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Abstract

We study initial- boundary value problems for elliptic—parabolic systems of
nonlinear partial differential equations describing drift—diffusion processes of
electrically charged species in N—dimensional bounded Lipschitzian domains.
We include Fermi—Dirac statistics and admit nonsmooth material coefficients.
We prove existence and uniqueness of bounded global solutions.

1 Introduction

We study a mathematical model describing drift—diffusion processes of electrically
charged species. Such processes play an important role in many branches of modern
technology (see [4], [13], [14], [17]). The classical drift—diffusion model of charged
carrier transport in semiconductors was established by van Roosbroeck [16]. It con-
sists of a Poisson equation for the electrostatic potential vy and continuity equations
for the densities uy, us of electrons and holes. The clasical van Roosbroeck model
describes processes in homogeneous semiconductor materials (e.g. silicon). Mod-
ern devices are often heterostructures where complex reactions take place. By this
reason we admit nonsmooth data and n (> 2) species with densities u; and specific
charges g;.

The mathematical model is formulated below in Section 2. It consists of a
Poisson equation (2.1) and n continuity equations (2.2). The equation (2.1) expresses
the Gauss law, the system (2.2) means local carrier conservation. The system (2.1),
(2.2) is completed by current relations (2.3), which suppose the antigradients of the
electrochemical potentials ¢; from (2.5) to be driving forces for carrier transport. We
consider the system (2.1), (2.2) in a bounded Lipschitzian domain Q € RY | N > 3,
completed by boundary and initial conditions (2.7) — (2.9).

The initial-boundary value problem (2.1), (2.2), (2.7) — (2.9) was formulated and
studied in [8]. In that paper the free energy was recovered to be Lyapunov functional
of the system and was used for proving a priori estimates, existence and uniqueness
results. However, for space dimension N > 3 a gap remained between existence and
uniqueness results in particular for the physically most relevant case that the state
relation (2.4) is according to Fermi-Dirac statistics. Actually for N > 3 the paper
[8] rests on following restricting hypotheses:

The existence result holds for dielectric pemittivity e from (2.1) and conductivity
functions d; from (2.3) such that

e = constant , d;(t,z,2,§) = 04(2) €, (1.1)
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that means, J; = —o;(v;) V(;. Moreover, except for the special case of Boltzmann
statististics (i.e., e; in (2.4) is specified as exponential function), the uniqueness
result in [8] supposes the electrostatic potential vy to satisfy the regularity condition

Vg € L=((0,T); LP(Q)) for some p> N . (1.2)
(As to the validity of (1.2) in some nonsmooth situations comp. [5].)

The present paper mainly aims to fill that gap by proving global existence and
uniqueness results without the restricting hypotheses (1.1), (1.2). To this end we
apply to problem (2.1), (2.2), (2.7) — (2.9) an approach developed for model situa-
tions in our papers [9], [10], [11], [12]. The key role play sophisticated test functions
in integral identities for proving a priori estimates and the uniqueness result.

The paper is organized as follows. Formulations of all hypotheses and main
results are contained in Section 2. Integral estimates for the chemical potentials v;
and the electrostatical potential vy are proved in Section 3. In Section 4 we study the
boundedness of the potentials v; and vg. A proof of the existence result is sketched
in Section 5. The detailed proof of our main result, the uniqueness theorem, is given
in Section 5. Finally, Section 6 is devoted to the spcecial case of functions d; being
linear with respect to (. This case is studied without growth conditions for the
reaction terms.

2 Mathematical model and formulation of main
results

The drift—diffusion model describing n species with densities u; and specific charges
¢; was formulated in [6], [7], [8] and reads as follows

-V - (eVy) = f—i—Zqi u; on Qr=0Qx(0,7T), (2.1)
i=1
Ou; .
8t+V-Ji+Ri:0 on Qp, i=1,...,n, (2.2)

where T is a finite time and € is a bounded Lipschitzian domain in RN. We suppose
later on that N > 3. In (2.1) v, is the electrostatical potential, € is the dielectric
permittivity, f describes external sources (impurities). The currents J; are given in
the form

Ji:—di(-,vi,vg), 2':1,...,72, (23)
where v; are chemical potentials related to the densities u; by the state equations
ui =ule(v), i=1,...,n, (2.4)

with given, strictly positive state densities u} € L>(2). The electrochemical poten-
tials ¢; from (2.3) are defined by

G=quvo+uv, i=1,...,n. (2_5)



Remark 2.1 The state equations 2.4 are choosen for simplicity. The results of the
paper remain true for state equations like

ui = ul e(vi +qigi), i=1,...,n,

with given band edges g; € H“>(2). This can be seen by replacing the argument
v; = (; — q; vy of e; and its derivatives by v; = (; — q; Uy, Vo = vg — g;. An extension
of our results to piece-wise constant g;’s, desirable in view of heterostructures, is not
trivial. However, note that for Boltzmann statistics, i.e., e; = exp, even the case
gi € L*>(Q) can be included by setting u} := u} exp(g;g;) € L(Q).

The reaction terms R; in (2.2) have the form:
Ri(';UaC) — Z [Taﬂ('jvaa'c)7Taﬂ('av7/8.<-)i|(aii/8i) I (26)
(a,B)ER

where a = (a1,...,a,), 8= (B1,...,0,) € R C R* are vectors of stoichiometric
coefficients and the finite set R denotes the reactions actually taking place in the
volume ) occupied by the species.

Remark 2.2 There are modified drift—diffusion models of charged species. So in
the papers [3] and [4] Poisson’s equation (2.1) is replaced by the neutrality condition

f—l—Zqiui =0 on Qr=0x(0,T).

i=1

We complete system (2.1), (2.2) by boundary and initial conditions :

v-Ji+R =0 on I'p=(0,T) x 09, (2.7)
v-(eVuy) + Ky = f° on I'p, (2.8)
uz(O,):h, on € , izl,...,n, (29)

where v(z') is the outer unit normal at ' € 0 , R} represents reactions taking
place on the boundary 0f2 of 2. We assume that

RzF = Z (Tgﬂ('avaa'C) 7T£ﬂ('avaﬁ'<))(ai */81) ) (210)
(a.B)ERT
where R is a finite set of vector pairs of stoichiometric coefficients and the functions

rgﬂ model surface reaction rates.

Remark 2.3 As a special feature the boundary condition (2.8) with (2.10) allows
thermal equilibria, i. e. steady states with vanishing driving forces V(;. However, the
results of the paper remain true for other kinds of boundary conditions, for example

v-Ji+ ki (G~ f1)=0 on Tp=(0,T) x 09,
with k;, fi € L=(09), k; > 0.



The system (2.1), (2.2), (2.7) — (2.9) will be solved for the unknown vector
v = (vg,v1,...,v,) taking into account the relations (2.3) — (2.5) between v and

J=(J1,...,Jn), u=(u1,...,u,), (= (C1,.-.,Cn), respectively.

We assume the data of problem (2.1), (2.2), (2.7) — (2.9) to satisfy following
hypotheses:

i) dij(t,z,2,€),i=1,...,n, j=1,...,N, rog(t,z,v,y), r%(t, ', v, y),
(a,8) € R, (v,8) € RY, are measurable functions of (¢,z) € Qr, (t,z') € I'p
with respect to Lebesgue and surface measures respectively for every z,y € R,
€ € RN, v € R**! and continuous functions with respect to y, z, £, v for almost
every (t,z) € Qr, (t,z') € I'r, di(t,z,2,0) =0fori=1,...,n;
e and u} are measurable functions on Q; k € L>®(09Q); k> 0, k # 0;
g; is equal to 1 or to —1;

ii) e; € (R* — R!) is continuously differentiable such that e}(z) >0, z € RY;
lim e;(z) =0, liI_El ei(z) = +oof 2)dz < o0, i=1,...,m
zZ—+00

Z—>—00

iii) there exist positive constants v;,v, such that for arbitrary &, ¢&,&" € RV,
(t,z) € Qr,z € R

z] t z,z 5 z](t,x,z,ﬁ")] (6; - 6_;’) Z 141 e:(z)‘gl - §H|2)

Mz

]—1
dii(t,2,2,6)| < va(1 + [€DEl(2); i) S meile) for 2 <0,
Vlge(m)SVQa Vlgu( )<V27 ZZI n; ]:171N7

iv) the functions r,g(t, z,v,y), r%(t, ',v,y), (o,8) € R, (v,8) € R, are in-
creasing in y € R' for (t,z) € Qp, (t,2') € T'p, v € R and there exist
convex functions M : R' - R, ={z € R': 2 >0}, M" : R" - R! such that

[Tﬂ,@(taxavaa ’ C) - Taﬁ(t,ﬂ?,’u,ﬂ : C)](a - 6) ’ C < M("UD,
[TS(;(t,m’,v,’y ’ C) - T55(t,$’,v,(5 ’ C)K’y - 5) ’ C < MF(|UD’ Cz = v; + q;Vp-

Finally, we assume the data f, f!', h; to satisfy:

recorirm). Lerornwiiar), sl
ffec(o,T]; L (6%)), 8aftF € L2(0,T; [WH2(0Q)), po>N 1, (2.11)

log(h;) € L*(Q), i=1,...,n.

Definition 2.1 A vector v = (v, ..., v,) is called solution of problem (2.1), (2.2),
(2.7) — (2.9), if fori=1,...,n



i) vy € C([O,T]; Wl’z(ﬂ)), v; € LZ(O,T; W1’2(Q)) ,
u; = uei(v;) € C([0,T]; L(Q),  Fui€ L2 (0, T;W(Q)]) ,
where the time derivative is to be understood in the sense of distributions,

/ / 81}, ov 2
i(vi)

Er Oz
// M"(Jv]) dz dt < oo ;
I'r

Oz
ii) for arbitrary test functions ¢ € C*°(Qr), ¥ € C*°(Q), almost every T € (0,T)
and i = 1,...,n the following integral identities hold:

T B’U,z a(vz + quU) BQD
Ta, dz t 13
/0{<at"‘0>+/[z J(“ oz 9z,

7j=1

|+ 8m(op} de di < oo,

(2.12)

(2.13)
+Ri(t,m,v,C)g0} dz + / Ri (t,z,v,() o ds } dt =0,
89

Ovy 0
/ {e(m)za—?%— [Zq, u; + f(t,z ]7,/)} dz +
@ j=1 T (2.14)
+/ (K:(l')’U[] — fr)z/) ds =0,
19)
where C(ta il?) = (Cl(ta 1‘), T Cn(ta 1')), Cz(ta ﬂ',') = Ui(ta il?) + g UO(ta ﬂ']),’
iii) for test functions ¢ € C™ (QT) with o(7,x2) = 0, z € Q, the inlegral identity

/ ,t,0>dt+// —h—dxdt—o (2.15)
0

holds for T € (0,T), i=1,...,n

Besides of (2.2), (2.7) we shall consider for ¢ € [0, 1] the regularized equations

Ou;
ot

+V- I 4R =0 on Qr, (2.16)
v-JY+R=0, on Iyg, (2.17)

(3 (3

1
JO = —dz-(-,vz@,vg) : vi(&) = max {vi, —g}, JO =1, i=1,...n (2.18)

Solutions of problem (2.1), (2.16), (2.17), (2.8), (2.9) are defined as in Definition
2.1.

In what follows we understand as known parameters the numbers vy, vy, n, N, T,
vectors in R, R", norms of the data f, f', h; in respective spaces and numbers that
depend only on Q, M, M" and k. Moreover, we denote by ¢;, kK =1,..., constants
depending only on known parameters.



Theorem 2.1 Let the conditions i) — iv), (2.11) be satisfied. Then there exists a
constant K, depending only on known parameters and independent of § € [0, 1] such
that each solution v of problem (2.1), (2.16), (2.17), (2.8), (2.9) satisfies

ess sup {/Q [A (uilt, x))+w 2} de —|—/mm(:c)v(2)(t,m) ds}+

te(0,7) Z

o] e

where

(2.19)
O(vi + q’UO) dz dt < K, |

Ai(v) = / sei(s)ds, 1=1,...,n. (2.20)
0

For establishing further integral estimates we need growth conditions for the func-
tions e}, R, RT, i = 1,.

7 )

(v 4+ 1) <ej(v) <y(i+1), v>0, 0<vy< N5 (2.21)

Ri(t,z,v,() > —uy (Z[v]-]’_f‘ + |vo|p3> —ay(t,z), for wv; >0, (2.22)
=1

Rl (t,2',v,() > 1/4<Z[vj]ﬁ_4 + |v0|”4> — ap(t,z'), for wv; >0, (2.23)
=1

where v3, v, are positive constants and

2 1 _
_(7*+2)’ p4<7*+1+_(7*+2)5 V*Zmln(fyl))f)%))

N N
N +2
o) € L (QT); ry > 5 O € LT2(FT), ry > N + 1.

p3 <7+ 1+

Remark 2.4 The growth condition (2.21) is satisfied by functions e; according to
Fermi-Dirac statistics, i.e. by Fermi Integrals:

o) = Fulo) = sy | et

(vi+1 1+exp(s—v)

Note that the exponential function (Boltzmann statistics) violates(2.21).
Standard reaction terms like Shockley-Read and Auger recombination/generation [8]
satisfy (2.22)- (2.23).

We understand numbers from conditions (2.21) — (2.23) and norms of the functions
a1, as as known parameters too.



Theorem 2.2 Let the assumptions of Theorem 2.1 and the conditions (2.21) —
(2.23) be satisfied. Then there exists a constant Ky depending only on known pa-
rameters and independent of § € [0, 1] such that each solution v of problem (2.1),

(2.16), (2.17), (2.8), (2.9) satisfies

[ 4[5

T

2
(91)0

2
2 }dmdt<K2, i=1,...,n. (2.24)

Theorem 2.3 Let the assumptions of Theorem 2.2 be satisfied. Then there ezist
constants K3 and n € (0,1) depending only on known parameters and independent
of 0 such that for arbitrary t € [0,T], z,y € Q

[voll = (@r) < K3: [t z) —wo(t, )| < Kzlz —y|". (2.25)

In view of controlling v;(¢, z) from below we suppose additionally to (2.22) and (2.22)
that for v; <0, 1=1,...,n:

Ri(t,z,v,¢) < viei(vi) [F(vo,e(v)) + an(t,z)] , (2.26)

R} (t,2',v,¢) < vaei(v;) [F(vo, e(v)) + as(t, z')] (2.27)
with vy, a1(t,z), as(t,z') as in (2.21), (2.22), e(v) = (e1(v1),- .-, en(v,)) and some

continuous function F : R**1 — R,

Theorem 2.4 Let the assumptions of Theorem 2.2 and the conditions (2.26), (2.27)
be satisfied. Then there exists a constant K4 depending only on known parameters
and independent of 6 € [0,1] such that for each solution v = (vg,v1,...,v,) of

problem (2.1), (2.16), (2.17), (2.8), (2.9)

ess sup {|vi(t,z)|: (t,z) € Qr} < Ky, i=0,...,n. (2.28)

Theorem 2.5 Let the conditions i) — ), (2.11), (2.21) — (2.23), (2.26), (2.27) be
satisfied. Then the initial-boundary value problem (2.1), (2.2), (2.7) — (2.9) has at
least one solution in the sense of the Definition 2.1.

Theorem 2.6 Let the conditions of Theorem 2.5 be satisfied. Assume additionally
that fori=1,...,n, j=1,...,N:

(i) the functions d;;(t,z, z,&) have the special structure

dij(tamazaf) = e;(z)’y,-j(t,x,g) (229)

where e} oe; ' : (0,00) — (0,00) is piece-wise differentiable and concave ;



(i1) the functions e}, v;;(t,z, &), Tap(t, z,v,y), rga(t,:c',v,y) are locally Lipschit-
zian with respect to €, v,y.

Then the initial-boundary value problem (2.1), (2.2), (2.7) — (2.9) has a unique
solution in the sense of the Definition 2.1.

Remark 2.5 The Fermi integrals from Remark 2.4 satisfy the respective assump-
tions of Theorem 2.6. In particular the concavity property follows easily from
Jensens’s inequality [1].

Corollary 2.1 Let the conditions of Theorem 2.6 be satisfied and assume addition-
ally that the functions f;, F', dij, rap, 7.4 are Lipschitzian with respect tot. Then

«

the solution v of problem (2.1), (2.2),(2.7) — (2.9) is regular in the sense that

Bvi

t—1
ot

€ L™(0,T; L*(Q)) N L*(0, T; W'(Q)), i = 1,...,n.

Remark 2.6 Corollary 2.1 and Theorem 2.} imply thatt — t 8(,;;" € L>=(0,T; L*(Q)).

Consequently, (2.2) can be understood not only in the sense of distributions, but even
as an equation in L*(0,T; L*()).

We conclude this Section considering the special case that the currents J; are lin-
ear with respect to the gradients of the electrochemical potentials ;. This case is
interesting in so far as we don’t need the growth restrictions (2.22), (2.23) for the
reaction terms.

Theorem 2.7 Let the conditions i) — iv), (2.11), (2.21), (2.26), (2.27) be satisfied.
Suppose that the reference densities from (2.4) and the exponents v; from (2.21)
satisfy

ui=u", v=v, i=1,...,n (2.30)
and that for (o, 8) € R, (v7,6) € R"
a-q=p-q v-q9=6-q. (2.31)
Moreover, assume the functions d;; to have the structure
N
dij(t,z,2,6) =Y el(2)ar;(t,2)&, i=1,....,n, j=1,...,N. (2.32)
k=1

Then all assertions of the Theorems 2.2-2.6 are valid.

Remark 2.7 We assumed the conincidence of the ~y;’s for simplicity. It is possible
to replace it by some restriction on max{|y;, —~;|, 1 <1, j < n}. Analogously to [11]
it is possible to prove Theorem 2.7 for y; satisfying only 0 < v,; < %, 1=1,...,n.
We shall prove the Theorems 2.1, 2.2 in Section 3, the Theorems 2.3, 2.4 in Section
4 and the Theorems 2.5, 2.6 in Section 5. Finally we shall make some comments
with respect to the proof of Theorem 2.7 in Section 6.
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3 Proof of integral estimates

The proof of a priori estimates in this section rests on testing the integral identities
(2.13), (2.14) by suitable functions. For that purpose the following remark is useful:

Remark 3.1 Let F: R**! — R! be an arbitrary piece-wise differentiable function
with bounded gradient and let v(t,x) be a solution of problem (2.1), (2.16), (2.17),
(2.8), (2.9). Then the equality (2.13) holds for o(t,z) = F(v(t,z)). Moreover,
(2.14) holds for arbitrary functions ¢p € Wh2(Q). That follows from (2.12) after
approzimating v(t,z) by smooth functions.

Proof of Theorem 2.1. Let v be a solution of problem (2.1), (2.16), (2.17), (2.8),
(2.9). Denote by go(z) a solution of the problem

—V - (Vo) = f(0,z Jrzqz J(z) on Q) (3.1)

v-(eVgy) +rgo= f(0,z') on 09. (3.2)
We extend v;(t, z) for t < 0, z € Q by setting v;(¢,z) = g;(x), where

gi(z) = ¢e;t (%), i=1,...,n. In analogous way we extend f(¢,z) and f'(¢,z').

Testing the integral identity (2.14) with ¥(z) = vo(t+s, ) —vo(¢, ) and integrating
on t, we obtain for 7 € (0,T), s € (0,7 — 1),

/s/ { |:1)0(t+3 ) + vo(t, x)]%[vo(Hs,x) —w(t,z)]

J

[Zqi ui( —l—s,x)—l—ui(t,x))—I-f(t—l-s,m)—l—f(t,x)}x 53

x [vo(t+ s,z) — vo(t, )] }dmdt+/s/m{ )[vo(t + s,2) + vo(t, z)] —
— fT(t+s,z) fr(t,x)}[vo(t+s,a:) ~wo(t,z)] dsdt =0.

Arguing as in the proof of Theorem 2.3 in [11], we infer from (3.3)
du(t,z) |

d ) ds — ; dt <
/Qe(m) p x—i—/aﬂn( vi(7,z) ds Zq/ < =ty >

{1+// Cdwdi //m votxdsdt}

Note that W2(Q) can be normed equivalently by

Ul

(3.4)
31}0 (1, )

2

do + /69 k(2)u?(z) ds} B

9

Ou(z)
Oz




Remark 3.1 allows us to test the regularized version of 2.13 with ¢ = v; + g;vg

’ Ou; d(vi + qivo) 890
/U {< 8t,go>+/[2d”<t g, v, A A0

0 oz,
! m’ (3.5)
—I-R,-(t,:c,v,C)tp} d:c} dt—l—/ / Ri (t,z,v,()p ds dt = 0.
0 Joo
So, using (3.4), we get
Ay (1, z) | / / {
e(z) | ———=| dx + vTa:ds+ vz>+
[ o) 27 RO Z
al B(v; + qivg)\ O
+/ [Zdij <t,~'ﬁavi(6)a A > (vi + givo)+
q |4 Oox ox;
i=1 I (3.6)

+ Ri(t, x,v, C)(’U, + q,-vo)} dCL‘} dt + / / R{(t,m, v, C)(Uz + qi’Uo) ds dt S
oN

{1+// 6””” d:cdt+/ /m vo(tx)dsdt}

We transform the integral with 2% by means of Lemma 1 and Lemma 3 from [10]
and obtain

/OT < %,vi > dt = /Qu;‘(x) [Ai(vi(r,2)) — Ai(gi(z))] da. (3.7)

Estimating terms with R;, R}’ by means of condition iv), we get

Z Rz’(t7 z,v, C)(vl + qz"Uo) =

i=1

Z [ra,ﬁ(t,x,v,a () —Tap(t,z,v,0 - C)} ~(a—p0)-¢>0,

(a,B)ER
(3.8)
Z Rzr(t5 IE,, v, C)(vl + qz"UO) =
i=1
= Z [aﬁ(tx,v,a C)_T (t.T,’U,,B C)]( /B)CZO
(a,8)€RT
By condition iii) we obtain from (3.6) — (3.8)
2
/ e(z) Ouol7, 2) dx +/ k(z)vi(r,z) dz +
Q Oz Fle)
n T ’ (9 ; + ; 2
T / /Q e (v:) % dz dt < (3.9)

avotx

cofis [ foo

d:c dt +/ / k(z)vi(t, ) ds dt}.
o Joo

10



The last inequality and Gronwall’s lemma imply (2.19) and the proof of Theorem
2.1 is complete. [

Lemma 3.1 Let the conditions of Theorem 2.1 be satisfied. Suppose that

ess sup /u:(t,x) de <Ly for i=1,...,n, (3.10)
te(0,T) JQ
with numbers r € (13—12, %) and L, depending only on known parameters. Then

vy (t, )
oz

ess sup {/ (vo(t,x)ﬁ—Nz —|—‘vg(t,m)‘%2
te(0,T) Q
p(N—-1)
+/ "U[](t,il?)‘ N2 ds} < Ly,
Pre)

where the constant Lo depends only on known parameters and p is defined by

2) dr +
(3.11)

r

N
S - 3.12
Py =P 1)— (3.12)
Proof. For arbitrary functions w we define
wy(t,z) = min{w(t, z),k}, keR', (t,z) € Qr. (3.13)

Testing the integral identity (2.14) with (¢, z) = |vo(t, z)[F" sign vy(t, z), k > 0,
using the conditions iii), (2.11), (3.10) and Hélder’s inequality, we obtain

[t ?
Q

6 2
vole g +/ k(z)|vol? ds <
oz o0 (3.14)
N(r—1) .
r(

r—1
1) v 1 rv-1) N-1)
< C4</ \vo\ﬁf = dﬂ”) +C4</ |Uo|§cp e ds) :
Q o0

Hence Sobolev’s embedding theorem yields

N-2

N S pN-1 N-
/|v0|kN2 dz + / lvol," % ds <
Q )
RN G-y )T
< cs lvgl, ! dx + c5 lvol ds :
Q 20

In view of the restriction on r and (3.12) we infer (3.11) from (3.14) and (3.15)
letting K — oco. The proof of Lemma 3.1 is completed. [

—-

(3.15)

In what follows we suppose the conditions (2.21) — (2.23) to be satisfied. We fix
a A € (0,1) such that

9 1
A< 1+7*+N(”y*+2)*p3, A< 1+7*+N(”y*+2)*p4,

4 AN

* = M) < -
vt =max{n, .} S o - vy

(3.16)
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and define
r(m)=Am, m=0,1,2.... (3.17)

Lemma 3.2 Let the conditions of Theorem 2.2 be satisfied. Suppose that for some

nonnegative integer m
dr dt + // "U[]til? (m)dsdtSLg,

dedt<Ls, 1=1,...,n,

// [vi(t, )] 27:
Qr

with [v;(t, z)]+ = max{v;(¢, z),0} and a constant L3 depending only on known param-
eters and m. Then there exists a constant Ly depending only on known parameters
and m such that

Uo

m)

(3.18)

T' m 8 rim
// ot = # dz dt + // (M2 Gsdt < Ly . (3.19)
T
Qr
Proof. Remark that by condition (2.20)
ei(v) < cg v, Aj(v) > vt w>1, i=1,...,n, (3.20)

where the function A; is defined by (2.20). From (2.19), (3.20) we have

ess sup / [v; (¢, x)] ®dz<cr, i=1,...,n. (3.21)
te(0,T) JQ

r(m+1)+1

Testing the integral identity (2.14) with 9(t, z) = |vo(t, x)‘k

using condition iii) and (2.11) we have

2
Qr Tr

n T
< CS{Z//U@'|UO|Z(”+1)+1 dzx dt +/ {/ \vo(t,m)
i=1 0 Q

Qr
T R
+/ {/ |vo(t, z) E:(m+1)+”p2 ds} ’ dt}
0 a0

with p; = P52 =1,2. The embedding theorem and (3.18) imply

1?

T 2 T N1 i
/ {/ vy ‘[r m)+2] 5 dx} dt+/ {/ |v0‘[r(m)+2}m ds} dt < cq.
0 Q 0 o0

12

sign vy (¢, z) and

SN

r(mt1) 41085 ;|7
. ! dm} dt +




Hence we can estimate the second and the third integral on the right hand side of
(3.22) by a constant depending only on known parameters.

In order to estimate the first integral on the right hand side of (3.22) we derive firstly
an auxiliary estimate for v;(¢,z). By Holder’s inequality, the embedding theorem,
(3.18) and (3.21) we obtain with an arbitrary number g € (0, -%5):

' N2
T l
(vi+2)[1—g 2 +[r(m)+2]q e
/ {/ [vi(t, a:)}+ N da:} dt <
0 Q

</UT{/Q[vi(t,$)]1i+2 dx}%u -

N [r(m)+2]N N
{ [ a5 dm} < (324)
Q

/T {/ |: ( )]7.4_2 }%T2 |: ( )i|7'(m) Ov: 2
vi(t,z)| " " dx / v; (L, odr dt <eyp .
0 Q * Q ooz
Let us choose the number g, such that
N Qx
[r(m+1) +1]g, = [r(m )+2]N_2 q;:q_l. (3.25)
Since A € (0,1) and r(m) = mA, we have ¢, > <~-. Using Hélder’s inequality,

(2.4) and (2. 21) we get

//uzvg|km+1 dr dt <
r ir(m)+2] s o a
< 011/ { v, - dm} {1 —i—/[vi]g:ﬁﬂ)q* dm} dt <
0 LU @ (3.26)

T 11 q*iN%Q**l) 17‘1{*(]"\\[’72)
X {/ {1 +/[vi]$’+ - da:} V=2 dt} .
0 Q

Let g = g, — %(q* )= - 2.g. ¢ (0, %) with g, defined by (3.25). Since
[r(m)+2]q = g.[r(m)+2] (1f —-—) =g (r(m) —r(m+1)+1) = q.(1-A),

we have by (3.16)

(%+2)[1*q — }—F[T(m)—F?]Q*(%’-l—l)q*:
2 (3.27)

The inequalities (3.18), (3.21), (3.24), (3.26), (3.27) imply

// uz\vg\kmﬂ e dt < o . (3.28)

13



So we obtain the desired estimate (3.19) from (3.22), (3.23) and (3.28). This ends
the proof of Lemma 3.2. []

Lemma 3.3 Suppose that the assumptions of Theorem 2.2 and the inequalities
(8.18) are satisfied for a nonnegative integer m such that

Yie > r(m+1), i€ {l,...,n}. (3.29)

Then there exists a constant Ls depending only on known parameters such that

// o, (1 T (m11) | O, (¢, 2) |

Oz
Proof. For arbitrary functions ws (¢, z), wy(t, z) defined on Q7 we define the set

{wi <wp} ={(t,z) € Qr :wi(t,z) < wso(t,z)} .

By (2.19) and (3.19) we have

7' m+1
UZO

{[1), +§2\vg\}

dz dt < Ls . (3.30)

A, (¢, z) |?

To complete the proof we need an analogous estimate with respect to {[vi,]+ > 2|vy|}.
Testing the identity (2.14) with

» = |Uo|k{ [[viy — [vole)+ ], + |UOk}r(m)+E signvy, €€ (0,4], k>1,
and using condition iii) and (2.11), we obtain
L+ I < ey [I3(1) + I + I5] (3.32)
where
I = // {{loi, — oole]], + |v0|,c}’"‘m)“ o at

{lvol<k}

r(m)+e
L= D)oo { [, — [oolal ], + ook} dsd,

r(m)+e—1 | 9 io
I(1) = // ol ([ — [volela], + o)} v

or
{\1}0\k<v,;0}

fa= Q// [;u’ + ‘f(t’ x)] ‘Uo\k{ H'Uig - |Uo\k]+]k + |vo|k}T(m)Jrs dz dt,

r(m)+e
15 = / ‘fr(t,il?)“’l)(ﬂk{ H’Uz‘o - ‘vﬂ‘k]‘F]k + |'U0|k} ds dt.
I'r

81}0
oz

dz dt,

14



Up to the end of Lemma 3 we choose € = A.
We estimate I3(l) for natural numbers [ < r(m + 1) by Young’s inequality

r(m+1)— 81),0
L) < ]y + s |v0| (i — [vola]+], + \vg\k} dz dt
{\1}0\k<v,0}
r(m 8(1}, + q; UO) 2 r(m a,UU ?
+ C15 // {Uin (m+1) # |1)0| (m+1) % dl’dt,
{k<|vo|<wviy}
(3.33)
where €; is an arbitrary positive number. Using the simple inequality
vy, | A(viy + aiyv0)|* | Bvi | | Do
< ci6 a. )
Ox Ox Oz | | Ox
we have from (3.33), (2.19), (3.19) and (3.29)
r(m+1) BUU
€1 ox
(3.34)

(v, + qiovo)
oz

€1

+ //[Uin]zf
Qr

The inequalities (2.19), (3.19) imply also I3(l) < ¢j9 for I > r(m + 1). Therefore,
iterating (3.34), we get

1
I (1) < —Il + C19. (335)
2¢14

Next we estimate the term I, by Hélder’s inequality and condition (2.11):

Iy <c20{2/ | [+ 2 () dxdt+/ {/ | | [rOm D)+ 1P dx} Y dt+
_|_Z//|0|km+1 da:dt+/ {/Iol,:m““”ld} dt}

Now all integrals in (3.36) can be estimated from above by a constant depending
only on known parameters. Indeed, since by (3.16)

(3.36)

%(’)’i+2)+r(m)+2 [vi+2+r(m+1)] =
= —i+2)—m—A= <[4 (N =25 NA] >0,

an estimate of the first integral in (3.36) follows from (3.24) with ¢ = 1. In analogous
way the second integral in (3.36) can be estimated by means of (3.24) with g = p5.

15



Estimates for the third and the fourth integral in (3.36) follow from (3.28) and
(3.23), respectively. So we have shown that

14 S Co1.- (337)

Further, condition (2.11), (3.18), (3.23), (3.24) and the embedding theorem yield

T N2
(m)+25=5 5 | "
15 < C99 U'Um‘ + "Uo‘ :| N-2 (s dt +1 S
0
ov;
cof (5]

r(m 61}0
+ oo™ )< Bz

+ Ivi02> + (3.38)

+ 'U02>:| dr dt + 1} S Co4.

Now (3.32), (3.35), (3.37), (3.38) and (3.19) imply

7' m+1
z0

{vig >[vol}

9
ﬂ dz dt < cas. (3.39)

Finally, the desired inequality (3.30) follows from (2.19), (3.31), (3.39) and the proof
of Lemma 3.3 is completed. [J

Lemma 3.4 Let the assumptions of Theorem 2.2 be satisfied and suppose that the
inequalities (3.18) hold for some nonnegative integer m. Moreover, let m and iq be
such that

Yip < r(m +1) (3.40)

and suppose that

ess sup/[v,(tm d:ﬁ—l—// v,tm
te(0,T) JQ

with a constant Lg depending only on m and known parameters. Then there exists
a constant L, depending only on the same parameters such that

81}0

oo | dzdt<Ls,  (341)

ess sup / (i, (£, x)]:(mH)H dx +

te(0,7)

2 2 (3.42)
i - drdt < Lq.
// Vo { oz ox } Tab = b
Proof. We start by proving that
e| 0
// vi(t, ) ™)+ % dz dt < cog (3.43)
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fori =14y and e = &1 = ﬁ. We want to apply (3.32) with this £. Since in the
proof of Lemma 3.3 I4, I5 have been estimated without using assumption (3.29), we
can suppose (3.38) to be hold. Further, (3.19) holds also true. To estimate I3({)

with the chosen € we apply Young’s inequality, (3.18), (3.41) and (3.19):

o (| 8V |2 |00y |
b <en [[{ml™ (G2 |5 )+
Qr (3.44)
o [r(m)+1)e1] Gy |2
n \Uo\k( )+1{ [[viy — [vole)+ ], + |vo\k} a—xo } dz dt < cog.
Now the inequalities (3.31), (3.32), (3.37), (3.38) and (3.44) imply (3.43) for i = .
Note that this estimate follows in the same way for i =1,...,n.

The key for continuing our previous discussions is following estimate

81)Z

ess sup /[vi(t,x)] RARAEY —I—// [vi(t, z)] e
te(0,T) J oz

Indeed, it can be seen from the proof of the Lemma 3.2, that (3.19) and (3.45) imply
(3.19) with r(m + 1) + ¢ instead of r(m + 1). This ensures that (3.43) remains true
fore =gy = and even for further steps.

dr dt S Cog. (345)

2A
r(m)+2

The estimate (3.45) follows immediately from (3.43) and (2.19) provided r(m)+
e < ;. So it remains to prove (3.45) for the case that r(m) 4+ € > 7;. Tho this end
we test integral identity (3.5) with

o= [lesto) -~ stma)] ], {alo) + [0 —esma] 2 A 0> -5,
where
m-—%”w{ ( );mem rqu*,

z; = max(z,0), [s]gu) = min(s, k(7)),
k(i) = ei(k)— el(mo) fork >my; a(p)=1forp<1, a(p)=0forp>1.

Then, using Lemma 2 from [10], we can evaluate the first term:

/Or < %, o >dt = /QU*(SU)AI(CPZ) (ei(vi(T,:c)) = e,-(mg)) dz | (3.46)

where

A;c‘:g(z) = [/Uz[s]k(i){a(p) + [S]Z(i)}p ds] > ;[A]%Z' (3.47)

L 20p+1)
We write the space derivative of ¢ in the form

ov;

)
= — o), ) 5o x(mo < v; < k), (3.48)

J Zj
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where x(my < v; < k) is the characteristic function of the set {my < v; < k} and
the function <I>§fz)(vz) satisfies for p > —3 the estimate

(3.49)

for my < v; < k with p, = min(1; 1 + 2p).
Using (3.46) — (3.49) and the conditions iii), (2.20) — (2.22), we obtain from (3.5)
with the chosen test function ¢

[[ ( )] r(w+1)(p+1)d n
/Q vi(T, )|, . z

2yi+2(7:+1)p| B |2
// [vi(t, z)] }7 ! 81;7 x(mo < wv; < k)dzdt <
2 +2(7i+1)p
§C32<p+1> {// Uztx Tz BUU
Oz

X x(mo < v; < k)dzdt+

/ / 'U] 71+1)(1+2P)+P3 + "U[](t,x)
1
%:+1)(1+2p)r’ o
—|—{/ / [vi(t,x)h 1davdt} =t

/ / Z UJ 7+1 (1+2p) +p4d dt +
63’2

1

(ri+1)(1+2p)r5 vy
+ {/ / [[vi(t,x)h} dsdt} + 1}.
0 Jaa k

To continue the proof of the inequality (3.45) we choose p such that

('yl-+1)(1+2p)+p3) dz dt + (350)

27 +2(vi+p=r(m)+e (3.51)

and estimate the right hand side of (3.50) integral by integral. An estimation of the
first one follows from (3.43). Note that by (3.51) and (3.16)

(v +1)(1 + 2p) + p3 = [r(m) +2+ %(

%(’Y*—I-Q)] +e<r(m)+2+

%+2)}+

3(7*4-2).

- 2

Hence estimates for the v; terms, j = 1,...,n, of the second integral on the right

hand side of (3.50) follow from (3.24) with ¢ = 1. Taking into account (3.11), the
v term can be estimated by the same arguments.

18



In order to estimate the third integral we use the next inequality that follows anal-
ogously to the inequality (3.24):

// [vi(t, 2)] N dg e <
Qr

§/UT{/Q[vi(t,x)]:r(m)+2 dm} {/Q[v,-(t,m)](r(m)u)]"lvzdm}%dt§

< caz[r(m) + 2]2ess sup { / [vi(t, x)]:(m)+2 d:c} "
Q

te(0,7)

y / / {[vi(t,m)}’jm’ 9;
Qr

=S

+

+

2
r(m)
o |t [vilt,2)] *2} de dt.

It is simple to check that (v; + 1)(1 + 2p)r; < (r(m) +2)(1 + Z) , such that the
third integral can be estimated by means of (3.52), (3.41), (3.18).
To estimate the last integrals in (3.50) we note firstly following auxiliary inequality

that follows analogously to the inequality (3.52):

// fus(t, 2)] D ds it < 4 [r(m) + 2]
Irp

T et P
r(m)+ 2 B’Ui N+1 N
it N ; d dt <
J AL (5 ) o)

A (3.53)
< cas[r(m) + 2]2ess sup { / [vi(t, x)]:(m)+2dx} X
te(0,T) Q
X [vi(¢ x)r(m) Ov; + [vi(t .T)]Z dz dt
) I + am (3 ) + -
Qr
Then analogous arguments as used for proving (3.24) and (3.53) lead to
// [vi(t,m)]:_(mHHﬁ(wH) ds dt < css. (3.54)
I'r

Since by (3.51) and (3.16)

1
(i +1)(1+2p) + p4 <7‘(m)+2+N(%+2),

(3.54) implies an estimation for the fourth integral on the right hand side of (3.50).
Finally, (3.53) implies an estimate for the last integral in (3.50). With (3.50) the
key estimate (3.45) is fully proved. This ends the proof of Lemma 3.4. [J

Proof of Theorem 2.2. Remark that for m = 0 the conditions (3.18), (3.41)
follow from Lemma 3.1 and Theorem 2.1. Starting from m = 0, we can iterate the
application of the Lemmas 3.2 — 3.4. After M + 1 steps we arrive at the inequalities
(3.19) and (3.42) with m = M. Taking M so large that A - (M + 1) > v*, we get
Theorem 2.2. [
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4 [*—estimate of solution

Proof of Theorem 2.3. We apply Lemma 3.4 with m = M and M such that
r(M+1)+2> %~* v* =max(y,...,7). Then Theorem 2.3 follows immediately
from (3.42), conditions i), iii), (2.11) and well known results on the regularity of

solutions of linear elliptic equations (see, for example [15]) to Poisson’s equation
(2.1). O

In what follows we assume the conditions of Theorem 2.4 to be satisfied. We
shall estimate for v;, i =1,...,n, separately on the sets {v; > 0} (Lemma 4.1) and
{vi < 0} (Lemma 4.2).

Lemma 4.1 Let the condition of Theorem 2.4 be satisfied. Then there exists a
constant Lg depending only on known parameters such that fori=1,...,n,

ess sup {v;(t,z) : (t,z) € Qr} < Ls. (4.1)

Proof. Using Lemma 3.4 and (3.50) we get for r > r, = 2 + 4max(v1, ..., Vn)

/[v,(Tw ? dr —I—//v,tw 81;1' dz dt <
<c37r2{1+/ /[vi(t ﬂ dx dt + (4.2)

[//v,tm 10T g dt]l {// vi(t ”“2(1 dt}Z}.
o0

Remark only that Lemma 3.4 gives us the estimate of [v;]%? in L™ (Q7), j=1,...,n.
We start estimating the first integral on the right hand side of (4.2). Let

{p; € C*(RY), j=1,...,J,}

be a partition of unity such that

J
a .
Sl =1, < for €9, suppy; C Bz, R),
ZT
j=1

(4.3)
JRY < ¢, [d(9)]", ZX (z;,R)) < ¢,

where B(z;, R) is the ball of radius R with centre z; € Q, ¢y is a constant depending
only on N, d(2) is the diameter of Q, x(B(z;, R)) is the characteristic function of
B(z;, R). The radius R will be fixed later.

We test the integral identity (2.14) with

U(t,z) = [vi(t,x)]: < [vo(t, ) — vou(t)] ¢} (z), vou(t) = v(t, ). (4.4)

20



Integration with respect to t and summing up on [ yield

2
r (91)0

/OT/Q[W(t,fC)L 9z
+/U{/Q Fs(t, )] dm}_ dt +/0{/m (e, )] ds}

Bvi
oz

dz dt < csg r{[l(r) + I(r)+
(4.5)

S~

)

dz dt ,

where

(91)0
oz

[ [ e i

//v,tm (%O

|vo(t, ) — vo(t)| < K3 R" for =z € B(z, R), (4.6)

C38 7']1 / / ’Uz
+ C39 |:7-2R2W / / ’Uz

We fix R such that 4 c39 c37 7* R?" = 1. Estimating I5(r) by Cauchy’s inequality
and using (4.5), (4.7), we deduce from (4.2)
Uz’

/[vz(m; * do +//vltx 1 3g
< gt {1+{/ / vilt,2)] " da dt:|1,1+
+/0T{/Q[vi(t,x)] ' dx}%dt +{/ /m vilt,2)] T ds dt| "+
+/0T{/m [vi(t,m)]fZ ds} dt}.

Hence Sobolev’s embedding theorem and standard Moser iteration lead to (4.1) and
the proof of Lemma 4.1 is completed. [J

dz dt.

Since by (2.25)

we obtain

Uo

dz dt +

31},

dx dt +1}.

dz dt <

o=

For € > 0 and arbitrary functions g defined on Qr we use the notations

g(s)(t, T) = max {g(t,x),s}, g (t,z) = min {g(t,x), 0} ) (4.8)
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Lemma 4.2 Let the conditions of the Theorem 2.4 be satisfied. Then there exists a
constant Ly depending only on known parameters such that

essinf {v;(t,z) : (t,z) € Qr} > —Ly, 1=1,...,n. (4.9)
Proof. Denote
hi . ~ i
mg = ess sup{ ei1< *(x)> cr e, z:l,...,n} , ei(v):&,
u; () ei(—my)
r 1 T r—
(7)) = —(2—2 lln z|" + 2 inz"")ef(—mg) ,2>0.
We test the integral identity (3.5) with
1 r
Y= ‘ln,’égs)(v,-) , O<e<l, r>1,
e ' (vi)
to get
(vt+qzvﬂ) r) [~
/0 ,g0>dt+2// z]<talcv 5 \IJ()(ei(vi))X
e (0) 22 (5 (€) < vi < —mo) d dt+//Rt -1«
€;\Vi x\e; (€ v < —Mmg) ar i\l, T, U, . 4.1
oz; ez( )(Uz‘) (4.10)
x‘lnﬁ{)(v dmdt+//RthvC in_e )(v-)r =0
Z Y I (5 ( ) 2 .

Evaluating the first integral in (4.10) analogously to equality (40) in [10] yields

4 8uz . 1 ~(e) .
/0 <5 P> dt = i / lin_ & (vi(7, z))

{ei(vi)<e}

{ei(vi)>e}

< - ! /lné{is)(vi(ﬂﬂf))
Q

r+1
We estimate the second integral in (4.10) by using the condition iii) to obtain

- 5) O(vi + qivo) )\ " [~ ov;
Z// a0, TG )l ) 5
=y

X X(’éf )<y < mo) dr dt <

c41r//‘ln A{E
+C427‘// 1+‘ln A‘(E ’Uz

22

"l (e) de —

ui(z) de < (4.11)

2

n_ EZ(E) (vi(r,z))

r“u*(m) dz .

i

2
dx dt +

r—1

B (4.12)

68 in A{E)(Uz')

81}0

) 5

dz dt .




Estimating the two last integrals in (4.10) by using (2.26), (2.27) and Lemma 4.1,
we get

// (t,z,v,0) ()ln &9 (w)|"

//th:c,v,f (6( ‘ln A(E v,‘ ds dt <

<c43{// Fou(t,@)]|in @9 (w,)[" de dt +
// 1+ as(t, 2)][tn 89 (03)|" dsdt}
By (4.10), (4.11) and (4.13) we find for w®(t,z) = [In_ & ((v:)(t,z))
J +//
<{// (1+] )})(
// (ot z) + 1) dsdt}

To estimate that term in (4.14) with the derivative of vy, we test the integral identity
(2.14) with

(4.13)

2

a £
Y dpdt <

¥

2
81}0

5| T ai(t,z) + 1) dzdt+  (4.14)

U(t,z) = [wO(t, )] [vo(t, &) — vou(t)] 03(x) | (4.15)

where vg,(t), ¢i(z) are the functions from (4.4). By integration on ¢ and taking the
sum on [ we get

E 1 ,
// [w() 9% dmdt<c45r{l(r)+ﬁ// [w®(t,z)]" dzdt +
T
Q@ 1 Q@ 1 (4.16)
—I-/ {/ [w(¢, x)rpll dx}pl dt —I—/ {/ [w®(¢, x)rplz ds}P2 dt},
0 Q 0 o9
where
d Bw® || dv
_Z// [w(f)(t,x)rlvo(t,m)vo’l(t)‘(pf(x)‘—‘ %\ d dt.
= oz || oz
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Using (4.7), we can estimate the last integral

C45TI // 7
+ C46 {1+7‘2R2" // ‘w

Fixing the number R such that 4 c4 c47* R* = 1, we obtain from (4.14), (4.16)
and (4.17)

S
a{ [// o dt} ,

2
81}0

dx dt
e T +

(4.17)

w(®)

2
dz dt}.

1 Ow® |2
xTr

dr dt <

S

1 1 (4.18)
[// ”2 ds dt} ’ / [/ [w(a)(t,x)]wl dm} Ldt +
0 Q
—I-/ [/ [w(s)(t,:ﬂ)]wl2 ds} ’ dt}
o LJan
Remark also that (4.18) implies
ow'® (¢, x 2
/Q[w(s)(T,:c)]de —I—//‘% dz dt < cug (4.19)
Q-

with a constant c;g depending only on known parameters. To verify (4.19) we have
to estimate the integrals on the right hand side of (4.18) with 7 = 1 and then to
apply Gronwall’s Lemma. As an example we consider the third integral. Define p

by p} = NLﬂT. Then p < 2 and we can assume p > 1. Using Sobolev’s embedding
theorem we have with p* = NN—fﬁ

car /UT [/Q[w(a)(t,x)}pll ala;}i dt
colpe [ [fruaralt
< 050{1 + // ( ) dx dt} (420

aw . 2
QT QT
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Now (4.18), (4.19) and standard Moser iterations give
wE(t,z) < s, (4.21)

with a constant cs depending only on known parameters and independent of €. The
estimate (4.21) implies that the measure of the set {€;(v;(¢,z)) < €} is equal to zero
if |lne| > c5o, i€,

vi(t,z) >e; (e 1)

and the proof of Lemma 4.2 is complete. [J

Proof of Theorem 2.4. Theorem 2.4 follows immediately from the inequalities
(4.1) and (4.9). O

5 Proof of existence and uniqueness

Proof of Theorem 2.5. We modify the functions e;(z), d;;(t, z, 2,€), (¢, z,v,y),
rga(t, z',v,y) in following way:

ei(z) = /Z e;(min[s, K4]) ds

(Zj(taxazaf) = dij(tam7min[za K4L§)a (51)
Faﬁ(t T,0,Y) = r(,ﬂ(t z,min[v, K3 + K,], minly, Kag]),
st 2’ v,y) = r5(t, 2’ minfv, K3 + K4], min[y, K,s)),

where K3, K, are the constants from Theorem 2.3, 2.4 and
minfv, K3 + K4 = minj_q, a[v;, K3+ Ka], Kap =D 1, (Jai|l + |8i]) (K3 + Ku).
Now we consider the system

—V - (V) + f + Zq{di on Qr, (5.2)
i=1
ou;
ot
where u;, ja R; are defined by (2.4), (2.18), (2.6) with €;, cZ,Faﬁ instead of e;, d;, Tag.
We assume further that 6 = L.
In analogous way we modify the boundary condition (2.17):

+V. J +R;=0, i=1,....,n on Qp, (5.3)

V-jz-((s)+1§f:0, i=1,...,n on TIr. (5.4)

The solvability of the nondegenerate problem (5.2) — (5.4), (2.8), (2.9) can be simply
shown by using backward time discretization (see, for example [2]). By Theorems
2.3, 2.4 each solution v = (vg, vy, . .., v,) of that nondegenerate problem, satisfies the
a priori estimates (2.25), (2.28). But, because of (5.1), v is automatically solution
of the original problem (2.1), (2.2), (2.7) — (2.9). So theorem 2.5 is proved. [
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We want now to prepare the proof of the uniqueness result. Let us to this aim
suppose contradictionarily the existence of two solutions v(*) = (v(()l), vgl), Cee vy(Ll)),
v?) = (véz),v?), . ,0512)) of problem (2.1), (2.2), (2.7) — (2.9). Remark that both
solutions necessarily fulfill the a priori estimates (2.25), (2.28). We shall show that

1) — 4@
o\ =9,

We start by proving auxiliary Lemmas.

Lemma 5.1 Let the assumptions of Theorem 2.6 be satisfied. Then there exists a
constant Ly, depending only on known parameters such that for arbitrary T € (0,T]

2
dz dt} <

1 2

i{/ﬂvz()(Tm)v()Tm dx+//‘ '
<L10//H 7%))

2

+ Z ‘vl(l) — v§2)‘2+ (5.5)

Proof. We test the integral identity (2.13) for the solution v¥), k = 1,2, with ©*),
where

1
o= m[ei (Uz(l)) - ei(vz@))], o = o — o[V,

(3 2

Taking the sum of the obtained equalities, we get

ST [ [3 et (o ) B

i=1 k=1

+R(txv()C()) ]dmdt+//thmv ())go(k)dsdt}—

We evaluate the first integral in (5.6) analogously to Lemma 2 from [10] and obtain

> [ <

M (r2)

) > dt = /u;‘(x)/ l [’Uz-(l)(T,CC) z]ei(z) dzdz >
Q ol (1,2) (5.7)
> 053/
0

’UZ(I)(T, T) — vz@) (T, m)‘Z dz.
The second one can be estimated by the assumptions (i), (ii) of Theorem 2.6:

! — i (1) ei(z1) — ei(z er(z) — K e;’(s)e{ s)ds = e (z
o)~ S o) - ee)] 2 ) - [ S s —l), 59
e;(z1) — ei(z) Z;,I((Z)) [e (z1) — el(z2)] < cs4l21 — 29 (5.9)



The last inequalities, conditions (2.29), iii) and the local Lipschitz continuity of ~;;
imply

o (1., 25 ) 20
> ’ >
ox oz;

k=1 j=1
N (1) (2) 1) _ @
e a7\ 19(G" =67
> (1) S [ (12 20— (12, 20 ) |26 =600
- ez (,Uz ) ]2_; 7] 3 :L., am ’YJ )"LI) a"L' amJ
)
1 (22 5( (5.10)
_ (1) _ 1 _
055‘01 Yi ‘ < + Or > am
1) Cz’(Z)) ‘a a(,ui(l) _ ,Uz@)) 2
— Cs5 > Ce| (| —
x ox
1 2
—esrq [ — 0@ P (14 o¢V |\ 8w | 10w — ) |*
S ' oz oz oz '
By the local Lipschitz continuity of R;, R} we get
M| < cs Z ‘vz(l) - Ul(2) ?, (5.11)
1=0
2 n
SR (2,00, ()| < e 3ol o 512
k=1 1=0

Using the interpolation inequality

[ eawas {42

for functions v; ’ — Uz [ =0,1,...,n, and suitable € > 0, we obtain (5.5) from
(5.6), (5.7), (5.10), (5. 12) and the proof of Lemma 5.1 is completed. [

e +c5v|2} dz dt

Lemma 5.2 Let the conditions of Theorem 2.6 be satisfied. Then a constant Lq;
depending only on known parameters exists such that

/ 0wy — v
Q ox

Proof. We test the integral identity (2.14) associated with the solutions v*),
k = 1,2, with () = vél) - v((f), Y@ = véZ) - vél). The sum of the obtained
equalities reads:

NORNC
/Qe(m) —8( 0 0 )

Oz
Now (5.13) follows from (5.14), Cauchy and embedding inequalities. [J

2

z. (5.13)

+ ‘,UU - 'UO ) dr < Lll

2

dm—I—/ "UO —vo ds—ZZq,/ U,
o9

k=1 i=1
(5.14)
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Lemma 5.3 Let the conditions of Theorem 2.6 be satisfied. Then a constant Ly
depending only on known parameters exists such that for arbitrary T € (0,T]

1|

n

z{A

=1

2

v
oz

v-()(Tx —v Tx‘ dr +

2

o0 oV 7052)) 2
}dxdt}“w// { ( |
(5.15)
+{1+ ] o)
9w _enl L
+£(’UO — U ) —l—‘vo —vo ‘ }dmdt

Proof. We test the integral identity (2.13) for the solution v*), k = 1,2, with

Ae;(vM) — Ae;(v?
@(1) _ exp( ei(v; ;)(U(l()?;(p( ei(v; ))’ @(2) _ A[vz@) B UZQ)} exp (A 6i(vz-(2))),

where A is a positive number, depending only on known parameters, such that

A[e'-(sﬂ2 +2e€/(s)>1 for |s|< Ky, i=1,...,n, (5.16)

2

with K, from (2.28). Taking the sum of the obtained equalities, we get

ZZ{/ ( & >dt+//[ o8 71]( 8§§)>8£:)+

=1 k=1

+R(ta:v()§()) }dmdt%—//thxv ())G(k)dsdt}—

(5.17)

We transform the first integral in (5.17) analogously to the inequality (5.7) to obtain

o

v, (T,)
Z/ ) > dt = A/uf(x)/ [UEI)(T, ) — z] X
Q ’U§2)(T,ﬂ,‘) (518)
X e;(z) exp Ae;(z) dz dt > 059/ [UEI)(T, T) — vl@) (T, av)}2 dz.
Q

To estimate the second term in (5.17) we use the iequality

_ Z((Zl)) [exp[Ae;(z1)] — exp[Aei(z)]] > / ¢"(2) explAes(z)] dz —
= Ale}(22) exp[Ae;(2)] — €}(21) exp[Ae;(21)] 2/ (2)] exp[Aei(z)] dz ,

(5.19)
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that follows for z;, zo € R! from condition 1) of Theorem 2.6. So we obtain

N (1) ~(1)
o¢; "\ 0
Z// e;(vz(l))'yij t,z, G Y du dt > 10 413 4 13 (5.20)
4 oz oz;
=,
where
N (1) (1) oV
o¢; "\ O¢; i
m = AQZ//%]- (t,g;, ;’m ) 8%:] /1;(2) [e;(z)]2exp[Aei(z)]dzdxdt,
j=1 Q- z
N (1) (1) (2)
oc¢ o(v,’ — v,
@ = a3 [[a (1 %) 200 ) exttes o) do,
=g,
N (1) (1) e, (1) o
a¢; 7\ Ov el(v;’) [
3 _— . .. ) 0 i \Yq 1 ) .
v = qujzl//fy” (t,:ﬁ, B ) oz, {e’.(vo)) /U@) e;(z) exp[Ae;(z)] dz
= Q.,. 2 K 2

— e;(vzgl)) exp[Ae; (v;

"E
N—r
_|_
S
—

=
=
~
]
>
T
BN
A
—~
=
C
N—r
——
U
8
L
o~

We rewrite the second term in (5.17) with £ = 2 as follows

N (2) ~(2)

oG\ 0
g //e; (vz@))'yij <t,x, g; > gx dedt =1 + 1 4 1O 4 1O (5.21)
i=1g; !

acy a¢ 2
023 [ (6, 250) 55 1 o2 (o)1 (o _ o
I A 4 //'y” <t,m, 5 ) o, [ei(v;”)] " explAe; (v;)] (v; v;") dz dt,
j=1 Q-
N (1) (1)
ac oy
(5) _ 2 i 0 1(,(2) (2) n_ @
I ¢ A ]E_l//fy” <t,£l7, e > P, i (v;)]” explAe; (v; )] (v1 ) — v;”) dz dt,
=1
N (1) (1) (2) (2)
a¢M oy ac® oy
(6) — A2 - d LA i i
m ;// [%] <t’x’ Oz ) do; <t’m’ Oz > Oz; } g

T

X [e; (1)1-(2))}2 exp|Ae; (vz@))} (vzgl) — vz@)) dz dt

N ) m_ @
10 = —AZ// Yij <t,w, % )e;(vi(z)) exp[Ae; (vz-(z))]—a(vi v dz dt.
=1 ) ox oz;

We want to estimate sums of terms from (5.20) and (5.21). Note that by (5.16)

/z1 [e;(z)]Zexp[Aei(z)] dz — [62(22)]26)(1)[1461'(22)](21 — ) =

Z2

_ / / (2€/(60) + A[€l(6))) (6) explAes(6)] df dz >

> cgolz1 — 22/° for z1], |22] < K4
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and hence )

dz dt . (5.22)

(3

oz

1)
0@ s 2|06

The next estimate follows from conditions iii) and (2.29)

e )
1(2)—"[(7)2062// Cza Cz d.'L'dt—Cﬁg// 0
My
Q-

ot
The local Lipschitz continuity of the function e; implies

d:c dt . (5.23)

/ 2 62’(21) = /
‘A [ei(22)]” exp[Aei(22)](z1 — 22) + o (2) /22 e;(z) exp[Ae;(z)] dz —

— ei(21) exp|Ae;(21)] + €i(22) exp[Aei(zz)]‘ < cealz1 — 2|

for arbitrary numbers 21, z3 € [— Ky, K4] and consequently

e < ff (1475

Further, the local Lipschitz condition for «;; yields:

81)0

5 | "U(I) - vi(Z) ? dz dt. (5.24)
T

1) < / /] w! =) (o) | |oG Y |
~ce6 oz oz
5.25
8vi 8(1)(()1) — 'U[(JZ)) (1) 2| de di )
+ 97 | p ‘vi - ‘ z dt.

Finally, we obtain from (5.17), (5.18), (5.22) — (5.25) with view of (5.11), (5.12)

- 2| 9!
Z{/[vi(l)(T:c)—v T, ) d:ﬁ—l—//v v dmdt}g
— Q ox
(1) . (2)) 2 (1) |12
v, v; 6’00 (1 (2)2
SQW//{Z(T +|:1+W:|'Uz —V; “i‘
Q- =1

(5.26)

_|_

Al — o) || a¢c?
oz or

L (2
N 8(1)0 (N ) ‘2 N ‘v(()l) B Uéz)‘Z} dz di.

Changing the places of vz-(l) and vz@) in (5.26) and applying Cauchy’s inequality, we
arrive at the desired estimate (5.15) and the proof of Lemma 5.3 is complete. [
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Lemma 5.4 Under the conditions of Theorem 2.6 a constant L3 depending only
on known parameters exists such that for all T € (0,T], R € (0, 1],

(2) |12 PYAORNCINE
0u; + g dz dt < L3 RZW// Q dz dt +
Vi oz oz oz
Q-
[l oL emef)
o0
(5.27)

where 1 is the Hélder exponent from Theorem 2.3.

Proof. Let {p;(z)}, j = 1,...,J, be a partition of unity satisfying (4.3) with a
number R to be chosen later on. We test the integral identity (2.14) associateted
with the solution v*), k = 1,2, with

J

=3 [Pt 2) — o) () v (¢t w) — 0P (L, 2)

2 k k
o) = o ().

We obtain after integration with respect to ¢ and using the Holder inequality

o (k) |2
//e(a:) o @2 %
Q-
3 . BN
o = o®aaft s [T ast® o
Q 0 on

dz dt < I® (k) + IO (k) +

(5.28)

I(S)(k) = *22 Z// e(z )8812 Zfz - [U[()k) - Ué’fl)] ‘vi(l) - 1)1(2)‘2 dz dt,
=1 j=1"3" Y I
J N (k) (1) (2)
0 o(v; " — v,
100 = 233 [[ B OO gt b0
1=1 j=1 J J
Q-

Estimating 1®(k), I® (k) by Cauchy’s inequality and using (4.6), we obtain (5.27)
immediately from (5.28) and the proof of Lemma 5.4 is complete. [

Proof of Theorem 2.6. ;From (5.5) we get by applying Cauchy’s inequality
to the second term and using (5.13), (5.15), (5. 27) with suitable R

2 2
{/v Tx—v)Tx da:+// i dmdt}<
Sceg { ? dr dt +/ {/ o) — @ d:c} dt + (5.29)
0 Q
v { / w — o ds}% )
0 oN
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Here the second integral on the right hand side can by estimated by the interpolation
inequality

1
/ {/‘Uz(nvi(z)zp’ldx}m dt <
0 Q
(2) 2
< eqess sup ‘v 0,2) —v;”(0,z)|" dz + (5.30)

o<t
? 2
dzx dt} + c(s)/ ‘vzm — P dz dt
Q-

+//8@P—%%
ox
where p| = 22— < % and £ > 0. Analogously we get for the last integral in (5.29)

.
p1—1

(1,2) — v( )(T ) *dr < er ? dz dt. (5.31)

Hence Gronwall’s lemma yields vz-(l) = v ) for i = 1,...,n. Finally, vol = 7,

follows from (5.13) and Theorem 2.6 is proved. O
Proof of Corollary 2.1 Let v be the solution of (2.1), (2.2),(2.7) — (2.9). Set

v-(l):v,-(t,:c), vz-(z)(t,x):vi(t—l—&x), i=0,...,n,8€ (0, T—1t).

2

We test integral identity (3.5) with the functions

wm:ﬁﬁ%ﬁhwwerPn,wm:ﬂmm—w»
e; (v;

Then, arguing essentially as in the proof of (5.29) and (5.31), we obtain

n 2
722{ z) — v, (1, 2) d:ﬁ—l—//t2 dmdt}g
=1
< 671{2//752‘”@(1) —vz@)‘zdmdt +62}.
i=1
Q-

Now dividing by 42, applying Gronwall’s lemma and taking the limit § — 0, the
corollary follows. [

MONS '2))

6 Proof of Theorem 2.7

We start from the proof of (2.24) making some changes in the proof of Theorem
2.2. In the proof of Lemmas 3.1, 3.2, 3.3 we didn’t use the conditions (2.22), (2.23).
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Consequently, the results of these Lemmas remain valid.
We replace the test function ¢ in the proof of Lemma 3.4 by

P = [a(p)+[A(v)—Mg] } vi, ZA v), i=1,...,n, (6.1)

where p > 0, k > 1, the function A;(z) is defined by (2.20), My = >, Ai(myo),
mg and a(p) are the same numbers as in the proofs of the Lemmas 4.2 and 3.4,
respectively.

Using the equalities «-q=8-q, vy-q=46-q for (o, 8) € R, (v,d) € R" and the
monotonicity condition for the functions r,g, 7"55, we find

ZR 5, Qo Z S [rap(v,00 Q) = rag(v, 8- O] (0 — B)vs =

=1 (a,B)€ER
= ( %;R [Taﬁ(',’U,O{ ’ C) - Ta,@(';'u,ﬁ' C)] (O{ - /6) ' C Z 0 y (62)
ZRE('aUaC)UiZOa C:(Cla---aCn): Ci:qi'UO+'Ui-

i=1

Using the test function from (6.1) and the inequality (6.2), we obtain from (2.13)

i{/OT<%,{a()+[A() My, v,>dt+//z w)as(t, )%

= Q. k=1 (6.3)
) 0 ([a(p) + [A(v) — Mouzvi) dz dt} <0

X 8—k(vz + qzv())am
We evaluate the first integral in (6.3) following Lemma 2 in [10] to get
"\ [T Ou P
A HLCRILORR N

_ /Q“ /Um(m)) [a(p) - MO]+]:dz dz > (6.4)
! {/Qu* [a(P) + [A(v(r,2)) — Mghr+1 dz — C71a(p)}.

J

v

p+1 k
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To estimate the second integral in (6.3) we note that:

Z Z (wangr aij <[a(p) 4 [A@) - Mou”v,.) _

k
i=1 j,k=1

p N Ov; Ov;
= [a(p)+ [Av L D cilv Ot G 0y T

i=1 7,k=1

o1 N n ’ a'Ui (6 5)
+ p[a(p) + [A(v) — MO]J X Z Ajk < Z ei(vi)vi 8:6k> o

j.k=1 i=1

n

X (Ze;(vl)vlg—:;>x(0 < A(w) — My < k —a(p)) >

n 2

2 enfate) + [Aw) — 4] ] 73 el 3
Now (6.3) — (6.5) and (2.21) imply 17
[ [ato)+ notro) — ] ] o+
// _MOL]:ZZH;e;(Uz) o Cdedr <

d:c dt + a(p)}.

With view of the proof of Lemma 3.4 we want to reestablish (3.45) as a consequence
of (3.43) (and (3.41)) . Note that by assumption ; = 7 and let us assume that
r(m)+e > v. Choosing p in (6.6) such that (2+v)p+~ = r(m) + ¢ we can estimate
the right hand side of (6.6) by (3.43) for s = 1,...,n. Hence (6.6) implies (3.45).
Repeating all another discussions from the proofs of Lemma 3.4 and Theorem 2.2,
we obtain the inequality (2.24). The proof of (2.25) in the considered case coincides
with that one in the proof of Theorem 2.3.

In order to prove (2.28) we need only to check (4.1). We have from (6.6) with p > 1

/S;’U,* |:A('U(7'; -'L')) - Mg]:+1 dx _|_// [A(’U) . Mg}:ie;(vz) (Z_z; 2dmdt S
QT =1
< enlpt 1)2{ // {A(v) - Mo]izn:ei(vi) % 2 dz dt + Mg}_ 6D
QT 1=1
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To estimate the last integral we test the identity (2.14) with

n

> (1 fode) oot 2) = voal®)] el e)

i=1

b(t,z) = [A(v(t, z)) — Mor

+

where the notations from (4.4) are used. Integration on ¢ and summing up on [ give

// [A(v)—MU]:zn:e;(v,-) % dmdt<c74p2{2// (v:)
Qr i= i1

x
1
ov; ng

Bz || 0z

[ (o o) e

X [A(v) — Mo} (|Uo — v/}

+ — ) de dt +
R ) (6.8)

+/{/m ({A(v)Mo]ieg(vi))pg ds } it +M"}
Using (4.6), we obtain from (6.7), (6.8)
/ {A( (r,2))~ MO p+1 dz +// zn:e;(vi) % 2 dr dt <

i:l

4 (p+1)p} i
< er o™ {M"+/ {/[A(v)—MO}” ’ dx} i+ (6.9)
0 Q +
T (p+1)p) o
+/ {/ [A(v)—Mo]p pds} dt V.
0 o0 +

The last inequality implies (4.1) by standard Moser iteration.
The proofs of the existence and uniniquenes (Theorems 2.5, 2.6) remain valid under
the assumptions of Theorem 2.7. This ends the proof of Theorem 2.7. [J
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