grant 15340027 from the Japan Society for the Promotion of Science and Grant 15654015 from the Ministry of Education, Cultures, Sports and Technology.

References

1. Alessandrini, G. and Rondi, L., Determining a sound-soft polyhedral scatterer by a single far-field measurement, Proc. Amer. Math. Soc. 133 (2005), 1685-1691.
2. Bebendorf, M., A note on the Poincaré inequality for convex domains, Z. Anal. Anwendungen 22 (2003), 751-756.
3. Cheng, J. and Yamamoto, M., Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves, Inverse Problems 19 (2003), 1361-1384.
4. Cheng, J. and Yamamoto, M., Global uniqueness in the inverse acoustic scattering problem within polygonal obstacles., Chin. Ann. Math. 25 B (2004), 1-6.
5. Colton, D., Coyle, J. and Monk, P., Recent developments in inverse acoustic scattering theory, SIAM Review 42 (2000), 369-414.
6. Colton, D. and Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory, the second edition, Springer, Berlin, 1998.
7. Colton, D. and Sleeman, B.D., Uniqueness theorems for the inverse problem of acoustic scattering, IMA J. Appl. Math. 31 (1983), 253-259.
8. Courant, R. and Hilbert, D., Methods of Mathematical Physics (English edition, Vol. 1), Interscience Publishers, New York, 1953.
9. Dieudonné, J., Foundations of Modern Analysis, Academic Press, New York, 1969.
10. Elschner, J. and Yamamoto, M., Uniqueness in determining polygonal sound-hard obstacles, Preprint UTMS 2004-6, Graduate School of Mathematical Sciences, The University of Tokyo.
11. Isakov, V., New stability results for soft obstacles in inverse scattering, Inverse Problems 9 (1993), 535-543.
12. Isakov, V., Inverse Problems for Partial Differential Equations, Springer, Berlin, 1998.
13. Kirsch, A., An Introduction to the Mathematical Theory of Inverse Problems, Springer, Berlin, 1996.
14. Kirsch, A. and Kress, R., Uniqueness in inverse obstacle scattering, Inverse Problems 9 (1993), 285-299.
15. Lax, P.D. and Phillips, R.S., Scattering Theory, Academic Press, New York, 1967.
16. Liu, C., An inverse obstacle problem: a uniqueness theorem for balls, in "Inverse Problems in Wave Propagation", 347-355, Springer, Berlin, 1997.
17. McLean, W., Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.
18. Payne, L.E. and Weinberger, H.F., An optimal Poincaré inequality for convex domains, Arch. Rat. Mech. Anal. 5 (1960), 286-292.
19. Potthast, R., Point Sources and Multipoles in Inverse Scattering Theory, Chapman \& Hall, Boca Raton, 2001.
20. Rondi, L., Unique determination of non-smooth sound-soft scatterers by finitely many far-field measurements, Indiana J. Math. 52 (2003), 1631-1662.
21. Sleeman, B.D., The inverse problem of acoustic scattering, IMA J. Appl. Math. 29 (1982), 113142.
22. Yun, K., The reflection of solutions of Helmholtz equation and an application, Commun. Korean Math. Soc. 16 (2001), 427-436.
