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Abstract

We survey a number of recent results and suggest some new ones on periodic
solutions of systems with hysteresis. The main focus of this work is the situation
when simple one-parameter structures of periodic regimes appear. We consider
forced oscillations, cycles of autonomous systems and Hopf bifurcations from the
equilibrium and from infinity.

1 Introduction

We consider periodic solutions of systems with hysteresis nonlinearities focusing on Hopf
bifurcation problems and on the natural situations when periodic regimes form continuum
sets. Those situations are defined by the simple condition ‖z‖C < ρ that should be
satisfied for the components of periodic solutions in the finite-dimensional space of phase
variables z, where ρ is determined by the hysteresis nonlinearity and characterizes the
size of the hysteresis region. For example, the estimate ‖z‖C < ρ can be derived from
a priori estimates of periodic solutions. If it is satisfied, then generically each periodic
regime (if any exists) is included in the connected continuum of periodic regimes whose
structure can be described in simple terms both for nonautonomous and autonomous
systems. Existence of such a continuum was observed already in early applications of the
operator theory of hysteresis [24]. In the complementary case ‖z‖C > ρ periodic regimes
are typically isolated.

An interest to problems on bifurcations in systems with hysteresis is motivated by phe-
nomena observed in real systems where variation of parameters leads to sudden changes
of dynamics. Recent numerical results justified also by theoretical analysis show that
systems with hysteresis nonlinearities can exhibit a rich spectrum of bifurcations, in par-
ticular bifurcations of periodic regimes, subharmonics, quasi- and almost periodic motions,
appearance of regions of complicated and chaotic behavior and others. For example, this is
the case for simple models like second order differential equations with a hysteresis term,
which is responsible for bifurcations [18, 19, 20]. Here we present a number of results
on one type of bifurcations, namely Hopf bifurcations of cycles in autonomous systems,
discussing mainly sufficient conditions for some parameter value to be a bifurcation point
and structures of the sets of cycles. One should take into account that hysteresis nonlin-
earities are not differentiable and analysis of bifurcations should be based on approaches
alternative to the ones standard in smooth problems.

The paper is organized as follows. In the next section we recall shortly a definition of the
Preisach nonlinearity. Section 3 presents statements on continua of periodic solutions and
the structure of such continua, which is basically one-parametric. In the last subsection
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we suggest some results on continua of cycles of autonomous systems analogous to that
presented before for problems on forced periodic oscillations. Section 4 contains theorems
on Hopf bifurcations, including bifurcations from an equilibrium (subsection 4.2) and from
infinity (subsection 4.3) for equations with one scalar parameter. In subsection 4.4 we
study systems without parameters that have a continuum of small cycles accumulating at
the equilibrium and consider relations of the problem to Hopf bifurcation problems.

The main objective of the paper is to survey a group of recent results on periodic problems
with hysteresis that can be approached by common analytic methods. We omit most of the
proofs, restricting ourselves with the presentation of some of their sketches and references
to the literature.

We consider systems with the Preisach hysteresis nonlinearities, which is an important
class in various applications (see, e.g. [17, 23]). Similar results can be obtained for some
other classes of hysteresis nonlinearities like, for example, the Prandtl – Ishlinskii, May-
ergoyz – Friedman, Mroz models, sometimes straightforwardly, sometimes with a more
essential modification of formulations and proofs. It is important to stress that we consider
equations that include outputs of the hysteresis nonlinearities rather than time-derivatives
of the outputs. If the derivatives only are included, then continua of periodic regimes are
generically not observed.

2 Systems with the Preisach hysteresis nonlinearity

2.1 Preisach model

By Rαβ [·] we denote the input-output operator of the elementary hysteresis nonlinearity
called the nonideal relay with the two states {0, 1}, which is defined in a standard way.
Here α, β are the thresholds of the relay, they satisfy α < β. The relay inputs are any
continuous scalar functions x = x(t) defined on a semiaxis t ≥ t0, its outputs (called
also variable states) are functions η = η(t) with the values 0 and 1 defined on the same
semiaxis t ≥ t0. Assume that an initial state η0 = η(t0) of the relay is admissible for a
given input x = x(t), which means that η0 = 0 if x(t0) ≤ α, η0 = 1 if x(t0) ≥ β and η0 is
any of the numbers 0, 1 if α < x(t0) < β. Then the relay output η(t) = (Rαβ [η0]x)(t) is
defined by

(Rαβ [η0]x)(τ) =




η0, if α < x(t) < β for all t ∈ [t0, τ ];

1, if there is a t1 ∈ [t0, τ ] such that

x(t1) ≥ β and x(t) > α for all t ∈ [t1, τ ];

0, if there is a t1 ∈ [t0, τ ] such that

x(t1) ≤ α and x(t) < β for all t ∈ [t1, τ ].

This formula implies that the output η has at most finite number of jumps (relay switches)
on every segment [t0, t] and that η(τ) = 1 whenever x(τ) ≥ β as well as η(τ) = 0 whenever
x(τ) ≤ α.

The Preisach hysteresis nonlinearity may be described as a collection of relays (with all
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possible thresholds) that have a common input and function independently. For the strict
definition, consider the set W of nonideal relays parameterized by the pairs (α, β), each
relay is represented by a point of the half-plane Π = {(α, β) ∈ R

2 : α < β}. Let a
probabilistic measure µ be defined on Π. Denote by Ω(x0) the set of all measurable
functions η0(α, β) : Π → {0, 1} satisfying

η0(α, β) = 0 for α ≥ x0; η0(α, β) = 1 for β ≤ x0

and define E∗ = ∪x0∈RΩ(x0). The states of the Preisach nonlinearity are all functions
η0 = η0(α, β) ∈ E∗. The further construction is based on the fact that for every continuous
input x : [t0,∞) → R and every initial state η0 ∈ Ω(x(t0)) (such initial states are called
admissible for the input x = x(t)) the function

η(t, α, β) = (Rαβ [η0(α, β)]x)(t) (1)

satisfies η(t, ·, ·) ∈ Ω(x(t)) ⊂ E∗ for each t ≥ t0. This allows to use formula (1) as the
definition of the input-state operator

η(·) = (Γ[η0]x)(·)

of the Preisach nonlinearity that assigns the variable state η : [t0,∞) → E∗ to a continuous
input x and an admissible initial state η0. The scalar output y : [t0,∞) → R of the
Preisach nonlinearity is defined by the formula

y(·) = (Φ(Γ[η0]x))(·)

where the functional Φ : E∗ → R is given by

Φ(η0(·, ·)) =
∫∫

Π

η0(α, β) dµ.

It means that for a given input x = x(t) and an admissible initial state η0 the output
equals

y(t) =

∫∫
Π

η(t, α, β) dµ =

∫∫
Π

(Rαβ [η0(α, β)]x)(t) dµ, t ≥ t0,

which is interpreted in the sense that the outputs of the individual relays of the set W
are averaged over the domain Π  (α, β).

Everywhere below we use measures µ such that all outputs of the Preisach nonlinearity
are continuous functions (although the outputs of individual relays have jumps). For
example, this is true if µ has a bounded density h = h(α, β) with respect to the Lebesgue
measure. Since the measure µ is probabilistic, all the outputs satisfy the uniform estimate
0 ≤ y(t) ≤ 1 for all t.

Further properties of the Preisach model and its more detailed description can be found
for example in [12, 3, 15, 17].
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2.2 Lipschitz continuity of the Preisach nonlinearity

Let us metrize the state space E∗ of the Preisach nonlinearity. A usual way to do it is to
use the L1-type metric

ρ1(η1, η2) =

∫∫
Π

|η1(α, β)− η2(α, β)| dµ. (2)

With respect to this metric the state space of the Preisach nonlinearity is partitioned to
the natural equivalence classes. The correctness of the partitioning is justified in [12],
where it is shown that if the functions η1(t0), η2(t0) ∈ E∗ satisfy ρ1(η1(t0), η2(t0)) = 0 then
ρ1(η1(t), η2(t)) = 0 at every moment t ≥ t0 for the variable states ηj(t) = (Γ[ηj(t0)]x)(t),
which also implies the equality y1 = y2 of the outputs yj(t) = Φ(ηj(t)).

For simplicity, assume that the measure µ has a bounded density h(α, β) with respect to
Lebesgue measure such that h(α, β) ≤ h∗ in Π and h(α, β) = 0 for α < β − γ∗ with some
γ∗, h∗ > 0. As it is proved in [12], these relations imply the global Lipschitz continuity of
the input-state and input-output operators of the Preisach nonlinearity. More precisely,
for every pair of continuous inputs xj : [t0,∞) → R and admissible initial states ηj(t0)
the variable states ηj(·) = (Γ[ηj(t0)]xj)(·) and outputs yj(·) = (Φ(ηj))(·) satisfy for each
t ≥ t0

‖y1 − y2‖C[0,t] ≤ ρ1(η1(t), η2(t0)) ≤ ρ1(η1(t0), η2(t0)) + 2h∗γ∗‖x1 − x2‖C[0,t],

where ‖x‖C[0,t] = max{|x(τ)| : t0 ≤ τ ≤ t}. The proof of these estimates is based on a
simple explicit algorithm to construct variable states ηj(·), which we do not consider here.

2.3 Closed systems with the Preisach nonlinearity

We shall consider closed systems of the form

dz/dt = F (t, z(t), y(t)), z ∈ R
d, t ≥ t0,

y(t) = Φ(η(t)),
η(t) = (Γ[η(t0)]x)(t),
x(t) = 〈c, z(t)〉 ,

(3)

where 〈·, ·〉 is a scalar product in R
d. Here x is a scalar continuous input of the Preisach

hysteresis nonlinearity, y and η are the scalar continuous output and the changing state
of this nonlinearity.

We assume that the function F (·, ·, ·) is continuous with respect to the set of its ar-
guments and T -periodic in t. Solutions of (3) are defined in a standard way as pairs
(z, η) = (z(t), η(t)) with the continuously differentiable first component. Their values lie
in the phase space R

d × E∗ of system (3). Remark that the Volterra property allows to
consider inputs, variable states and outputs of the hysteresis nonlinearity on finite inter-
vals. Therefore solutions of system (3) may be defined on finite and infinite intervals like
for ordinary differential equations.

Along with system (3), its particular cases will be considered where the first equation
has the form L(d/dt)x = f(t, x, y) with a scalar differential polynomial L as well as
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autonomous systems with F independent of t. In section 4 we consider also autonomous
systems depending on a parameter.

3 One-parameter sets of periodic regimes

3.1 Example

In order to start with a simple example of a statement on existence of a continuum of
periodic solutions, we consider the system

L (d/dt)x = f(t, x, y(t)),
y(t) = Φ(η(t)),
η(t) = (Γ[η(t0)]x)(t)

(4)

with
L(p) = p	 + a1p

	−1 + · · ·+ a	

where x(t) and y(t) are input and output of the Preisach nonlinearity and the function
f(t, x, y) is supposed to be continuous and satisfy f(t, x, y) ≡ f(t+T, x, y) for some T > 0.

Let us split the set of all T -periodic solutions (x(t), η(t)) = (x(t+T ), η(t+T )) (t ≥ t0) of
system (4) into disjoint equivalence classes, assigning two periodic solutions to the same
class if they have the same first component and their second components ηj(t) satisfy
Φ(η1(t)) ≡ Φ(η2(t)), i.e. the variable states ηj(t) define the same periodic output of the
Preisach nonlinearity. We denote the equivalence class of periodic solutions (x(t), η(t))
by [x(t), y(t)] where y(t) = Φ(η(t)) for all its representatives.

Classes [x(t), y(t)] are natural by several reasons. First, the main first equation of sys-
tem (4) contains inputs and outputs rather than variable states η(t) of the hysteresis
nonlinearity. This situation is typical regarding that states of the hysteresis nonlinearity
are basically considered as values that one can neither observe nor control. Secondly,
the second components of all periodic solutions (x(t), η(t)) that belong to the same class
[x(t), y(t)] are related by simple explicit formulas, which we discuss below.

Let for all t, x ∈ R

|f(t, x, y)| ≤ q|x|+ b, y ∈ [0, 1] (5)

(here [0, 1] is the range of output values of the Preisach nonlinearity). Suppose that all
the zeros of the polynomial L(p) are different from the numbers nw0i (n ∈ Z) where
w0 = 2π/T . Set

k = max
n∈Z

|L(nw0i)|−1, k1 = T−1/2

(
|L(0)|−2 + 2

∞∑
n=1

|L(nw0i)|−2

)1/2

. (6)

Actually, these formulas define the norms k = ‖H‖L2→L2 and k1 = ‖H‖L2→C of the
solution operator H = H(T ) sending a function u = u(t) to the solution x = Hu of the
T -periodic problem for the linear equation L

(
d
dt

)
x = u(t) in the spaces L2 = L2[0, T ] and

C = C[0, T ].
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To be simple, we shall always assume in this section that the measure µ of the Preisach
nonlinearity has a bounded density h = h(α, β) with respect to the Lebesgue measure.
Define the scalar function

µ(r) = µ
({(α, β) : α < −r, r < β}), r ≥ 0, (7)

and denote by Rµ the least nonnegative solution of the equation µ(r) = 0 if any exists. If
µ(r) > 0 for all r ≥ 0 then we set Rµ = ∞. The value Rµ plays an important role in all
the statements below.

Proposition 3.1. Let estimate (5) hold and

qk < 1,
k1b

√
T

1− qk
< Rµ. (8)

Then there exists a one-parameter continuum of classes [xλ(t), yλ(t)] (0 ≤ λ ≤ 1) of
T -periodic solutions to system (4), which classes are different for different λ. Assume
additionally that the density of the measure µ satisfies

h(α, β) ≤ ν(β − α), α < β, (9)

where ν is integrable on the positive semiaxis, i.e.

ν∞ =

∞∫
0

ν(s) ds < ∞. (10)

Moreover, assume that the function f(t, x, y) satisfies the Lipschitz condition

|f(t, x1, y1)− f(t, x2, y2)| ≤ q|x1 − x2|+ q1|y1 − y2| (11)

for all t, xj ∈ R, 0 ≤ yj ≤ 1 and

q1 <
1− qk

2ν∞k1

√
T
. (12)

Then the set of all T -periodic solutions of system (4) is the join of the classes [xλ(t), yλ(t)]
(0 ≤ λ ≤ 1) above and there are numbers cj such that

‖xλ1(·)− xλ2(·)‖C ≤ c1|λ1 − λ2|, ‖yλ1(·)− yλ2(·)‖C ≤ c2|λ1 − λ2|, λj ∈ [0, 1]. (13)

For example, consider equation

x′′ + x = sin(
√
2t) + ρ(2y(t)− 1) (14)

where x and y are the input and output of the Preisach nonlinearity, ρ > 0. Here T =
√
2π,

estimate (5) holds with q = 0, b = 1 + ρ and quantities (6) equal

k = 1, k1 =
1

2

√√
2π + sin(

√
2π)

1− cos(
√
2π)

≈ 0.829.
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Therefore the first of estimates (8) holds. Assume that the density h = h(α, β) of the
measure µ is defined by

h(α, β) = 1/(2r2) if − r ≤ α < β ≤ r; h(α, β) = 0 otherwise.

Then Rµ = r and the second of estimates (8) has the form

r

1 + ρ
>

√
2π2 +

√
2π sin(

√
2π)

4(1− cos(
√
2π))

≈ 1.747. (15)

By Proposition 3.1 this estimate implies that equation (14) has a one-parameter contin-
uum of classes [xλ(t), yλ(t)] of periodic solutions of the period

√
2π. Furthermore, the

Lipschitz estimate (11) holds with q1 = 2ρ and from

h(α, β) ≤ 1/(2r2) if 0 < β − α ≤ 2r, h(α, β) = 0 otherwise

it follows that ν∞ = 1/r, therefore estimate (12) takes the form

r

ρ
> 4

√
2π2 +

√
2π sin(

√
2π)

4(1− cos(
√
2π))

≈ 6.9876. (16)

The second part of Proposition 3.1 implies that if estimates (15) and (16) are valid, then
the set of all

√
2π-periodic solutions of equation (14) is the join of the classes [xλ(t), yλ(t)]

(0 ≤ λ ≤ 1). In fact, these classes are related here by the simple formulas

xλ(t) = x0(t) + 2ρδ(λ), yλ(t) = y0(t) + δ(λ), λ ∈ [0, 1],

where the continuous function δ = δ(λ) strictly increases and δ(0) = 0. Note that estimate
(15) implies r � 1.747.

One can use operator norms different from (6) to conclude that all T -periodic solutions
of system (4) constitute a one-parameter set of classes [xλ(t), yλ(t)]. For example, those
conclusion and estimates (13) are valid if the relation k2(q + 2ν∞q1) < 1 holds with
k2 = ‖H‖C→C. This relation and relation (12) of Proposition 3.1 do not imply each
other and give different estimates for the coefficients q and q1 of the Lipschitz condition
(11). Remark that the norm k = ‖H‖L2→L2 equals the spectral radius of the operator
H = H(T ) and that if qk < 1 (i.e., the first relation of (8) holds) then estimate (5) alone
implies that system (4) has at least one T -periodic solution, which may be eventually
unique.

3.2 Structure of the set of periodic variable states and outputs

The following proposition describing the set of all possible periodic variable states and
outputs of the Preisach nonlinearity for a given periodic input explains why the one-
parameter continua of equivalence classes of periodic solutions appear and plays the main
role in the proofs of Proposition 3.1 above and further statements of this section on such
continua.
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Consider a continuous input which is periodic on the semiaxis t ≥ t0, i.e. x(t) ≡ x(t+ T )
(t ≥ t0). For some admissible initial states η0 = η0(α, β) the variable state η(t) =
(Γ[η0]x)(t) and the output y(t) = Φ(η(t)) of the Preisach nonlinearity are also periodic
on the semiaxis t ≥ t0. To describe the class of all such variable states and outputs for a
given input x(t), let us define the numbers xm = min x(t), xM = maxx(t) and the sets

G(xm, xM) = {(α, β) : α < xm ≤ xM < β}, Gc(xm, xM) = Π\G(xm, xM)

on the half-plane Π = {(α, β) : α < β}. From the relay definition it follows that if
(α, β) ∈ Gc(xm, xM ) then the relay output (Rα,β [·]x)(t) is periodic on the semiaxis t ≥ t0
for exactly one of the two initial relay states 0 and 1, for the other initial state the output
is either not periodic or not defined. A unique (for a given x(t)) periodic relay output we
denote by ηper(t, α, β) and set

(Jλx)(t) =
∫∫

Gc(xm,xM )

ηper(t, α, β) dµ(α, β) + λµ(G(xm, xM)), t ≥ t0, (17)

where 0 ≤ λ ≤ 1. For each λ, this operator is defined on the class of all continuous
periodic functions x : [t0,∞) → R, acts in this class and sends a function x = x(t) with
a period T to the function Jλx with the same period.

Denote by G the class of all functions g : R+ → R such that |g(y1) − g(y2)| ≤ |y1 − y2|
(y1, y2 ≥ 0) and define the function

ψ(ε) = sup
g=g(y)∈G

µ {(α, β) ∈ Π : |α+ β − g(β − α)| ≤ ε}, ε ≥ 0, (18)

which is nondecreasing, nonnegative and satisfies ψ(ε) → 0 as ε → 0, since we assume
that the measure µ has a bounded density.

Proposition 3.2. The following statements hold:

(i) For any periodic input x(t) ≡ x(t + T ) (t ≥ t0) the formula y(t) = (Jλx)(t) with
λ ranging over the segment 0 ≤ λ ≤ 1 defines the class of all outputs of the Preisach
nonlinearity that are periodic on t ≥ t0.

(ii) For any periodic input x(t) ≡ x(t+ T ) (t ≥ t0) the formula

η(t, α, β) =

{
ηper(t, α, β) if either β > α ≥ xm or xM ≥ β > α or both,

η∗(α, β) if α < xm ≤ xM < β,
(19)

where η∗(α, β) is an arbitrary measurable (w.r.t. the measure µ) function with the values
0, 1, defines the class of all periodic variable states η(t) = η(t, α, β) of the Preisach non-
linearity. Their periods equal the period of the input, i.e. η(t) = η(t+T ) (t ≥ t0), and the
periodic output y(t) = Φ(η(t)) for variable state (19) is defined by y(t) = (Jλx)(t) with

λµ(G(xm, xM)) = µ({(α, β) ∈ G(xm, xM) : η∗(α, β) = 1}). (20)

(iii) Each variable state η(t) = (Γ[·]x)(t) (t ≥ t0) equals one of variable states (19) on the
semiaxis t ≥ t0 + T .
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(iv) For every pair of periodic inputs xj = xj(t) (t ≥ t0) with a period T and every
λ ∈ [0, 1]

‖Jλx1 − Jλx2‖C[t0,t0+T ] ≤ 2ψ
(‖x1 − x2‖C[t0,t0+T ]

)
. (21)

From conclusion (iv) it follows that operator (17) is uniformly continuous in the space
C[t0, t0 + T ] for each λ (we identify periodic inputs and outputs with their restrictions to
the period). If relations (9) and (10) hold, then |ψ(ε)| ≤ ν∞ε, which implies the global
Lipschitz estimate

‖Jλx1 − Jλx2‖C[t0,t0+T ] ≤ 2ν∞‖x1 − x2‖C[t0,t0+T ]. (22)

By Proposition 3.2 for every class [x(t), y(t)] of T -periodic solutions of system (4) the
relation y(t) = (Jλx)(t) with some λ ∈ [0, 1] is valid. Under the conditions of Proposition
3.1 such classes [x(t), (Jλx)(t)] exist for all 0 ≤ λ ≤ 1 and are pairwise disjoint. Actually,
dependence of the periodic problem on the parameter λ rather than any special behavior of
the function f(t, x, y) is the reason for existence of a one-parameter continuum of classes
of periodic solutions. Simple assumptions like estimates of the measure µ density and
Lipschitz continuity of the nonlinearity f(t, x, y) used in Proposition 3.1 may guarantee
that the set of all classes [x(t), y(t)] of T -periodic solutions is the image of the segment
0 ≤ λ ≤ 1 under a one-to-one continuous mapping. The easiest way to construct examples
of periodic solution sets with any number of connected components is to consider open
loop systems consisting of the differential equation L(d/dt)x = f(t, x) without y and the
relations η(t) = (Γ[η(t0)]x)(t), y(t) = Φ(x(t)) that define variable states and outputs of
the hysteresis nonlinearity. Here every periodic solution xj(t) of the differential equation
(if any exists) defines the one-parameter set of classes [xj(t), (Jλxj)(t)] (0 ≤ λ ≤ 1) of
periodic solutions for the system.

3.3 Classes of periodic solutions

Now let us consider individual T -periodic solutions (x(t), η(t)) of system (4) from any class
[x(t), y(t)]. Simple relations between their second components η(t) follow from Proposition
3.2. Recall that by definition (x(t), η(t)) belongs to the class [x(t), y(t)] if and only if
η(t) = (Γ[η(t0)]x)(t), y(t) = Φ(η(t)) and η(t) = η(t+ T ) for all t ≥ t0.

Statements (i), (ii) of Proposition 3.2 imply that for every periodic solution (x(t), η(t)) ∈
[x(t), y(t)] the component η(t) = η(t, α, β) coincides on the domain (α, β) ∈ Gc(xm, xM)
for all t ≥ t0 with the function ηper(t, α, β) uniquely defined by the input x(t). Thus,
the components η(t) = η(t, α, β) of the representatives (x(t), η(t)) of the class [x(t), y(t)]
differ from each other on the domain G(xm, xM) only, where these components do not
change with time, which means that η(t, α, β) ≡ η∗(α, β) on G(xm, xM) for each individual
solution (x(t), η(t)). If µ(G(xm, xM)) > 0, then one obtains all representatives of the class
[x(t), y(t)] inserting here characteristic functions η∗(α, β) of all measurable subsets of
G(xm, xM) that satisfy a unique restriction, namely (20) should hold with the λ ∈ [0, 1]
defined by the equality

y(t) =

∫∫
Gc(xm,xM )

ηper(t, α, β) dµ(α, β) + λµ(G(xm, xM)),
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which is nothing else as y = Jλx. Since there is a continuum of such functions η∗ =
η∗(α, β), each class [x(t), y(t)] consists of the continuum of periodic solutions (x(t), η(t))
if µ(G(xm, xM)) > 0. For example, under the conditions of Proposition 3.1 system (4)
has a one-parameter continuum of classes [xλ(t), yλ(t)] of T -periodic solutions and each
of those classes is a continuum parameterized by the functional parameter η∗ = η∗(α, β).

Formula (17) implies that Jλx = J0x for all λ and the Preisach nonlinearity assigns a
unique periodic output to a given periodic input x = x(t) if and only if µ(G(xm, xM)) = 0.
In contrast to the situation considered above, it means that the class [x(t), y(t)] of pe-
riodic solutions is not included in the one-parameter set of such classes [xλ(t), yλ(t)] if
µ(G(xm, xM)) = 0. Moreover, formula (20) implies that the class [x(t), y(t)] contains a
unique element (x(t), ηper(t)) in this case, since we consider functions η = η(α, β) equal
almost everywhere with respect to the measure µ as the same state of the Preisach non-
linearity. Thus, periodic solutions (x(t), η(t)) such that µ(G(xm, xM )) = 0 are basically
isolated (if the nonlinearity f itself is not as complicated that it ‘produces’ nonisolated
solutions). For example, the relation µ(G(xm, xM)) = 0 holds if xm < −Rµ and xM > Rµ.

3.4 Application of guiding functions

It is instructive to modify standard statements that guarantee the existence of at least one
T -periodic solution for systems with the Preisach nonlinearity like that using dissipativity
properties of the system, two-sided and one-sided estimates of nonlinearities, the Schauder
principle and degree theory (see, for example, [1, 10, 11]) in order to formulate sufficient
conditions for the existence of the continuum of such solutions. Under the hypotheses of
such statements obtained for different types of systems the periodic solutions admit an a
priori estimate ‖z(t)‖C ≤ ρ of the z-component. This a priori estimate implies the similar
estimate ‖x(t)‖C ≤ ρ0 for the corresponding periodic inputs x = 〈c, z〉 of the Preisach
nonlinearity, for example with ρ0 = ρ|c|. If we assume that ρ0 < Rµ in addition to the
conditions of those propositions, then the set of periodic solutions will include the one-
parameter continuum of disjoint classes [zλ(t), yλ(t)], 0 ≤ λ ≤ 1. Here and henceforth we
denote by [z(t), y(t)] the class of all periodic solutions (z(t), η(t)) satisfying y(t) = Φ(η(t))
for systems (3), similarly to the notation [x(t), y(t)] used for system (4).

Let us consider in more detail how this approach works in an application based on the
method of guiding functions.

A scalar valued continuously differentiable function V (z) is called a guiding function for
the ODE system z′ = F (t, z) with z ∈ R

d if the gradient �V (z) of this function satisfies
for some ρ > 0

〈�V (z), F (t, z)〉 < 0 if |z| > ρ, t ∈ R. (23)

Let the continuous function F (t, z) be T -periodic with respect to t. The simplest fact
illustrating the role of guiding functions in the study periodic problems is that estimate
(23) and the relation |V (z)| → ∞ as |z| → ∞ imply the existence of at least one T -
periodic solution of system z′ = F (t, z). An important idea that leads to less restrictive
existence conditions is to use several guiding functions. From (23) it follows that outside
some ball in R

d the vector fields �V (z) and −F (t0, z) are linearly homotopic and do not
have zeros for every t0. Therefore if Vj(z) with j = 1, . . . , k are guiding functions for
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the system z′ = F (t, z), then the Kronecker index at infinity is defined for each gradient
vector field �Vj(z) and all these indices coincide. The common value of these Kronecker
indices is called the topological index of the finite set of guiding functions V1(z), . . . , Vk(z).
Such a set is called complete if

|V1(z)|+ · · ·+ |Vk(z)| → ∞ as |z| → ∞. (24)

The most classical theorem is that if there exists a complete finite set of guiding functions
with a nonzero topological index, then the system has at least one T -periodic solution
(see, e.g. [14]).

If one uses a proper straightforward modification of the guiding function definition, then
the same statement holds for systems with hysteresis nonlinearities. Namely, consider the
system

dz/dt = F (t, z(t), y(t)), z ∈ R
d,

y(t) = Φ(η(t)),
η(t) = (Γ[η(t0)]x)(t),
x(t) = 〈c, z(t)〉

(25)

with the Preisach nonlinearity, where F (t, z, y) ≡ F (t+ T, z, y) is a continuous function.
Assume that for j = 1, . . . , k

〈�Vj(z), F (t, z, y)〉 < 0 if |z| > ρj , 0 ≤ y ≤ 1, t ∈ R, (26)

relation (24) holds and the common value of the Kronecker index at infinity of the gradient
vector fields �Vj(z) is nonzero. Then system (25) has at least one T -periodic solution
(see, e.g. [10]).

Combining this statement with Proposition 3.2 according to our basic approach, we arrive
at the following conditions for the existence of a continuum of periodic solutions. We use
the notations mj and Mj for the smallest and the largest values of the guiding function
Vj(z) on the ball |z| ≤ ρj and the notation

Gj = {z ∈ R
d : mj ≤ Vj(z) ≤ Mj}.

Proposition 3.3. Let scalar valued continuously differentiable functions V1(z), . . .,
Vk(z) satisfy (24) and (26) and the Kronecker index at infinity of the gradient vector
fields �Vj(z) in R

d be nonzero. Let a ball {z ∈ R
	 : |z| ≤ ρ∗} contain the set G1∩· · ·∩Gk

and let Rµ > ρ∗|c|. Then the set of T -periodic solutions of system (25) includes a one-
parameter continuum of disjoint classes [zλ(t), yλ(t)] (0 ≤ λ ≤ 1).

Remark that relation (24) implies that the set G1 ∩ · · · ∩Gk is bounded. The conditions
of Proposition 3.3 imply the inclusion z(t) ∈ G1 ∩ · · · ∩Gk, t ≥ t0 for the z-component of
each periodic solution of system (25) and therefore the a priori estimate ‖z(t)‖C ≤ ρ∗ for
all such solutions.

If |V (z)| → ∞ as |z| → ∞ (i.e., k = 1) then the Kronecker index at infinity of the
vector field �V (z) is either 1 or −1. There are many other simple conditions, which
guarantee that the topological index of the complete set of guiding functions V1(z), . . .,
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Vk(z) is different from zero. For example, if one of these guiding functions is even, then
the topological index is odd.

The proofs of Propositions 3.1 and 3.3 are based on the same idea. Using operator (17),
one constructs an operator equation depending on λ, whose solutions define the classes
[x(t), y(t)] of T -periodic solutions of system (4) (the classes [z(t), y(t)] for system (25),
respectively), then proves the existence of a solution for each λ ∈ [0, 1] and shows that
the solutions are different for different λ. For example, one can use the operator equation

ξ(t) = f(t, (Hξ)(t), (JλHξ)(t)) (27)

in the space L2[0, T ] to prove Proposition 3.1. From the definition of the linear operator
H = H(T ) and Proposition 3.2 it follows that each solution ξ = ξ(t) of (27) defines the
class [x(t), y(t)] of T -periodic solutions of system (4) with x(t) = (Hξ)(t), y(t) = (Jλx)(t).
The existence of a solution ξλ of (27) for each λ ∈ [0, 1] follows from (5) and the first
of estimates (8) by the Schauder principle. The second of estimates (8) and the a priori
estimate ‖x‖C ≤ k1b

√
T/(1 − qk) of all T -periodic solutions of (4) imply that all the

classes [xλ(t), yλ(t)] of such solutions defined by the solutions ξλ of (27) are disjoint. If
the additional assumptions of the second part of Proposition 3.1 hold, then equation (27)
satisfies the conditions of the contracting mapping principle and therefore has a unique
solution ξλ for each λ ∈ [0, 1]; moreover, the map λ → ξλ is Lipschitz continuous.

For the proof of Proposition 3.3 one can use the operator equation

z(t) = z(0) +

∫ t

0

F (s, z(s), (Jλx)(s)) ds with x(t) = 〈c, z(t)〉

in the space CT ([0, T ];R
d) of continuous functions z = z(t) satisfying z(0) = z(T ) with

the uniform norm. The proof of the existence of a solution zλ of this operator equation
for each λ ∈ [0, 1] follows basically standard lines of the guiding functions method. For
details of the proofs of Propositions 3.1 and 3.3 and for the proof of Proposition 3.2 we
refer to [22].

3.5 Autonomous systems

Our approach works similarly in periodic problems for autonomous systems. Yet, here it
leads to statements on existence of continua of cycles. By the same reason as in problems
on forced periodic oscillations, the continua of cycles have basically the similar type of
one-parametric structure as described above if the a priori estimate ‖x‖C < Rµ holds for
the cycles. We present one particular statement.

Consider the system
L (d/dt)x = f(x, y(t)),

y(t) = Φ(η(t)),
η(t) = (Γ[η(t0)]x)(t)

(28)

with the Preisach nonlinearity. Its solutions of the form (x(t), η(t)) ≡ (x0, η0) are called
stationary, for such solutions also y(t) ≡ y0 with y0 = Φ(η0). We are interested in
conditions that guarantee the existence of nonstationary periodic solutions (x(t), η(t)) ≡
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(x(t + T ), η(t + T )) of some period T > 0. Since system (28) is autonomous, those
periods are a priori unknown. Furthermore, one should take into account that the set
of nonstationary periodic solutions contains together with any solution (x(t), η(t)) all its
time shifts (xτ (t), ητ (t)) = (x(t+ τ), η(t+ τ)) with 0 < τ < T . Passing to the equivalence
classes [x(t), y(t)] = {(x(t), η(t)) : y(t) = Φ(η(t))} of periodic solutions of system (28),
we see that the time shifts of solutions from a class [x(t), y(t)] by the time τ form the
class [x(t+τ), y(t+τ)]. In order to simplify the description of shift invariant structures of
periodic solution sets, we introduce closed curves γ = {(x(t), y(t)) ∈ R

2 : 0 ≤ t < T} on
the input-output plane of the Preisach nonlinearity and say that the curve γ represents
the class of all periodic solutions from the join

⋃
0≤τ<T [x(t+ τ), y(t+ τ)]. The curve γ is

called degenerate if (x(t), y(t)) ≡ (x0, y0) and nondegenerate otherwise.

Let us consider stationary solutions in more detail. For 0 ≤ λ ≤ 1, ρ ∈ R set

φλ(ρ) = µ({(α, β) : α < β < ρ}) + λµ({(α, β) : α < ρ < β}). (29)

This function is continuous with respect to the set of arguments λ, ρ. As we know, the
Preisach nonlinearity assigns stationary outputs to stationary inputs for any admissible
initial states. Moreover, from conclusion (i) of Proposition 3.2 it follows that the values
of all the outputs y(t) ≡ y0 corresponding to the input x(t) ≡ x0 form the segment
{y0 = φλ(x0) : 0 ≤ λ ≤ 1} = [φ0(x0), φ1(x0)]. Therefore the point (x0, y0) of the plane
(x, y) represents a nonempty class of stationary solutions (x(t), η(t)) ≡ (x0, η0) of system
(28) with y0 = Φ(η0) if and only if (x0, y0) = (ρ, φλ(ρ)) for some λ ∈ [0, 1] where ρ is a
solution of the equation

L(0)ρ = f(ρ, φλ(ρ)). (30)

If L(0) �= 0 and the continuous function f(x, y) is bounded, then equation (30) has at least
one solution ρ = ρ∗(λ) for each λ ∈ [0, 1] with |ρ∗(λ)| ≤ ρ1 = sup |f(x, y)||L(0)|−1 and
therefore system (28) has stationary solutions. In particular, if there is a unique solution
ρ = ρ∗(λ) of (30) for each λ and µ({(α, β) : α < ρ < β}) > 0 whenever ρ ∈ [−ρ1, ρ1], then
the points representing all the classes of stationary solutions of system (28) on the plane
(x, y) form the continuous curve Γ = {(x0, y0) = (ρ∗(λ), φλ(ρ∗(λ))) : 0 ≤ λ ≤ 1} without
self-intersections.

Now we are ready to formulate a statement on existence of nonstationary solutions. Let
f(x, y) be a bounded continuously differentiable function satisfying the global Lipschitz
condition

|f(x1, y1)− f(x2, y2)| ≤ q|x1 − x2|+ q1|y1 − y2|, xj , yj ∈ R. (31)

We assume that relations (9), (10) are satisfied for the Preisach nonlinearity.

It is easy to see that if there are no zeros of the polynomial L(p) on the imaginary
axis and the coefficients q, q1 in (31) are small enough, then system (28) does not have
nonstationary periodic solutions.

Let us assume that the polynomial L(p) has a pair of the conjugate imaginary zeros ±w0i
and the so-called nonresonance condition

L(nw0i) �= 0 for n = 0,±2,±3, . . . (32)
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holds. Define on the positive semiaxis r > 0 the function

d(r) =

π∫
0

sin t f(r sin t, 1) dt−
π∫

0

sin t f(−r sin t, 0) dt. (33)

Proposition 3.4. Let the polynomials L(wi) and �mL(wi) of the variable w have a pair
of common zeros ±w0 (w0 > 0) of the same odd multiplicity. Let nonresonance condition
(32) hold. Suppose that estimates (9) and (10) are valid, the bounded continuously differ-
entiable function f(x, y) satisfies the Lipschitz condition (31) and function (33) satisfies
|d(r)| ≥ c > 0 for r ≥ r∗. Then there are numbers q0 > 0, w1 ∈ (w0/2, w0) and w2 > w0,
such that if q + ν∞q1 < q0, then the following statements are valid.

(i) The set of all stationary solutions of system (28) is represented on the plane (x, y) by
a continuous curve Γ, which may eventually degenerate to a unique point.

(ii) If there is a point (x∗, y∗) of Γ such that

d(r∗)
∂f

∂x
(x∗, y∗) < 0, (34)

then system (28) has at least one class of nonstationary periodic solutions represented by
a nondegenerate closed curve γ = {(x, y) ∈ R

2 : x = x(t), y = y(t), t ∈ [0, T )} with a
period satisfying 2π/w2 ≤ T ≤ 2π/w1.

(iii) If estimate (34) is valid for all points of the curve Γ, then there exist numbers r1, r0 > 0
such that the x-components of all periodic solutions of system (28) with periods 2π/w2 ≤
T ≤ 2π/w1 satisfy

‖x(t)− x̄‖L2[0,T ] ≥ r1, ‖x(t)‖C[0,T ] ≤ r0 (35)

where x̄ denotes the average value of the function x(t) over its period. If in addition
Rµ > r0, then the set of all nonstationary periodic solutions of system (28) includes a one-
parameter continuum of disjoint classes represented on the plane (x, y) by nondegenerate
closed curves γλ where λ ranges over the segment 0 ≤ λ ≤ 1, those curves are different for
different λ and the periods of all periodic solutions represented by them satisfy 2π/w2 ≤
T ≤ 2π/w1.

By conclusion (iii), the x-components of all periodic solutions represented by the curves γλ
satisfy estimates (35) and consequently are separated from the one-dimensional subspace
of constant functions and from infinity in L2, C and other functional spaces, which implies
particularly that such periodic solutions are separated from stationary ones. Additional
assumptions about the function f and the measure µ of the Preisach hysteresis nonlin-
earity guarantee that the one-parameter set of curves γλ represents all periodic solutions
of system (28) and these curves depend continuously on λ.

Formulas for the numbers q0, w1, w2 (they are defined by the polynomial L(p)) and esti-
mates (35) can be given explicitly. We do not present cumbersome explicit expressions1,
but consider as an example the equation

x′′′ + x′′ + x′ + x = f(x, y(t)). (36)

1Further details, statements and proofs can be found in [9].
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Here the polynomial L(p) = p3 + p2 + p+ 1 has the pair of simple roots ±i,
L(wi) = (wi+ 1)(1− w2), �mL(wi) = w(1− w2), w0 = 1

and 1/2 < w1 < 1 < w2. For example, if the Lipschitz estimate (31) holds with q = 0.305
and ν∞q1 ≤ 0.295, the equation ρ = f(ρ, φλ(ρ)) has a unique solution ρ = ρ∗λ for some
λ ∈ [0, 1] and for all sufficiently large r

d(r)
∂f

∂x

(
ρ∗λ, φλ(ρ

∗
λ)

)
< 0, |d(r)| ≥ c > 0,

then equation (36) with the Preisach nonlinearity has nonstationary T -periodic solutions
with 5.575 ≤ T ≤ 8.913.

The so-called describing function (33) in particular cases has simple form. For example,
let the first equation of system (28) be

L
( d

dt

)
x = g(x) + q1y(t).

Then

d(r) = 2q1 + 4

π/2∫
0

sin t godd(r sin t) dt

where godd(x) = (g(x) − g(−x))/2 is the odd part of g. If godd(x) → g0 as x → +∞,
then d(r) → d0 = 2q1 + 4g0 as r → +∞. If d0 �= 0, then the condition |d(r)| ≥ c > 0 of
Proposition 3.4 is satisfied for all sufficiently large r.

4 Hopf bifurcations

4.1 Preliminaries

Let some autonomous system depending on a scalar parameter b have an equilibrium
z∗(b) for each parameter value from some interval (b−, b+) and let those equilibria form a
smooth curve in the phase space Z of the system. We say that Hopf bifurcation occurs
and a parameter value b0 is a Hopf bifurcation point if for any sufficiently small r > 0
one can find a parameter value br ∈ (b0 − r, b0 + r) such that the system with b = br has
a cycle which lies in the ball of radius r centered at the equilibrium z∗(br) (this type of
a weak definition of Hopf bifurcation was introduced in [5], where nonsmooth problems
were studied for the first time). Freely speaking, we consider bifurcation of a small cycle
from an equilibrium point of the autonomous system.

The simplest example is the equation

x′′ + bx′ + x = f(x, x′, b) (37)

with f satisfying f(z1, z2, b) = o(|z1| + |z2|) as z1, z2 → 0 uniformly with respect to b.
Here the origin is an equilibrium of the equivalent planar first order system for every b;
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the value b = 0 is a unique Hopf bifurcation point. Figure 1 presents a typical structure
of the set of cycles in the product of the phase space R

2 of the equivalent system and the
axis of parameter values b in case of a sufficiently smooth f . The cycles form a smooth
two-dimensional surface Σ (a ‘cup’) passing through the origin (note that the picture is
local both in b and z = (z1, z2), i.e. we consider cycles lying in a small vicinity of the zero
equilibrium and b small in absolute value only). Appropriate non-degeneracy conditions
guarantee that Σ is tangent to the plane b = 0 and lies on one side of it. In Fig. 1, Σ lies
to the right of this plane, which means that the system has no small cycles for b < 0 and
has such cycles for small b > 0; for b = b′ the cycle is a cross section of Σ with the plane
b = b′.

�
z2

z1

b

Σ

Figure 1: Hopf bifurcation

Under the conditions of the classical Hopf Theorem (see, e.g. [16]) a similar picture is
observed for autonomous systems

dz/dt = F (z, b), z ∈ R
d, (38)

of ODE of any dimension in some vicinity of the equilibrium z∗(b). Let us recall more
precisely the algorithm to determine bifurcation points by linearization of (38). Since
the change of variables z �→ z + z∗(b) places the equilibrium at the origin, let us assume
without loss of generality that z∗(b) ≡ 0, i.e. system (38) has the zero equilibrium for
all b. In this situation, we call b0 a Hopf bifurcation point for system (38) with a limit
period T0 > 0 if for any sufficiently small r > 0 the system has a periodic solution zr(t)
of a minimal period Tr > 0 for some b = br and

max
t∈R

|zr(t)| → 0, br → b0, Tr → T0 as r → 0.

Remark that periods Tr are not known a priori and that we use an auxiliary parameter
r. The reason why the parameter b is not good for parametrization of the set of small
cycles becomes clear if one considers linear equations, for example x′′ + bx′ + x = 0, i.e.
equation (37) with f ≡ 0. Here all the cycles exist for one parameter value b0 = 0, which
is a unique Hopf bifurcation point (the surface Σ in Fig. 1 becomes a piece of the plane
b = 0).

Suppose F is differentiable with respect to z at the point z = 0 uniformly with respect to
the parameter b, i.e. F (z, b) = A(b)z+ g(z, b) where supb |g(z, b)|/|z| → 0 as |z| → 0, and
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let the matrix-valued function A(b) and the vector-valued function g(z, b) be continuous.
Assume that the matrix A(b0) has a pair of simple imaginary eigenvalues2 ±iw0 (w0 > 0)
for some b0, which implies that A(b) has a unique pair of simple eigenvalues σ(b)± iw(b)
close to ±iw0 for b close to b0. Let the derivative σ

′(b0) of the real part of these eigenvalues
at the point b = b0 exist and the so-call transversality condition

σ′(b0) �= 0 (39)

and nonresonance condition

iw0k �∈ Sp(A(b0)) for all k ∈ Z, k �= ±1 (40)

hold, where Sp(A) is the spectrum of A. Then b0 is a Hopf bifurcation point for system
(38) with the limit period 2π/w0 (for example, this follows from the results of [5]). If in
addition F is sufficiently smooth, then according to the Hopf Theorem the small cycles
form a two-dimensional smooth surface in the product of the phase space R

d of (38) and
the axis b. Moreover, information about the Taylor expansion of F at the origin allows to
study further important problems including stability of the cycles, but we do not consider
those problems here.

4.2 Bifurcation in systems with Preisach hysteresis

Consider the autonomous system

dz/dt = F (z(t), y(t), b), z ∈ R
d,

y(t) = Φ(η(t)),
η(t) = (Γ[η(t0)]x)(t),
x(t) = 〈c, z(t)〉

(41)

with the Preisach nonlinearity, where the first equation depends on the scalar parameter
b; the function F is supposed to be continuous. We use the notation similar to that
introduced above in subsection 3.5. Solutions of the form (z(t), η(t)) ≡ (z0, η0) are called
stationary, the point (z0, η0) in the product R

d×E∗ is called an equilibrium of the system.
By a cycle we mean the trajectory of any non-stationary periodic solution (z(t), η(t)) ≡
(z(t+T ), η(t+T )) in R

d×E∗, with any T > 0; actually, the cycle is a common trajectory
for all the time shifted periodic solutions (zτ (t), ητ (t)) = (z(t+ τ), η(t+ τ)), 0 ≤ τ < T .

By definition, the pair (z0, η0) is an equilibrium for some b if and only if F (z0, y0, b) = 0
with y0 = Φ(η0) and the state η0 = η0(α, β) is admissible for the stationary input x(t) ≡
〈c, z0〉 of the Preisach nonlinearity, which means that η0(α, β) = 1 whenever β < 〈c, z0〉
and η0(α, β) = 0 whenever α > 〈c, z0〉. Since the equation y0 = Φ(η0) with a given y0 has
a solution η0 in this class of admissible states if and only if

µ({(α, β) : α < β < 〈c, z0〉}) ≤ y0 ≤ µ({(α, β) : α < β, α < 〈c, z0〉}), (42)

2The existence of imaginary eigenvalues of A(b0) is a necessary condition for b0 to be a Hopf
bifurcation point.
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we conclude that system (41) has an equilibrium if and only if the equation F (z0, y0, b) = 0
has a solution (z0, y0) satisfying (42). Similarly to the definition for ODE above, we call
b0 a Hopf bifurcation point for system (41) with a limit period T0 if for any sufficiently
small r > 0 the system has a nonstationary periodic solution (zr(t), ηr(t)) with a period
Tr > 0 for some b = br and

max
t

|zr(t)− z0| → 0, max
t

ρ1(ηr(t), η0) → 0, br → b0, Tr → T0 as r → 0,

where (z0, η0) is an equilibrium for b = b0 and ρ1(·, ·) is the metric (2) in the state space
E∗ of the Preisach nonlinearity.

To formulate the simplest statement on Hopf bifurcation for system (41), suppose that
there are z0, y0 satisfying (42) such that

F (z0, y0, b) = 0 for all b.

Therefore system (41) has an equilibrium at the same point (z0, η0) ∈ R
d × E∗ for all b.

Assume that the function F can be linearized at the point (z0, y0), more precisely

F (z, y, b) = A(b)(z − z0) + a(b)(y − y0) + g(z, y, b) (43)

with the matrix A = A(b) and the vector a = a(b) depending continuously on b and

lim
z→z0, y→y0

max|b−b0|≤R |g(z, y, b)|
|z − z0|+ |y − y0| = 0 (44)

for some R > 0. In this situation, Hopf bifurcation points for system (41) are determined
by the matrix A(b) in the same way as for ODE.

Proposition 4.1. Let relations (43), (44) be valid and strict estimates

µ({(α, β) : α < β < 〈c, z0〉}) < y0 < µ({(α, β) : α < β, α < 〈c, z0〉}) (45)

hold in place of (42). Let the measure µ have a bounded density with respect to the
Lebesgue measure. Suppose that the matrix A(b0) has a pair of simple eigenvalues ±iw0,
the transversality condition (39) and the nonresonance condition (40) hold. Then b0 is a
Hopf bifurcation point for system (41) with a limit period 2π/w0.

As an example, consider the equation

x′′ + bx′ + x = 2y(t)− 1

where x(t) and y(t) are the input and output of the Preisach nonlinearity. If

µ({(α, β) : α < β < 0}) < 1/2 < µ({(α, β) : α < β, α < 0})
then b = 0 is a Hopf bifurcation point for this equation with the limit period 2π. Here
x ≡ x′ ≡ 0, η ≡ η0 is a stationary solution for all b whenever η0 is an admissible initial
state for the zero input and Φ(η0) = 1/2.
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4.3 Bifurcations from infinity

A similar approach to find bifurcation points works in problems on Hopf bifurcation from
infinity (bifurcation of large cycles).

Let us call b0 an asymptotic Hopf bifurcation point for system (41) with a limit period T0

if for any sufficiently large r the system has a nonstationary periodic solution (zr(t), ηr(t))
with a period Tr > 0 for some b = br and

max
t,τ

|zr(t)− zr(τ)| → ∞, br → b0, Tr → T0 as r → ∞. (46)

In other words, the system has cycles with arbitrarily large amplitudes of the z-component
and periods close to T0 for some parameter values arbitrarily close to b0.

Suppose that the function F can be represented as

F (z, y, b) = A(b)z + g(z, y, b), (47)

where

lim
|z|→∞

max
|b−b0|≤R, |y|≤R1

|g(z, y, b)|
|z| = 0 (48)

for some R > 0 and every R1 > 0. Then the derivative A(b) of F with respect to z
at infinity plays the same role in problems on Hopf bifurcation of large cycles as the
derivative at the equilibrium point in local problems above.

Proposition 4.2. Suppose that relations (47), (48) hold, the matrix A(b0) has a pair of
simple eigenvalues ±iw0, the transversality condition (39) and the nonresonance condition
(40) are valid. Then b0 is an asymptotic Hopf bifurcation point for system (41) with a
limit period 2π/w0.

This proposition is a consequence of a more general statement of [6]. Proposition 4.1 and
some further statements on Hopf bifurcation from an equilibrium can be found in [13].

4.4 Bifurcation with respect to internal parameter

As in section 3, let [z(t), y(t)] denote the class of periodic solutions (z(t), η(t)) ≡ (z(t +
T ), η(t + T )) (t ≥ t0) such that y(t) ≡ Φ(η(t)) and let us say that the closed curve
γ = {(z(t), y(t)) : 0 ≤ t < T} in the space R

d+1 of pairs (z, y) represents the periodic
solutions of the join

⋃
0≤τ<T [zτ (t), yτ(t)] and the cycles defined by these solutions.

Consider the autonomous system

dz/dt = F (z(t), y(t)), z ∈ R
d,

y(t) = Φ(η(t)),
η(t) = (Γ[η(t0)]x)(t),
x(t) = 〈c, z(t)〉

(49)

that does not depend explicitly on parameters. Nevertheless, as we already know from
the previous section, problems on cycles of this system contain the parameter λ, which
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we call ‘internal’. This results in the fact that each closed curve γ ⊂ R
d+1 representing

a class of cycles (if any exists) such that the amplitude of their z-component is smaller
than the characteristic size of the Preisach nonlinearity is generically included in the one-
parameter continuum such curves γλ; a typical example is presented by conclusion (iii) of
Proposition 3.4.

It turns out that the curves γ representing small cycles of system (49) can accumulate at its
equilibrium and form the structure similar to that observed for Hopf bifurcation problems
for ODE with a scalar parameter. Moreover, sufficient conditions for the existence of
those structure for system (49) with hysteresis are close to the classical assumptions of
the Hopf Theorem. Let us consider one example.

Let the equation F (z, λ) = 0 define a continuous branch z = ϕ(λ) of the implicit function
on some open interval Λ∗. Denote by Γ the curve (z, y) = (ϕ(λ), λ), λ ∈ Λ∗ in R

d+1

and assume that for each point (z0, y0) ∈ Γ relations (45) hold, which implies that this
point represents the class [z0, y0] of equilibria of system (49). We shall suggest sufficient
conditions that guarantee the existence of a one-parameter set of the closed curves γ with
vanishing diameters that accumulate at one of the points M0 = (z0, y0) ∈ Γ. The density
of the measure µ of the Preisach nonlinearity will be everywhere assumed to be bounded.

Let us suppose that the function F (z, y) is continuously differentiable with respect to
z and Lipschitz continuous with respect to y in some neighborhood of the curve Γ. As
usual, set

A(λ) = ∂F/∂z
(
ϕ(λ), λ

)
, λ ∈ Λ∗.

Suppose that at some point M0 = (ϕ(λ0), λ0) ∈ Γ the spectrum Sp(A(λ0)) of the d × d
matrix A(λ0) = ∂F/∂z

(
ϕ(λ0), λ0

)
contains the pair of simple eigenvalues ±iw0 (w0 > 0)

and the nonresonance condition iw0k �∈ Sp(A(λ0)) holds for all integer k �= ±1. Consider
the pair of the simple eigenvalues σ(λ)± iw(λ) of A(λ) satisfying σ(λ0)± iw(λ0) = ±iw0,
where the real continuous functions σ(λ), w(λ) are defined in some neighborhood of λ0.

Proposition 4.3. Let the function σ(λ) take values of both sign in each neighborhood of
λ = λ0. Then for every small r > 0 system (49) has a class [zr(t), yr(t)] of nonstationary
periodic solutions of a period Tr, all the closed curves γr = {(z, y) ∈ R

d+1 : z = zr(t), y =
yr(t), t ∈ [0, Tr)} are different for different r and

max
t

|zr(t)− ϕ(λ0)| → 0, max
t

|yr(t)− λ0| → 0, Tr → T0 = 2π/w0 (50)

as r → 0, i.e. the curves γr shrink to the point M0 and periods approach T0.

Particularly, the conditions of this propositions are satisfied if the function σ(λ) is differ-
entiable at the point λ = λ0 and the transversality condition σ′(λ0) �= 0 holds, which one
can consider as the main case.

The simplest example of system (49) satisfying the conditions of Proposition 4.3 is

x′′ + (y(t)− κ)x′ + x = g(x, y),

where x and y are the input and output of the Preisach nonlinearity and g(x, y) = o(|x|+
|y|) as x, y → 0. If

µ({(α, β) : α < β < 0}) < κ < µ({(α, β) : α < β, α < 0})
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then this second order equation has the continuum of disjoint classes [xr(t), yr(t)] (0 <
r < r0) of nonstationary periodic solutions with periods Tr such that maxt |xr(t)| → 0,
maxt |yr(t)− κ| → 0 and Tr → 2π as r → 0.

If the function F (z, y) is sufficiently smooth in a neighborhood of the point M0, then the
functions σ(λ), w(λ) are continuously differentiable and

F (ϕ(λ) + ζ, λ+ ν) = A(λ)ζ + a(λ)ν + g(λ, ζ, ν) (51)

for λ close to λ0 and ζ ∈ R
d, ν ∈ R small in absolute value. Let the matrix-valued

function A(λ) and the vector-valued function a(λ) be Lipschitz continuous and let the
residual term g satisfy uniformly in λ

|g(λ, ζ1, ν1)|≤ o(ρ), (52)

|g(λ1, ζ1, ν1)− g(λ2, ζ2, ν2)|≤ o(ρ)|λ1−λ2|+ε(ρ)
(|ζ1−ζ2|+|ν1−ν2|

)
(53)

whenever |ζj|, |νj| ≤ ρ with ε(ρ) = o(1), ρ → 0. In this situation, Proposition 4.3 is
supplemented by the following statement.

Proposition 4.4. Let relations (51) – (53) hold and σ′(λ0) �= 0. Let the density of the
measure µ of the Preisach nonlinearity be Lipschitz continuous with respect to both the
arguments α, β. Then there is a r1 > 0 such that the curves γr = {(z, y) ∈ R

d+1 : z =
zr(t), y = yr(t), t ∈ [0, Tr)} representing cycles of (49) in R

d+1 and satisfying (50) as well
as their periods Tr depend Lipschitz continuously on r for 0 < r < r1. Moreover, there is
a neighborhood U ⊂ R

d+1 of the point M0 ∈ Γ such that each closed curve γ lying in U
and representing a class of cycles of (49) with a period sufficiently close to T0 belongs to
the set of curves γr, 0 < r < r1, i.e. there are no other such curves in U .

We stress the difference between the conclusion of this proposition and that of the state-
ments of subsection 4.1 on Hopf bifurcations in systems without hysteresis. System (49)
with the Preisach nonlinearity has a continuum of small cycles in the phase space (this
continuum is the join of the classes of cycles represented by the curves γr with 0 < r < r1),
while system (38) has typically at most one small cycle in the phase space for each value
of the parameter, the surface like that shown in Figure 1 in the product R

d+1 of the phase
space and the parameter axis consists of cycles existing for different parameter values.

Another remarkable difference is seen if we consider the asymptotics of the cycles. Small
cycles of system (38) form a smooth surface3 in the space R

d+1 of pairs (z, b). The curves
γr representing cycles of system (49) in the space R

d+1 of pairs (z, y) form a structure close
to a cone, like it is shown in Figure 2. More precisely, the curves γr are asymptotically
close to the ellipses Er = M0 + r(z∗, y∗) + r(C, 0) for small r > 0, where M0 + r(z∗, y∗) is
a ray tangent to the curve Γ at the point M0 and C is an appropriate cycle of the linear
system z′ = A(λ0)z (the cycles rC form a plane in the phase space R

d of z′ = A(λ0)z).
The Hausdorf distance between γr and Er is o(r) as r → 0; Figure 2 shows the curves
γr and the two-dimensional cone surface formed by the ellipses Er with the vertex at the
point M0. Some further details can be found in [7].

3We consider sufficiently smooth nonlinearities F (·, ·).
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4.5 Dimension of the set of cycles of system with a parameter

Let us consider again small cycles of system (41) in case of Hopf bifurcation from an
equilibrium (z0, η0) at the Hopf bifurcation point b = b0. Here the problem includes the
‘external’ parameter b and the ‘internal’ parameter λ. So, one might expect that the set
of closed curves γ = {(z(t), y(t), b) ∈ R

d+2 : t ∈ R} representing small cycles of (41) in the
space R

d+2 of triples (z, y, b) in a vicinity of the point N0 = (z0, y0, b0) with y0 = Φ(η0)
is generically two-parametric and that these curves accumulate at the points of some
curve S passing through the point N0 and representing equilibria of (41). Namely, if
F (z0, y0, b0) = 0 with y0 = Φ(η0) satisfying (45), the matrix A(·, ·, ·) = ∂F/∂z(·, ·, ·) has
a pair of simple eigenvalues ±iw0 (w0 > 0) at the point N0 and proper smoothness and
nondegeneracy conditions are satisfied, then the equality F (z, y, b) = 0 defines a two-
dimensional surface Θ in some vicinity of the point N0 in R

d+2, each point (z∗, y∗, b∗) ∈ Θ
defines the class [z∗, y∗] of stationary solutions of (41) for b = b∗ and the curve S ⊂ Θ is
defined by the relations Sp(A(z, y, b))  iw, |w − w0| < δ, w > 0 with a sufficiently small
δ. Yet, we do not know exact statements of this type.

In problems on Hopf bifurcation from infinity for system (41) one should distinguish be-
tween the cases Rµ = ∞ and Rµ < ∞. For example, suppose that the conditions of
Proposition 4.2 are satisfied. If Rµ = ∞ then the set of closed curves γ = {(z(t), y(t), b) ∈
R
d+2 : t ∈ R} representing large cycles of (41) for b close to the asymptotic Hopf bifur-

cation point b0 is generically two-parametric; if Rµ < ∞ then this set is generically (for
‘nonexotic’ nonlinearities F ) one-parametric. One can see it more precisely from operator
equations equivalent to the problem. We outline the approach roughly, not presenting
any particular operator equation, which can be constructed in different ways in the form
Wr(z, y, b, T ) = 0. Here r is an auxiliary parameter; the unknowns are the functions
z = z(t), y = y(t), the parameter value b for which the class

⋃
0≤τ<T [z(t + τ), y(t + τ)]

of cycles exists and the period T of these cycles; the operator Wr acts in the appropriate
Banach space of vectors (z, y, b, T ). Suppose Rµ = ∞. Since Proposition 3.2 implies
y(t) = (Jλx)(t), the problem reduces to the system

Wr(z, y, b, T ) = 0, y = Jλx, x = 〈c, z〉 (54)

with the two parameters r and λ in this case. After those reduction, one proves that (54)
has a solution (zr,λ, yr,λ, br,λ, Tr,λ) for every r > r0 and every 0 ≤ λ ≤ 1, the relations

max
t,τ

|zr,λ(t)− zr,λ(τ)| → ∞, br,λ → b0, Tr,λ → T0 = 2π/w0 as r → ∞
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similar to (46) hold uniformly with respect to λ ∈ [0, 1], and zr,λ = zr′,λ′, yr,λ = yr′,λ′ if
and only if r = r′, λ = λ′. This implies that there is the two-parameter set of curves
γr,λ = {(zr,λ(t), yr,λ(t), br,λ) ∈ R

d+2 : t ∈ [0, Tr,λ)} (r > r0, 0 ≤ λ ≤ 1) which are different
for different (r, λ) and that the diameter of γr,λ goes to infinity as r increases. Moreover,
it turns out that the maximum max{d(γr,λ, γr,λ′) : 0 ≤ λ, λ′ ≤ 1} of the Hausdorf distance
d(·, ·) between the curves γr,λ and γr,λ′ with the same r vanishes as r increases, i.e. the
set

⋃
0≤λ≤1 γr,λ shrinks to the individual curve γr,0 as r → ∞.

If the vector c does not belong to the invariant plane of the matrix A(b0) correspond-
ing to the pair of its simple eigenvalues ±iw0, then the relations mint〈c, z(t)〉 → −∞,
maxt〈c, z(t)〉 → ∞ as b → b0 hold a priori for the cycles bifurcating from infinity. In case
Rµ < ∞ this implies (Jλx)(t) ≡ (J0x)(t) with x(t) = 〈c, z(t)〉 for all 0 ≤ λ ≤ 1 and all
the large cycles. Therefore in place of (54) one arrives at the system Wr(z, y, b, T ) = 0,
y = J0x, x = 〈c, z〉 with the only parameter r. One proves that for all r > r0 this system
has solutions (zr, yr, br, Tr) satisfying (46). In this case, large cycles of system (41) form
the one-parameter set of classes represented by the curves γr (r > r0) with the diameters
going to infinity as r increases.

The auxiliary parameter r can be chosen in different ways. For example, a ‘good’ choice
(which allows to construct topologically nondegenerate systems (54)) is r = ‖z‖C . With
this choice, the above statements guarantee the existence of cycles with all sufficiently
large amplitudes of the z-component.

Statements of this type on Hopf bifurcations from infinity for systems with the Prandtl –
Ishlinskii hysteresis nonlinearities (a class of nonlinearities close to a particular class of the
Preisach models) in case Rµ = ∞ was presented in [8]. Case Rµ < ∞ for systems with the
stop hysteresis nonlinearity was studied in [4], including stability analysis of large cycles.
A similar approach or that of [1, 21] can be applied here. Stability of the continuum of
periodic regimes in case of small hysteresis perturbations of systems without hysteresis
was studied in [2].
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