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Abstract

This paper is devoted to the problem of existence of bounded solutions for non-

autonomous di�erential equations in the case when the linear part has a pair of

simple complex conjugate eigenvalues crossing the imaginary axis for increasing t.

By introducing a control parameter into the system we derive conditions for the

existence of a global uniformly bounded solution.

1 Introduction

We consider in R2 the system of non-autonomous ordinary di�erential equations

dz

dt
= B(t)z + f(t; x; a); (1)

where a 2 R
2 is a parameter vector. Our goal is to establish the existence of a nontrivial

solution of (1) which exists for all t 2 R and is uniformly bounded. Usually, the reason to

look for bounded solutions is to study the longtime behavior of system (1). In particular,

stationary and periodic solutions as well as homoclinic and heteroclinic solutions are of

special interest.

In the case B(t) has an exponential dichotomy the existence of uniformly bounded solutions

was intensively studied (see e.g. [2]). Di�erent from this situation, in what follows we

suppose that the matrix B(t) has a pair of complex conjugate eigenvalues which crosses the

imaginary axes from left to right at some point t = t0. This assumption can be interpreted

as some variant of the phenomenon of delayed loss of stability which is intimately related

to the existence of canard solutions in singularly perturbed systems. Therefore, the goal

of this paper is to �nd canard like solutions for system (1).

The paper is organized as follows. Next section contains the hypotheses on the r.h.s. of

(1). Also, we shall show that like in the situation of canard in singularly perturbed systems

we need a parameter to guarantee the existence of bounded solutions. In Sections 3, we

shall state and proof the existence of this type solutions.

2 Problem statement

In this section we study the problem of existence of bounded solutions for systems of the

form
dz

dt
= B(t)z + Z(t; z); (2)
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where z 2 
z, 
z := fz 2 R
2 : kzk � �g, B(t) is the matrix

B(t) =

�
�t �

�� �t

�
: (3)

We note that the eigenvalues of B have negative real parts for t < 0 and positive ones for

t > 0. Concerning the function Z(t; z) we suppose

(A1). Z(t; y) is continuous on R � 
z and satis�es the following conditions

kZ(t; z)k � M;

kZ(t; z)� Z(t; �z)k � �kz � �zk: (4)

Here and elsewhere, k � k denotes the Euclidean norm and the corresponding norm of

matrices. We shall assume that

p
2�p
�
M(1 + e�

2=2�) < �: (5)

Let W (t) be the matrix

W (t) =

�
cos �t sin�t

� sin�t cos �t

�
: (6)

Then

V (t; t0) := e
�(t2�t20)

2 W (t� t0) (7)

is a fundamental matrix of the linear system

dz

dt
= B(t)z: (8)

Here, z � 0 is the only bounded solution of (8). Other solutions satisfy

kz(t)k = kz(t0)ke
�(t2�t20)

2 :

Since the matrix B(t) is stable for t < 0 and unstable for t > 0, this relation shows that

the behaviour of the trajectories of the system is similar to that, typical for problems on

delayed loss of stability.

From (A1) it follows that for any pair (t0; z0) the Cauchy problem for equation (2) with

the initial condition z(t0) = z0 has a unique solution. This problem is equivalent to the

integral equation

z(t) = V (t; t0)

0
@z0 +

tZ
t0

V �1(s; t0)Z(s; z(s))ds

1
A (9)
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that can be rewritten as

V �1(t; t0)z(t) = z0 +

tZ
t0

V �1(s; t0)Z(s; z(s))ds: (10)

If there exists a bounded solution z(t) of (2), then from (10) it follows that

kV �1(t; t0)z(t)k � ce
�(t20�t

2)

2 (11)

and we get

lim
t!�1

kV �1(t; t0)z(t)k = 0: (12)

Since W (t� s) = W (t)W�1(s), from (10) and (12) it follows that the initial value z0 has

to ful�l the conditions

z0 =

t0Z
�1

e
�(t20�s

2)

2 W (t0 � s)Z(s; z(s))ds;

z0 = �
+1Z
t0

e
�(t20�s

2)

2 W (t0 � s)Z(s; z(s))ds;

(13)

Substituting these formulas into (9) we get for a bounded solution of (2)

z(t) =

8>>>>>><
>>>>>>:

tZ
�1

e
�(t2�s2)

2 W (t� s)Z(s; z(s))ds; t < 0

�
+1Z
t

e
�(t2�s2)

2 W (t� s)Z(s; z(s))ds; t � 0:

(14)

From the condition of continuity of the bounded solution we get the condition

+1Z
�1

e
��s

2

2 W�1(s)Z(s; z(s))ds = 0 (15)

on the function Z. It is clear that (15) is not ful�lled for arbitrary function Z(t; z).

Let us consider some examples.

Example 2.1 Consider the system

dz

dt
= B(t)z + a; (16)
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where a = (a1; a2)
T is a parameter vector.

For system (16)

z+(t) = �
+1Z
t

e
�(t2�s2)

2 W (t� s)a ds;

is the solution bounded for t > 0 and

z�(t) =

tZ
�1

e
�(t2�s2)

2 W (t� s)a ds; ;

is the solution bounded for t < 0.

Between these solutions there is a \step"

z�(0)� z+(0) =

+1Z
�1

e
��s

2

2 W (t� s)a ds =

p
2�p
�
e
��

2

2� a:

Taking the vector a = 0 we can remove this step and \glue" these solutions. Then under

the condition that a = 0 system (16) has the solution z � 0 bounded for all t.

In this example the vector a plays a role of a control or \gluing" parameter: by changing

the value of a we are able to \glue" together solutions bounded on negative and positive

semi-axes.

Example 2.2 Consider the system

dz

dt
= B(t)z + f(t) + a; (17)

where f(t) is continuous and bounded for all t 2 R.

In order to have the uniformly bounded solution, we use (15) to get the equation for

determining the vector a and arrive at

+1Z
�1

e
��s

2

2 W�1(s) (f(s) + a) ds = 0: (18)

Let us introduce the following notation

J :=

+1Z
�1

e
��s

2

2 W�1(s) ds =

p
2�p
�
e
��

2

2� I; (19)

where I is the identity matrix. From (18), we get

a0 := �J�1
+1Z
�1

e
��s

2

2 W�1(s)f(s) ds:
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Therefore system (17) with a = a0 has a unique solution bounded for all t. This solution

is de�ned by

z(t) =

8>>>>>><
>>>>>>:

tZ
�1

e
�(t2�s2)

2 W (t� s) (f(s) + a0) ds; t < 0;

�
+1Z
t

e
�(t2�s2)

2 W (t� s) (f(s) + a0) ds; t � 0:

For example, let us take in (18)

f(t) = (cos t; 0)
T
: (20)

Then

a0 = � e1=2p
2�

+1Z
�1

e
�s

2

2 W�1(s)Z(s; y)ds = �
�
e1=2

2
(1 + e�2); 0

�T

;

and the bounded solution is de�ned by

z(t) =

8>>>>>><
>>>>>>:

tZ
�1

e
t
2
�s

2

2 (Z(s) + a0)ds t < 0;

�
+1Z
t

e
t
2
�s

2

2 (Z(s) + a0)ds t � 0:

Its graph is shown on Figure 1.

The idea of gluing attracting and repelling parts is applied in [1, 4] for obtaining integral

manifolds with variable attractivity and canard solutions.

Let us apply this approach to system (2). For this purpose we introduce a gluing parameter

into the system. Thus, we consider a system of the form

dz

dt
= B(t)z + Z(t; z) + a: (21)

In the next section we establish conditions under which (21) has a global uniformly bounded

solution.

3 Main result

We consider a system of the type

dz

dt
= B(t)z + Z(t; z) + a; (22)

where B(t) is de�ned in (3) and a is a vector of parameters.
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Figure 1: The two components of the bounded solution.
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Theorem 3.1 Let the function Z(t; z) in the r.h.s. of (22) satisfy the assumption (A1).

Let p
2�p
�
�(1 + e�

2
=2�) < 1: (23)

Then there exists a unique vector a such that (22) has a global uniformly bounded solution.

Generally, solutions of (22) exhibit the same type of behaviour as that of (8). More

precisely, the trajectory of system (22) starting for t = t0 < 0 at any initial point z0 enters

after a short time interval a small neighbourhood of the uniformly bounded solution and

stays in it until some time t = t�(t0; z0) > 0, where t� increases with respect to jt0j. For

t > jt0j the trajectory jumps away. This phenomenon is similar to the e�ect of delayed loss

of stability for singularly perturbed systems [3, 5].

Theorem 3.1 can be generalized to systems of the form (22) with the crucial feature that

the matrix B(t) has a pair of simple complex conjugate eigenvalues crossing the imaginary

axis for some value t = t� at some points �i !; ! 6= 0.

4 Proof of the main result

Let H be the complete metric space of functions h(t) mapping continuously R into 
z and

satisfying the inequality

kh(t)k � N; (24)

with N � �, equipped with the uniform metric

�(h; �h) = sup
t2R

kh(t)� �h(t)k:

On the space H we de�ne the operator Ta

Tah(t) =

8>><
>>:

�
+1R
t

e
�(t2�s2)

2 W (t� s) [Z (s; h(s)) + a] ds; t � 0;

tR
�1

e
�(t2�s2)

2 W (t� s) [Z (s; h(s)) + a] ds; t < 0;

depending on a. By de�nition, if h = Tah for t > 0 then z = h(t) is a bounded solution

of (22) on the positive semi-axis. Similarly, h = Tah for t < 0 implies that z = h(t) is a

bounded solution of (22) on the negative semi-axis.

We shall prove that for every h 2 H there exists a unique a = P (h) such that the function

TP (h)h is continuous. We de�ne the operator T by

Th(t) = TP (h)h(t)

and show that T maps H into itself and is a contraction. Therefore, there exists a unique

�xed point h� of T in H. By construction, the �xed point is a the solution of (22) bounded

for all t 2 R, which implies the conclusion of the theorem.
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4.1 Continuity of Th and estimates of P

It is easy to check that Tah is continuous for t < 0 and t > 0 for each h 2 H. The

continuity of Tah at t = 0 is considered in the following lemma.

Lemma 4.1 For any function h 2 H there exist a unique vector a such that the function

Tah is continuous.

Proof.

The condition of continuity of the function Tah at the point t = 0 is equivalent to the

following condition
+1Z
�1

e
��s

2

2 W�1(s)[Z (s; h(s)) + a] ds = 0: (25)

Let us rewrite (25) in the form

J1 + J a = 0;

where J is de�ned by (19) and

J1 :=

+1Z
�1

e
��s

2

2 W�1(s)Z (s; h(s)) ds:

The integral J1 converges due to the assumption (A1) on the function Z. Therefore,

a := �J�1J1; that is

a = �
p
�e�

2
=2�

p
2�

+1Z
�1

e
��s

2

2 W�1(s)Z (s; h(s)) ds: (26)

It completes the proof.

We use (26) as the de�nition of the functional a = P (h) acting from H to R2 . To complete

the proof we need the next lemma.

Lemma 4.2 The following estimates are valid

kak � e�
2=2�M;

ka� �ak � e�
2
=2���(h; �h);

where a = P (h) and �a = P (�h) for any h; �h 2 H.

Proof. From (26) and the assumption (A1) it follows that

kak � kJ�1k
+1Z
�1

e
��s

2

2 kZ (s; h(s))k ds � e�
2
=2�M:
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For the di�erence between a and �a we have

ka� �ak � kJ�1k
+1Z
�1

e
��s

2

2 kZ (s; h(s))� Z
�
s; �h(s)

�
k ds �

�
p
�e�

2
=2�

p
2�

�

+1Z
�1

e
��s

2

2 kh(s)� �h(s)k ds � e�
2
=2���(h; �h):

Thus,

ka� �ak � e�
2
=2���(h; �h): (27)

This completes the proof of Lemma 4.2.

4.2 Existence of the bounded solution

Let t � 0. By the assumption (A1) and Lemma 4.2 we have

kTh(t)k �
+1Z
t

e
�(t2�s2)

2 [kZ (s; h(s)) k+ kak] ds �
p
2�p
�
M(1 + e�

2
=2�):

Analogously, one sees that the same estimate holds for t � 0. It means that Th is uniformly

bounded. From (5) it follows that the function Th belongs to the space H, that is T maps

H into itself.

From the assumption (A1) and Lemma 4.2 it follows for t � 0

kTh(t)� T �h(t)k �
+1Z
t

e
�(t2�s2)

2 kZ (s; h(s))� Z
�
s; �h(s)

�
k+ ka� �ak �

�
+1Z
t

e
�(t2�s2)

2 [��(h; �h) + e�
2=2���(h; �h)] ds =

p
2�p
�
�(1 + e�

2=2�)�(h; �h):

The same estimate is valid for t � 0, therefore

�(Th; T �h) �
p
2�p
�
�(1 + e�

2=2�)�(h; �h);

and the condition (23) implies that T is a contraction in H. This completes the proof of

Theorem 3.1.
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