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Abstract

We establish the moderate deviation principle for the common distribution
of empirical measure and empirical bootstrap measure (empirical measure
obtaining by the bootstrap procedure). For the most widespread statistical
functionals depending on empirical measure (in particular differentiable and
homogeneous functionals) we compare their asymptotic of moderate deviation
probabilities with the asymptotic given by the bootstrap procedure.

1. Introduction. Let S be a Hausdorff space, & the o-field of Borel sets in S
and A the space of all probability measures (pms) on (S,S). Let Xq,..., X, be
i.i.d.r.v.’s taking values in S according to a pm P € A and let P, be the empir-
ical probability measure of Xi,...,X,. The distributions of statistics depending
on the sample Xi,..., X, are often analyzed on the base of the bootstrap pro-
cedure (see Hall (1992), Mammen (1992), Efron and Tibshirany(1993) and refer-
ences therein). For given statistics V (X7, ..., X,,), we simulate independent samples
Xii ., X, 1 <4 < k having the probability measure Pn and treat the empirical
distribution of V (X7, ..., X}),1 < i < k as the estimator of the distribution of
V(Xi,...,X,). What is of special interest, are the estimates of large and mod-
erate deviation probabilities of V(Xi,...,X,,). Such problems constantly emerge
in confidence estimation and hypothesis testing. The significant levels in the con-
fidence estimation and the p-values in the hypothesis testing have usually small
values and can be often correctly analyzed using the theorems on large and mod-
erate deviations. From this viewpoint it is natural to compare the probabilities of
large and moderate deviations of V(X7y,...,X,) and V(X7,..., X}). In paper we
carry out such a comparison for the moderate deviation probabilities in a slightly
different setting. The statistics V(X1,..., X,,) can be usually represented as a func-
tional T'(P,) of the empirical measure P,, that is, V(X1,..., X,) = T(P,). Sim-
ilarly, V(X7,...,X}) = T(P?), where P* is the empirical probability measure of
XX Tl}us, we reduce the problem to the study of moderate deviation prob-

abilities of T'(P,) — T(P) and T(P?*) — T(P,) on the base of moderate deviation
principle.

The problems related to large and moderate deviation probabilities of empirical
measures have been treated in many papers (see Sanov, 1957; Groeneboom, Ooster-
hoff, Ruymgaart, 1979 (GOR); Borovkov and Mogulskii, 1980; Dembo and Zeitouni,
1993; Ermakov, 1995; Eichelsbacher and Schmock, 2002; Arcones, 2003 and refer-
ences therein). These papers contain complete results proved under rather general
assumptions. Our goal is to develop similar techniques for the moderate deviation
probabilities of (P*— P,) x (P, — P) and to make use of these techniques to compare



the probabilities of deviations T'(P,) — T'(P) and T(P*) — T'(P,). Thus, we intend
to study the asymptotic of the probabilities P(P* x P, € ,,) with P = P x P as
a limiting point of Q,, C A% Hereafter we make use of the standard notation. We
denote @y x Q; the Cartesian product of pms Q,,@Q; € A and A? = A x A the set

of all product measures Q5 x Q1 with @5, Q1 € A.

The large deviation probabilities of empirical bootstrap measure have been stud-
ied earlier in Chaganty (1997)and Chaganty, Karandikar (1996). These results were
established in terms of topology of weak convergence. In paper we consider the mod-
erate deviation setting for the 74-topology allowing to study moderate deviations for
functionals having unbounded influence functions. Our approach make use of new
Arcones (2002) results. The results on large deviations probabilities of P* x P, are
far from being “computable”, except for some special cases (see Chaganty (1997)).
At the same time the moderate deviation principle allows to find easily the asymp-

totic and to compare the probabilities of moderate deviations of T'(P,) — T'(P) and

T(P*) — T(P,) for the majority of widespread statistics.

In paper we make use of the following notation. We denote C, ¢ arbitrary positive
constants which can have different values even on the same line, x(A) the indicator
of an event A, and [t] the integral part of a real number ¢. The integration domain
in almost all integrals is the set S. Thus it will be convenient to omit the subscript
S and to write such integrals as [ instead of fs.

2. Main Results We begin with the definition of 74-topology. Fix a sequence b,
such that b, — 0,nb2 — 00,b,41/b, — 1 as n — oo. Suppose there are given the
set ® of measurable functions f satisfying the following

Tim (nb2) " log(nP(| f(X)| > b,")) = oo (2.1)

Define the set Ag of pms P € A such that [|f(X)|dP < oo for all f € ®. The
Te-topology is the coarsest topology in Ag that makes continuous for all f € ® the
map Ag > P — [ fdP. From now on, all topological notion will be related to
the 7g-topology. For any set Q C Ag denote cl(©2) and int(Q2) the closure and the
interior of ) respectively. Define the 74-topology in A% as the corresponding product
topology. If ® is the set @, of all bounded measurable functions, the 7¢-topology
coincides with the 7-topology (see GOR (1979), Eichelsbacher and Schmock (1996)).
In what follows, we suppose ®, C .

Define the linear spaces Ay and Agg induced by all differences P — @ with P,Q € A
and P,Q € Ag respectively. Define the T-topologies in Agg and A2, similarly to
that in Ay and A% respectively. For any set Qy C A2, denote cl(£) and int(£2,) the
closure and the interior of €0 respectively.

For any G € Aj define the rate function

p%(G:P)—%/<§>2dP

if G is absolutely continuous w.r.t. P and py(G : P) = oo otherwise. In statistics the
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functional 2p2 has the interpretation as the Fisher information. The rate function
p? naturally arises in the study of moderate deviation probabilities of empirical
measures P, (see Borovkov and Mogulskii (1980); Ermakov (1995) and Arcones
(2003)). In the bootstrap setting the rate function p?, has slightly more cumbersome
definition.

For any G = Gy x G4 € A%@ denote
624G 1 P) = (2(Ga s P) + p2(Gy : P).

Similarly to the proof of Lemma 2.2 in GOR (1979) it is easy to show that the
functions G — po(G : P), G — pw(G : P) with G € Ay, G € A24 respectively are
75 lower semicontinuous.

For any set A € & and any charge G € Ay denote |G|(A) = sup{G(B) — G(D) :
B C A, D C A}. Thus the measure |G| is the variation of charge G.

Let the charges H, H,, € Ayg satisfy the following assumptions.

A. There hold P, = P+ b,H,, € A, P+ b,H € Ay and H,, - H as n — oo in
Te-topology.

A1l. Forany fe®
sup/deHn < (C < o0.

B1. Forany f € ®

n—o0

i (182) "o ([ x(1£(0)] > 8, )l 1,1) = o0

Define the charge O € Agg such that O(A) = 0 for all measurable sets A € 3. For
each G € Ays denote G = O x G.

Theorem 2.1. Assume A A1 and B1. Let Qy C AZg;. Then the following Moderate
Deviation Principle (MDP) holds

lim inf(nb?) ' log P,((P* — P,) x (P, — Py) € b,Q) > —p&,(int(Qy — H), P) (2.2)

n—oo

and

lim sup(nb2) ! log Po((P* — B,) x (B, — P) € bQ) < —p2y(cl(Qo — H), P). (2.3)

n—oc

Remark 2.1. A similar version of theorem on moderate deviation probabilities of
empirical measures has been proved in Borovkov and Mogulskii (1980) in the case
of 7-topology with H,, = H = O.

Remark 2.2. In hypothesis testing the tests behaviour are often analyzed for the
alternatives P, converging to the hypothesis P. Such a setting is considered in



Theorem 2.1. Naturally if we suppose that the charges H,,, H are absent, we get the
usual form of moderate deviation theorem. The techniques of moderate deviation
theorems with the sequences of pms P, converging to pm P can be implemented also
in the proofs of importance sampling theorems studying the problem of simulation
of moderate deviation probabilities.

The analogy of Theorem 2.1 is also valid for the moderate deviations of P X B,,
where P is the empirical measure of independent sample X7, ..., X; distributed
with the pm P, and k = k(n), k/n — v > 0 as n — oc.

For any G = G5 x G; € AZ denote the rate function
00, (G : P) =vpy(Ga : P)+ py(Gy - P).
For any , C A2 we set pg,(Q : P) = inf{py, (G : P) : G € Qy}.

Theorem 2.2. Assume A,Al1 and B1. Then the following Moderate Deviation
Principle (MDP) holds

lim inf(nb2) " log P,((P; — P,) x (P, — Py) € b,Qq) > —p2, (int(Q — H), P) (2.4)

n—oo

and

lim sup(nb?) " log P,((P{ — P,) x (P, — P) € b,Qq) < —p2,(cl(Qy — H), P). (2.5)

n—oo

The proof of Theorem 2.2 is akin to that of Theorem 2.1 and is omitted. From now
on, we assume k = n.

The moderate deviation principle for empirical measures holds for the wider zones
of moderate deviations. In this setting a version of Theorem 2.1 is valid for the sets
¥ of functions f such that

lim (nd?) "log(nP(|f(X)| > nd,)) = —oc (2.6)

n— 00
where d,, — 0,nd2 — 00,d,;1/d, — 1 as n — occ.
Assume the following.
B2. For any f € ¥
lim (nb2) ! sup log <nbn/x(f(a:) > nbn)de|> = —o0.

n— oo mzn
Using the reasoning of Lemma 2.5 in Eichelsbacher and Lowe (2003) we get that B2
implies Al.

Theorem 2.3. Assume A with ® =V and B2. Let Qg C Agy. Then, the Moderate
Deviation Principle holds

lim inf(nd2) ' log P(P, € P + dn$2) > —p2(int(Qy — H), Py) (2.7)

n—oo



and
lim sup(nd2) ' log P,(P, € P + d,Q) < —p2(cl(Q — H), Py) (2.8)

n—oc

The Proposition 2.4 given below shows that moderate deviation principle often does
not hold for the empirical bootstrap measure if (2.1) is replaced by (2.6).

Theorem 2.4.. Let random variable Y = f(X), EY = 0 satisfies (2.6). Let

lim nP(|Y|>d,") =0, (2.9)

n—o0

Let a sequence r,,,d, ' < r, < ndy, rmd, — 00, nd, /T, — 00 as n — 0o be such that

lim (nd2) 'log (nP (r, <Y < r1,)) =0, (2.10)

n—o0

and
log P(r, <Y < r,)

Tndn
where ry, < 1, < dpn, 710/ (nd,) — 0 as n — oco.

Let Yy, ..., Y, be independent copies of Y and let Y*,..., Y be obtained from Y;,...,Y,
using the bootstrap procedure. Then

lim (r,dy,) " log

n—oo

=0 (2.11)

lim (nd2) ' log P (Z V> ndn) = 0. (2.12)
n—o0

i=1

Remark 2.3. Denote v, = nd,/r,. Then (2.10) holds if (2.9) fullfilled and
vnlogv, = o(nd?). Suppose that c.d.f. F(z) = P(Y < z) is continuous strictly
monotone function. Define a, the equation na2 = 1 — F(na,). It is easy ti verify
that if na2 = n?,0 < v < 1 then one can take r, = n'/2777¢ 0 < € < 2v. Putting
kay = r, we get

y(1—y+2e)

lognP(Y > r,)| = O(ka2) = O(n™ 1+
k

Thus (2.9) is satisfied.

Arguing similarly one can show that the same statement holds for any sequence
an,na’ = ¢(n) such that ¢'(z) = %(m) is monotone decreasing function and ¢'(z) >
cx? ! with 0 <y < 1.

Theorem 2.5 given below shows that the moderate deviation principle holds for the
empirical bootstrap measures with high probability even if (2.1) or (2.6) does not
hold.

Theorem 2.5. Let d,, — 0,nd> — oo as n — oo and let ¥ be a set of functions f
such that
P(|f(X)| > d,") < h(dy) (2.13)
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where nh(d,) — 0 as n — oo.

Let there exist t > 2 and increasing positive function q(z) > z* such that

Bg(f(X) — Bf*(X)) < oo (2.14)
forall f € U.
Then for any Qo C Agy for any € > 0 and n > ny(e) there hold
(nd?)'log P,(P: € P, + d,Q) > —p(int(€y), P) — € (2.15)
and R R
(nd2) 'log P,(P} € P, + dnQ) < —p(cl(y), P) + € (2.16)

with probability

Kn = kn(€,Q) =1 — C(e,Qp) [nh(dn) + iI;f {nq(y)/y+}

exp{— iy o tog (T 1) b+ exp{=onlog(6h(dn/8) + ns)]

where § = §(e,y) > 0.

Remark 2.4. We do not suppose that that the set W contains all functions f satisfying
(2.13).

Remark 2.5. The proof utilizes the estimate of rate of convergence 1 "7 f2(X,) to
Ef*(X) for all f € U. To get such an estimate we suppose (2.14) that causes the

additional term inf,{nq(y)/y + exp{—75 log(rg(y;;)l +1)}} in the probability k.

The proofs of Theorems 2.1 and 2.3, Proposition 2.4 and Theorem 2.5 will be given
in sections 4,5 and 6 respectively.

In Lemma 2.6 we show that, if (2.6) holds, then (2.6) holds for any sequence r, =
o(d,),nr> — oo as n — oo.
Lemma 2.6. Let (2.6) holds. Then for any sequence Ty, Tpi1/rn — 1,7,/dn —

0,nr2 — 0o as n — oo it holds

lim (nr2) 'lognP(|f(X)| > nr,) = —oo. (2.17)

n—oc

Proof. Define the sequence dj, such that k,d;, < nr, < (k, + 1)di, 1. We have

(nrn) HlognP(|f(X)] > nry) = kﬁ((knﬂ)din“)*l lognP(|f(X1)! > (knt1)dk,11) =

n

n _ n n _ .
2 ((hn+ 1) 1) Tog L2 (i + 1), 1) 08 nP(F(X0)] > (nct 1) 1)) =
Iln + £I2n
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By (2.6), we have I, — —oo as n — co. Thus, if (2.17) does not hold, %2 I;,, — oo
as n — oo. Hence for any C' > 0 for all n > ng(C) it holds

1/2
n 1/2 n 1/2
<log k_n> > C(kn + 1) / di, +1 > Omn / Tn-
Therefore

n n

k, 1/2
(— log k£> > Cn'/?r,.

Since n'/?r, — oo as n — oo we get the contradiction.

3.Examples. In section we establish the asymptotics of moderate deviation prob-
abilities for the differentiable and homogeneous functionals depending on empirical
measure P, and empirical bootstrap measure P;. The functionals of such types
often emerge in statistics.

Example 3.1. Differentiable statistical functionals. We suppose that the functional
T : A — R! admits a linear approximation of the following type.

C. There exist a real function r € ®, [ rdP = 0, and a seminorm N in A, continuous
in T7g-topology in Age satisfying the following. For any @ € A,

1Q) 1(P) - [rdq|<wiN@ - P)

Hereafter w(t) is an increasing function such that w(t)/t — 0 as t — 0.

Thus we suppose that the functional 7(Q) has the Gato derivative h and such
a linear approximation admites the uniform estimate expressed in terms of semi-
norm N. This assumption is not unnatural. For example, if the fuctional 7'(Q)
has the bounded second Gato derivatives, this assumtion holds. The assumptions of
differentiability are the standard tool for the proof of asymptotic normality of statis-
tics T(P,) (see Serfling (1980)) and in implicit form were also used for the study of
moderate deviation probabilities (see Jureckova, Kallenberg and Veraverbeke (1988);

Inglot, Kallenberg and Ledwina (1990),(1992); and Ermakov (1994)).

If C holds, then, as it follows easily from Theorem 2.1, for any sequence P, converging
to Py and satisfying A, A1, B1 we have

lim (nb?) " log P.(T(P?) — T(P,) > b,) =

n—o0
lim (nb?) 'log P, </rd(P; - P)> bn> =
n—oc
1.
—§1nf{/(g§ —|—gf)dP : /gzrdP >1, g1,92 € LZ(P)} =

_% (/ r2 dp) 71, (3.1)

7



lim (nb2) ' log P.(T(P,) — T(P,) > b,) =

n—oc

lim (nb2) " log P, </rd(15n ~P,)> bn> —

n—oo

%inf{/_gZdP : /grdP >1, g€ LQ(P)} E % (/erP>l- (3.2)

~

Thus, the asymptotics of moderate deviations probabilities of T'(P;) — T'(F,) and
T(P,) — T(P) coincide. At the same time

lim (nb2) 'log P,(T(P*) — T(P,) > b,) =

n—oc

lim (nb2) 'log P, (/ rd(Py — P,) > bn> —
n—oo

1.
—Emf{/(g;—i—gf)dP:/(gz—gl)rdP>1, 91,92€L2(P)}:

_i (/Hdp) 71. (3:3)

The proof of first equality in (3.1) is very easy and (3.2),(3.3) are obtained by a
similar technique. Define a sequence C,, such that C, — oo, w(Cpb,)/b, — 0 as
n — 0o. By Theorem 3.2 and C, we have

P, (/rd(P;; —PB,) > b, + w(Onbn)> — P,(N(P* — B,) > Cyb,) <

P.(T(P¥) —T(P,) > by)

n

<P, (/ rd(P* — P,) > b, — w(C’nbn)> + P,(N(P — B,) > Cpby,) (3.4)
and X
P.(N(Pr — P,) > Cpb,) < exp{-CnC>b2}.
The asymptotic of P,([rd(P* — P,) > b,), given in (3.1), follows directly from
Theorem 2.1.

Example 3.2. Variance. Let T(P) = Varp|X| = Ep[X?]— (Ep[X])? and let S = R
The functional T'(P) has the influence function r(z) = 2?2z E[X|— E[X?]+2[EX]?
and

T(Q)T(P)/rdQ—(/xd(QP))Z. (3.5)
Thus, if r € ® and f(z) = z € ®, we have

lim (nb?) ‘log P(T(P}) — T(P,) > b,) =

n—oo



n—oc

lim (nb2) log P(T(P,) — T(P) > b,) = —%(Var[XZ —2X E[X]])"t.  (3.6)

Example 3.3. Homogeneous functionals. 1t is easily seen that the analogues of
(3.1)-(3.3) hold also in the case of an arbitrary norm N : A; — R! such that N is
continuous in 7g-topology in Ags

1

lim (nb?)'log P(N(P, — P) > b,) = —Epg(ﬂg . P). (3.7)
n—oc

lim (nb2) *log P(N(P: — B,) > b,) =

n—oc

1, dG dG
—Emf{/gSJrgfdP: N(Gg) > 1,01 = d—Pl,gz = d—PQ; Gy, Gy € /\0} =
1
—503(90 : P). (3.8)
and .

lim (nb2) 'log P(N(P* — P) > b,) = —Zpg(ﬂo . P). (3.9)
n—o0

Here QO == {G : N(G) > 1,G S Ao}

In particular, the statements (3.7) and (3.9) are valid for the functional N corre-
sponding to the test statistics of Kolmogorov and omega-square types

N(Q — P, P) = max{|F(z) — Fy(z)|q(Fy(z)) : z € S} (3.10)
and

1/2
N@ - P,P) - ( @) - Fo<x)>2q(Fo<x>>dFo<x>) (3.11)

respectively. Here ¢ is a bounded weight function, S = R', P, and F, F, are the
distribution functions of @, P respectively. These norms depend on the probabil-
ity measure P additionally. Thus the statement (3.8) holds only in the case of
Kolmogorov test statistic.

FExample 3.4. Now we show that the presence of weight function g does not influence
seriously on the asymptotic (3.8). Assume the following.

C1. There exists function w(t),w(t)/t — 0 as ¢ — 0 such that, for all P,Q, R € As

IN(@ — P,P) — N(Q — P,R)| < w(sgp |F(z) — Fo()))

where F' stands for the distribution function of R.

The functionals N(Q — P, P) defined by (3.10),(3.11) satisfy C1 if the function q is
continuous in [0, 1].

Let F, be the distribution function of P,. Then, by Theorem 2.3,

P(w(sgp |Fn(x) — Fy(z)]) > cb,) < exp{—CnC,b2}

9



where C,, — oo as n — oc.

Hence, estimating similarly to (3.4), we get

lim (nb?) ‘log P(N(P* — P,, P,) > b,) =

n—oo

n—oo

A 1
lim (nb2) 'log Py(N (P — B, P) > b,) = —Epg(Qo : P). (3.12)

FExample 3.5. Let us find the asymptotic

J = lim (nb2) ‘log Py(N?(P} — P) — N"(P, — P) > b,,)

n—o0
with v > 0.
By Theorem 2.1, we get

J = inf {/(r2 +¢*)dPy: N'(G + R) — N (G) > 1;

dG dR
= —,r G, R e Ny p =infV(G,R). (3.13)
dP
Since N(G + R) < N(G) + N(R), we get
> int { [+ )P (NG) + NRY - N(6) 2 1
dG dR .
g—ﬁ,r—ﬁ,G,Rer}—1nfU(G,R). (3.14)

Define the charge H € cl(€) such that po(H : P) = ([ h? dP) V2 po(€p : P) with

h = % Here the set €2 is the same as in example 3.3. It is easy to see that for the

fixed G
arg i%fU(G, R) = \H (3.15)

with constant A € R!.

Let 7 = Ah and let us consider the problem of minimization of U(G,\H) with
respect to G. We begin with the dual problem. Let N(R) = d =const and one need
to find

sup {(N(G) +dy — N(G) : /gZdP _ 1}

Let v > 1. Since the function (:C +d)T — 2" is convex the supremum is attained
on the charge Gy = ¢G where G = argsup{N(G) : [g¢?dPy} and § = % = h/p,.
Therefore inf{U(G,R) : G,R € Ay} is attalned on the charges G, R havmg the
densities g = ah, r = dh with a,d € R'. However V(aH,dH) = U(aH, dH). Hence
we get

= inf{d®> +a®: (d+a)” —a” > 1} / h?(s)ds(1+ o(1)). (3.16)

10



In particular, if y =1, J = p2(Qo, P).
If v < 1, then argsup{(z +d)” — 2" : z > 0} = 0. Therefore U = d” and

dR
J:1nf{/7‘2dp : N’Y(R) Z 1,7" = ﬁ} = pg(Qo,P)

4. Proofs of Theorem 2.1 and 2.3. For each r > 0 define the sets I'p, = {G €
Ao :po(G:P)<r}and T, ={G e A2: pp(G: P) <r}.

Lemma 4.1. Let (2.6) hold. Then
i. I, C A3,
ii. the set T, is Tg-compact and sequentially Tg-compact set in AZ.

Proof. Let ¢ € W. Then, by Lemma 2.5, in Eichelsbacher and Lowe (2003), there
holds

/¢2(x)dP < 00. (4.1)

For any charge G = G; x G5 € A% and any measurable set A C S we have

/¢1|dG1|+/ |p2|d|Ga| <
A A

c%/ﬁﬁP+Aﬁﬂﬁ+a1<AC§$iW+A<%%fﬂﬁ (4.2)

for all @ > 0. This implies ¢ if A = S.

Fix € > 0. Let @ = r/e and n = n(e) is such that

f(/ ¢MP+/‘ ¢$P><e
€ \Jg1|>n |#2|>n

Then, by (4.2), we get

/|¢1d|G1+/¢2|dG2 / |¢1d|G1+/ 6a]d|Ga| < 2
|p1|<n |p2|<n

Hence the map I, 2 G = Gy x Gy — [ |¢1|d|G1| + [ |¢2|d|Gs] is Tg-continuous as
the uniform limit of functions

/ 01dGy + / 02dGs.
|p1|<n |p2|<n

This implies that the 7 and 7g-topologies coincide in I',. Since the sets Iy, and
[, C T2 are T-compact and sequentially 7-compact these sets are 7y-compact and
sequentially 7y-compact as well. This completes the proof of Lemma 4.1.
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Note that 7y continuity implies 74 continuity. Hence the sets I', and I'y, are 74
compacts as well.

For any u,v € R* denote u'v the inner product of u and v. For any f € ® and any
charge G € Age denote < f,G >= [ fdG.

Let fl;---;fklagla---;gkg € ® and G € Ayp Let Ef,(X) 0, FEg (X) =0,1<
i < k1,1 < j < k. Define the covariance matrices Ry = {E[f (X) (X )}}k1 _, and
Ry = {E[g:(X)g;(X)}i5-1-

Denote f = {f;}, and g = {g;}"_,.

By Dawson-Gartner Theorem (see Dembo and Zeitouni (1993)), Theorem 2.1 follows
from Lemma 4.2 given bellow.

Lemma 4.2. Assume (2.1) and A,A1,B1. Then, for the mndom vectors U, (X) =

(m 2oim AilXa)s s g o0 fr (X ), ;Z?zlgl(Xf),---a% i1 9k, (X])) the MDP
holds, that is, for any Q C RFi+kz

lim inf(nb?) ' log P, (Un(X) € b,Q) > — inf 2'I;,z (4.3)
n—oc zelnt(Q)
and
limsup(nb2) 'log P, (Un(X) € b,0) < — inf z'l;,x (4.4)
n—»00 .'I:ECI(Q) ’

where for any T = (y,z) € RF***2 y ¢ RM 2 ¢ Rk

1 1
t'ls,o0 =  sup (t'y +s'z— <t'f,H> _ithft — 5s’Rqs> _

te R*1,sc Rk2

Note that, if there exist R;l and R_q’l, then

1 B 1 B
?lw = S((y= < [, H >)Ri'(y= < [, H >) + 57'R, 2.

Lemma 4.2 follows from Lemmas 4.3 and 4.4 given below.

Lemma 4.3. Assume (2.1). Then for any C > 0

. 2\—1 -1\
Jim (nb,,)"" log Po( max max [f;(X;)| > b, ") = —oo, (4.5)
- 2\-1 x* 1y
T}Ln;c(nb”) log P, (1123%2 max 9i(X5)| > ¢b, ") = —oo0. (4.6)

Proof. We have
k1
1 -1
Pama max [0 > eb) < n 30 Pu(£60] > et

By (2.1) and B1, this implies (4.5).

12



Hence we have

P,( max max |gi(X;)| > cb,") = O(exp{—Cnb2})

1<i<ks 1<j<n

for any C > 0. This implies (4.6).
For any h € ® denote h,(z) = h(z)x(|h(z)] < b,1).

Lemma 4.4. Let fi,..., fx,, 91, -, gr, € ©. Then, for the mndom vectors U, (X) =
(% Z?:l fl"(Xi)’ SRR % Z?:l fkl"(Xi)’ % Z?:l gln()_(;)a T %_ i=1 gkz"( z*)) the MDP
holds, that is, (4.3) and (4.4) are valid with U,(X) = U,(X).

By Gartner-Ellis Theorem (see Dembo and Zeitouni (1993)) Lemma 4.4 follows from
Lemma 4.5 given below.

Lemma 4.5. Let f,; € ®,9; € ® forall1 <i<k;,1<j<ky. Then

: 2\-1 ' — =
r}l)rglc(nbn) log E,, exp {bnzltfn( ) + by, Z (gn(X gn)}

1 1
<t'f,H> ——t’th — 5s’R,,s
where gn = (% Z::l gln(XS)7 SRR % s=1 ngn( 9)) - {fm}l 1 9n = {gjn}llgz'

Proof. We have

E, exp {bn Zt’fn(X,-) + by Zs'(gn(Xi*) - gn)} -
Ey, exp {bn Zt’fn(Xi)} [T+ ba(s'(9n(X7) — ga))+

i=1

b2

[\D

= (8'(9a(X7) — 9a))* + O (%( "(gn(X]) — gn)) )) -

exp { Zt fn i } (1 + % Z(Sl(gn(Xi) - gn))2+

TL

0 (% > (6 (ga(X0) - mf*)) ] - L, (4.7)
By straightforward calculatio;s, we get
Bp, (5(90(X7) — 9a)? = = D (6'(90(X0) — )" =
%Z(Sl(gn(Xi) o En[gn(Xl)]))Z - (Slgn - En[slgn(Xl)DZ' (4'8)

13



We have
> (s (gn(X) — < 8Z|S 9n(Xi) = Enlga(X1))) [+

8|5 (Gn — Enlgn(X1)]) = 8V1 + 8nVs. (4.9)
We have

bplVi| = by Z 15'(9n(Xi) — Eulgn (XD X (18" (92(X:) = Bulga(X1)])| < b, ')+

b, Z 15'(9n(X2) — Eulgn(X0)))Px(|8'(9n(X:) — Enlga(X1)])| > eb,") <
2¢[s|by, Z |5'(9n(X:) — Enlgn(X1)]) >+

15 30 x5/ (0n(X0) ~ Balon(X0))] > eb,) (4.10)
and
Vs < 4[sba15'(g — Fulgn(X))])]. (4.11)
By (4.8)-(4.10), we get

2 n

I, < E,exp { Zt fa(X5) Z(s gn(X;)—

i=1

2

Bals/ (X)) (14 e0) + 20 (58, Bulsga(X)))"+

( s |3ZX 15'(9n(Xi) = Enlga(X1)])| 2 fbnl)) +0(nbin)}

= E,[Win exp{O(nb3V,)}] = En[WiaWan] = I, (4.12)
where € = ¢, — 0 as n — oc.

Define the events A, = { X1, ..., X, : §'Gn—Fn[s'gn(X1)] < rb,} and the complement
of this event A4,,.

We can write

We have

2

log[Us,] < nlog &, [exp {bnt'fn(xl) + 50X — Blsg(X)D0 + et
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X(18'(gn(Xi) — Enlgn(X0)])| > b, ') + O(r°8)) }] <
nlog Eu[1 + b, (¢ fn(X1)) + %((t’fn()ﬁ))2+

(8'9n(X1) — Enls'gn(X1)])*(1 + 8a)) + O(wn) + O(r°0,)]

where Wy = Wip + Way + W3 + Wan + Wsy, with

Win = %(t’f(Xl))sa Won = 3%(t'f(X1))(3'9(X1) — En(s'9(X1))%,
Wan = %En(slg(Xl) ~ En(s'9(X1))!, win = %(t'f(Xl))2(3'9(X1) — E,(s'g(X1))%,

wsn = X(|5'(9n(X1) — En[ga(X1)])] > €b, ")
By (2.1), we get

Bufiond) < W (070002, Bufun] < S0, (490,) — (a0
Bulom] < 500 g (£g(,) — Eu(s'g(X0)))
Bolwn] < NP p (49(X)) - Bu(s'g(X1)))?

24
and
Eulwsn] < €202 En[(5'(9a(X1) — Enlgn(X1)]))*x

X(‘Sl(gn(Xz) o En[gn(Xl)])| 2 Eb;ll)] = 0(6721)3)
where the last equality holds by A and (4.1).
Hence, we get

2

b
log(Usn) < f% 2<tf H> t'Rsit—sR,s)(1+0(1)) = v, (4.14)
Note that, by Theorem 2.4 in Arcones (2002), we have
P.(s'g — E.[s'9(X1)] > 7b,) < exp{—cr’b} (4.15)

for each r > 0.
For the proof of (4.15) it suffices to note that (2.1) implies (2.6) and (2.6) implies

lim (nr?62) 'log(nP(|f(X)| > rnb,)) = —oc0

n—oc

for r > 1. The case r < 1 follows from Lemma 2.6.

By the Hoelder inequality, we get
Usn < (Ba[W, 1) 75 (B, [exp{8nb, Vahx(Au)])¥ <
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(B[ W) 755 (B, [exp{20mb Va}]) % (Pa(A,)) . (4.16)
We have
E,[exp{26nb2V,}] < E, exp{26nb, Z 8" (gn(X;) — Enlgn(X1)]) }+
B, exp{-20nb, Y _ns'(gn(Xi) — Enlgn(X1)])} = Unin + Usan. (4.17)

=1
We have

62 2
lOg U21n - ’I’LlOg En |:1 + Tn(s’gn(Xl) - En[slgn(Xl)])Z—i_

IN

O(0°bn (8'gn(X1) — En[s'gn(X1)])°]
nlog En[1+ C(1 + |8])6%02(8'gu(X1) — Enls'gn(X1)])?] < Cné’b2s'Rys.  (4.18)
Estimating similarly we get
log Uy, < C’n(SbeLs'Rgs (4.19)
Estimating E,[W}*°] similarly to Uy, we get
E [Wat] < exp{(1 + 6)’v,(1+ o(1))}. (4.20)
By (4.16)-(4.20), we get
Usn < exp{(1+ 8)|v,| + Cnb% (1 + |s])s'Rys — (26 nr?b2(14+0(1))}.  (4.21)

Since the choice of r is arbitrary we get Us, = o(Ui,,) for sufficiently large r.

The proof of lower bound is based on the inequality I,, > E,[Wi, exp{—nb3V3}].
The further estimates are similar to the proof of upper bound and are omitted.
This completes the proof of Lemma 4.5.

The proof of Theorem 2.3 follows the same arguments and ulilizes the reasoning of
Lemma 4.4 together with Lemma 4.6 given bellow.

For any h € ¥ denote h,(z) = h(z)x(b,' < |h(z)| < nb,).
Lemma 4.6. Let f € U Then, for any § > 0,

lim (nb?) 1logP< an >5b) —00.

Lemma 4.6 was proved in Arcones (2003) in the case of P, = P (see (2.8) in Arcones
(2003)). The presence of sup,,.,, in B2 and A with ® = W allows to repeat the
arguments of the proof of (2.8) in Arcones in the setting Lemma 4.6.
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5. Proof of Theorem 2.4. Define the events A,; = U,; U V,,;,1 < i < n with
Ui = {yi : lyil <d;'} and V,,; = {y; : 7, < y; < r1,}. Denote A, = N, A,;. By
(2.9), we get

P(A,) >1— P(lrgi);ﬂﬂ >d, ") >

1-nP(|Vi| >d,") =1+0(1). (5.1)

Denote P., the conditional probability measure Y; under the condition Y; € A,;.
By (5.1), it suffices to prove (2.12) if pm P is replaced by pm P.,. Denote p, =
P..(r, < Y; < r,). Define the events W, (k,) = {Y1,...,Y, : n — k, random
variables Y,...,Y, belong (—d,',d,') and k, random variables belong (7, 71,)}.

Suppose that &k = k,, — oo, %” — 0 as n — oco. We have

= Pon(Walk) = (1 = )" (1 +(1) =

exp{nlogn — (n—k)log(n — k) — klogk(1+o0(1)) + klogp,+ (n—k)log(1—p,)} =

n—k k
exp {(n — k) log ni—py) klog npn(l + 0(1))} =
exp{—n(1 —k/n)(—k/n+p,)(1+ o(1)) + kloglk/(np,)|(1 + 0(1))} =
exp{(k, — np, — k, log(k,/(np,))(1 + o(1))}. (5.2)

It follows from (2.10),(5.2) that we can choose k,, — oo, nk,p, — 0 as n — oo such
that

o(ndy,) = [log va| = kn|log(np,)|(1 + o(1)). (5-3)

Let us consider the asymptotic of Y ;| Y;* if W, (k,) holds and [,, random variables
Y;*,1 <14 < n belong (37, 2r,). By Lemma 2.3 in Arcones (2003),

n—lI,
P, (Z Yy < end, ||V <dt1<i<n— ln) =1—o0(1). (5.4)

i=1

By (5.2), we get

n

P(l, > u,) = exp {un log %(1 + o(l))} : (5.5)

T

. nd, __ nd%
Thus, if u, = c% = ¢, 4=, then, by (5.3),

Uy, clog(np,)
log — < lopg —=———*
8L, = 8T 4.

Hence, by (5.5),(2.11), we get

l"'ll
P (ZYZ* > cnd,|Y; € Voiyn — 1, <i < n) > P(l, > u,) =

i=1
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d? | n
exp {::Ld: log ¢ Orgn((zlp )} = exp{—o(nd?)}. (5.6)

Now (2.12) follows from (5.1),(5.4),(5.6).

6.Proof of Theorem 2.5. We begin with the proof of upper bound (2.16). Denote
n = pa(cl(Qp), P) and fix §,0 < § <n. For any fi,...,fi €®, G €Ty, sand v >0
denote

U(fr,--, f1,G,y) = {R: /fz-d(RG)

<’7,REA0¢,1<Z.<Z}.

Since Ayg is Hausdorf space, the space Ags is regular space (Theorem B2 in Dembo
and Zeitouni (1993)). Thus for each G € 'y, 5 there exists U(f1,..., fi,G,v) C
Aos \ cl(€). The set T'y,,_s is compact. Therefore there exists finite covering I'g,,_s

by the sets U1 = U(fll; R fllla Gl,’yl), Cey Uk = U(fkl; ceey fklk; Gk,’yk)
Hence the set Age\I'p, can be covered a finite number of sets U, = U(hli, s Pongis Giy Vi -+ -y Ymgi)

Ui: {Rl/hﬁd(RGi)>’)’ji,R€A0q>,1<j<mi}.

with 1 <13 <.

Thus it remains to show that

- - - + [ fdG)?
&) og By [ Fd(P B daG) > ydy ) < LTI gy
na) 1og P, ( [ satr; )> ad,) < LS (6.1
with probability 1 — ¢k, (e, U(f,G,~)) for all f € ® and n > ny(e, f).
By (2.13), it suffices to prove (6.1) if the condition
-1
max |f(X,)] <dy, (6.2)
holds.
Denote s; = 7 >0, f2(Xi) — (7 o0 f(Xs))Z'
By Corollary 2 in Fuc and Nagaev (1971) we get
) , t me ney'!
P(|s; — Varf(X)| > ¢) < inf |nq(y)/y + expq ————log +1 :
y t+2y Cy
Thus to prove (6.1) we can suppose that
82 — Var[f(Y)]| < e (6.3)

Denote d,t, = b, +vd, [ fdG.

Let (6.2),(6.3) hold. To prove (6.1) we apply the following Theorem (see Ermakov
(1999)).
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Theorem 6.1. Let Yi,...,Y, bei.i.d.r.v.’s. Let EY =0 and EY? = 02. Let
Elexp{d,|Y|(1+¢)}] < C; < 00 (6.4)

with € > 0 and

EYP < Cod,'w(d,) (6.5)
where w(z) — 0 as z — 0.
Then

(nd?) 'log P (iY; > ndn> = —%02(1 + O(w(dy))) (6.6)

where the remainder term in (6.6) is uniform w.r.t. pms P satisfying (6.6),(6.7) with
the same constants C1, Cs.

It follows from (6.2) that (6.6) holds.
By Lemma 2.3 in Arcones (2003) and (2.13),(2.14)

P(If] > ral [f(X3)] <d,',1<i<n)<exp {%‘(1 + o(l))} (6.7)
where 0} = Ef?(X).

Therefore we can suppose that the addendums with f are negligiblein " (f(X;)—
f)3. Thus it suffices to estimate

Z F(X:) = ZF(Xi)x(\f(Xi)\ < dd, ')+

Z P (X)x(0d," < f(X) <d,') =6+ L. (6.8)
i=1
We have
I <6d,'s?. (6.9)
Denote k, = > x(dd,,! < f(X;) <d,1).
We have

P(k, > 6n) < exp{—tdn}(1 + pne')" < exp{—tdén + np,e'} =

exp {—dnlog(d/pn) + on}.
where p, = P(f(X1) > dd,;') < h(d,/§) and t = log(6/p,).

Hence

I < 6d," Y f2(X5) (6.10)
i=1
with probability &, (e, U(f, G,7))-
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By (6.9),(6.10), we get
DX < 8d,t Y (X
=1 =1

with probability &, (¢, U(f, G,7))..
Hence (6.4),(6.5) holds with P = P, that completes the proof of (6.1).

([ fdGo =) [ (d(G+Go))? o
f{ o2 -/<T>dp>"’/fdG”}

igf{%:/@—ifdpm} — 7

is attained with 9% = nl/Zajilf then (6.1) implies the upper bound.

The proof of lower bound (2.15) is based on standard arguments (see GOR (1979)).
For each § > 0 there exists open set U = U(f1,. .., fi, G,7) such that U C int(Q)
and p2(U, P) < n+ ¢e. Hence it suffices to find the lower bound of

Since

(nd?)log P, (P! € P, +d,U)

if (6.2) and (6.3) hold.
By (6.7), for any ¢; > 0 we get

PP, e P+d,U(f1,...,[1,0,6)) =1 —exp{—cnd?(1 +0(1))}
where P, is the conditional distribution of X;,..., X, if

. -1
max max |f;(X,)| <d,

holds.

Thus, in what follows, we can suppose that P, € P + dU(f1,..., [1,0,€1).
Denote U1 = U(fl, ceey fl; G, Y — 6). Then

P,(P* € P, +d,U) > P,(P* € P, 4+ d,U,).

Suppose that

2 2
)\(f1) = 0_;12 (/ fldG+"y—|—€1> < 0;2 </ fsz“"'/“‘El) (611)

forall 2 <1 </I.

If the equality in (6.11) is attained for some ¢,2 < ¢ < [ we can replace the set U;
another set U2 = U(fl; Cey fifl, (1 + (S)fz, fi—|—1; Ceey fl; G, Y — 6) with § > 0.
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The probability Pn(Pr’[ S ]5” + d,U;) can be represented as linear combination of
probabilities

P, </ fid(PF — P, — d,G) > —(y — e)dn>

with 1 <3 <[ and

P, (/ fid(P* — P, — d,G) > (v — e)dn>

with 1 <3 <.

By (6.1), all these probabilities with f;,;2 < ¢ < [ have the smaller order then
exp{—nd}(A(fi) — €)(1 +o(1))}.

Thus it suffices to show
P, </ fid(P* — P, — d,G) > —(y — e)dn> > exp{—nd2(A(f1) — €)(1 + 0(1))}

and this statement follows from Theorem 6.1 using the same reasoning as in the
proof of upper bound.
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