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Summary. This paper describes the modeling and the simulation of edge-emitting
quantum well (QW) lasers, based on the drift-diffusion equations and equations for
the optical field. By applying fundamental thermodynamic principles as the max-
imum entropy principle and the principle of local thermal equilibrium we derive a
self-consistent energy transport model which can be proven to meet the thermo-
dynamic requirements. It’s numerical solution is discussed explicitly, by starting
from the discretization procedure and by ending up with the iteration scheme. As
an example, we demonstrate the simulation of a long-wavelength ridge-waveguide
multi-quantum well laser.

1 Introduction

In modern semiconductor devices such as high power transistors or lasers ther-
mal effects caused by strong electric and optical fields and by strong recom-
bination play an important role and have to be included in the mathematical
models.

Indeed, there is a large variety of energy models for semiconductor devices.
Typically, these models base on the usual state equations and continuity equa-
tions for the carrier densities and on the balance of the total energy expressed
by the equation

∂tu+ ∇ · ju = −γ (1)

for the density u and the current density ju of this total energy, where γ
counts for the radiation which is emitted from the device. Furthermore, dif-
ferential relations for u and general thermodynamic relations for ju are used
to transform the energy balance equation (1) into a heat flow equation [1]

ch∂tT −∇ · (κL∇T ) = H, (2)

where ch is the heat capacity and κL the heat conductivity. While the heat flow
equation (2) with the description of the source term H is well established, the
discussion about its relation to the conservation law of energy is still ongoing.

In this contribution, based on an expression for the density of the free
energy, we derive a thermodynamics-based system of evolution equations for
edge-emitting quantum well lasers in a deductive way. Thereby we only apply
first principles like the entropy maximum principle and the principle of partial
local equilibrium [2]. Moreover, we assume that the free energy is the sum of
the internal free energy, of the electrostatic field energy and of the energy
of the optical field. For the simulation of semiconductor lasers the energy
transport model is coupled to the evolution equations for the optical field in a
self-consistent manner. The resulting energy transport model is in this explicit
form new to our knowledge and can be shown to meet the thermodynamic
requirements. Boundary conditions as well as proper discretization schemes
will be discussed too. Furthermore, the numerical solution procedure will be
discussed. The complete energy transport model has been implemented in
WIAS-TeSCA [3], a numerical code for simulation of semiconductor devices.
On this base, we demonstrate the simulation of long-wavelength edge-emitting
QW lasers, with a special focus on the self-heating of the device and the
modulation response.
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2 Basic Equations

Let Ω ⊂ R
2 be the transverse cross section of the (possibly hetero-) device

under consideration. By ∇ we denote the transverse part of the Nabla opera-
tor, i. e., the Nabla operator with respect to r = (x, y) ∈ Ω.
We denote by n and p the densities of the mobile charge carriers, electrons
and holes, respectively, and by C the net doping profile. For shorter notation
these densities as well as the band-edge densities of states Nc and Nv are
scaled by a reference density Nref . The lattice temperature T is scaled by a
reference temperature Ts. Moreover, the electrostatic potential ϕ as well as
the quasi-Fermi potentials fn and fp are scaled by uTs

= kBTs/q and the
conduction and valence band edges ec and ev by kBTs. Here kB and q are
Boltzmann’s constant and the elementary charge, respectively.

2.1 Poisson Equation

The electrostatic potential ϕ satisfies Poisson’s equation

−∇ · (ε∇ϕ) = C + p− n (3)

in the transverse cross section Ω of the laser. Here ε = ε(r) is the static
dielectric constant in the possibly heterogeneous semiconductor material.

2.2 Transport Equations

The charge carrier densities n and p have to fulfill the continuity equations

∂n

∂t
−∇ · jn = −R , (4)

∂p

∂t
+ ∇ · jp = −R (5)

for (t, r) ∈ R
1
+ × Ω, i.e. for all times t > 0 in the transverse cross section.

jn denotes the electron current density and jp the hole current density. The
recombination rate R in (4), (5) involves all non-radiative and radiative re-
combination processes, as in particular the Shockley-Read-Hall recombination
rate RSRH , the Auger recombination rate RAUG and the spontaneous radia-
tive recombination rate Rsp. The recombination processes stimulated by the
optical field are included by the stimulated recombination rate Rstim

Rstim = vgg|χ|2Ns (6)

where vg denotes the group velocity and g the material gain. The modal
intensity distribution |χ|2 and the photon number Ns will be discussed in
subsection 2.4.

As a consequence of the Poisson equation (3) and the continuity equations
(4), (5) we infer the current conservation equation

∇ · j = 0 , j = −ε∇∂ϕ

∂t
+ jn + jp (7)

to hold in R
1
+ ×Ω.
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2.3 State Equations

The quasi-Fermi potentials are linked with the carrier concentrations by means
of Fermi-Dirac statistics:

n = NcF1/2

(

ϕ− fn − ec

T

)

, (8)

p = NvF1/2

(

ev + fp − ϕ

T

)

. (9)

The size quantization by the quantum wells essentially induces a modified
density of states. We simulate this by multi-band kp-models to obtain at least
net coefficients which model the QW’s like classical materials with specific
material parameters. This has been extensively described recently in [4].

2.4 Optics

Assuming stable transverse waveguiding allows us to express the main com-
ponent of the optical field vector E(r, z, t)

E(r, z, t) = eiωt
[

Ψ+(z, t)e−ikz + Ψ−(z, t)eikz
]

χ(r) (10)

in terms of the transverse main mode χ. Transverse modes χ are eigensolutions
of the waveguide equation

[

∇2 +
ω2

c2
εopt(ω, r) − β2

]

χ(r) = 0, (11)

corresponding to their respective (complex) eigenvalues β.1 Here

εopt(ω, r) = (nr(ω, r) + ic [g(ω, r) − αbg(r)] /2ω)2

denotes the complex dielectric function of the pumped laser averaged over
one section in longitudinal direction. Via the gain g(ω, r) , the background
absorption αbg(r) and the refractive index nr(ω, r) the dielectric function εopt

depends on almost all properties of the device and its operating state, as well
as on properties of the optical field, as its polarization and its frequency. In
consequence the eigenvalues β as well as the eigenfunctions χ will parametri-
cally depend on the carrier density distribution and on the temperature profile
as well, both of which can change in time. By modeling this we allow for the
corresponding changes of the eigenvalues and of the optical field profile, but
we do not allow for explicit time derivatives of β and χ throughout this paper.
This is at least due to the very different time scales of the optical and the
electro-thermal processes, the latter of which slave the optical processes.

In 2D-simulations with WIAS-TeSCA, longitudinal properties are only
considered by assuming a longitudinally homogeneous power distribution,

1 Eq. (11) is formulated here for TE-polarization. TM polarization can be counted
for as well, without restrictions for the considerations here, but with a different
version of (11).
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which is approximately met in Fabry-Perot lasers or in edge-emitting lasers
with properly designed Bragg gratings [5]. In our calculations the fundamen-
tal mode has been involved, the number of photons Ns of which is balanced
by a corresponding photon rate equation

Ṅs = vg(2=mβ − α0 − αm)Ns + rsp. (12)

In (12) Ṅs is short notation for the time derivative of Ns, r
sp is short for the

spontaneous emission into the mode, α0 are the longitudinal scattering losses
and

αm =
1

2L
ln

1

R0RL
(13)

are the output losses for a Fabry-Perot laser with facet reflectivities R0 at
z = 0 and RL at z = L, e.g.. The energy density loss γ

γ = ~ωvg(α0 + αm)|χ|2Ns. (14)

counts the radiation energy which is emitted from the device per time, either
by the lasing mode trough the end facets (αm) or by the excitation of other
modes (α0).

The modal gain 2=mβ is the imaginary part of the corresponding eigen-
value subject to (11). For the modal gain 2=m(β) an alternative expression
can be obtained from (11) in first order of perturbation theory:

2=m(β) =

∫

(g − αbg)|χ|2dΩ. (15)

The photon rate equation (12) is valid for Fabry-Perot and Bragg res-
onators with a homogeneous longitudinal field distribution. The intensity dis-
tribution of the lasing mode along the transverse plane is readily obtained
by multiplying Ns with the (suitable normalized) transverse intensity distri-
bution |χ|2 of the lasing mode. The photon flow over the boundary of the
transverse domain Ω is neglectible as long as the lasing mode is a guided
mode, what we will assume throughout this paper.

3 Heating

Recently, the drift-diffusion model (3)-(5) has been coupled to a heat transport
equation [2]. In this section we want to motivate the heat transport equation
and the resulting energy model by considering fundamental thermodynamic
requirements. For the sake of simplicity we restrict us here to the case of
Boltzmann statistics.

3.1 Free Energy, Entropy, Energy

We define densities of free energy f , entropy s and energy u by
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f =
ε

2
|∇ϕ|2 + cLT (1 − logT ) + urad − Tsrad

+n[T (log
n

Nc
− 1) + ec] + p[T (log

p

Nv
− 1) − ev] , (16)

s = − ∂f

∂T
= nPn + pPp + cL logT + srad, (17)

u = f + Ts =
ε

2
|∇ϕ|2 + cL T + unn+ upp+ urad. (18)

Here cL is the lattice heat capacity, the prime ′ means differentiation with
respect to temperature T and

Pn = 1 + Rn − log

(

n

Nc

)

− e′c, Rn = T (logNc)
′, (19)

Pp = 1 + Rp − log

(

p

Nv

)

+ e′v, Rp = T (logNv)
′, (20)

are the entropies per electron and hole, respectively. The energies per particle
un and up are defined by

un = T (Rn − 1) + ec − Te′c (21)

up = T (Rp − 1) − ev + Te′v (22)

for electrons and holes, respectively. For completeness we note (eg = ec − ev):

un + up = T (Rn +Rp) + eg −Te′g = T (Pn − 1) +T (Pp − 1) + (fp − fn). (23)

Throughout this paper we assume Rn and Rp to be independent on T . The
energy density urad and the entropy density srad of the optical field are given
by (c.f. [6])

urad =

∫

ρrad~ω|χ|2Nsd~ω , (24)

srad = k

∫

ρrad|χ|2 [(Ns + 1) log(Ns + 1) −Ns log(Ns)] d~ω, (25)

where ρrad =
8πn3

r(~ω)2

h3c3 is the density of states for the photons [7].

Then, we define free energy F , entropy S and energy U by

F =

∫

Ω

f dΩ , S =

∫

Ω

s dΩ , U =

∫

Ω

u dΩ . (26)

To find equilibrium values for n, p and T we maximize the entropy S under
the constraints

Q =

∫

Ω

(C + p− n) dΩ = const., U = const. . (27)

Following Lagrange’s method, this can be done by maximizing the augmented
entropy
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Sλ = S + λ Q + λ3U . (28)

The resulting Euler-Lagrange-equations read

λ3 = − 1

T
, qn,pλ = ∂n,p

[

S − U

T

]

, qp = 1 = −qn, log

(

Ns + 1

Ns

)

=
~ω

T
,

with constant Lagrange multipliers λ and λ3. Solving these equations for n, p
and Ns, we arrive at the Bose distribution for the photons 2

ns =
1

1 − exp
(

~ω
T

) . (29)

and the state equations (8) and (9) but according to Boltzmann statistics:

n = Nc exp

(

ϕ− fn − ec

T

)

, p = Nv exp

(

ev + fp − ϕ

T

)

(30)

and with coinciding constant equilibrium quasi-Fermi potentials defined by
(c.f. (8), (9) )

fn

T
=
fp

T
= λ. (31)

3.2 Current Densities

According to the principle of local thermal equilibrium we assume the state
equations (8), (9) respectively (30), to be hold also in the case of different,
non constant quasi-Fermi potentials fn, fp and non-homogeneous temperature
T . Moreover, we suppose the vector ∇λ = (∇λ1,∇λ2,∇λ3) of gradients of
Lagrange multipliers

λ1 =
fn

T
, λ2 =

fp

T
, λ3 = − 1

T
(32)

to be driving force towards to equilibrium, i. e., we make the ansatz

j = (0, 0, ϕḊ) − L ∇λ, j = (jn, jp, ju) , (33)

with a (3 × 3) conductivity-matrix L, which has to be positively definite and
symmetric in view of the second law of thermodynamics and Onsager’s reci-
procity relations. Ḋ = −ε∇ϕt is the electric displacement current density. 3

We specify L such that (33) becomes

2 In [8] a generalization of (29) can be found. There, ns is the average optical-
mode occupation factor of photons which are in (a hypothetical) equilibrium
with a biased semiconductor, where the carriers separated by fp − fn. Such a
hypothetical equilibrium can only occur if the photons are associated with an
optical cavity that is closed and loss-free, except for optical transitions between
conduction and valence band [8].

3 Note that due to perfect optical waveguiding the optical energy flow is only along
the z-axis and hence doesn’t occur in the flow (33) along the transverse plane.
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jn = T
[

− (σn + σnp)∇λ1 + σnp∇λ2 + [σn(Pn − λ1) − σnp(λ1 − λ2)]∇λ3

]

,

jp = T
[

− (σp + σnp)∇λ2 + σnp∇λ1 − [σp(Pp + λ2) + σnp(λ1 − λ2)]∇λ3

]

,

ju = −ϕε∇ϕt − T 2[κL∇T + (Pn − λ1)
2 + (Pp + λ2)

2 + σnp(λ1 − λ2)
2]∇λ3

+T [σn(Pn − λ1) − σnp(λ1 − λ2)]∇λ1

−T [σp(Pp + λ2) − σnp(λ2 − λ1)]∇λ2 , (34)

where

σn = a nµn, σp = a pµp , σnp = σpn = a npµnµp b , (35)

b =
c1[1 + c2(n+ p)/2]

1 + c3(n+ p)/2
, a =

1

1 + (pµn + nµp)b
, (36)

and µn, µp, c1, c2, c3 and κL are material parameters (see [9, 10]). It is worth to
note, that the appearance of ϕε∇ϕt in ju is a feature of our model. Replacing
∇λ by the more familiar vector (∇fn,∇fp,∇T ), we can rewrite the current
densities as

jn = −σn(∇fn − Pn∇T ) + σnp[∇(fp − fn) + (Pn + Pp)∇T ] , (37)

jp = −σp(∇fp + Pp∇T ) + σpn[∇(fn − fp) − (Pn + Pp)∇T ] , (38)

ju = −ϕε∇ϕt − κL∇T − (PnT − fn)jn + (PpT + fp)jp . (39)

For later use we define here also the temperature current density jT and the
heat current density jq by

jT = −κL∇T − T (Pnjn − Ppjp) (40)

jq = −κL∇T. (41)

3.3 Heat Equation

Now we can transform the energy balance equation (1) into a heat flow equa-
tion. With the heat capacity

ch = cL + nu′n + pu′p , (42)

we find by using the current conservation equation (7) and the definition of
the energy u,

∂u

∂t
= ε∇ϕ · ∇ϕt + chTt + ntun + ptup + ∂turad

= ε∇ϕ · ∇ϕt + ϕ(∇ · (ε∇ϕt) + pt − nt) + chTt + ntun + ptup + ∂turad

= ∇ · (ϕε∇ϕt) + chTt + nt(un − ϕ) + pt(up + ϕ) + ∂turad . (43)

We note

un − ϕ = T (Pn − 1) − fn (44)

up + ϕ = T (Pp − 1) + fp. (45)
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We insert now (43) and (39) in the energy balance equation (1):

chTt +nt(un−ϕ)+pt(up +ϕ)+∂turad +∇· jT +∇· (fnjn +fpjp) = −γ. (46)

Hence

chTt + ∇ · jT = −nt(un − ϕ) − pt(up + ϕ) − ∂turad −∇ · (fnjn + fpjp) − γ

= −(un − ϕ)(∇ · jn +R) + (up + ϕ)(∇ · jp + R)

−∂turad −∇ · (fnjn + fpjp) − γ

= (un + up)R− ∂turad − γ − TPn∇ · jn + TPp∇ · jp
+T (∇ · jn −∇ · jp) − jn · ∇fn − jp · ∇fp

= (un + up)R− ∂turad − γ − TPn∇ · jn + TPp∇ · jp
+T∇ · (jn − jp) − jn · (∇fn − Pn∇T )

−jp · (∇fp + Pp∇T ) − Pn∇T · jn − Pp∇T · jp

Replacing now jT by jq (41) we find

chTt + ∇ · jq = ∇ · T (Pnjn − Ppjp) − TPn∇ · jn − Pn∇T · jn
+TPp∇ · jp + Pp∇T · jp + T∇ · (jn − jp)

+(un + up)R − ∂turad − γ

−jn · (∇fn − Pn∇T ) − jp · (∇fp + Pp∇T )

and by straightforward calculation finally the desired heat flow equation (2)

chTt −∇ · κL∇T = H (47)

with the heat source term H

H = T∇Pn · jn − T∇Pp · jp + T∇ · (jn − jp)

−jn · (∇fn − Pn∇T ) − jp · (∇fp + Pp∇T )

+(un + up)R − ∂turad − γ. (48)

The first two terms on the right hand side of (48) represent the Thomson-
Peltier heat, which can be positive and negative as well. The term in the 2nd
row of (48) is the Joule heating which is stictly positive. The 1st term in the
last row of (48) is the recombination heat. Each recombining electron-hole pair
sets free its energy un + up which is immediately transferred to the lattice,
unless it is transferred to the radiation field. This latter radiative part does
not heat the device and has therefore to be subtracted from the heat source,
as indicated by the appearance of −∂turad in (48). Similarly, γ counts the
total energy loss from our system, see Eq. (1), which cools down the device
too. So far, in the stationary case (∂tD = 0) our model does not differ from
[1] and [11]. Concerning the non-stationary case there are differences to [1]
and [11], with respect to the electrostatic potential ϕ and with respect to the
definition of u and ju, which is required by the conservation of energy.

In particular, H contains contributions Hrad from radiative processes:
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Hrad = [Rsp +Rstim] (un + up) − ∂turad − γ (49)

which have to be modeled in the following. Thereby we will restrict our con-
sideration to the lasing mode, because it gives the main contribution above
threshold. For this, we note

T∂tsrad = ∂turad = ~ω|χ|2Ṅs. (50)

For the lasing mode the energy balance (50) is governed by the global equa-
tion (12). To get the local heat sources we have to model the localization of
Ṅs in the r-plane. For this purpose we assume that the carriers generated
by absorption of the lasing field transfer their energy to the lattice directly,
without traveling. We use (15) and remove the integral

∫

dΩ from all terms
to find in this approximation

∂turad = ~ωvg(g − αbg)|χ|2Ns − γ + ~ω|χ|2rsp, (51)

for the energy density averaged along the laser axis. 4 Then, we obtain

Hrad = ~ω|χ|2vgαbgNs − vgg|χ|2Ns [~ω − (up + un)] (52)

− [~ωrsp − (up + un)Rsp]

which is the net heat source caused by the lasing mode. The first terms in
(52) describes the background absorption of radiation. It is a strictly positive
contribution which dominates Hrad above the laser threshold. The second
term in (52) is caused by a possible incomplete energy transfer from the carrier
ensemble to the radiation field during stimulated processes, which heats the
device. The last term deals with the spontaneous emission and can only be
discussed reasonably together with the complete radiation field, i.e. including
the incoherent radiation field too, which we can not calculate at this time. In
our simulations we have dropped the two last terms of (52) for simplicity. 5

3.4 Entropy Balance

We first note the following relations between the entropies of the electron- and
hole subsystem sn = nPp, sp = pPp and the specific entropies per particle Pn,
Pp:

4 The change ∂turad of the energy density of the total radiation field might be
the sum over the balances (51) for all modes, at least in the case if they are
uncorrelated.

5 This corresponds to the assumption, that all the radiative recombination pro-
cesses directly create/annihilate photons, without energy loss. However, also the
absorption of the incoherent field would heat the device, but it’s calculation re-
mains an open problem here.



10 Bandelow, Gajewski, Hünlich

∂sn

∂n
= Pn + n

∂Pn

∂n
= Pn − n

1

n
= Pn − 1 (53)

∂sp

∂p
= Pp + p

∂Pp

∂p
= Pp − p

1

p
= Pp − 1 (54)

∂(sn + sp)

∂T
= n

∂Pn

∂T
+ p

∂Pp

∂T
= n(

Rn

T
− e′′c ) + p(

Rp

T
+ e′′v )

=
n

T

∂un

∂T
+
p

T

∂up

∂T
(55)

Equipped with that we differentiate now the entropy density (17) with respect
to time

∂s

∂t
= cLTt/T + nt(Pn − 1) + pt(Pp − 1) +

(

n

T

∂un

∂T
+
p

T

∂up

∂T

)

Tt + ∂tsrad

= nt(Pn − 1) + pt(Pp − 1) + chTt/T + ∂tsrad

= nt(Pn − 1) + pt(Pp − 1) +
1

T
∇ · κL∇T +H/T + ∂tsrad

= (Pn − 1)(∇ · jn − R) − (Pp − 1)(∇ · jp +R) +
1

T
∇ · κL∇T

+∇Pn · jn −∇Pp · jp + ∇ · (jn − jp)

− 1

T
(jn · (∇fn − Pn∇T ) − jp · (∇fp + Pp∇T ))

+
1

T
(un + up)R + ∂tsrad − 1

T
∂turad − γ/T

= ∇ · (Pnjn − Ppjp) +
1

T
∇ · κL∇T

− 1

T
(jn · (∇fn − Pn∇T ) − jp · (∇fp + Pp∇T ))

+

(

un + up

T
− Pn + 1 − Pp + 1

)

R+ ∂tsrad − 1

T
∂turad − γ/T

= ∇ ·
(κL

T
∇T + Pnjn − Ppjp

)

+
1

T 2
· κL|∇T |2

− 1

T
(jn · (∇fn − Pn∇T ) + jp · (∇fp + Pp∇T ))

+(fp − fn)R+ ∂tsrad − 1

T
∂turad − γ/T, (56)

where we have used (23) and the identity

1

T
∇ · κL∇T = ∇ · κL

T
∇T +

1

T 2
· κL|∇T |2. (57)

Eq. (56) is a continuity equation for the entropy density s

∂s

∂t
+ ∇ · js = d/T, (58)

with the entropy current density js = jT /T defined by (40) and the dissipation
rate d
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d =
κL

T
|∇T |2 + σn|∇fn − Pn∇T |2 + σp|∇fp + Pp∇T |2

+σnp|∇(fn − fp) − (Pn + Pp)∇T |2 + (fp − fn)R− γ. (59)

The dissipation rate d in (59) is always positive for a device which is isolated
from the outside world (γ = 0). Therefore, by partial integration of (58) and
supposing no-flux boundary conditions and γ = 0 it follows, according to the
second law of thermodynamics,

dS

dt
=

∫

Ω

ds

dt
dΩ =

∫

Ω

d

T
dΩ ≥ 0 . (60)

In conclusion, as a feature, we are able to proof the thermodynamic correctness
of our model in view of the second law of thermodynamics (60).

4 Boundary Conditions

Let Γ = ∂Ω be the boundary of the transverse cross section Ω of the device
under consideration and let ν be the normal unit vector at any point rΓ ∈ Γ .
In order to describe non equilibrium situations we have to complete the system
(3), (4), (5), (47) and (11) of coupled nonlinear partial differential equations
by boundary conditions. To include homogeneous and non-homogeneous as
well Dirichlet- as Neumann-conditions, we choose the form

ν · (ε∇ϕ) + αϕ(ϕ− ϕΓ ) = 0 ,

ν · jn + αn(n− nΓ ) = 0 ,

ν · jp − αp(p− pΓ ) = 0 , (61)

ν · jq + αT (T − TΓ ) = 0 ,

ν · ∇χ+ αχ(χ− χΓ ) = 0 ,

where αϕ, αn, αp, αT , αχ ∈ (Γ → R
1) and ϕΓ , nΓ , pΓ , TΓ , χΓ ∈ (Γ → R

1) are
given coefficients and boundary values, respectively. By choosing α very small
one can manage homogeneous Neumann-conditions, which means that there
will be no flux over the boundary of the domain. This applies e.g. for the
temperature at the surface-to-the-air contacts of a device. On the other hand,
by choosing α very large one can manage Dirichlet-conditions, which fix the
quantity to the value given at the boundary. The latter applies e.g. for the
temperature at the heat-sink contact of the device. Finite values of α model
at least finite penetration depth’s of the quantity into the outside world.
In some situations, for instance to describe the interaction of the device with
outer circuits, it is appropriate to replace the boundary condition for the
Poisson equation by a (possibly nonlocal) boundary condition for the current
conservation equation (7).
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5 Discretization

5.1 Time Discretization

In order to maintain a Clausius-Duhem relation like (60) and to get numeri-
cally stable algorithms, we use an Euler-backwards time discretization scheme.
Accordingly, we replace the time derivatives in the equations (4), (5), (47) by
backward difference quotients, that means

wτ (t, r) =
1

τ
(w(t, r) − w(t− τ, r)) , (62)

where t is the time, τ > 0 is the ( backward) time step and r = (x, y) ∈ Ω
is a space point. The remaining terms in these equations as well as in the
equations (3) and (11) are taken at the time level t.

5.2 Space discretization

For the spatial discretization of the system (3), (4), (5), (47), (11) completed
by the boundary conditions (61) we apply the finite volume method. Accord-
ingly to that method we suppose to have triangulation {El, l = 1, ..., ne},
such that

Ω = ∪ne

l=1El .

Let nv be the number of vertices of that triangulation, i. e., the number of
elements of the set {vi : El = (vi, vj, vk), 1 ≤ l ≤ ne}. We assign to each
vertex vi = (xi, yi) its Voronoi volume Vi and its Voronoi surface ∂Vi defined
by

Vi = {r ∈ R
2 : |r− vi| < |r− vj | , vj ∈ Ω} , ∂Vi = V̄i \ Vi .

Further, we denote by νi the normal unit vector with respect to ∂Vi and by
|Vi| the measure of Vi.
Now we integrate the time discretized versions of the equations (3), (4), (5),
(47) (11). Lumping terms w without derivatives, i. e.,

∫

Vi

w dΩ = wi |Vi| , wi = w(vi) , (63)

and applying the Gauss-theorem
∫

Vi

∇ ·w dΩ =

∫

∂Vi

νi ·w dΓ , (64)

to divergence terms, we get for 1 ≤ i ≤ ne

−
∫

∂Vi

νi · (ε∇ϕ) dΓ +

∫

∂Vi∩Γ

αϕ(ϕ− ϕΓ ) dΓ = [C + p− n]i |Vi| , (65)

nτi |Vi| −
∫

∂Vi

νi · jn dΓ +

∫

∂Vi∩Γ

αn(n− nΓ ) dΓ = −[R]i |Vi| , (66)

pτi |Vi| +
∫

∂Vi

νi · jp dΓ +

∫

∂Vi∩Γ

αp(p− pΓ ) dΓ = −[R]i |Vi| , (67)

[chTτ ]i|Vi| +
∫

∂Vi

νi · jq dΓ +

∫

∂Vi∩Γ

αT (T − TΓ ) dΓ = Hi |Vi|, (68)
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∫

∂Vi

νi·∇χ dΓ−
∫

∂Vi∩Γ

αχ(χ−χΓ ) dΓ +[
ω2

c2
εopt(ω, vi)−β2]χi |Vi| = 0 . (69)

In (68) the term Hi on the right hand side contains the divergence expression
T∇ · (jn − jp) which we shift to the left hand side by partial integration. We
obtain

[chTτ ]i|Vi| −
∫

Γi

νi · [κL∇T + T (jn − jp)] dΓ +

∫

∂Vi∩Γ

[αT (T − TΓ ) − Tαn(n− nΓ ) − Tαp(p− pΓ )] dΓ = HTi
|Vi|, (70)

with

HT = H −∇ · (T (jn − jp)) . (71)

and where H is defined by (48).
In order to transform the system (65), (66), (67), (70), (69) into a time

and space discretized form, it remains to discretize the currents jn, jp, jq and
the gradient operator. We can restrict us to demonstrate our approach for jn

with σnp = 0.
We consider three cases:

(i) We start with the case of Boltzmann statistics and homogeneous tem-
perature T = T0. Then the state, resp. current equation for electrons can be
rewritten as

n = N0 exp
ϕ+ ψ0 − fn

T0
; jn = T0µnN0

[

∇ n

N0
− n

N0
∇ϕ+ ψ0

T0

]

, (72)

where

N0 =
√

NcNv exp
ev − ec

2T0
, ψ0 =

log Nc

Nv
− ec − ev

2
.

For this situation the well-tried discretization schema due to Scharfetter-
Gummel [12]

∫

∂Vi

νi · jn dΓ =

∑

l :vi∈El

[

aj(
nj

N0j

B(sj) −
ni

N0i

B(−sj)) + ak(
nk

N0k

B(sk) − ni

N0i

B(−sk))
]

can be used. Here B(s) = s
es+1 is the Bernoulli-function, (vi, vj, vk) are the

vertices of the element El and the quantities

ai =
1

4|El|
(|vi − vj |2 + |vi − vk|2 − |vj − vk|2) , si =

(ϕ+ ψ0)k − (ϕ+ ψ0)j

T0
,

are to be cyclically exchanged.
(ii) Next we consider the case of Fermi-Dirac statistics and again homoge-

neous temperature T0. In order to reduce (ii) to (i) we replace N0, ψ0 in (72)
by
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N = N0
√
γnγp , ψ = ψ0 + 0.5 log

γn

γp
,

where

γn =
F1/2(

cn

T0

)

exp cn

T0

, cn = ϕ− fn − ec , γp =
F1/2(

cp

T0

)

exp
cp

T0

, cp = ev + fp − ϕ .

The correction factors γn and γp from Boltzmann to Fermi-Dirac statistics
have to be updated during the iteration procedure which is needed for solving
the nonlinear Euler-backwards system.

(iii) Finally, we consider the most involved case of Fermi-Dirac statistics
and non-homogeneous temperature T . We define now

N = N0

√

γnγp exp [ (ev − ec)(1/T0 − 1)] ,

ψ = ψ0 + 0.5[log
γn

γp
+ (ec + ev)(1 − 1/T0)], (73)

where
T0 = min

1≤i≤nv

Ti,

γn =
F1/2(

cn

T )

exp cn

T0

, cn = ϕ− fn − ec ,

γp =
F1/2(

cp

T )

exp
cp

T0

, cp = ev + fp − ϕ .

Replacing N0, ψ0 in (72) by N,ψ from (73) we can proceed as in (i). However,
as in (ii), the correction factors γn and γp have to be updated iteratively.

6 Solution of the Discretized Equations

6.1 Decoupling, Linearization

The equations (65), (66), (67), (70), (69) form in view of the current dis-
cretization approach, described in the last subsection, a coupled system of
nonlinear algebraic equations. We solve this system time step by time step
and start with initial values

ϕ(0, vi), n(0, vi), p(0, vi), T (0, vi) , χ(0, vi), i = 1, nv ,

such that the discrete Poisson-Equation (65) and the wave-guide equation (69)
are satisfied. To calculate a first iterate of

ϕ(τ, vi), n(τ, vi), p(τ, vi), T (τ, vi) , χ(0, vi), i = 1, nv , τ > 0 ,

we start solving the continuity equations (66) and (67) to update the quasi-
Fermi potentials fn and fp. Next we calculate the potential ϕ by using the
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discretized, with respect to ϕ linearized current conservation equation. We re-
peat this iteration up to the numerical defects of the equations are sufficiently
small. Then we solve (69) and (70) and pass over to the next time step. By
’freezing’ the material coefficients depending on the solution at the forego-
ing time step, we solve during that iteration process only decoupled linear
algebraic equations.

6.2 Solution of Linear Algebraic Equations

For solving the decoupled linear algebraic equations we apply sparse matrix
techniques. Hereby new factorizations are made so rare as possibly.

7 Example

In the modeling of semiconductor lasers combinations of several effects need
to be considered to explain experimental results [13], [14]. Moreover, experi-
mental findings have to be used for the calibration of simulation parameters,
which are often not well known. To decrease the number of uncertain sim-
ulation parameters, we have simulated separately properties of the strained
MQW active region by eight-band kp calculations [4]. In particular, we have
computed the optical response function as well as other properties of the
strained MQW active region of III-V semiconductor lasers by kp calculations
with WIAS-QW [15]. Results from these calculations entered the device sim-
ulations with WIAS-TeSCA in terms of net coefficients which allowed to to
treat the quantum wells like classical materials with specific material param-
eters [4].

We consider a structure similar to that described in [16]. It is a long-
wavelength InP-based (substrate) ridge waveguide semiconductor laser. The
active region is a GaxIn1−xAsyP1−y strained MQW structure which is de-
signed for emission at 1.55µm. The structure consists of six 1% compressively
strained 7 nm thick quantum wells (x = 0.239, y = 0.826), which are separated
by 10 nm thick 0.3% tensile strained barriers (x = 0.291, y = 0.539).

The active region is sandwiched between two undoped GaxIn1−xAsyP1−y

(x = 0.1732, y = 0.3781) waveguide layers. The lower waveguide layer (n-side)
has a thickness of 250nm, whereas the upper waveguide layer (p-side) has a
thickness of 180nm.

A part of the transverse cross section is shown in Fig. 3. Let us note that
there the lateral coordinate x and the vertical coordinate y are not equally
scaled. The quantum well structure (6 Quantum Wells embedded between 7
barriers) is centered in y = 0 (dark gray), the upper and lower wave guide
layers are highlighted (some lighter gray).

The ridge has a width of 2.4 µm and is highly p-doped (> 1018/cm3),
where the p-doping increases up to > 1020/cm3 close to the p-contact. The
layers below the lower waveguide are n-doped with nominally 1018/cm3.

At the contacts we allowed for a heat-flow (see Fig.3), no thermal isolation
of the device has been assumed. The thermal resistance of the top contact is
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low. Besides the top of the ridge the p-contact has been passivated by a 200nm
SiNx layer which is also shown in Fig. 3.

The length L of the device was 400µm, a longitudinal scattering loss α =
10/cm has been assumed as well as reflectivities of R0 = RL = 0.3 at the end
facets of the laser.

7.1 Stationary Characteristics

Throughout all the calculations for this structure single mode emission has
been observed. The second transverse mode shown in Fig.3 has been calculated
for control but it never came to the threshold. Therefore it’s power could be
neglected compared to that of the lasing mode.
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Fig. 1. Left: PI-characteristics of the device for different ambient temperatures.
Above 50 oC a significant thermal roll-over occurs. Right: Dependence of the threshold
current on the ambient temperature for the above device. Points: Calculation with
WIAS-TeSCA, line: fit according to the modified T0–rule (74).

Fig.1 displays the calculated P-I characteristics of the device. The influ-
ence of self-heating can be detected by the curvature of the P-I curves, which
becomes significant in the region above 100mA. The ambient temperature in-
fluences the device characteristics too, it’s impact is indicated by the different
lines in Fig.1 where a significant thermal roll-over for high ambient temper-
atures occurs. The threshold current grows roughly exponentially with the
ambient temperature T , for which we have found a fit by

Ith(T ) = I0 · exp ((T − T ∗)/(T0(1 − (T − T ∗)/T1))) (74)

with I0 =8.5mA, T0 =76.3K, T1 =91.3K and T ∗ =273.15K which is displayed
in Fig.1 right. This fit very precisely reproduces the simulation results, whereas
a fit to the usual exponential T0-law had been much worse. The latter coincides
with (74) at T = T ∗ to yield a T0 =76.3K at 0◦C, but this usual T0 would
decrease with rising temperature, according to (74). The formula (74) correctly
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Fig. 2. Maximum temperature (in the active region) vs. ambient temperature for
different injection currents.

displays that the threshold becomes infinite large at T = T1 + T ∗. In practice
there is no lasing threshold above 345 K in our example.

Throughout all calculations above threshold, at least in the thermal
regime, the maximum temperature was located in the active region close to
the peak position of the lasing mode (c.f. Fig.3). The evolution of this max-
imum temperature (in the active region) with the ambient temperature is
displayed in Fig.2 for different injection currents. A super-linear increase can
be observed there. Once the temperature rises the optical gain would decrease,
but it is in fact not allowed for, due to the realization of lasing threshold. The
required compensation can only be realized by a higher carrier density in the
active region. The higher carrier density in turn increases the recombination
processes (especially Auger) and hence the recombination heating. Moreover,
the recombination coefficients and the background absorption itself depend
on the temperature (see Appendix). Altogether, this causes the super-linear
increase of the maximum temperature with the ambient temperature as well
as with the injection current as displayed in Fig.2.
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Fig. 3. Simulation results for given injection current 150 mA and ambient temper-
ature 293 K. We show isolines in a part of the cross section, the lateral distribution
for y = 0 (in the middle of the QW structure) and the vertical distribution for x = 0
(in the middle of the ridge) for the intensity pattern of the first and second optical
mode (top) as well as for the device temperature (bottom).
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7.2 Modulation Response

Finally let us note that WIAS-TeSCA allows to study the small-signal mod-
ulation response of the device by performing the AC analysis (linearization
of all equations in some fixed operating point characterized by the injection
current and the ambient temperature, transformation into the frequency do-
main). The result of such a simulation is the complex normalized frequency
response function Hn(f) where f denotes the frequency of the small modu-
lation of the injection current. Some results are given in Fig. 4 for some fixed
ambient temperature and some fixed injection current, respectively.
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Fig. 4. Frequency response functions 10 lg|Hn(f)|2 for given ambient temperature
20 oC and different injection currents (left) as well as for given injection current
100 mA and different ambient temperatures (right).

We found out, that the function Hn(f) can be very well fitted by the
expression

Hn(f) =
1

1 + jτ1f

1

1 + jτ2f

f2
r

f2
r − f2 + jγrf

(75)

where the parameters τ1, τ2, fr, γr depend on the injection current and on the
ambient temperature. The last factor in (75) is well known from rate equation
models while the other factors are low pass filters due to parasitic effects. The
order of magnitude of τ1 and τ2 is about 10 ns and 60ns, respectively. In Fig. 5
there are shown the values of fr and γr which correspond to the curves drawn
in Fig. 4.

In the figure on the left f2
r and γr are linear functions of the injection

current I for < 125mA as one would expect for the ”non-thermal” regime.
Above 125mA heating effects come into play and yield a sub-linear dependence
of f2

r and γr on I. In the right figure especially the dependence of fr on the
ambient temperature is rather complicated and can not simply be expressed
by a power law.
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Fig. 5. Extracted parameters fr and γr for given ambient temperature 20 oC and
different injection currents (left) as well as for given injection current 100 mA and
different ambient temperatures (right).

8 Conclusion

We have derived a thermodynamics-based model for edge-emitting quantum
well lasers. The model comprises the drift-diffusion equations, the Poisson
equation as well as equations for the optical field, which have been discussed in
detail. Following basic thermodynamic principles we have accomplished this
model by the heat flow equation (47). In deriving this equation we started
with an energy balance equation and general expressions for the densities of
the energy and the entropy. Following Lagangre’s method and the maximum
entropy principle we first defined the thermodynamic equilibrium. Then, by
applying the principle of local thermal equilibrium and taking into account
the second law of thermodynamics as well as the Onsager symmetry relations
we obtained expressions for the current densities which guided us at least to
the desired heat flow equation (47). Boundary conditions as well as proper
discretization schemes have been given explicitly and discussed with respect
to the solution procedure. The self-consistent numerical solution of the full
problem can be obained by our code WIAS-TeSCA, which is a software for
the numerical simulation of semiconductor devices. Using WIAS-TeSCA, we
have demonstrated the simulation of a long-wavelength ridge-waveguide multi-
quantum well laser, with a special focus on the self-heating of the device and
its modulation response.
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Appendix Temperature Dependence of Model

Parameters

Spontaneous radiative recombination:

Rsp = B · (n · p− n2
i ) (76)

B(T ) = B0(T/T0) (77)

B0 = 4 · 10−10/cm3s, T0 = 300K.
Auger Recombination:

RAUG = (Cnn+ Cpp) · (n · p− n2
i ) (78)

C(T ) = C0

(

kT

Ea

)γ

exp

(

Ea

kT0
− Ea

kT

)

(79)

C0 = 4 · 10−28/cm6s, Ea = 0.5eV, T0 = 300K.
Background Absorption αbg = αIV B + fcn · n+ fcp · p.
Intervalence Band Absorption:

αIV B(T ) = α0 exp

(

Ea

kT0
− Ea

kT

)

(80)

α0 = 80/cm (in quantum wells), Ea = 0.1eV, T0 = 300K.
Free Carrier Absorption: fcn = fcp = 1018cm2.
Refractive Index:

n(T ) = n0 + n′ ·
(

T − T0

kT0

)

, (81)

n′ = 6.8 · 10−4, T0 = 300K. For the above calculations we have used a very
simple gain model that approximates the gain in the vicinity of its spectral
maximum under the constraint Eg ≈ ~ω:

g = κ ·
[

exp

(

fp − fn − ~ω

kT

)

− 1

]

· np
n2

i

exp

(

fn − fp

kT

)

(82)

The factor
np

n2
i

exp

(

fn − fp

kT

)

is = 1 in the Boltzmann case and ≈ 1 in the Fermi case. Therefore the pre-
factor determines the gain maximum and has been adjusted to κ = 3000/cm
throughout our calculations.
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4. U. Bandelow, R. Hünlich, and T. Koprucki. Simulation of Static and Dynamic

Properties of Edge-Emitting Multi Quantum Well Lasers. IEEE Journal of
Selected Topics in Quantum Electronics, 9(3):798–806, May/June 2003.

5. H. J. Wünsche, U. Bandelow, and H. Wenzel. Calculation of combined lateral
and longitudinal spatial hole burning in λ/4 shifted DFB lasers. IEEE Journal
of Quantum Electronics, 29(6):1751–1761, 1993.

6. L. D. Landau and E. M. Lifschitz. Course of Theoretical Physics, volume V:
”Statistical Physics”. Pergamon Press, London, 3 edition, 1971–.

7. S. L. Chuang. Physics of optoelectronic Devices. Wiley & Sons, New York, 1995.
8. C. H. Henry and R. F. Kazarinov. Quantum noise in photonics. Reviews of

Modern Physics, 68(3):801–853, 1996.
9. T. T. Mnatsakanov. Transport Coefficients and Einstein Relation in a High

Density Plasma of Solids. physica status solidi (b), 143:225, 1987.
10. D. E. Kane and R. M. Swanson. Modeling of Electron–Hole Scattering in Semi-

conductor devices. IEEE Transactions on Electron Devices, 40:1496, 1993.
11. J. Piprek. Semiconductor Optoelectronic Devices: Introduction to Physics and

Simulation. Academic Press, 2003.
12. D. L. Scharfetter and H. K. Gummel. Large–Signal Analysis of a Silicon Read

Diode Oscillator. IEEE Transactions on Electron Devices, 16:64, 1969.
13. M. Grupen and K. Hess. Simulation of carrier transport and nonlinearities in

quantum–well laser diodes. IEEE Journal of Quantum Electronics, 34(1):120–
140, January 1998.

14. J. Piprek, P. Abraham, and J. E. Bowers. Self-Consistent Analysis of High-
Temperature Effects on Strained-Layer Multi-Quantum Well InGaAsP/InP
Lasers. IEEE Journal of Quantum Electronics, 36(6):366–374, 2000.

15. WIAS-QW. http://www.wias-berlin.de/software/qw, 2003.
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