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Abstract

These lecture notes are devoted to an overview of the modelling and the numeri-
cal analysis of surface waves in two-component saturated poroelastic media. This is
an extension to the part of this book by K. Wilmanski which is primarily concerned
with the classical surface waves in single component media. We use the ”simple
mixture model” which is a simplification of the classical Biot’s model for poroelas-
tic media. Two interfaces are considered here: firstly the interface between a porous
half space and a vacuum and secondly the interface between a porous halfspace and
a fluid halfspace. For both problems we show how a solution can be constructed
and a numerical solution of the dispersion relation can be found. We discuss the
results for phase and group velocities and attenuations, and compare some of them
to the high and low frequency approximations (ω →∞, ω → 0, respectively).

For the interface porous medium/vacuum there exist in the whole range of fre-
quencies two surface waves — a leaky Rayleigh wave and a true Stoneley wave. For
the interface porous medium/fluid one more surface wave appears — a leaky Stone-
ley wave. For this boundary velocities and attenuations of the waves are shown in
dependence on the surface permeability. The true Stoneley wave exists only in a
limited range of this parameter. At the end we have a look on some results of other
authors and a glance on a logical continuation of this work, namely the description
of the structure and the acoustic behavior of partially saturated porous media.
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1 Introduction

The classical approach to the propagation of surface waves is based on one-component
elastic models (for a detailed presentation of solutions for some of such problems see e.g.
[40]). At a plane boundary of a homogeneous linear elastic material solely a true Rayleigh
wave appears, while at the interface of a semiinfinite elastic solid and a semiinfinite ideal
fluid the Rayleigh wave is a leaky surface wave and an additional true Stoneley wave
emerges. A true surface wave propagates along the surface direction and decays expo-
nentially with depth, while leaky surface waves are attenuated in the surface direction
and radiate energy into bulk or other surface waves. It is customary in the literature
on waves in porous materials to call leaky surface waves pseudosurface waves (e.g. [19],
[13], first used in [28]). For instance, there exist pseudo-Rayleigh, pseudo-Stoneley etc.
waves. In this article we prefer to call these waves leaky surface waves (as e.g. done in
[33]). However, the two terms possess the same meaning: A leaky surface wave is iden-

tical with a pseudosurface wave. It is known that surface waves in linear models result
from the combination of bulk waves [37]. Physically, this means that at any point of the
boundary bulk longitudinal and shear waves combine into the surface wave which must be
slower than all bulk waves. In a one-component medium we have one longitudinal wave
P (primary) and one transversal wave S (secondary or shear). The additional component
in saturated porous media yields — compared to the one-component body — the existence
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of an additional bulk wave, the P2-wave, and thus also to an additional surface wave
which, in dependence on the interface, may be of true or leaky type. For instance, on
a permeable boundary, dividing the system into a saturated poroelastic material and an
ideal fluid, three surface waves appear. This is due to the fact that the system of bulk
waves consists of four waves: P1-, P2-, S-waves in the poroelastic material and a P -wave
in the fluid. The third surface wave is carried primarily by the fluid outside of the porous
material and, consequently, its velocity is bigger than this of the P2-wave but smaller
than the velocity of the P -wave in the fluid. Such waves are commonly observed in lab-
oratory (e.g. [25]) and borehole experiments (e.g. [46]), their theoretical investigation
within Biot’s model was carried, for instance, by Norris [26].

In application to soils, the underground consists of several layers. Thus an extension
of the theoretical description of wave propagation is necessary. Up to now it is done for
single component materials (e.g. Lai [23], Rix et al. [30]) in which the soil is considered to
be heterogeneous. Then, dispersion on heterogeneities is responsible for the existence of
several modes of propagation each travelling at a different phase and group velocity (modal
velocities). In the approximation by a layered structure dispersion arises from constructive
interference phenomena (see [36]) occurring in media which are either bounded (e.g. rods
plates, and other types of waveguides) or heterogeneous.

1.1 Practical aims

The theoretical investigation of surface waves in porous materials which is performed in
this work is motivated by the possible construction of a method of nondestructive testing
of materials. The term nondestructive testing denotes inspection methods which are used
to investigate either the structure of a body or to search for the presence of defects without
causing any effect on the properties of the medium. The notion ”nondestructive testing”
stands for a number of different methods like acoustics, radiography, dye penetration or
magnetic particle inspection (for an introduction and examples see e.g. [24]). Nonde-
structive testing methods are used for many reasons such as to ensure product integrity
and reliability, to prevent failure, due to often lower costs in comparison to conventional
methods etc. Thus it is, for instance, possible to analyze porosity, voids, inclusions, cracks
etc. Nondestructive testing is used in various areas such as, for example,

• geophysics, i.e. testing of soils and rocks,

• civil engineering, i.e. testing of concrete and other porous construction materials,

• road construction, i.e. testing of the road surface and the pavement,

• medicine, i.e. testing of bones and soft tissues,

• electronic industry, e.g. testing of surface coatings by nanomaterials.

Different operational areas require very different regions of frequencies of the waves: for
field measurements in soil mechanics which are required in practical applications the
range of applicable frequencies lies between 1 Hz and 100 Hz. However, this value differs
considerably from laboratory measurements on such materials [39]. For soil samples the
frequency region in such tests lies around some kHz. This range can be extended to some
MHz for stones or concrete by the application of a laser technique [27], [21]. Medical
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applications (see e.g. [22]) allow for frequencies up to approx. 3 MHz while testing of
nanomaterials requires frequencies of approx. 100 MHz (see Chapter 11 of [24]).

Here, we want to focus our attention on the nondestructive testing of geomaterials by the
analysis of surface waves. For this analysis one can choose two different ways in which
a dynamic disturbance is excited: harmonic or impact excitation. In contrast to the far
field approximation of seismic waves which is usually based on the frequency analysis,
engineering applications were primarily concerned with waves initiated by chopping or
explosions. This is not the case any more. Numerous experiments and measurements are
made nowadays by devices producing harmonic vibrations (e.g. [30]). They show that
the investigation of a problem in dependence on a real frequency ω is more adequate than
a comparable analysis with a real wavelength 2π

k
as control variable.

1.2 Theoretical background

1.2.1 Biot’s model

The most popular and widespread model for the theoretical description of processes in
fluid-saturated porous media is the Biot’s model. It has been introduced by Maurice
A. Biot in 1941 for a consolidation problem and was the basis for the analysis of the
propagation of body waves in a two-component medium since 1956 [11]. In the notation
of the present article Biot’s momentum balances have the following form

ρF
0

∂vF

∂t
= κρF

0 grad ε + Q grad tr eS − π
(
vF − vS

)
+ ρ12

(
∂vF

∂t
− ∂vS

∂t

)
, (1)

ρS
0

∂vS

∂t
= λS grad tr eS + 2µS div eS + Q grad ε + π

(
vF − vS

)
− ρ12

(
∂vF

∂t
− ∂vS

∂t

)
,

where vF ,vS denote the macroscopic (average) partial velocities of the fluid and of the
skeleton, respectively, eS is the symmetric Almansi-Hamel tensor of small deformations
of the skeleton, ε is the volume change of the fluid. These quantities fulfil the following
relations

∂eS

∂t
= symgradvS,

∂ε

∂t
= divvF ,

ε :=
ρF
0 − ρF

ρF
0

, ζ := n0(tr e
S − ε); (2)

the latter is the change of fluid contents commonly used as a field in Biot’s model instead
of ε. Relations (2) yield the existence of partial displacement fields uS ≡ u, uF ≡ U,
with

eS = symgradu, vS =
∂u

∂t
, ε = divU, vF =

∂U

∂t
. (3)

The quantities ρF
0 = n0ρ

FR
0 , ρS

0 = (1− n0) ρSR
0 denote constant (initial) mass densities,

ρFR
0 , ρSR

0 are the initial true mass densities, n0 is the initial porosity. The material pa-
rameters λS, µS, κ, Q, π, ρ12 are assumed to be constant. The parameter Q describes the
coupling of partial stresses in the Biot’s model, while ρ12 is attributed to the tortuosity a.
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A typical simplified relation among those quantities was proposed by Berryman in 1980
(e.g. Bourbié et al. [12]) and has the form

ρ12 = ρF (1− a) , a =
1

2

(
1

n0
+ 1

)
. (4)

The permeability coefficient π contains an overall information on the morphology of the
porous material which includes porosity, tortuosity, viscosity of the real pore fluid etc.
The form of this dependence is not needed in this work.

1.2.2 Simple mixture model

In our analysis we rely on a simpler model than this of Biot. We neglect two effects:

• the added mass effect reflected in the Biot’s model by off-diagonal contributions to
the matrix of partial mass densities (the parameter ρ12),

• the static coupling effect between partial stresses (the parameter Q).

The first contribution is neglected because it yields a non-objectivity of Biot’s equations
[43]. This does not mean that the tortuosity may not have an influence on the propagation
of surface waves but solely that it is not well modelled by Biot. For details concerning
this question see [41].

The second contribution — coupling of partial stresses Q — is neglected because it yields
solely quantitative corrections without changing the qualitative behavior of the system,
at least in the range of a relatively high stiffness of the skeleton in comparison with the
fluid. This has been analyzed for bulk waves in [3].

Bearing the above remarks in mind it seems to be appropriate to rely on the simpli-
fied model (”simple mixture model” in which Q = 0, ρ12 = 0) which, in turn, reduces
essentially technical difficulties.

We present here the linear form of the ”simple mixture” model for a two-component
poroelastic saturated medium (for details see: [44]).

Within this model the process is described by the macroscopic fields ρF (x,t) — partial
mass density of the fluid, vF (x,t) — velocity of the fluid, vS (x,t) — velocity of the skeleton,
eS (x,t) — symmetric tensor of small deformations of the skeleton and the porosity n. These
fields satisfy the following set of linear equations

∂ρF

∂t
+ ρF

0 div v
F = 0,

∣∣∣ρ
F−ρF

0

ρF
0

∣∣∣≪ 1,

ρF
0

∂vF

∂t
+ κ grad ρF + β grad (n− nE) + p̂ = 0, p̂ :=π

(
vF − vS

)
,

ρS
0

∂vS

∂t
− div

(
λS
(
tr eS

)
1+ 2µeS + β (n− nE) 1

)
− p̂ = 0, (5)

∂eS

∂t
= symgradvS,

∥∥eS
∥∥≪ 1, nE := n0

(
1 + δ tr eS

)
,

∂ (n− nE)

∂t
+Φdiv

(
vF − vS

)
+

n− nE

τn
= 0,

∣∣∣n−n0
n0

∣∣∣≪ 1.
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As before ρF
0 , ρS

0 , n0 denote constant reference values of partial mass densities, and poros-
ity, respectively, and κ, λS, µS, β, π, τn, δ,Φ are constant material parameters. The first
one describes the macroscopic compressibility of the fluid component, the next two are
macroscopic elastic constants of the skeleton, β is the coupling constant, π is the co-
efficient of bulk permeability, τn is the relaxation time of porosity and δ, Φ describe
equilibrium and nonequilibrium changes of porosity, respectively. For the purpose of this
work we assume β = 0. Then the problem of evolution of porosity described by equation
(5)5 can be solved separately from the rest of the problem and does not influence the
propagation of acoustic waves in the medium. The norm of the deformation tensor

∥∥eS
∥∥

is understood as the maximum absolute value of eigenvalues of eS (the maximum stretch).

In this article we present the simple mixture model in order to investigate the dispersion
relation for surface waves on impermeable and permeable boundaries of a fluid saturated
poroelastic medium in the whole range of frequencies. The problem of the frequency
dependence for intermediate frequencies has been widely ignored in the literature due to
numerical difficulties within the Biot’s model. Many numerical results were not published
yet elsewhere.

1.2.3 Boundary conditions

In order to determine surface waves in a satu-
rated poroelastic medium we need conditions for
z = 0. The most general case which we are going
to consider is the interface between a saturated
porous material and an ideal fluid. Boundary con-
ditions for such an interface were formulated by
Deresiewicz & Skalak [16]. We quote them here in
a slightly modified form. If we denote quantities
outside of the porous medium by a ”+” sign the
boundary conditions have the form

Fig. 1: Contact of a porous
halfspace with an exterior.

•
(
T13 − T+13

)∣∣
z=0

≡ T S
13

∣∣
z=0

= c2SρS
0

(
∂uS
1

∂z
+

∂uS
3

∂x

)∣∣∣∣
z=0

= 0,

•
(
T33 − T+33

)∣∣
z=0

≡ (T S
33 + pF+ − pF )

∣∣
z=0

=

= c2P1ρ
S
0

(
∂uS
1

∂x
+

∂uS
3

∂z

)
− 2c2SρS

0

∂uS
1

∂x
+

+ c2+
(
ρF+ − ρF+

0

)
− c2P2

(
ρF − ρF

0

)∣∣
z=0

= 0, (6)

• ρF
0

∂

∂t

(
uF
3 − uS

3

)∣∣∣∣
z=0

= ρF+
0

∂

∂t

(
uF+
3 − uS

3

)∣∣∣∣
z=0

,

• ρF
0

∂

∂t

(
uF
3 − uS

3

)
+ α

(
pF − n0p

F+
)∣∣∣∣

z=0

= 0,

where uS
1 , u

S
3 are x-, and z-components of the displacement uS, respectively, and uF

3 , uF+
3

are z-components of the displacements uF and uF+, respectively. Simultaneously,
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c2P1 :=
λS + 2µS

ρS
0

, c2S :=
µS

ρS
0

, c2P2 := κ, c2+ := κ+, (7)

are squares of the front velocities of the bulk waves in the porous material: P1 (fast wave),
S (shear wave), P2 (slow wave, also called Biot’s wave), and of the P -wave in the fluid,
respectively. In the case of Biot’s model there would be an additive contribution in the
numerator of cP1 of the coupling parameter Q which is of the order of a few percent of
λS (see: Albers, Wilmanski [3] for a detailed analysis).

The first two conditions of (6) describe the continuity of the full traction, t :=
(
TS +TF

)
n,

n =(0, 0, 1)T , on the boundary (i.e. momentum balance); the third condition is the con-
tinuity of the fluid mass flux (i.e. mass balance), and the last condition specifies the mass
transport through the surface. The in- and outflow through the boundary is assumed
to be proportional to the difference of the pore pressures on both sides of the boundary.
In this condition α denotes a surface permeability coefficient (it corresponds to 1

T
in the

work of Feng and Johnson [19]) and pF+ is the external pressure. This condition relies on
the assumption that the pore pressure p and the partial pressure pF satisfy the relation
pF ≈ n0p at least in a small vicinity of the surface. For a justification of this condition it
would be necessary to consider a boundary layer in the limit of zero thickness.

Some words are appropriate to explain the notion
of surface permeability: As we see in the neighbour-
ing figure the flow of the fluid is ”straight” both
outside the porous medium and inside the channels
of the porous medium. However, at the entrance
to the porous medium the flow is disturbed: the
fluid has to find its way through the voids between
the solid particles. In principle we consider a flow
which is perpendicular to the boundary but in a
small boundary layer it deviates from this direc-
tion. The more complicated the structure of the
boundary the bigger is the resistance against the
inflow and the smaller is the surface permeability
parameter α. The value α = 0 corresponds to a
sealed pore situation, for α = ∞ the boundary is
completely open.

Fig. 2: Sketch of the flow into
and out of a porous medium.

For the impermeable boundary with vacuum (α = 0 in our notation, T →∞ in the work
[19]), the above boundary conditions simplify to the following ones

• T13|z=0 ≡ TS
13

∣∣
z=0

= c2SρS
0

(
∂uS
1

∂z
+

∂uS
3

∂x

)∣∣∣∣
z=0

= 0, (8)

• T33|z=0 ≡ (TS
33 − pF )

∣∣
z=0

=

= c2P1ρ
S
0

(
∂uS
1

∂x
+

∂uS
3

∂z

)
− 2c2SρS

0

∂uS
1

∂x
+ (9)

−c2P2
(
ρF − ρF

0

)∣∣
z=0

= 0,

• ∂

∂t

(
uF
3 − uS

3

)∣∣∣∣
z=0

= 0, (10)
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due to the fact that the quantities outside of the porous medium are equal to zero. Then
the third and the fourth boundary conditions are identical.

The sealed boundary between the porous medium and a fluid yields three conditions as
well but in this case there is a right hand side in relation for normal stresses.

2 Analysis by means of the ”simple mixture model”

— boundary porous medium/vacuum

The procedure and the numerical results for phase velocities and attenuations for this
boundary are also presented in [4].

Fig. 3: Geometry
of the boundary porous
medium/vacuum.

2.1 Construction of solution for a semiinfinite medium

We follow here the same procedure of construction of solutions as in the works Wilmanski
[42], Edelman, Wilmanski [18] and Wilmanski, Albers [45]. While in [18] an asymptotic
analysis of the high-frequency properties of surface waves in function of the wavelength
1/k (k — wave number) within the simple mixture model was carried out, here, we consider
monochromatic waves with a given real frequency ω. This may be considered either as a
Fourier component of the expansion of the solution in time space or as a far field boundary
value problem with a harmonic surface source of waves.

This choice of the description seems to be better justified from the physical point of view
than the choice of the wave number, k, or, equivalently, of the wave length, 1

k
. In contrast

to the latter case, a monochromatic wave of a given frequency, ω, can be easily induced
in real field experiments. It should be mentioned, however, that these two approaches are
not equivalent from the formal point of view. For an explanation of this statement see
the example to the linear wave equation with damping describing longitudinal vibrations
of a rod in the chapter of K. Wilmanski in this book [40]. This example is simpler but has
the same structure as the problem considered in this article. The analysis in terms of real
k yields, indeed, a critical behavior as shown in this example. This has been observed for
Biot’s wave (P2-wave) by I. Edelman [17]. However, according to the above remarks this
observation seems to be solely of an academic interest.

2.1.1 Compatibility with field equations

We introduce the displacement vector uS for the skeleton, and formally the displacement
vector uF for the fluid. The latter is introduced solely for the technical symmetry of
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considerations and does not have any direct physical bearing. Then we have according to
Helmholtz’s Theorem

uS = gradϕS + rotψS, vS =
∂uS

∂t
, eS = symgraduS, (11)

uF = gradϕF + rotψF , vF =
∂uF

∂t
.

This means in coordinates

uF
i =

∂ϕF

∂xi
+ εijk

∂ψF
k

∂xj
, uS

i =
∂ϕS

∂xi
+ εijk

∂ψS
k

∂xj
, (12)

where εijk is the permutation symbol

εijk =

{
0 for i = j, j = k, k = i
1 for (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}

−1 for (i, j, k) ∈ {(1, 3, 2), (3, 2, 1), (2, 1, 3)}
.

For the two-dimensional casea we make the following ansatz for monochromatic wave
solutions in the x-direction

ϕS = AS (z) exp [i (kx− ωt)] , ϕF = AF (z) exp [i (kx− ωt)] , (13)

ψS
y = BS (z) exp [i (kx− ωt)] , ψF

y = BF (z) exp [i (kx− ωt)] ,

ψS
x = ψS

z = ψF
x = ψF

z = 0,

and

ρF − ρF
0 = AF

ρ (z) exp [i (kx− ωt)] . (14)

We investigate the approximation of a very large relaxation time of porosity (τn → ∞)
compared to the inverse of characteristic frequencies. This is justified in applications to
soils where viscous effects related to porosity do not seem to appear. Then the nonequi-
librium porosity n is determined by volume changes of the skeleton and of the fluid:
n = nE +Φ

(
tr eS − ε

)
. Consequently, they do not give any independent contribution to

the wave problem.
Substitution in field equations (see: (5))

∂ρF

∂t
+ ρF

0 div

(
∂uF

∂t

)
= 0, eS = symgraduS,

ρF
0

∂2uF

∂t2
+ κ grad ρF + π

(
∂uF

∂t
− ∂uS

∂t

)
= 0, (15)

ρS
0

∂2uS

∂t2
− div

(
λS
(
tr eS

)
1+ 2µeS

)
− π

(
∂uF

∂t
− ∂uS

∂t

)
= 0.

leads after straightforward calculationsb to the following compatibility conditions

BF =
iπ

ρF
0 ω + iπ

BS, AF
ρ = −ρF

0

(
d2

dz2
− k2

)
AF , (16)

from momentum balance for the fluid in z -direction from mass balance for the fluid

aUnder this assumption of plane wave motion we are not able to describe the geometrical dispersion
of waves which is the main practical motivation for applications of surface waves rather than bulk waves.

b divutransversal ≡ div rotψ ≡ 0,
rotulongitudinal ≡ rot gradϕ ≡ 0.
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as well as

[
κ

(
d2

dz2
− k2

)
+ ω2

]
AF +

iπ

ρF
0

ω
(
AF − AS

)
= 0, (17)

from momentum balance for the fluid in x-direction

[
λS + 2µS

ρS
0

(
d2

dz2
− k2

)
+ ω2

]
AS − iπ

ρS
0

ω
(
AF −AS

)
= 0, (18)

from momentum balance for the skeleton in x -direction

[
µS

ρS
0

(
d2

dz2
− k2

)
+ ω2 +

iπρF
0

ρS
0 (ρ

F
0 ω + iπ)

ω2
]

BS = 0. (19)

from momentum balance for the skeleton in z -direction

2.1.2 Dimensionless notation

It is convenient to introduce a dimensionless notation. Therefore we define the following
dimensionless quantities

cs :=
cS
cP1

< 1, cf :=
cP2
cP1

, π′ :=
πτ

ρS
0

> 0, (20)

r :=
ρF
0

ρS
0

< 1, z′ :=
z

cP1τ
, k′ := kcP1τ , ω′ := ωτ,

where τ is an arbitrary reference time. It may be chosen as τ =
ρS
0

π
which would lead to

π′ = 1, or it may be identical with the relaxation time of porosity τn. Further, we make
an arbitrary choice of this normalization parameter.

2.1.3 Ansatz

For simplicity we further omit the prime in (20). Substitution of these quantities in
equations (17), (18), (19) yields

[
c2f

(
d2

dz2
− k2

)
+ ω2

]
AF + i

π

r
ω
(
AF −AS

)
= 0,

[(
d2

dz2
− k2

)
+ ω2

]
AS − iπω

(
AF −AS

)
= 0, (21)

[
c2s

(
d2

dz2
− k2

)
+ ω2 +

iπω2

ω + iπ
r

]
BS = 0.

The matrix of coefficients for homogeneous materials is independent of z. Hence the
differential eigenvalue problem can be easily solved. Consequently, we seek solutions in
the form

AF = A1fe
γ1z + A2fe

γ2z, AS = A1se
γ1z + A2se

γ2z, BS = Bse
ζz. (22)
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Substitution in (21) yields relations for the exponents in the form
(

ζ

k

)2
= 1− 1

c2s

(
1 +

iπ

ω + iπ
r

)(ω

k

)2
, (23)

⇒
ζ1,2
k

= ±
√

1− 1

c2s

(
1 +

iπ

ω + iπ
r

)(ω

k

)2
, (24)

and

c2f

[(γ

k

)2
− 1

]2
+

[
1 +

(
1 +

1

r

)
iπ

ω

](ω

k

)4
+ (25)

+

[
1 + c2f +

(
c2f +

1

r

)
iπ

ω

] [(γ

k

)2
− 1

](ω

k

)2
= 0,

⇒ γ1,2,3,4
k

= ±
√

1− 1

2c2f

[(
1 + c2f

) (ω

k

)2
+
(
c2f +

1
r

)
iπω
k2

]
±

±

√√√√
(ω

k

)4
[

1

4c4f

(
1 + c2f

)2 − 1
c2
f

]
+ iπ

k

(ω

k

)3
[

1

2c4f

(
1 + c2f

) (
c2f +

1
r

)
−

− 1

c2f

(
1 + 1

r

)
]
− π2ω2

4c4fk
4

(
c2f +

1
r

)2
.

Simultaneously, we obtain for the eigenvectors the following relations

R1 =
(
Bs, A

1
s, A

1
f

)T
, R2 =

(
Bs, A

2
s, A

2
f

)T
, (26)

where

A1f = δfA
1
s, A2s = δsA

2
f , (27)

δf :=
1

r

iπ

ω

ω2

k2

c2f

[(γ1
k

)2
− 1

]
+
(ω

k

)2
+

iπ

ωr

ω2

k2

, (28)

δs :=

iπ

ω

ω2

k2(γ2
k

)2
− 1 +

(ω

k

)2
+

iπ

ω

ω2

k2

. (29)

The above solution for the exponents still leaves three unknown constants Bs, A
2
f , A

1
s

which must be specified from boundary conditions.

Complex values of ζ1,2 and γ1,2,3,4 result from the dissipation caused by the relative motion,
i.e. the influence of the permeability π. As a consequence, solutions decay in z-direction
but, simultaneously, they vibrate (see: Fig. 4).
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2.1.4 Dispersion relation

Substitution of the above results in the boundary conditions (8)-(10) yields the following
equations for the three unknown constants Bs, A

2
f and A1s

AX = 0, (30)

where

A :=




(
ζ
k

)2
+ 1 2iγ2

k
δs 2iγ1

k

−2ic2s ζ
k

[(γ2
k

)2 − 1 + 2c2s

]
δs+

+rc2f

[(γ2
k

)2 − 1
]

(γ1
k

)2 − 1 + 2c2s+

+rc2f

[(γ1
k

)2 − 1
]
δf

i rω
rω+iπ

− (δs − 1) γ2
k

(δf − 1) γ1
k




, (31)

X :=
(

Bs, A2f , A1s
)T

.

This homogeneous set yields the dispersion relation: detA = 0 determining the ω − k
relation. The wave number k is complex for two reasons: the first one is the dissipation
due to diffusion which is always present for π �= 0 and the second is the loss of energy in
leaky waves independently of π.
We investigate the numerical solution of the dispersion relation and compare the results
for high and low frequencies with approximations shown in Wilmanski, Albers [45]. These
are briefly summarized in the next subsection.

2.1.5 High and low frequency approximations

High frequencies In the limit ω →∞ we immediately obtain from relations (23) and
(25)

(
ζ

k

)2
= 1− 1

c2s

(ω

k

)2
,

(γ1
k

)2
= 1−

(ω

k

)2
,

(γ2
k

)2
= 1− 1

c2f

(ω

k

)2
, (32)

and

δf = δs = 0 ⇒ R1 =
(
Bs, A

1
s, 0
)T

, R2 =
(
Bs, 0, A

2
f

)T
. (33)

Hence, the exponents are real in this limit, i.e. there appear no vibrations in z-direction.

The dispersion relation follows in the form

PR

√
1− c2f

(ω

k

)2
+

r

c4s

(ω

k

)4√
1−

(ω

k

)2
= 0, (34)

12



where

PR :=

(
2− 1

c2s

(ω

k

)2)2
− 4

√
1−

(ω

k

)2
√

1− 1

c2s

(ω

k

)2
. (35)

For r = 0 the relation (34) reduces to PR = 0 which is the Rayleigh dispersion relation
for single component continua. The high frequency limit, described by (34), exists for any
choice of material parameters in contrast to results of Feng and Johnson [19]. The range
of nonexistence of this wave related to small values of the longitudinal frame modulus,
corresponding to µS < ρSκ in our notation, has not been investigated within the simple
mixture model.

Low frequencies For the limit ω → 0 one arrives at the following results for the first
order approximation of exponents (notice a singularity of the last contribution to γ2

k
!)

(
ζ

k

)2
= 1− r + 1

c2s

(ω

k

)2
,

(γ1
k

)2
= 1− r + 1

rc2f + 1

(ω

k

)2
,

(γ2
k

)2
= 1−

rc4f + 1

c2f
(
rc2f + 1

)
(ω

k

)2
− iπ

ω

rc2f + 1

rc2f

(ω

k

)2
, (36)

and for the coefficients of amplitudes

δf = 1− ωr

iπ

1− c2f
1 + rc2f

, δs = −rc2f

(
1− ωr

iπ

1− c2f
1 + rc2f

)
. (37)

These coefficients of amplitudes for low frequencies are complex while we have seen that
those of the high frequency limit are real. This means that here vibrations in z-direction
appear. We show schematically the be-
havior of the amplitudes in the neigh-
bouring figure. The dashed lines show
the decreasing of the amplitude for real
coefficients of amplitudes, the solid line
shows it for complex coefficients where
vibrations appear.

Fig. 4: Behavior of ampli-
tudes of surface waves.

Dashed: real coefficients of amplitudes,

solid: complex coefficients of amplitudes.

If we account for the relations (36) and (37) in the condition detA =0 then we obtain
a relation specifying ω

k
. From this we get as a solution a Rayleigh wave whose speed is

given by a relation analogous to (35) in which the speeds of bulk waves (7) are replaced
by their low frequency counterparts coP1 and coS:

(
2− c2P1

c2oS

(ω

k

)2)2
− 4

√
1− c2P1

c2oS

(ω

k

)2
√

1− c2P1
c2oP1

(ω

k

)2
= 0, (38)

coP1 :=

√
λS + 2µS + ρF

0 κ

ρS
0 + ρF

0

, coS :=

√
µS

ρS
0 + ρF

0

.

Both components move in a synchronized way, thus the influence of diffusion is not visible.
This shows that it is often sufficient to use one-component models for the analysis of
surface waves in the low frequency range which is the proper region in geophysics.

In contrast to the high frequency approximation this wave is neither dispersive nor dissi-
pative (no attenuation). The Stoneley wave does not exist in this approximation which
means, as we see further, that its velocity of propagation is zero in the limit ω → 0.
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2.2 Numerical procedure

The problem detA =0 has been solved for the complex wave number, k, using the two
computing packages MATLAB 5.3 and MAPLE V Release 5.1. The attempt to execute
the calculation with the third package, MATHEMATICA 5, failed. In both successful
packages, in principle, it is possible to use the existing equation solvers although they
need for the calculations with complex variables a very extensive main memory. It has
been observed that the package MAPLE calculates solely one of the solutions for k for
any choice of sign combinations of exponents γ1, γ2 and ζ, changing between branches of
solution by the variation of exponents without any apparent reason. Sometimes it was
the Rayleigh solution which was calculated and sometimes the Stoneley solution. On the
other hand, MATLAB revealed all solutions independently of a chosen combination of
signs of exponents and this required testing any solution in order to find a corresponding
combination of signs. Of course, the ascertained values agreed in both packages.

Inspection of the above solutions shows that they contain roots of quantities which are
either already complex or may change the sign. As well known, this means that there
exist many Riemann surfaces. It has been seen already in the case of classical Rayleigh
waves ([33], [40]) that, in order to obtain a true surface wave one has to choose a proper
Riemann plane otherwise one obtains leaky surface waves. This is, of course, also visible
in the numerical procedure which yields solutions on both Riemann surfaces which are
related to the true surface wave as well as to solutions for leaky waves. An additional
problem arises due to the fact that complex solutions in the present case follow not only
from the choice of the Riemann surface but also from the attenuation through dissipation.
Consequently, a numerical analysis has to be done with a particular care.

The duration of the calculation for one value of ω was about 90s on a 1000 MHz machine.

From the complex results for k we are able to determine the normalized velocities of

the Rayleigh and Stoneley modes c′Ra =
ω

Re k1
, c′St =

ω

Re k2
, respectively, and the corre-

sponding normalized attenuations Im k1 for the Rayleigh wave and Im k2 for the Stoneley
wave.

2.3 Parameters

The results have been obtained for the following numerical data

β = 0, cP1 = 2500
m

s
, cP2 = 1000

m

s
, cS = 1500

m

s
,

ρS
0 = 2500

kg

m3
, ρF

0 = 250
kg

m3
, cf =

cP2
cP1

= 0.4, cs =
cS
cP1

= 0.6,

r =
ρF
0

ρS
0

= 0.1, π =

{
107 kg

m3s
or

variable
, τ = 10−6 s, π′ :=

πτ

ρS
0

=

{
0.004 or
variable

.

(39)

These data correspond approximately to, for instance, either marls or porous and satu-
rated sandstones [12].
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2.4 Numerical results

In the whole range of frequencies there exist two surface modes of propagation corre-
sponding to the classical Rayleigh and Stoneley waves.

Results are shown for different values of the bulk permeability coefficient, π. This para-
meter describes the resistance of the porous medium against the flow of the fluid.

The classical form of the Darcy law refers to simple seepage experiments and describes
the seepage velocity vseep in terms of the pressure gradient

vseep = −K
ρg

dp

dx
,

where ρ — mass density of the fluid, g — earth acceleration, and K — hydraulic conduc-

tivity. This corresponds to the quasistatic form of the relation (1)2

dp

dx
+ π

(
vF − vS

)
= 0,

if we require the relative and seepage velocities to be identical vseep = vF − vS .
Consequently, the relation between permeability coefficients in these two approaches is
as follows

K

ρg
∼ 1

π
.

For instance, for water saturated sands K ∼ 10−2÷ 10−3 ms , ρ ∼ 103 kg
m3

and g ∼ 10 m
s2

=⇒ π ∼ 106 ÷ 107 kg
m3s

(see e.g. Bear [7]). In standard units of permeability this

corresponds to app. 1÷0.1 darcy.

Numerical results for velocities and attenuations are partially normalized. Namely values
of velocities are divided by the high frequency velocity of the P1-wave cP1 given by (39)
and these of attenuations — by the product cP1τ .

Consequently, according to relations (20) the normalization of the independent variable
ω by the same constant τ would lead to identical results for different values of the perme-
ability coefficient π. This selfsimilarity is lost in the figures presented in the paper due to
the fact that we do not normalize the frequency ω. It appears in all figures in real physical
units (Hz or MHz).

2.4.1 Phase velocities of Rayleigh and Stoneley waves

Fig. 5 shows the velocity of the Rayleigh wave normalized by the P1-velocity in depen-
dence on the frequency (see: (20)). The velocity is given for different values of the bulk
permeability parameter π. The left and the right figure differ in the range of frequencies.
In the left one it varies between zero and the very large value of 100 MHz while the
range in the right one is smaller. As in the classical case velocities of all monochromatic
Rayleigh waves are smaller than the velocity of the bulk shear wave, cS, whose normalized
value is cs ≡ cS

cP1
= 0.6. The high and low frequency limits which are indicated in the left
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figure are different and correspond to different limits of bulk waves. For our data these
dimensionless limits are approx. 0.5493 and 0.5237, respectively.

Fig. 5: Normalized velocities of the Rayleigh wave c′Ra ≡ cRa
cP1

for different values of the

permeability coefficient π in units
[
kg
m3s

]
and in different ranges of frequencies.

The velocity of the Rayleigh wave possesses in the range of relatively small frequencies
an interesting feature. As we see in the next figure the dependence on the frequency
is not monotonous. However, the nonmonotonicity is so weak that in the range of low
frequencies applied in geotechnics the Rayleigh velocity may be assumed to be constant.
The nonmonotonicity can be observed in a blow-up presented in Fig. 6. The Rayleigh
velocity decays first a little and then it becomes growing to its limit value for ω →∞. The
maximum decay is very little indeed — approx. 0.025% of the difference of limit values for
ω = 0 and ω → ∞. Interestingly, the minimum value remains constant for the different
values of π. This means that the decay is not driven by the diffusion. Details are shown
in the right figure for the permeability π = 107 kg

m3s
.

Bourbié, Coussy and Zinszner [12] prescribe this effect to an influence of the P2-wave,
whose velocity goes very rapidly to zero as ω → 0 and becomes already very small in
this range of frequencies. Consequently, it has a bigger influence than in the range of
higher frequencies on the behavior of Rayleigh waves. It is interesting that this coupling
is present in the simplified model where the coupling term in stresses is absent and bulk
modes couple only through boundary conditions. Due to the latter property of the model
the size of the effect is very small indeed, even though within the Biot’s model it is not very
large either (compare: Fig. 6.11 in Bourbié et al. [12], where the maximum corresponds
to approx. 0.3%).

In any case this region of the Rayleigh velocity has been investigated particularly carefully
to eliminate the possibility of numerical artefacts.
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Fig. 6: Decay of the Rayleigh velocity cRa
cP1

in the range of relatively small frequencies. Left:

for different values of the permeability coefficient π in units
[
kg
m3s

]
, right: detail for

π = 107 kg
m3s

.

Fig. 7: Normalized velocities of the Stoneley wave c′St ≡ cSt
cP1

for different values of the

permeability coefficient π in units
[
kg
m3s

]
in different ranges of frequencies.

In Fig. 7 we present the velocity of the second surface wave possible for the boundary
porous medium/vacuum — the Stoneley wave. It is normalized in the same way as the
Rayleigh velocity. Also in these figures we see the curves for several values of π. The
velocity increases from the zero value for ω = 0. This property was indicated earlier as a
nonexistence of the Stoneley wave. The growth is faster than the growth of the Rayleigh
velocity but the maximum value is smaller. It lies always below the normalized velocity
of the fluid cf ≡ cP2

cP1
= 0.4. This happens for all values of π. The maximum value of the

Stoneley velocity appearing for ω →∞ is approximately 0.15% smaller than the velocity
of the fluid. One should point out that the Stoneley velocity behaves regularly in the
whole range of frequencies and it ceases to exist only for ω = 0. In the vicinity of this

17



point the Stoneley velocity possesses a similar feature to the P2-wave: it decays to zero
as
√

ω.

In order to be more specific, in Fig. 8 we consider a selected case which may appear in
geotechnics and shows the normalized velocities of both Rayleigh and Stoneley waves for
a permeability coefficient π = 107 kg

m3s
. This corresponds, as shown above, to sandstone

saturated with water.

We see the velocities of both surface modes in different ranges of frequencies. The first
graph shows properties up to 0.5 MHz, and the second one — up to 10 Hz. Each wave
attends a finite asymptotic value as ω → ∞. This value is bigger for the Rayleigh wave
than for the Stoneley wave. While the Stoneley wave velocity starts from zero for ω = 0
the Rayleigh wave yields a low frequency limit unequal to zero. With growing frequency
the Rayleigh wave remains at first nearly constant and then increases little until it reaches
the high frequency limit. On the other hand the growth of the Stoneley wave velocity is
much steeper.

In order to demonstrate the existence of the Stoneley wave in the range of very small
frequencies we show in the right figure some calculated points which make obvious that
there do not appear any numerical problems to calculate the Stoneley velocity in the
limit ω → 0. In the same range of frequencies, usual in geophysics, the Rayleigh velocity
remains nearly constant. Notice that the velocity axis is broken in order to show the
behavior of both velocities in the same units.

Fig. 8: Comparison of the behavior of Rayleigh and Stoneley wave velocities in high and low
frequency ranges for a permeability coefficient π = 107 kg

m3s
.

2.4.2 Group velocities of Rayleigh and Stoneley waves

The figures for phase velocities of Rayleigh and Stoneley waves show that both of them
depend on the frequency ω. In inhomogeneous media waves of different frequency (or
wavelength) in general propagate with different phase velocities. This phenomenon is
known as dispersion. The dispersion in heterogeneous materials appears in a nondissi-
pative manner which is not the case in systems with diffusion. It is easy to see that
dissipative waves considered in this article become nondispersive in the nondissipative
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limit π → 0. Compare the chapter of K. Wilmanski in this book [40] where it is shown
that in homogeneous media waves propagate undispersed.

A monochromatic wave as investigated in this section is an idealization which is never
strictly realized in nature. Most sources emit signals with a continuous spectrum over a
limited frequency band. The group velocity cg (for details in the case of real k see e.g. [1],
[9] or[48]) for a given frequency ω is the velocity of transport of a wave package consisting
of contributions from a band of frequencies around ω. Then, accounting for the fact that

the real wavelength k and the phase velocity cph depend on the frequency
(
k = ω

cph

)

dk

dω
=

1

cg
=

1

cph
− ω

c2ph

dcph
dω

, ⇒ cg =
cph

1− ω
cph

dcph
dω

. (40)

However, in our case the wave number is complex (k = kR (ω) + ikI (ω)) and a relation
similar to (40) follows under some simplifying assumptions. We consider the wave con-
sisting of a narrow band of frequencies near the middle frequency ω0. The solution for
the amplitude A can be described by a Fourier integral which accounts for all frequencies
entering the band

A (x, t) =
1

2π

∫ ∞

−∞
A (ω) e−kIx ei(kRx−ωt) dω. (41)

Under the assumptions of small changes of the amplitude and small changes of damping
kI in the range ω0 ≤ ω ≤ ω0 +∆ω, this is approximately

A (x, t) ∼= 1

2π
A (ω0) e

−k0Ix ei(k
0
R
x−ω0t)

∫ ω0+∆ω

ω0

e
i
(
x
cg
−t
)
(ω−ω0) dω ∼=

∼= 1

2π
A (ω0) e

i(k0x−ω0t)

∫ ∆ω

0

e
i
(
x
cg
−t
)
ξ
dξ =

=
1

2π
A (ω0) e

i(k0x−ω0t)

∫ ∆ω

0

[
cos

(
x
cg
− t

)
ξ + i sin

(
x
cg
− t

)
ξ
]
dξ = (42)

=
1

2π
A (ω0) e

i(k0x−ω0t)
1

x
cg
− t


sin

(
x
cg
− t

)
∆ω − i

(
cos

(
x
cg
− t

)
∆ω − 1

)

︸ ︷︷ ︸
≈0


 =

=
1

2π
A (ω0) e

ik0(x−cpht)︸ ︷︷ ︸
carrier



sin

[(
x
cg
− t

)
∆ω

]

(
x
cg
− t

)
∆ω




︸ ︷︷ ︸
modulator

∆ω,

with cg :=

(
dkR

dω

)−1

ω=ω0

=
cph

1− ω
cph

dcph

dω

and

∣∣∣∣
∆ω

ω0

∣∣∣∣≪ 1, cph =
ω

kR

k0 = k0R + ik0I = k (ω0) .

In the following figure we show both the phase velocities and the group velocities of both
surface waves at the boundary porous medium/vacuum for the permeability coefficient

π = 107 kg
m3s

. The derivative
dcph
dω

has been calculated as central difference.

19



Fig. 9: Rayleigh and Stoneley wave phase and group velocities in the whole frequency range
for a permeability coefficient π = 107 kg

m3s
.

We see that both group velocities have a maximum while these maxima do not appear
in the phase velocity curves. Consequently, even though we have the inverse behavior to
this typical for classical elastic systems (phase speeds grow rather than decay with the
frequency ω), we may expect sharp changes in the amplitude of arriving waves. These
correspond to the classical Airy phase, namely amplitudes at the time in a seismogram
at which sharp pulses arrive (see chapter of Wilmanski [40]).

2.4.3 Attenuation of Rayleigh and Stoneley waves

This section is devoted to the behavior of the attenuation of the Rayleigh and Stoneley
waves. Imaginary parts of the wave number k determine the damping of waves. It is
normalized by the product with the P1-velocity and the relaxation time (see: (20)). This
means for our parameters that the values presented in the figures are 400 times smaller
((2500× 10−6)−1) than in real physical units

[
1
m

]
.

Let us first turn our attention to the Rayleigh wave. Fig. 10 shows the attenuation of
this wave in different ranges of frequency. The left hand side conveys the impression
that the attenuation would not start from zero with zero frequency. This stems from
the double-logarithmic scale. However, in the right figure (at least at the frequency-
axis) the right physical behavior is obvious: the attenuation for all values of π starts
from zero. Although distorting the ω − Im k behavior, we use on the left hand side the
double-logarithmic scale to expose two characteristic features: intersections of curves for
different permeabilities π as well as the common asymptotics for ω → ∞. In contrast to
all other waves whose attenuation goes to a finite limit as ω → ∞ — a property which,
incidentally, was not clearly stated in earlier works — the attenuation of Rayleigh waves
goes to ∞ as ω → ∞. We demonstrate this point separately again in Fig. 13 but we
want to stress here that this singular behavior of the Rayleigh wave in relation to the
attenuation is the feature of a leaky wave. In contrast to the attenuation of other waves
which results solely from the dissipation, for a leaky wave the infinite limit of attenuation
(asymptote) is independent of the permeability π, provided π �= 0. The left hand side of
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Fig. 10 also clarifies that the attenuation is in the same manner selfsimilar as the velocity.
The existence of intersection points of curves for different π is also characteristic for bulk
P1-waves and indicates the decay of curvature of these curves as functions of the physical
frequency ω with the growing permeability π.

Fig. 10: Attenuation of the Rayleigh wave for different values of the permeability coefficient
π in units

[
kg
m3s

]
in different ranges of frequencies.

In order to expose a region of very small frequencies important in geotechnical applica-
tions, we present in Fig. 11 the attenuation of both surface waves and two bulk waves:
P1 and P2 in the range of frequencies up to 1000 Hz. Clearly, in this range, the Rayleigh
wave is attenuated stronger than the P1 wave but still weaker than P2.

Fig. 11: Attenuation
of Rayleigh, Stoneley,
P1 and P2-wave, for
π = 107 kg

m3s
in a range

of small frequencies.

Inspection of Fig. 12 shows that also the normalized attenuation of the Stoneley wave
starts from the zero value for ω = 0. But, in contrast to the Rayleigh wave attenuation for
small frequencies, it increases much faster and then approaches a horizontal asymptotic
value for larger values of the frequency. This means that the limit ω → ∞ is finite and
dependent on the permeability coefficient π.
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Fig. 12: Attenuation of the Stoneley wave for different values of the permeability coefficient
π in units

[
kg
m3s

]
in different ranges of frequencies.

This property does not coincide with the statement in Edelman, Wilmanski [18] in

which it is claimed that the Stoneley wave propagates ”almost without attenuation”

(p. 38). This feature concerns the quantity Im ω̃ ≡ Imω
k in terms of the quoted paper,

and means solely that lim
k→∞

Imω <∞. In the frequency space considered in the present

work we have similarly lim
ω→∞

Im k <∞.

We can reinterpret those results in terms of the quality factor used frequently in works
on acoustics. As indicated, for instance, in Aki and Richards [1], Bourbie et al. [12] it
may be defined as

Q (ω) :=

∣∣∣∣
Rek (ω)

Im k (ω)

∣∣∣∣ ≡
∣∣∣∣
Rek (ω)

ω

ω

Im k (ω)

∣∣∣∣ =
1

cph

∣∣∣∣
ω

Im k (ω)

∣∣∣∣ , cph :=
ω

Re k (ω)
. (43)

Clearly, for |Im k (ω)| < ∞, we have the limit lim
ω→∞

Q (ω) = ∞, which is qualified in

these works as a lack of dissipation. The other limit Q = 0 would mean an infinitely

attenuating medium.

We do not use the notion of the quality factor in this article because neither its definition

(43) is universally accepted, particularly for the limit ω → 0, nor it possesses such a

clear physical interpretation as Im k.

In Fig. 13 we show the normalized attenuation of the surface and bulk waves. For low
frequencies the attenuation of the Stoneley wave is much higher than this of the Rayleigh
wave. Both attenuations are starting from zero for ω = 0. The Stoneley wave attenuation
increases rapidly until it reaches a certain value which depends on the permeability co-
efficient π, in the case under consideration — approx. 0.0496× (cP1τ )

−1 ≃ 19.84 1
m
. After

reaching this value — which happens in the low frequency range — it remains almost con-
stant. The Rayleigh wave attenuation, however, does not have a finite value for ω →∞.
As we have already mentioned, the Rayleigh wave is for this reason a leaky wave. Gen-
erally, the Rayleigh attenuation increases linearly with growing ω (i.e. the corresponding
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quality factor lim
ω→∞

Q (ω) < ∞), only for very low frequencies the growth is a little bit

faster. Consequently, there appears an intersection of the attenuation curves of both
waves. This point lies in the range of high frequencies.

Fig. 13: Normalized attenuation of Rayleigh, Stoneley, P1 and P2-wave, for π = 107 kg
m3s

in different ranges of frequencies.

2.5 Summary of results for boundary porous medium/vacuum

In the whole range of frequencies there exist two modes of surface waves: a leaky Rayleigh
wave and a Stoneley wave. We have shown numerical results for the normalized velocities(
1

cP1

ω
Re k(ω)

)
and attenuations (Im k (ω) cP1τ ) of these waves for different values of the

bulk permeability coefficient, π, in different ranges of frequencies, ω.

Leaky Rayleigh

• the velocity of propagation of this wave lies in the interval determined by the limits
ω → 0 (following from (38)) and ω →∞ (following from (34)). The high frequency
limit is approx. 4.7% higher than the low frequency limit. The velocity is always
smaller than cS, i.e. slower than the S-wave. As a function of ω it possesses an
inflection point and it is slightly nonmonotonous,

• this nonmonotonicity appears in the range of small frequencies. The velocity pos-
sesses in this range a minimum whose size is very small (approx. 0.025% of the
difference of limit values for ω = 0 and ω →∞). Interestingly, the minimum value
remains constant for the different values of π. This means that the decay is not
driven by diffusion. Such a behavior is also observed within Biot’s model. It results
from a coupling of P1- and P2-waves through boundary conditions;

• the attenuation of this wave grows from zero for ω = 0 to infinity as ω →∞. In the
range of large frequencies it is linear (i.e. the quality factor is a constant different
from zero) and independent of the permeability π. This means that it is a leaky
wave.
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Stoneley

• the velocity of this wave grows monotonically from the zero value for ω = 0 to a
finite limit which is slightly smaller (approx. 0.15%) than the velocity cP2 of the
P2-wave. The growth of the velocity of this wave in the range of low frequencies is
much steeper than this of Rayleigh waves similarly to the growth of the P2-velocity;

• both the velocity and attenuation of the Stoneley wave approach zero as
√

ω,

• the attenuation of the Stoneley wave grows monotonically to a finite limit for ω →
∞. It is slightly smaller than the attenuation of P2-waves. Consequently, in contrast
to the claims in the literature, the Stoneley wave is attenuated. Solely its quality
factor goes to zero as ω →∞.

Results for different values of the permeability coefficient π are selfsimilar, i.e. a change
of π yields a corresponding change in the scale of the frequency axis for velocities, and of
both axes for attenuations. Otherwise the qualitative behavior remains unchanged.

3 Analysis by means of the ”simple mixture model”

— boundary porous medium/fluid

In the previous part we have introduced the equations for the porous medium. Investi-
gating the interface between a porous medium and a liquid we have to consider additional
equations for the liquid outside of the porous medium. We distinguish this part of the
system by the sign ”+”.

Fig. 14: Geometry
of the interface porous
medium/fluid.

3.1 Construction of solution

The additional equations for the fluid in the exterior of the porous material read

∂ρF+

∂t
+ ρF+

0 div vF+ = 0,

ρF+
0

∂vF+

∂t
+ κ+ grad ρF+ = 0. (44)

Here ρF+ denotes the partial mass density of the fluid in the +-region and ρF+
0 is its

constant reference value. κ+ describes the compressibility of the fluid. The identification
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of compressibility coefficients in porous materials can be done in many ways and they
do not necessarily give the same results. To make this issue clear, we present here two
approaches.

One of them is commonly used in micro-macro transitions for granular materials. Such
a transition is described by relations ρF = nρF+, pF = npF+, pF − pF

0 = κ
(
ρF − ρF

0

)
,

pF+ − pF+
0 = κ+

(
ρF+ − ρF+

0

)
, and, under the condition of constant porosity n = n0, we

have κ = κ+.

However, a simple wave analysis shows that this relation cannot hold as the speeds of
waves carried by the fluid component are, respectively, c+ =

√
κ+, cP2 =

√
κ, and these

are, of course, different. The situation does not improve essentially if we introduce the
Biot’s coupling. This means that linear models used in the description of waves cannot
be based on the above quoted simple micro-macro relations. They possess their own
macroscopic status and their effective material parameters account for such microscopic
effects as scattering of waves. Different macrosco-

pic compressibilities for the same material inside
and outside of the porous medium are caused by
the channels of the porous medium. While a wave
can take a free ”path” in the fluid outside, inside
the porous medium waves are slower due to reflec-
tion on the boundaries of the channels. This is,
certainly, not present in simple micro-macro tran-
sitions.

Fig. 15: Compressibilities for diffe-
rent fluid velocities

We assume the fluid to be water. A wave in water travels with the velocity of around
c+ ≈1500 m

s
and the corresponding compressibility κ+ = 2.25 · 106 m2

s2
. Inside the porous

medium the velocity of the P2-wave is assumed to be cP2 = 1000 m
s
to which corresponds

a compressibility κ = c2P2 = 1 · 106 m2
s2

(see Fig.15).

3.1.1 Compatibility with field equations

As also done in the equations for the porous medium we introduce the displacement vector
uF+. But it also is introduced solely for technical symmetry of the considerations and it
does not have any physical bearing. Then

uF+ = gradϕF+, vF+ =
∂uF+

∂t
. (45)

Again, we make an ansatz for solutions harmonic in the x-direction

ϕF+ = AF+ (z) exp [i (kx− ωt)] , (46)

ρF+ − ρF+
0 = AF+

ρ (z) exp [i (kx− ωt)] .

Substitution in (44) leads to the following compatibility conditions

AF+
ρ = −ρF+

0

(
d2

dz2
− k2

)
AF+,

[
κ+
(

d2

dz2
− k2

)
+ ω2

]
AF+ = 0. (47)
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We introduce dimensionless quantities

c+f :=

√
κ+

cP1
, r+ :=

ρF+
0

ρS
0

< 1, α′ := αcP1. (48)

Further we omit the prime. Then substitution of (20) and (48) in equations (47) yields

[
c+2f

(
d2

dz2
− k2

)
+ ω2

]
AF+ = 0. (49)

We seek a solution in the form

AF+ = A+f eγ
+z, (50)

where the exponent γ+ must possess a positive real part to describe a surface wave.
Substitution in (49) yields it in the form

(
γ+

k

)2
= 1− 1

c+2f

(ω

k

)2
⇒

γ+1,2
k

= ±
√

1− 1

c+2f

(ω

k

)2
. (51)

3.1.2 Insertion into boundary conditions

Using (11) and (45) we get (not yet dimensionless)

•
(
2
∂2ϕS

∂x∂z
+

∂2ψS
y

∂x2
−

∂2ψS
y

∂z2

)∣∣∣∣∣
z=0

= 0,

• c2P1ρ
S
0

(
∂2ϕS

∂x2
+

∂2ϕS

∂z2

)
− 2c2SρS

0

(
∂2ϕS

∂x2
−

∂2ψS
y

∂x∂z

)
+ (52)

+ c2+
(
ρF+ − ρF+

0

)
− c2P2

(
ρF − ρF

0

)∣∣
z=0

= 0,

• ρF
0

∂

∂t

(
∂ϕF

∂z
+

∂ψF
y

∂x
− ∂ϕS

∂z
−

∂ψS
y

∂x

)∣∣∣∣∣
z=0

= ρF+
0

∂

∂t

(
∂ϕF+

∂z
− ∂ϕS

∂z
−

∂ψS
y

∂x

)∣∣∣∣∣
z=0

,

• ρF
0

∂

∂t

(
∂ϕF

∂z
+

∂ψF
y

∂x
− ∂ϕS

∂z
−

∂ψS
y

∂x

)∣∣∣∣∣
z=0

+ α
{
pF
0 + c2P2

(
ρF − ρF

0

)
−

−n0
[
pF+
0 + c2+

(
ρF+ − ρF+

0

)]}∣∣
z=0

= 0,

where we have used the constitutive relations

pF = pF
0 + κ

(
ρF − ρF

0

)
, pF+ = pF+

0 + κ+
(
ρF+ − ρF+

0

)
, (53)

c2P2 = κ, c2+ = κ+.

Making use of (13), (14), (16), (46) and (47) we obtain

•
(
−k2BS − d2BS

dz2
+ 2ik

dAS

∂z

)∣∣∣∣
z=0

= 0, (54)
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• c2P1ρ
S
0

(
−k2AS +

d2AS

dz2

)
− 2c2SρS

0

(
−k2AS − ik

dBS

dz

)
+

+ c2P2ρ
F
0

(
d2AF

dz2
− k2AF

)
− c2+ρF+

0

(
d2AF+

dz2
− k2AF+

)∣∣∣∣
z=0

= 0,

• − iωρF
0

(
dAF

∂z
+ ikBF − dAS

∂z
− ikBS

)∣∣∣∣
z=0

= (54)cont.

= −iωρF+
0

(
dAF+

∂z
− dAS

∂z
− ikBS

)∣∣∣∣
z=0

,

• iωρF
0

(
dAF

∂z
+ ikBF − dAS

∂z
− ikBS

)∣∣∣∣
z=0

= α

{
−c2P2ρ

F
0

(
d2AF

dz2
− k2AF

)
+

+n0c
2
+ρF+
0

(
d2AF+

dz2
− k2AF+

)}
,

where it was assumed that

pF+
0 =

pF
0

n0
. (55)

It means that the initial external pressure is equal to the initial pore pressure.

Eqs. (54) read in dimensionless form (again omitting the primes)

•
(
−k2BS − d2BS

dz2
+ 2ik

dAS

∂z

)∣∣∣∣
z=0

= 0,

• − k2AS +
d2AS

dz2
+ 2c2s

(
k2AS + ik

dBS

dz

)
+ (56)

+ c2fr

(
d2AF

dz2
− k2AF

)
− c+2f r+

(
d2AF+

dz2
− k2AF+

)∣∣∣∣
z=0

= 0,

• r

(
dAF

∂z
+ ikBF − dAS

∂z
− ikBS

)∣∣∣∣
z=0

= r+
(

dAF+

∂z
− dAS

∂z
− ikBS

)∣∣∣∣
z=0

,

• −iω

(
dAF

∂z
+ ikBF − dAS

∂z
− ikBS

)∣∣∣∣
z=0

= α

{
c2f

(
d2AF

dz2
− k2AF

)
−

−n0
r+

r︸ ︷︷ ︸
=1

c+2f

(
d2AF+

dz2
− k2AF+

)}
.

where we have used the relation n0 =
r
r+

if r+ �= 0.

3.1.3 Dispersion relation

Inserting (16), (22) and (50) in these boundary conditions we obtain

• − k2Bs − ζ2Bs + 2ik
(
γ1A

1
s + γ2A

2
s

)
= 0, (57)

• − k2
(
A1s + A2s

)
+ γ21A

1
s + γ22A

2
s + 2c2s

[
k2
(
A1s + A2s

)
+ ikζBs

]
+

+c2fr
(
γ21A

1
f + γ22A

2
f − k2A1f − k2A2f

)
− c+2f r+

(
γ+2A+f − k2A+f

)
= 0,

• γ1A
1
f + γ2A

2
f −

kπ

rω + iπ
Bs +

(
r+

r
− 1

)(
γ1A

1
s + γ2A

2
s + ikBs

)
− r+

r
γ+A+f = 0,
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• − iω

(
γ1A

1
f + γ2A

2
f −

kπ

rω + iπ
Bs − γ1A

1
s − γ2A

2
s − ikBs

)
= (57)cont.

α
{
c2f
(
γ21A

1
f + γ22A

2
f − k2A1f − k2A2f

)
− c+2f

(
γ+2A+f − k2A+f

)}
.

Now (27) yields the following equations for the four unknown constants Bs, A
1
s, A

2
f , A

+
f

AX = 0, (58)

where

A : =




(
ζ
k

)2
+ 1 −2iγ1

k

2ic2s
ζ
k

(γ1
k

)2 − 1 + 2c2s+

+rc2f

[(γ1
k

)2 − 1
]
δf

− π
rω+iπ

+ i
(

r+

r
− 1

)
γ1
k

[
δf +

(
r+

r
− 1

)]

rω
rω+iπ

ω
k

iω
k

γ1
k
(δf − 1)+

+αc2f

[(γ1
k

)2 − 1
]
δf

(59)

−2iγ2
k
δs 0

[(γ2
k

)2 − 1 + 2c2s

]
δs+

+rc2f

[(γ2
k

)2 − 1
] −r+c+2f

[(
γ+

k

)2
− 1

]

γ2
k

[
1 + δs

(
r+

r
− 1

)]
− r+

r
γ+

k

iω
k

γ2
k
(1− δs)+

+αc2f

[(γ2
k

)2 − 1
] −αc+2f

[(γ+
k

)2 − 1
]




, (60)

X :=
(

Bs, A1s, A2f , A+f
)T

. (61)

This homogeneous set yields the dispersion relation: detA = 0 determining the ω − k
relation. We investigate also here the solutions of this equation for high and low frequen-
cies.

3.1.4 High and low frequency approximations

High frequencies In the case of high frequencies (physical dimensions) 1
ωτ
≪ 1 we have

δs = δf = 0, the exponents
(γ1

k

)2
= 1−

(
ω
k

)2
,

(γ2
k

)2
= 1− 1

c2
f

(
ω
k

)2
,

(
ζ
k

)2
= 1− 1

c2s

(
ω
k

)2

and
(

γ+

k

)2
= 1− 1

c+2
f

(
ω
k

)2
, and the dispersion relation follows in the form
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α
r

c4s

r

r+

(
r+

r
− 1

)2
γ1
k

(ω

k

)5
+ i

r

c4s

(
γ+

k
− r+

r

γ2
k

)
γ1
k

(ω

k

)4
+ (62)

+αPR

(
r

r+
γ2
k
− γ+

k

)
ω

k
+ i

γ2
k

γ+
k
PR = 0,

where

PR :=

[
2− 1

c2s

(ω

k

)2]2
− 4

γ1
k

ζ

k
. (63)

We consider two cases of the dispersion relation (62):

1. α = 0 (impermeable boundary; i.e. sealed porous medium in contact with an exter-
nal fluid)

We get from (62)
γ+
k

γ2
k
PR +

(
γ+

k
− r+

r

γ2
k

)
r

c4s

γ1
k

(ω

k

)4
= 0. (64)

The case α = 0 does not correspond to the case of the boundary porous medium/va-
cuum which we have considered in the last section because the fluid outside yields
a pressure on the boundary. However, if additional to α = 0 also r+ = 0 we have
the same conditions and (64) must be identical to the Rayleigh dispersion relation
for the boundary porous medium/vacuum (34) derived in the last section (see also:
[45])

PV = PR
γ2
k

+
r

c4s

γ1
k

(ω

k

)4
= 0. (65)

This is, indeed, true if we cancel γ+

k
on both sides after setting r+ equal to zero.

2. α →∞
Here, the other two terms of (62) remain and we obtain after division by α

PR

(
γ2
k
− r+

r

γ+

k

)
+

(
r+

r
− 1

)2 r

c4s

γ1
k

(ω

k

)4
= 0. (66)

Both equations (64) and (66) remind equation (65) but they are both modified by the
influence of the fluid outside.

Low frequencies In contrast to the impermeable boundary with vacuum analytical
calculations in this case become very complicated. Therefore, we investigate this case
solely on a numerical example.

3.2 Numerical results

3.2.1 Procedure and parameters

In principle the numerical procedure of solution of the problem detA = 0 for the complex
wave number k is the same as described in Sect. 2.2. However, in this more complicated
case MATLAB revealed no result. Thus the results of the programs MAPLE 7 and
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MAPLE V Release 5.1 were the sole attainable values. Interestingly, MAPLE for some
sign combination of exponents produces two solutions which are close to each other but,
for most frequencies, not the same.

In order to expose better some properties, we change the input data for cS. We need as
well additional quantities in the exterior:

cP1 = 2500
m

s
, cP2 = 1000

m

s
, cS = 1250

m

s
, c+ = 1500

m

s
,

ρS
0 = 2500

kg

m3
, ρF

0 = 250
kg

m3
, ρF+

0 = 1000
kg

m3
, r =

ρF
0

ρS
0

= 0.1,

cf =
cP2
cP1

= 0.4, cs =
cS
cP1

= 0.5, c+f =
c+
cP1

= 0.6, r+ =
ρF+
0

ρS
0

= 0.4.

(67)

While some of the results for the boundary porous medium/vacuum have been shown
for the varying bulk permeability parameter, π, this coefficient is constant here, namely
π = 107 kg

m3s
. However, instead of this we show for this boundary the influence of the surface

permeability, α. We demonstrate that two surface waves, both of them leaky, exist in the
whole range of frequencies for each choice of α. They correspond to the classical Rayleigh
wave, and to a Stoneley wave which is produced due to presence of the fluid outside the
porous medium, respectively. The latter can be supported by the fact that it appears
also for the sealed pore situation if there is a fluid outside. Moreover we obtain a third
type of wave which appeared also on the boundary porous medium/vacuum, namely a
true Stoneley wave. However, this wave exists only for small values of α.

Numerical results for velocities and attenuations are normalized in the same way as indi-
cated in Sect. 2.4.

3.2.2 Dependence of phase velocities and attenuations on the frequency

Fig. 16 shows both the phase velocities and the attenuations of all three surface waves
appearing at the interface between a porous halfspace and a fluid halfspace. On the
left hand side the velocities are plotted and figures on the right hand side show the
attenuations. Both quantities are given for a wide range of frequencies between 1 Hz and
100 MHz. The different curves correspond to various values of the surface permeability
parameter α. As explained above, α = 0 means that the surface is completely impermeable
while α =∞ corresponds to an open pore situation.

In Fig. 16 both the frequency and the attenuations are shown in logarithmic scale while
the velocity is presented in normal scale.

Phase velocities Again, the velocity of the Rayleigh wave lies under the velocity of the
bulk shear wave, cS, whose normalized value here is cs ≡ cS

cP1
= 0.5. Curves for different

values of α have each a low and a high frequency limit which is unequal to zero. While
for small frequencies the velocity is the same independently of α, the high frequency limit
decreases with increasing α. For the open pore situation the difference between high and
low frequency limits is approximately one half of the difference for a close boundary.
Inbetween there is a steep increase of the Rayleigh velocity. The range of frequencies for
this increase is smaller for small values of α (10-100 kHz) than for large values of α (1-500
kHz). Moreover for the latter there appears a small plateau in this zone. This may be an
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leaky Rayleigh

leaky Stoneley

Stoneley

Fig. 16: Normalized phase velocities and attenuations of the leaky Rayleigh, leaky Stoneley
and the Stoneley wave in dependence on the frequency. Different curves correspond to

different values of the surface permeability α (in units
[
s
m

]
).

The smaller α the denser the boundary.
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indication of the change of the Riemann surface which is, however, much better pro-
nounced in the attenuations.

The velocity of the leaky Stoneley wave behaves similar to the Rayleigh wave. Also
this wave possesses high an low frequency limits unequal to zero and the steep increase
inbetween appears in the same frequency region. However, in contrast to the Rayleigh
wave for this wave the high frequency limit is larger for bigger values of α than for smaller
ones. The frequency behavior of this wave is — at least for small α — not monotonous.
A maximum value appears in the region of order 100 kHz. Interestingly, the velocity
of this wave is smaller than this of the Rayleigh wave although it is driven by the fluid
outside of the porous medium whose longitudinal bulk wave is faster than that of the
fluid inside the porous medium (c+f = 0.6, cf = 0.4). This result has been obtained also
by Feng&Johnson [19] within Biot’s model. As we will see in the next subsection the true
Stoneley wave exists only for small values of α, and, therefore, we show its behavior only
for two values of α. For these the velocities do not differ substantially. They start form
zero at ω = 0 and increase until around 100 kHz where they reach a high frequency limit
which is a little bit smaller than the velocity of the P2 wave, cf ≡ cP2

cP1
= 0.4.

Attenuations Let us start with the attenuation of the true Stoneley wave. This has the
same appearance as this obtained for the boundary porous medium/vacuum. We show
a log-log-plot of this attenuation. Thus the similarity to Fig. 12 is not directly obvious.
The attenuation starts from zero as ω = 0 and reaches a horizontal asymptote at around
100 kHz. The only amazing point is, that in the mapped region of frequencies, starting
from 1 Hz the value for α = 10−4 s

m
is much smaller than for α = 0 even though the

difference in velocities is small. It is surprising because for the other attenuations the
value for α = 0 lies under all other values for different α.

In contrast to the true surface wave the remaining leaky waves possess singularities in
the attenuation for two intermediate frequencies. These frequencies seem to be related
with characteristic frequencies π

2ρS
0

and π
2ρF
0

which have already appeared in the stability

analysis of adsorption processes [2]. However, there exists an influence of the parame-
ter α, responsible for dissipation, and, simultaneously, the location of the singularities
changes with the variation of this coefficient. Consequently, as indicated also in some
papers on Biot’s model, the diffusion-driven resonances appear also in the surface waves.
Their existence seems to be confirmed experimentally (for results of measurements see in
particular [13], [47]). On the right we reproduce one figure of the paper [13]. It shows the
measured damping coefficients of the pseudo-Stoneley
wave (in our terminology: leaky Stoneley wave) in a
shock-induced borehole experiment. The formation is
a Berea sandstone. The damping coefficient is given in
a frequency range up to 50 kHz and we see that there
appear also some well pronounced singularities.

Little is known about their mathematical origin. How-
ever, the numerical analysis indicates that they appear
due to the change of the Riemann surface. If one would
ignore the singularities and look only at the connecting
line between the maxima the curves would look similar
to the curve for the boundary porous medium/vacuum.

Fig. 17: Experimental
damping coefficients of the

pseudo-Stoneley wave.
From [13].
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In any case, it is obvious that the curves show the leaky character as observed already for
the Rayleigh wave for this boundary: for high frequencies the attenuation grows linearly
and unbounded.

3.2.3 Dependence of phase velocities and attenuations on the surface perme-
ability

In the next figure we illustrate the behavior of the three surface waves appearing at
the boundary porous medium/fluid for the frequency limits ω → ∞, ω → 0 but in
dependence on the surface permeability parameter α. In the first row of Fig. 18 we show
normalized velocities and attenuations for the same material parameters as used in the
last subsection. In the bottom row the same quantities are shown for another choice of
material parameters: with unchanged mass densities and porosity and different velocities
for two bulk waves (cP1 = 3500 m

s
, cS = 1750 m

s
, cP2, cP+ unchanged).

The upper left figure shows the phase velocities of the surface waves for the two limits of
frequencies (ω →∞ — solid lines, ω → 0 — dashed lines). Additional to the shown range
of surface permeability parameters between 10−6 s

m
and 10−1 s

m
we show on the left and

right hand side points corresponding to the limit cases α = 0 and α = ∞. It is obvious
that the values for 10−6 and 10−1 correspond already well to the limit values. While both
leaky surface waves exist in the whole range of surface permeabilities, the true surface
wave appears only for small values of the surface permeability (approx. in the interval
0 ≤ α ≤ 10−3.9 s

m
). Thus for a relatively open boundary (large α) no real surface wave

exists. It is obvious that for each wave the low frequency value of the velocity (dashed
lines) is independent of α. For the true surface wave this value is zero while it is bigger
than zero for the leaky waves. Both the high frequency limit of the leaky Rayleigh and of
the leaky Stoneley wave change monotonously from the limit α = 0 to the limit α =∞.
However, the Rayleigh wave velocity is bigger for a dense boundary, while for the leaky
Stoneley wave the limit for the open boundary is bigger. The velocity behavior of the
waves for the other choice of material parameters (cS > cf+, see: bottom left figure) does
not change substantially. Again, cR < cs, cSt < cf and cleakySt < cf+. The latter is a little
bit more obvious for this choice of material parameters than for the other choice. We
will see in Sect. 4.2 that the last choice corresponds to a higher value of the modulus of
the skeleton frame (5.53 instead of 3.95). For this stiffer medium the true Stoneley wave
exists only for a still denser boundary, namely for approx. 0 ≤ α ≤ 10−4.8 s

m
).

The figures on the right hand side show the normalized attenuation of the three surface
waves for a chosen frequency. As already mentioned, the true surface wave — the Stoneley
wave — ceases to exist in the range of high surface permeabilities α. In the limit value, its
attenuation becomes infinite. The remaining two leaky waves possess finite attenuation
in the whole range of α.

3.2.4 Group velocities of the three surface waves

For the impermeable boundary (α = 0) between a porous material and a fluid we present
the group velocities of the surface waves. The group velocity of the leaky Stoneley wave
behaves differently from the both waves which also appeared for the boundary porous me-
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Fig. 18: Normalized phase velocities and attenuations of the three surface waves in
dependence on the surface permeability parameter, α, for different material parameters.

Fig. 19: Normalized phase and group velocities of the three surface waves.
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dium/vacuum. While they only possess a maximum for a certain frequency, the leaky
Stoneley wave exhibits first a strong minimum and then a slight maximum. The mathe-
matical reason is obvious: the growth in phase velocities of Rayleigh and Stoneley waves
is almost monotonous but for the leaky Stoneley wave the phase velocity possesses a clear
maximum (compare: Fig. 16), and, as indicated in the box of (42) the group velocity
depends on the slope of the phase velocity.

3.2.5 Summary of results for boundary porous medium/fluid

In the whole range of frequencies there exist two leaky surface waves: a leaky Rayleigh
wave and a leaky Stoneley wave. In the range of very small values of the surface permeabil-
ity parameter α, there exists a third true surface wave — a Stoneley wave. The behavior of
the Rayleigh wave and the true Stoneley wave in dependence on the frequency is the same
as described in Sect. 2.5. Here, we summarize only some additional comments on the
α-dependence and on the additional wave appearing at this boundary, the leaky Stoneley
wave:

Leaky Rayleigh

• for low frequencies the phase velocity for different values of the surface permeability
α remains almost constant. For high frequencies smaller values of α yield bigger
velocities; for the open pore case the difference between high and low frequency
limits is approx. one half of the difference for a close boundary;

• the attenuation grows linearly and unbounded, there appear singularities which
depend on α and seem to be related to the characteristic frequencies π

2ρS
0

and π
2ρF
0

;

Leaky Stoneley

• the phase velocity of this wave behaves similarly to this of the leaky Rayleigh wave;
however, the high frequency limit is larger for bigger values of α than for smaller
ones; a maximum value appears in the region of order 100 kHz; the velocity of the
leaky Stoneley wave is for each pair (ω, α) smaller than this of the leaky Rayleigh
wave.

• also the attenuation behaves similar to this of the leaky Rayleigh wave; however,
the singularities are weaker dependent on α;

Stoneley

• it exists only for small values of the surface permeability α; for different values of
α the velocity is nearly the same; it starts from zero and approaches a horizontal
asymptote;

• the attenuation of the Stoneley wave grows monotonically to a finite limit for ω →
∞.

35



4 Comparison to results of other authors

4.1 Deresiewicz

One of the first attempts to investigate surface waves in two-component porous materials
stems from Deresiewicz [14], [15]. In the first of these papers he has studied the boundary
porous medium/vacuum using the Biot’s equations. He has calculated Rayleigh wave
velocities and attenuations. Similar to the procedure of the present article he has found
analytical approximations for high and low frequencies and carried out numerical calcu-
lations for a kerosene-saturated sandstone. He wrote: ”Because of its complexity, the
secular (comment by B. A.: dispersion) equation does not lend itself to analytical study
for intermediate values of the frequency. Accordingly, a numerical study was undertaken,
of the variation of velocity and dissipation per cycle with frequency, for a material whose
elastic and dynamical coefficients were available, with several curious results.” One of
these ”curious” results is a minimum of the phase velocity in the region of small frequen-
cies like we found for the Rayleigh wave. However, Deresiewicz located also a second
minimum in the range of high frequencies which we did not ascertain. The results for the
attenuation, in Deresiewicz’s work given as the specific energy loss, are hardly comparable
to our results. It is impressing how much the author did know about the Rayleigh wave
already in the 60ies. However, it is strange that he did not get the Stoneley solution
from the dispersion equation. The second paper concerns surface wave in the presence of
a liquid layer. This work is not comparable to our case of a boundary between porous
medium/fluid because the liquid layer has a given thickness. Moreover, for this case
Deresiewicz only considered low frequencies and did not attain numerical results.

4.2 Feng & Johnson

Feng & Johnson [19] use Biot’s theory to search numerically primarily the velocities of
various surface waves. They distinguish between the true slow surface wave and the leaky
surface waves and calculate their velocities at an interface between a fluid half-space and
a half space of a fluid-saturated porous medium like we did in the last section.

They rely on a somewhat different approach to obtain results for the surface waves.
Namely, they assume a surface wave to have the characteristic form of being a linear
combination of all bulk waves. Under this assumption the displacements can be expressed
as

u =
∑

J

Cjũj e
−γj |z| ei(kx−ωt), U =

∑

J

CjŨj e
−γj |z| ei(kx−ωt), (68)

where u,U are the displacement vectors of the solid part and the fluid part, respectively.

The summation is over the three bulk modes (fast, slow, shear) and γj ≡
(
k2 − ω2/V 2j

)1/2
(Vj are bulk wave speeds). The quantities Cj are the amplitudes of the bulk modes.

The polarization vectors for each bulk wave
(
Ũj , ũj

)
are related to each other and to

the complex wave vector by requiring the displacements to satisfy the bulk differential
equations.

However, in contrast to our approach, Feng &Johnson focus only on the high-frequency
range. They also use the boundary conditions introduced by Deresiewicz and Skalak but
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Fig. 20: Figures of the paper by Feng&Johnson [19] for the case: Water as the fluid (in
both z < 0 and z > 0 regions) and fused glass beads as the porous medium extended by a
sketch of our results (sandstone instead of glass beads as the porous medium). The points

”+” and ”⋆” mark the location of corresponding quantities.
At the top: open pore situation, at the bottom: sealed pore situation.

they limit their attention to the open-pore and to the sealed pore situation (i.e. in our
notation: α = ∞ and α = 0, respectively, and in their notation: T = 0 and T = ∞).
In dependence on the stiffness of the skeleton (in their notation: longitudinal modulus of

the skeleton frame
(
Kb +

4
3
N
)1/2

, where Kb : bulk modulus of porous drained solid, N :
shear modulus of both the drained porous solid and of the composite) and e.g. on the
coefficient of added mass (”tortuosity”, in their notation: α) they have investigated the
existence of the surface modes. We show here some of their numerical results for material
parameters which fit best to ours, namely for the case: Water as the fluid (in both z < 0
and z > 0 regions) and fused glass beads as the porous medium. In order to compare the
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results we calculate the stiffness of the sandstone of our example in their notation: With
the formula for the longitudinal velocity in the dry sample

VL =

√
Kb +

4
3
N

(1− φ) ρSR
, (69)

where φ : porosity, ρSR : realistic mass density of the solid, we are able to calculate the
quantity appearing as the variable on the horizontal axis

√
Kb +

4

3
N = VL

√
(1− φ) ρSR = cP1

√
ρS
0 =

= 2500
√
2500

√
N
m

= 125000
√
N
m
≈ (70)

≈ 125000316.23
√
dynes

100 cm
≈ 3.9528 · 105

√
dynes
cm

.

Feng & Johnson found that for an open-pore surface situation, the true surface wave exists
for a limited range of material parameters and changes continuously into a slightly leaky-
Stoneley wave as its velocity crosses over the slowest bulk wave velocity. For the sealed
pore situation there exist simultaneously a true surface wave (for all values of material
parameters) and a leaky-Stoneley wave. The leaky-Rayleigh wave has features similar to
those of the leaky-Rayleigh wave for a fluid/nonporous solid case.

These results are demonstrated in juxtaposition in the following table.

vacuum

solid

fluid

solid

fluid

porous medium

Rayleigh
leaky-Rayleigh

Stoneley

leaky-Rayleigh
possibly Stoneley

possibly leaky-Stoneley

}
or both

For the leaky waves the authors claim that ”they are roots of the same equation on the
wrong Riemann sheet”. They explain it as follows: ”The pseudo-Stoneley mode has a
velocity faster than the slowest bulk mode but slower than the rest of the bulk modes.
The pseudo-Rayleigh mode has a velocity faster than the slowest bulk mode and the
bulk fluid mode (in the region z > 0). These relations imply that these surface modes
radiate into the slowest bulk mode (for pseudo-Rayleigh mode: both the slowest and the
fluid bulk mode) as they propagate along the surface (i.e. Im

(
γj

)
�= 0). Furthermore, the

radiation condition requires the radiation of bulk modes to have an exponentially growing
factor in the z direction instead of a decaying one; in addition, these pseudosurface modes
are attenuated in the x direction, i.e., Im (Vps. surf.) < 0. These two physical requirements
imply that both Re (γrad. bulk modes) and Im (γrad. bulk modes) are negative. Usually the con-
dition |Re (γrad. bulk modes)| ≪ |Im (γrad. bulk modes)| (or |Im (Vps. surf.)| ≪ |Re (Vps. surf.)|) is
satisfied; this corresponds to the situation of ”slightly” leaky pseudosurface modes. So in
most cases, one can incorporate conditions on the square roots in γj’s for both the true

surface mode and the pseudosurface modes by requiring Re
(
γj

)
−Im

(
γj

)
≥ 0. This treat-

ment of the pseudosurface modes is analogous to the treatment of the pseudo-Rayleigh
mode for the fluid/solid case about which there is some controversy [6], [35], [28].”
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5 Glance on three-component porous media

Classical soil mechanics and also the classical theory of porous materials are limited to
the description of soils and other porous materials which are fully saturated with a fluid
(e.g. water or oil). However, there are many practically relevant examples of materials
for which such a condition is not fulfilled: their voids are filled partially with a fluid, and
partially with a gas — often with vapor — and these possess different partial pressures.
Such materials are called ”unsaturated” or ”partially saturated”. In the last 40 years
numerous endeavors have been carried out to examine their mechanical behavior (see e.g.
[20], [29], [32], [38], [50]) and also the wave propagation in such materials (e.g. [5], [8],
[10], [31], [34]).

Fig. 21: Classification of unsaturated soils into three groups (left) and the mostly studied
case of gas bubbles much smaller than the soil particles; from [38].

It turned out that the basic structure (see Fig. 21) and the acoustic properties of unsatu-
rated media are dependent on the degree of saturation. This is the proportion of the fluid
volume to the entire volume of voids. Fig. 21 shows a classification of unsaturated soils
into three groups and the mostly studied case where the gas bubbles are much smaller
than the soil particles.

In contrast to the one-component fluid in the channels of a saturated porous medium
the gas fluid mixture contains phase interfaces which affect both the stress state (surface
tension) and the flow conditions (e.g. permeability). Additionally, the morphology (e.g.
the degree of saturation) is changed permanently by phase transitions, appearance of big
gas bubbles instead of some small bubbles etc. In soils, most of the time, the gas occurs
in the form of discrete bubbles as shown on the right hand side of Fig. 21. This is the case
if the degree of saturation lies above a certain critical degree of saturation which varies
for different soils but is of order 85%. For fluid-gas-mixtures mostly it is assumed that
the bubbles are spherical. Then the radius of curvature of the gas-fluid interface which
determines the surface tension between gas and fluid and thus the difference of pressures
in gas and fluid is equal to the radius of the bubble. Also for porous materials there exists
an interrelation between size of bubbles, saturation and capillary pressure. An increase
of saturation leads also to an increase of the capillary pressure. Hence, for a given radius
of bubbles (which can be measured in experiments), there exists a macroscopical relation
of the form

pc = pc (S) , (71)
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where pc denotes the capillary pressure and S the saturation. In the modeling of unsat-
urated porous materials the form of this relation is one of the most important questions.
We do not go into any details here and remark solely that several researchers simply
choose a relation from the micro scale. There are also attempts, not yet fully ripe, to
create transitions from the micro to the macro scale (e.g. [29]).

A lot of experiments have been performed on the acoustical behavior of unsaturated ma-
terials, especially of sediments (e.g. [5]). The experimenters claim that the occurrence of
gas bubbles — also in small amounts — has high influence on the acoustic characteristics
(propagation velocities, attenuations, reflection etc.). To show this we include here the
results of some experiments on sandstone. The figures show the velocity and the atten-
uation in form of the quality factor of the P1 wave (denoted by E) and the shear wave
(S). For small amounts of bubbles (high water saturation) their behavior is particularly
strongly dependent on the saturation. Natural sediments contain usually a fraction of gas
bubbles between zero and ten percent.

Fig. 22: Velocity and attenuation
(
1000
Q

)
of the P1-wave and the S-wave in sandstone in

dependence on the water saturation, experiments by Murphy; from [12].

Helpful for the study of the influence of saturation in porous media may be early works

Fig. 23: Sound speed in
a water-air-mixture in
dependence on the air

fraction; from [49]

treating the influence
of gas bubbles on
the sound velocity in
pure water. Qual-
itatively wave veloc-
ities in unsaturated
sediments should be-
have like the sound
speed in a water-gas-
mixture which is given
in Fig. 23 (exper-
iments performed by
Wood in 1957). We
see that there ex-
ists an extremely deep
minimum in the sound
velocity for a certain
fraction of air in wa-

ter.

Fig. 24: Influence of the fre-
quency and the saturation
on the attenuation
of the P1-wave;
from [31]
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The present article shows that both velocities and attenuations of surface waves (inde-
pendent of the type of boundary) are highly dependent on the frequency. This is, of
course, also true for unsaturated soils. In order to demonstrate this feature Fig. 24 is
included which shows the attenuation of the P1 wave in dependence on the frequency and
on the degree of saturation. We see that the attenuation depends very strong on both
parameters.

The above remarks show that even the propagation of bulk waves in unsaturated porous
materials has not been investigated yet in this extent as for two-component systems.
The investigation of surface waves for such materials does not exist at all. Due to its
practical importance such a research direction seems to be a natural continuation of
results presented in this article.
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