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Sharp asymptotics for Kawasaki dynamics
on a finite box with open boundary

A. Bovier *
F. den Hollander *
F.R. Nardi ¥

6th April 2004

Abstract

In this paper we study the metastable behavior of the lattice gas in two and three
dimensions subject to Kawasaki dynamics in the limit of low temperature and low density.
We consider the local version of the model, where particles live on a finite box and are
created, respectively, annihilated at the boundary of the box in a way that reflects an
infinite gas reservoir. We are interested in how the system nucleates, i.e., how it reaches
a full box when it starts from an empty box. Our approach combines geometric and
potential theoretic arguments.

In two dimensions, we identify the full geometry of the set of critical droplets for
the nucleation, compute the average nucleation time up to a multiplicative factor that
tends to one in the limit of low temperature and low density, express the proportionality
constant in terms of certain capacities associated with simple random walk, and compute
the asymptotic behavior of this constant as the system size tends to infinity. In three
dimensions, we obtain similar results but with less control over the geometry and the
constant.

A special feature of Kawasaki dynamics is that in the metastable regime particles move
along the border of a droplet more rapidly than they arrive from the boundary of the box.
The geometry of the critical droplet and the sharp asymptotics for the average nucleation
time are highly sensitive to this motion.
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1 Introduction and main results

In this paper we study the metastable behavior of the lattice gas in two and three dimensions
subject to Kawasaki dynamics at low temperature and low density. Particles live on a finite
box, hop between nearest-neighbor sites, have an attractive interaction when they sit next to
each other, and are created, respectively, annihilated at the boundary of the box in a way
that reflects an infinite gas reservoir. We are interested in how the system nucleates, i.e., how
it reaches a full box when it starts from an empty box. Our goal is to improve on earlier work
by combining a detailed analysis of the energy landscape for the dynamics with the potential
theoretic approach to metastability that was developed in Bovier, Eckhoff, Gayrard, and Klein
[5] and further exposed in Bovier [3].

Our main theorems sharpen those obtained by den Hollander, Olivieri, and Scoppola [9] in
two dimensions and by den Hollander, Nardi, Olivieri, and Scoppola [8] in three dimensions.
In particular, in two dimensions we identify the full geometry of the set of critical droplets,
compute the average nucleation time up to a multiplicative factor that tends to one in the
limit of low temperature and low density, express the proportionality constant in terms of
certain capacities associated with simple random walk, and compute the asymptotic behavior
of this constant as the system size tends to infinity. In three dimensions, we obtain similar
results but with less control over the geometry and the constant.

Our results are comparable with those derived by Bovier and Manzo [6] for the Ising
model on a finite box in two and three dimensions with periodic boundary conditions subject
to Glauber dynamics at low temperature. This work sharpened earlier results by Neves and
Schonmann [11] in two dimensions and by Ben Arous and Cerf [4] in three dimensions.

Kawasaki differs from Glauber in that it is a conservative dynamics: particles are conserved
in the interior of the box. This creates a complication in controlling the growing and the
shrinking of droplets, because particles have to travel between the droplet and the boundary
of the box. Moreover, it turns out that in the metastable regime particles move along the border
of a droplet more rapidly than they arrive from the boundary of the box. This leads to a shape
of the critical droplet that is more complicated than the one for Ising spins under Glauber
dynamics. This complexity needs to be handled in order to obtain the sharp asymptotics. For
a critical comparison of Glauber and Kawasaki we refer to den Hollander [7].

The outline of the paper is as follows. In Section 1 we define the model, recall earlier
results, and state our main theorems. In Section 2 we consider two dimensions, collect the key
geometric facts that underlie our analysis, and prove our result identifying the full geometry
of the set of critical droplets. In Section 3 we use this full geometry to prove our sharp
asymptotics for the average nucleation time. In Section 4 we show to what extent these
results can be extended to three dimensions.

1.1 Hamiltonian and Gibbs measure

Let A C Z? be a large square box, centered at the origin. Let

OA={zeA: Fy¢A: |y—z| =1},

(1.1.1)
O"A={z ¢ A: FJyeA: |y—z|=1},
be the internal, respectively, external boundary of A, and put
A=A\ 0 A,
\ (1.1.2)
AT =AUOTA.



With each site € A we associate an occupation variable n(z), assuming the values 0 or 1,
indicating the absence or presence of a particle at z. A lattice configuration is denoted by
n € X = {0,1}*. Bach configuration 7 € X has an energy given by the Hamiltonian

H(n)=-U Y n@ny)+2A) n) (1.1.3)
(zy)er=~ z€A
where
AT ={(z,y): z,ye A, |z —y| =1} (1.1.4)

is the set of non-oriented bonds in A~. The interaction consists of a binding energy —U < 0
for each nearest-neighbor pair of particles in A~. In addition, there is an activation energy
A > 0 for each particle in A.

The Gibbs measure associated with H is

e—BH(n)

pp(n) = 7 ne kX, (1.1.5)

with inverse temperature S > 0 and partition sum

Zg =Y e PO, (1.1.6)
nex

1.2 Kawasaki dynamics

We next define Kawasaki dynamics on A, with a boundary condition that mimics the effect of
an infinite gas reservoir outside A with density

psg =e 2P (1.2.1)

in accordance with the activation energy A appearing in (1.1.3).
Let b = (x — y) denote an oriented bond, i.e., an ordered pair of nearest-neighbor sites.

Define i
A*,m"le — {b: (’I/' —)y) T,y € A}ﬂ

ON* ™M ={b=(z —y): €I Aycd A}, (1.2.2)
ON "' ={b=(z—y): €0 AycdTA},
and put A® o€ = A* orie ([ gA% T U 9A* °Ut. Two configurations n,7’ € X with  # 7' are

called communicating configurations, written n < 7', if there exists a bond b € A* "¢ such
that n' = Tyn, where Tyn is the configuration obtained from 7 as follows:

b= (z —y) € A= orie,
n(z) ifz# .y,

(Tyn)(2) = § n(z) ifz=y, (1.2.3)
n(y) if z =x.
b= (- y) € A"
n(z) if z #y,
T = { 19 GIE (1.2.4)

b= (z—y) € OA"OuL;
g(z) if z 7, (1.2.5)

if z=ux.



These transitions correspond to particle motion in A, creation and annihilation in d~A, re-
spectively. Note that, for b € A* "¢ T,y is invariant under a change of orientation of b, while
for b € OA* %% and b € OA*'™ it is not.

The Kawasaki dynamics is defined to be the continuous-time Markov chain (7;);>¢ on X
with transition rates

cs(0,0') = Lpyesyy e PUHOD-HmIVO} Vo.ne X, n#n. (1.2.6)

This is a standard Metropolis dynamics with an open boundary: along each bond touching
0~ A from the outside, particles are created with rate pg and are annihilated with rate 1,
reflecting the activation energy, while inside A~ particles are conserved and jump at a rate
that depends on the change in energy associated with the jump, reflecting the binding energy.
Note that a move of particles inside 0~ A does not involve a change in energy because the
interaction acts only inside A~ (see (1.1.3)).

The measure p1g defined in (1.1.5) is the reversible equilibrium of the dynamics with tran-
sition rates cg defined in (1.2.6):

ps(mes(n,n') = pa(n)es(n',n)  Yn,n' € X, n#n. (1.2.7)

1.3 Rough description of nucleation in two dimensions
1.3.1 Metastable regime and critical droplet size

In two dimensions, we will be interested in the metastable regime
A e (U,20), B — oo. (1.3.1)

In this regime, droplets tend to grow slowly: single particles attached to one side of a droplet
typically detach before the arrival of a next particle (because e’? <« ¢*?), while bars of two
or more particles typically do not detach (because e« eQUﬂ).

As was pointed out in den Hollander, Olivieri, and Scoppola [9], Section 1.2.3, the energy
E(?) of an £ x £ droplet in A~ equals (recall (1.1.3) and see Fig. 1)

E(0) = ~U[20(¢ — 1)] + A% = 2U¢ — (2U — A2, (1.3.2)

which is maximal at £ = U/(2U — A):

E(0)

2U—-A

Fig. 1. £ — E(0).



The critical droplet size is therefore given by

U
b= |t 1.3.3
[ZU - A-‘ ( )
([-] denotes the upper integer part), provided we assume that
U
—_— 1.3.4
sw—a N (1:34)

in order to avoid ties. Throughout the sequel we assume that (1.3.4) is in force. Thus, an
(£ — 1) x (£, — 1) droplet is subcritical while an . x £, droplet is supercritical.

1.3.2 Basic geometric definitions

To state what is known about nucleation in two dimensions, we need some basic geometric
definitions:

Definition 1.3.1 (a) A path w is a sequence w = (w1,...,wk), k € N, of communicating
configurations, i.e., w; € X for i =1,...,k and cg(wi,wiy1) > 0 fori =1,...,k — 1. For
n,n € X, we write w: 1 — 1’ to denote a path from n ton'. For { € X, we write { € w when
w visits (. For A C X, we write w C A when w stays inside A.

(b) For n,n' € X, a path w: n — 1’ is called a U-path if

(i)  H(n) = H(n'),
(13)  max; H(w;) < H(n) + U, (1.3.5)
(131) |wiNA| =|nNA| for alli.
(¢) The configuration space X can be partitioned as
IA|
X =], (1.3.6)
where
Vp={neX: InNA|l=n} (1.3.7)

1s the set of configurations with n particles, called the n-manifold.
(d) For A C X, the communication height between n,n' € A inside A is

®4(n,n') = min max H((). (1.3.8)
o

We write ®(n,n') = ®x(n,n').
(e) For A C X, the communication level set between n,n' € A inside A is

SA(n,n'):{CEA: Jwin—on,wCA w3 (: I?gfﬂ(f):H(C):%(n,n')}- (1.3.9)

We write S(n,n') = Sx(n, 7).
(f) For n € X, the law of (n¢)i>o0 starting from ng = n is denoted by P,. For A C X,

T4 =inf{t >0: n, € A, m #no} (1.3.10)

is the first hitting time of A (the restriction n; # no is put in because the dynamics runs in
continuous time).



Each configuration can be decomposed into maximally connected components, called clus-
ters. The following sets of configurations will determine the geometry of the critical droplet,
as will become clear later on.

Definition 1.3.2 (a) Let Q denote the set of configurations having one cluster consisting of
an (b — 1) x L. quasi-square anywhere in A_ with a single particle attached anywhere to one
of its sides.

(b) Let D denote the set of configurations that can be reached from some configuration in Q
via a U-path, i.e.,

D= {7]’ €V, :IneQ: H(n) = H(n/)7 oy, (77a77,) < H(n) + U}, (13.11)

where n. = L.(l. — 1) + 1 is the volume of the clusters in Q.
(c) Let C* = DIP, where (-)/P denotes addition of a free particle anywhere in A (see Fig. 2).
(d) Let
I = H(C*) = H(D'?) = HD)+ A = H(Q) + A
= Uty — 1)2 +£.(0, —2) + 1]+ A[l (£, — 1) + 2] (1.3.12)
=2U[l. + 1] — (2U — A)[le(l. — 1) + 2]

denote the energy of the configurations in C*.

As we will see shortly, Q@ plays the role of the set of canonical protocritical droplets for the
nucleation, D 2 Q the set of protocritical droplets, and C* the set of critical droplets. Think
of D as the set of configurations the dynamics can reach after hitting Q before the creation
of the next free particle in 9~ A (which takes a time e®? > eUS). This particle moves the
configuration into C* and completes the formation of the critical droplet (= critical cluster
+ free particle) that triggers the nucleation. If subsequently the free particle moves to the
critical cluster and attaches itself properly (i.e., in a corner), then the dynamics has “moved
over the hill” and proceeds to fill A_.

Fic. 2. A canonical critical droplet: an element of ofr - DI = Cc*,



1.3.3 Nucleation time and critical droplets

Let
O={ned:nlx)=0VzseA}

g B (1.3.13)
B={necX:nxz)=1Vze A  nx)=0Vzed A},

denote the configurations where A is empty, respectively, A~ is full and 0~ A is empty. We
assume that A is so large that
H(W) < H(O) =0. (1.3.14)

In this case, B is the global minimum of H. The main result known about nucleation in two
dimensions reads as follows.

Theorem 1.3.3 (den Hollander, Olivieri, and Scoppola [9], Theorem 1.53 and Proposition
4.24)
(i) ®(0, M) = I* and S(C, W) D C*.
(it)
lim P (™07 < rg < eTHP) =1 vh >0, (1.3.15)
B—00
(iii)

lim PD(Tc* < Tm | T < T[]) =1. (1316)
B—o0

Theorem 1.3.3(i) identifies I'* as the communication height for the nucleation and C* as a
subset of the communication level set for the nucleation. Theorem 1.3.3(ii) identifies the
nucleation time to exponential order in 3, with exponent I'*. Theorem 1.3.3(iii) states that
C* is a gate for the nucleation.

1.4 Sharp description of nucleation in two dimensions
1.4.1 Goal and background

The goal of the present paper is to sharpen Theorem 1.3.3 in two ways:

(I) Equation (1.3.11) defines D as a certain neighborhood of Q defined in terms of energies
and communication heights. We will describe the configurations in D geometrically and
elaborate on the gate structure of C* = DIP,

(IT) We will sharpen (1.3.15) by computing the average nucleation time up to a multiplicative
factor that tends to one as  — oo and by showing that the limit law is exponential.
This will require the knowledge obtained in (I).

To achieve (IT), we will apply the potential theoretic approach to metastability developed in
Bovier, Eckhoff, Gayrard, and Klein [5] and further exposed in Bovier [3]. There it was shown
that, for reversible Markov processes exhibiting metastability, the computation of average
metastable exit times and of corresponding small eigenvalues of the generator reduces to the
computation of certain capacities. The advantage of this reduction is that the variational
representation of capacities given through the Dirichlet form allows for a sharp computation
of these capacities up to multiplicative errors that tend to one as the small parameters in the
theory tend to zero. Roughly speaking, the reason why this happens is that in metastable
systems the full Dirichlet form effectively reduces to a Dirichlet form involving only a tiny
fraction of the state space, namely, the communication level set and its immediate vicinity.



In Bovier and Manzo [6] it was shown that this situation arises for the Ising model with
Glauber dynamics in finite volume in the limit of low temperature. For that model the
situation turns out to be relatively simple, because the communication level set is completely
disconnected, implying that the full Dirichlet form reduces to a sum of zero-dimensional
Dirichlet forms. We will show that in our model the same approach can be followed, even
though the structure of the communication level set is far more complicated. In particular, in
our model this set contains plateaus, wells embedded in these plateaus, and dead-ends. Thus,
the reduced Dirichlet forms remain multi-dimensional. However, we will be able to express
them in terms of certain hitting probabilities of simple random walk. The latter will turn out
to be sufficiently manageable so as to allow for a computation of the asymptotic behavior of
the reduced Dirichlet forms as A — Z2.

The idea behind the potential theoretic approach is explained in Section 3.3. Certain
specific geometric information is needed for this approach to work, which is gathered in Section
2, but this information is relatively limited.

Throughout the paper we assume that /. > 3. The case /. = 2 is trivial: Q@ = D is
the set of configurations consisting of three particles forming a cluster anywhere in A=, C* is
the set of configurations obtained from these by adding a free particle anywhere in A, and
' = -2U + 4A.

1.4.2 Geometry of protocritical droplets

Our first theorem identifies the full geometry of the configurations in D (see Fig. 3) and will
be proved in Section 2.2.

Theorem 1.4.1 D=DU 5, where

— D is the set of configurations having one cluster consisting of an (£.—2) x (£.—2) square
anywhere in A~ with attached to it four bars of lengths k; satisfying

1<ki<le—1, > k=303 (1.4.1)
7

D is the set of configurations having one cluster consisting of an (be —3) x (£ — 1)
rectangle anywhere in A~ with attached to it four bars of lengths k; satisfying

1<ki<b—1, > k=30—2 (1.4.2)
%

12 x 12

U-path

Q D
Fig. 3. Configurations in Q and D for /. = 14. A similar picture

applies for @ and D with a 11 x 13 rectangle in the center.
8



Compare Definitions 1.3.2(a) and 1.4.1. Write Q = QuU é, where

Q are those configurations where the single particle is attached to one of the longest
sides of the (£. — 1) x £, quasi-square.

~ Q are those configurations where the single particle is attached to one of the smallest
sides of the (4. — 1) x £, quasi-square.

Then Q consists of precisely those configurations in D where one k; equals 1 and the others
are maximal. Similarly, Q consists of precisely those configurations in D where one k equals
1 and the others are maximal. We will see in Section 2.2 that the configurations in D, D arise
from those in O, Q via a motion of particles along the border of the droplet. This property is
special for Kawasaki dynamics.

1.4.3 Minimal gates and entrance distribution

To formulate our sharpening of Theorem 1.3.3 we need some more definitions.

Definition 1.4.2 Fizn,n' € X.
(a) The set of paths realizing the minimaz in ®(n,n') (recall (1.3.8)) is denoted by (n — 0')opt.
(b) A set W C X is called a gate for n — n' if W C S(n,n') and w "W # 0 for all
w € (n = 1" )opt-
(c) A set W C X is called a minimal gate for n — n' if it is a gate for n — n' and for any
W' C W there ezists an w' € (n — n')opt such that ' N W' = (.
(d) A priori there may be several (not necessarily disjoint) minimal gates. The union of all
the minimal gates

G(n,m') = U w (1.4.3)

w minimal gate for n—ny

is called the essential gate forn — n'.
(e) The configurations in S(n,n')\ G(n,7n') are called dead-ends.

The notion of minimal gate for [J — B is important: on its way from [ to B the dynamics
passes through each of the minimal gates for [1 — B with a probability tending to one as
B — oo, ie., (1.3.16) holds with C* replaced by any of the minimal gates, or any union of
them. Thus, the essential gate G(CJ, M) plays the role of the minimal set of configurations in
S(O, W) the dynamics can see on its way from [J to l. For an elaborate dicussion of essential
gates and their role for metastable transition times, we refer the reader to Manzo, Nardi,
Olivieri and Scoppola [10].

Our second theorem extends Theorem 1.3.3(i ii) and will be proved in Section 3.5.

Theorem 1.4.3 (i) S(C, W) 2 G(T,MW) D C*.
(i)

lim Po(rg < 7¢+ < 7w | 7@ < 77) = L. (1.4.4)
B—00
(iii)
. 1
ﬂlLrI;OIP’D(nTc*, =170 <TO) = D VneD (1.4.5)

with Te~— the time just prior to Te-.



Theorem 1.4.3(i) shows that S(CJ, M) has dead-ends and that the essential gate G(CJ, M) is
larger than the set of critical droplets C*. Theorem 1.4.3(ii) says that Q is hit prior to C*.
Theorem 1.4.3(iii) says that the entrance distribution of C* is uniform, i.e., the protocritical
droplets in D, seen just prior to the creation of the free particle in 9~ A, occur with equal
probability. (Incidentally, the ezit distribution is not uniform and turns out to be hard to
compute.)

Let 0, C* denote the set of configurations in C* where the free particle sits in d; A, the
internal boundary of A without its four corners. This set is a minimal gate. Indeed, for
any 1 € 0, C* there exists an w € (O — M),y that avoids 0, C* \ n, namely, any w that
enters A at site n N d, A, sees the protocritical droplet A~ € D inside A, moves towards
this protocritical droplet without returning to d, A, and attaches itself ‘properly’ (i.e., in a
corner). Similarly, any subset of C* where the free particle sits on some ring of sites around
the protocritical droplet is a minimal gate. We have no full classification of the minimal gates.
Therefore we have no full classification of G(CJ, ) either.

1.4.4 Sharp asymptotics

Our third and fourth theorem extend Theorem 1.3.3(iii) and will be proved in Sections 3.3 3.4.
Theorem 1.4.4 There exists a constant K = K(A,£.) such that

Eo(mm) = Ke" P[1+0(1)] B — . (1.4.6)
Moreover,

Po (rm > tEo(tm)) = [1 +o(1)] e oMl ¢>0, B oo (1.4.7)

Theorem 1.4.4 provides the sharp asymptotics for the average nucleation time and states that
the law of the nucleation time is exponential. The latter is typical for “success only occurs
after many unsuccessful attempts”.

In Section 3.3 we will derive a representation for the constant K in terms of certain
capacities associated with two-dimensional simple random walk. This representation will
depend on the geometry of C* and its immediate vicinity, i.e., those n € X'\ C* for which there
is an ' € C* such that n <+ n'. In Section 2.3 we will see that this immediate vicinity is
actually rather complez, due to the fact that when the free particle attaches itself improperly
to the protocritical droplet (i.e., not in a corner) it triggers a motion of particles along the
border of the droplet. Consequently, no easily computable formula for K is available.

It turns out, however, that the behavior of K for large A can be computed explicitly.

Theorem 1.4.5 As A — 772,

1 log |A|
K(Al.) ~ 1.4.8
(08 ~ vy (1.48)
(~ means that the ratio of the left and the right side tends to 1) with
1
N(be) = 5(te — )24 +1) (1.4.9)

the cardinality of D = D(A,£.) modulo shifts.
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The intuition behind Theorem 1.4.5 is as follows. The average time it takes for the dynamics
to enter C* when starting from O is
1 1

D] [9A*"]

TPl +0(1)] B — o, (1.4.10)

where |D| counts the number of protocritical droplets and |§A*™| counts the number of
directed bonds from 1A to &~ A along which the free particle can be created (recall (1.2.2)).
Let (A, £.) be the probability (averaged w.r.t. the uniform distribution for the protocritical
droplet on D and the uniform distribution for the free particle entering on dA**") that the
free particle moves from 0~ A to the protocritical droplet and attaches itself properly (i.e., in
a corner). This is the probability that the dynamics after it enters C* moves onwards to
rather than returns to 0. Then
1

(A, L)

1+0(1)] B— oo (1.4.11)

is the average number of times a free particle just created in 0~ A attempts to move to the
protocritical droplet and attach itself properly before it finally manages to do so. The average
nucleation time is the product of (1.4.10) and (1.4.11), and so we conclude that

1

K(Al) = Do~ 7 (A2 (1.4.12)
Now, we have
D| ~ |A|N() A—Z% (1.4.13)
Furthermore, we have
DA™ (A, ) ~ mgﬁ A — 72 (1.4.14)

Indeed, as we will see in Section 3.4, the right-hand side of (1.4.14) is the probability for
large A that a particle detaching itself from the protocritical droplet reaches 0~ A before re-
attaching itself. (Due to the recurrence of simple random walk in two dimensions, for large
A this probability is independent of the shape and the location of the protocritical droplet,
as long as it is far from 0~ A.) By reversibility, the reverse motion has the same probability,
which explains (1.4.14). (If the free particle attaches itself ‘improperly’ to the protocritical
droplet, then it may cause some wandering around of the dynamics or it may again detach itself
from the protocritical droplet. But since for large A the free particle has a small probability
to escape from the protocritical droplet and return to A, it must eventually attach itself
‘properly’. We refer to Section 3.5 for details.) Combine (1.4.12 1.4.14) to get (1.4.8).

The asymptotics in (1.4.8) does not depend on the shape of A, e.g. it would be the same
if A were a large circle rather than a large square.

1.5 Extension to three dimensions

The metastable regime, replacing (1.3.1), is

A € (U,30), B8 — 00, (1.5.1)
and we assume that
2U ¢ N (1.5.2)
3U — A ) e

The analogue of Definition 1.3.2 reads (see den Hollander, Nardi, Olivieri, and Scoppola [8]
Egs. (1.3.7), (1.3.11), (2.0.15), (2.0.17), (2.0.18) and (2.0.21)):

11



Definition 1.5.1 (a) Let Q denote the set of configurations having one cluster consisting of
an (me — 1) X (me — 0c) X me quasi-cube anywhere in A~ with, attached anywhere to one of

its faces, an (b. — 1) X L. quasi-square with, attached anywhere to one of its sides, a single
particle. Here, 0. € {0,1} depends on the arithmetic properties of U and A, while

U 2
0 — [w_J, m, — [73U_J, (1.5.3)

are the two-dimensional critical droplet size on a face, respectively, the three-dimensional

critical droplet size, replacing (1.3.3). Note that m. € {20, — 1,20.}.
(b) For A € (2U,3U), let D denote the set of configurations that can be reached from some

configuration in Q wvia a 2U-path, i.e.,

D= {77' €Vp.: 3n€ Q: H(n) = H(n'), v, (n,7') < H(n) +2U}, (1.5.4)

where ne = me(me — 0c)(me — 1) + e(be — 1) + 1 is the volume of the clusters in Q. For

A € (U,2U), use U instead of 2U in (1.5.4).
(¢c) Let C* = DIP denote the set of configurations obtained from D by adding a free particle
anywhere in A (see Fig. 4).

(d) Let
I*=H(C*)=H(D?)=HD)+A=H(Q)+ A

=Ulme(me — 0c) + me(me — 1) + (me — 0c)(me — 1) + 26, + 3] (1.5.5)

— (BU — A)[me(me — ) (me — 1) + Le(Le — 1) + 2]

denote the energy of the configurations in C*.

X
—
SSS

~~=
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———
S
————

/
/
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SRS

=
=

'l
0
)
%

FiG. 4. An element of QP C DfP = C* for 4, = 10, m, = 20 and J. = 0.

As is shown in den Hollander, Nardi, Olivieri, and Scoppola [8], Theorem 1.5.1, the results

in Theorem 1.3.3 carry over from two to three dimensions. Unfortunately, we are not able
= DIP, because the motion of particles

to identify the full geometry of D, and hence of C*
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along the border of the droplet is much more complex in three than in two dimensions, i.e.,
the analogue of Fig. 3 is not fully understood (see e.g. [8], Figure 7). Consequently, we have
no result extending Theorems 1.4.1. Theorem 1.4.3 carries over. The following two theorems,
proved in Sections 4.2—4.3, extend Theorems 1.4.4-1.4.5.

Theorem 1.5.2 There exists a constant K = K(A, £, m¢,0.) such that
Eo(m) = Ke' P[1+0(1)] B — . (1.5.6)
Moreover,
Po (rm > tEq(tm)) = [1 +o(1)] e MMl t>0, B o (1.5.7)

We will derive a representation for the constant K in terms of certain capacities associated
with three-dimensional simple random walk. As in two dimensions, this representation is so
complex that no easily computable formula for K is available. We will deduce the following
asymptotics, which is similar in spirit to the one obtained in two dimensions but less complete.

Theorem 1.5.3 As A — 73,

1 1
(£eme, 0e)N(Ce,me, dc) [A]

K(A 4., m.,0.) ~ 1.5.
(A, leyme, 0c) ~ 57 (1.5.8)
where N (l.,me,d;) is the cardinality of D = D(A, L., m¢, d:) modulo shifts, and M (€., m., )
satisfies the bounds

k(me — [v/me]) < M(£e,me,0.) < k(m.+ 3) (1.5.9)

with k(m) the capacity of the m x m x m cube for simple random walk on 7.

The interpretation of the asymptotic formula for K is similar as in two dimensions. Instead

of (1.4.12), we have
1

~ D[ON T 7 (A, £, e, 5,)

with 7(A, 4., m.,d.) the analogue of m(A,£.) in two dimensions (defined below (1.4.10)). By
the transience of simple random walk in three dimensions, |OA*™| (A, £, m.,d.) converges
to a limit M (£.,me, ) as A — 73,

The lower bound in (1.5.9) comes from the fact that all protocritical droplets contain a
cube of side length m. — \/m.. The upper bound comes from the fact that all protocritical
droplets are contained in a cube of side length m, + 1 and that as long as the free particle
is at distance > 2 from the protocritical droplet no border motion is possible (as shown in
Section 4.1). Since

K (1.5.10)

k(m) ~ km m — 00, (1.5.11)

with x the capacity of the unit cube for standard Brownian motion on R?, which satisfies
Kk € (2m,2mV/3), we have good control over M (£., m.,d,.) for m, large, i.e., for A close to 2U.

We have no formula for N (4., m.,d.) analogous to (1.4.9). It would be nice to know its
asymptotics for m,. large.
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2 Geometry in two dimensions

In this section we collect the key geometric facts that underlie our analysis. In Section 2.1 we
introduce some geometric definitions. In Section 2.2 we prove Theorem 1.4.1, which identifies
the full geometry of the set of protocritical droplets. In Section 2.3 we obtain the structure of
the communication level set for the nucleation. In Section 2.4 we prove two global geometric
facts that will be needed in Section 3.

2.1 Some geometric definitions

Free particles and 1-protuberances are defined as follows:

— For z € A7, let NN(z) = {y € A™: |y — x| = 1} be the set of nearest-neighbor sites of =
in A™.

— A free particle in p € X is a site x € NI~ A or a site x € n N A~ such that
ZyENN(:L‘)ﬁA* n(y) = 0, i.e., a particle not in interaction with any other particle (re-
member from (1.1.3) that particles in the interior boundary 0~ A have no interaction
with particles in the interior A™).

A I-protuberance in n € X is a site z € n N A~ such that }° cxniyna- 1(y) = 1.

— A corner inn € X is asite z € A~ \ 7y such that 3> -\npyna- 1(y) = 2.

Given a configuration 1 € X, consider the set C(n) C R? defined as the union of the
closed unit squares centered at the sites inside A~ where 1 has a particle. The maximal
connected components Cy,...,Cy, m € N, of C(n) are called clusters of n (two unit squares
touching only at the corners are not connected). There is a one-to-one correspondence between
configurations n C A~ and sets C'(n). A configuration n C A is characterized by a set C(n),
depending only on nNA ™, plus possibly a set of particles in 9~ A, namely, N9~ A. Thus, we are
actually identifying two different objects: a configuration n € X’ and the pair (C(n),nNod~A).

For n € X, let |n| be the number of particles in 7, y(n) the Euclidean boundary of C(n),
called the contour of n, and |y(n)| the length of v(n), i.e., the number of broken bonds in 7.
Then the energy associated with 7 is given by

H(n) = S yln)| — (20~ A)lnn A~ [+ Anna Al (2.1.1)

For convenience we identify a configuration n € X with its support supp(n) = {z € A: n(z) =
1} and write = € i) to indicate that n has a particle at .

Throughout the paper we assume that the square box A C Z? is large enough to amply
accommodate the critical droplet (say, it has side length > 2/,.).

An ¢y x £y rectangle is a cluster with side lengths #1,/5 > 1. We use the convention
¢1 < £ and collect rectangles in equivalence classes modulo translations and rotations.

— A bar is a 1 x k rectangle attached to a side of length ¢y of an ¢ x ¢35 rectangle with
1 <k < /4y. A baris called a row if & = /9, i.e., a row is a bar that fills a side of a
rectangle. A column is called a row too.

A quasi-square is an £ x (¢ 4+ 0) rectangle with £ > 1 and § € {0,1}. A square is a
quasi-square with § = 0.
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— If 5 is a configuration with a single contour, then we denote by CR(7) the rectangle
circumscribing n, i.e., the smallest rectangle containing . We write

9" CR(n) = {z € CR(n): Iy ¢ CR(n): |y — z| = 1},

. (2.1.2)
d7CR(n) = {z ¢ CR(n): Iy € CR(n): |y — z| = 1},
to denote the interior, respectively, external boundary of CR(7), and put
CR™ () = CR 0~ CR(n),
(n) () \ (n) (2.1.3)

CRT (1) = CR(n) UJ*CR(n).

Given 7, we say that it is possible to move a particle from row ro(n) C 9~ CR(n) to row
ro'(n) € 07 CR(n) via corner cq,qo (1) € 0~ CR(n) if (see Fig. 6 below)

[Caar (M) N[ =0, ra(n) Onl 21, 1< |ra(n) Nyl < |rar(n)], (2.1.4)

where ad/ € {ne, nw, se, sw} with n = north, s = south, etc. By convention, corners
are not part of rows. If equality holds in the last inequality, then we need to place the
bar in the row opposite to r4(n), say ro(n), a distance 1 away from ¢y (n) in order to
be able to accommodate the shift of the bar in r,/ (1) that is necessary to accomodate
the particle that moves around the corner.

2.2 Protocritical droplets: Proof of Theorem 1.4.1

The proof of Theorem 1.4.1 will be given in two steps:

(i) DUDCD,

(2.2.1)
(47) UuD D D.

Proof of (i): Recall the definition of U-path in (1.3.5) and the definitions of Q, @ and D, D in

Section 1.4. To prove (i) we must show that for all € DU D,

(i1) H(n) =H(QUQ),

o~ -~ 2.2.2
(12) Jw: QU Q —n: max H(w;) < H(QU Q) + U, |w; N A| = n, for all 3. ( )

Proof of (i1): Any € DU D has a single contour v(n) inside A~ of length |y(n)| = 44, and
volume [ NA™| = 4.(f. — 1) +1 = n,, while [p N0~ Al =0 (see Fig. 3). Thus, by (2.1.1), H
is constant on D U D. Since QU Q C D U D, this completes the proof of (i1).

Proof of (i2): Note that, because Q and @ are connected via a U-path (disconnect the 1-
protuberance and re-attach it to one of the neighboring sides of the (¢, — 1) x £, quasi-square),
we have

D = {n € X: FU-path from Q to n} = {n € X: IU-path from Q to n}. (2.2.3)

First we prove that for any n € D there exists an w: Q — 5 such that max; H (w;) <

H(Q)+ U and |w; N A| = n, for all i. We start the path from some ¢ € Q. Then, recalling
the labelling in Theorem 1.4.1, we have
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— k1(¢) = 1 contained in 7.(¢);
ka(¢) = £, — 2 contained in r,(();
E3(¢) = ka(¢) = €. — 1 contained in r,(¢) U €y (¢) and 74(¢) U csu(¢), respectively.

Here, without loss of generality, we assume that the 1-protuberance is attached to r.(¢) and
proceed anti-clockwise. Using the mechanism described in Figs. 5 and 6, we move ka(¢) — k2(n)
particles from 7,(¢) to 7.(¢), one by one. After that we move k3(¢) — k3(n) + ka(C) — ka(n)
particles from 74(¢) U cg(¢) to 7¢(¢). Finally, we move k3(¢) — k3(n) particles from r,,(¢) U
Cnw(C) to 75(C) U csw(€). The result is a configuration 5 € D.

e[ el e[ sl ]

Fi1c. 5. Translation of a bar on a side of a rectangle at cost U.

il e T Gl e

Fic. 6. Motion of a particle around a corner of a rectangle at cost U.

Next we prove that for any n € D there exists an w: Q —» n such that max; H(w;) <
H(Q) + U and |w; N A| = n, for all i. We start the path from some ¢ € Q. We have

~ k1(¢) = 1 contained in r¢(¢);
— ko(¢) = kq(¢) = £, — 1 contained in 7, (¢) and 74(¢);
Eg((’) =/, — 1 contained in 7,(¢) U cny(€) U cs(€).

We move ky(C) — ka(n) particles from r,(¢) to r.(¢). After that we move ks(¢) — ks(n) +
k4 (C) — ka(n) particles from r4(¢) U ¢50(C) to re(¢). Finally, we move k3(¢) — ks(n) particles
from 7., (¢) U cnuw(C) to 75(¢) Ucsy (). The result is a configuration n € D. This completes the
proof of (i2).

Proof of (ii): By (2.2.2), all configurations in D U D are connected via a U-path. Since

QU Q C DN (DUD), in order to prove (i) it suffices to show that D U D cannot be exited
via a U-path (recall (2.2.3)).

Call a path clustering if all the configurations in the path consist of a single cluster and
no free particles. Below we will prove that for any n € DU D and any 1’ connected to n by a
clustering U-path,

/

(a) CR(n') = CR(n),

A - (2.2.4)
(b) CR™ (1) =CR™ ().
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What (2.2.4) says is that neither D nor D can be exited via a clustering U-path. From this in
turn we deduce that for any 5 € D UD and any 7 connected to n by a U-path we must have
that n' € @Uﬁ which is what we want to prove. The argument for the latter goes as follows.
Detaching a particle costs 2U unless the particle is a 1-protuberance, in which case the cost
is U. The only configurations in DUD having a 1-protuberance are those in ou Q (recall the
remarks made below Theorem 1.4.1). If we detach the 1-protuberance from a configuration
in QU é, at cost U, then we obtain an (¢, — 1) x 4. quasi-square plus a free particle. Since
now only moves at zero cost are allowed, only the free particle can move. Since in a U-path
the particle number is conserved, the only way to regain U and complete the U-path is to
re-attach the free particle to the quasi-square, in which case we return to Q U Q.

REMARK: Note that the motion of particles along the border a droplet may shift the droplet.
Indeed, from any configuration in Q U Q the 1-protuberance may detach itself and re-attach
itself to a different side of the quasi-square or rectangle (recall Fig. 3). Thus, the U-path may
shift the protocritical droplet to anywhere in A™.

Proof of (a): Fix € DUD. Since all particles are either in CR™ (1) or in some bar in ™ CR(n),
it is geometrically impossible to modify CR(n) without detaching a particle.

Proof of (b): The proof is done in two steps.

1. Let us first consider clustering U-paths along which we do not move a particle from CR™ (7).
Along such paths we only encounter configurations in D U D or configurations obtained from
DUD by breaking one of the bars in 0~ CR(n) into two pieces, at cost U (because there is no
particle outside CR(n) that can help to lower the cost). From the latter only moves at zero
cost are possible, so no particle can be detached, and the only way to regain U and complete
the U-path is to restore a bar.

2. Let us next consider clustering U-paths along which we move a particle from a corner of
CR™ (n). This move costs 2U, which exceeds U. The overshoot U must be regained by letting
the particle slide next to a bar that is attached to a side of CR™(n) (see Fig. 7). Since there
are never two bars attached to the same side, we can at most gain U. This is why it is not
possible to move a particle from CR™ () other than from a corner.

From here only moves at zero cost are allowed. There are no 1-protuberances present
anymore, because only the configurations in Q U Q have a 1-protuberance. Thus, no particle
outside CR™ (1) can move, except the one that just detached itself from CR™ (7). This particle
can move back, in which case we return to the same configuration 7. In fact, all possible moves
at zero cost consist in moving the “hole” just created in CR™(n) along the side of CR™ (7),
until it reaches the height of the top of the bar attached to this side of CR™ (), after which it
cannot advance anymore at zero cost (see Fig. 7). All these moves do not change the energy,
except the one that returns the particle to its original position and regains U.

S

Fi1c. 7. Creation and motion of the hole at cost 0.
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This proves our claim in (2.2.4), completes the proof of (ii) in (2.2.1), and hence of Theorem
1.4.1.

We saw above that U-paths cannot exit D = D U 5, but can make a crossover between D
and D. This crossover can, however, only occur between Q and Q. A schematic picture of D
therefore is:

F1G. 8. Dumb-bell shape of D = D U D for U-paths.

2.3 Structure of the communication level set
2.3.1 Optimal paths
We begin by giving a precise description of (0 — M), the set of optimal paths for the

nucleation (recall Definition 1.4.2(a)).

Proposition 2.3.1 (den Hollander, Olivieri, and Scoppola [9], Proposition 4.24)
(i) ®(C, W) = I*.
(1) S(O, M) D C*.

Proof. The proof is different from that in [9]. It follows the line of argument in [§8]. We write
out the details because the argument is needed later on.
(i) We prove that ®(C, W) < T and ®(0J, W) > I'*.

O(0, M) <T™: All we need to do is to construct a path that connects [J and B without
exceeding energy I'*. This is done in three steps.

1. We first show that the configurations in Q are connected to [ by a path that stays below
.

Lemma 2.3.2 For any n'?" € Q there exists an w: n'P" — O such that maxge, H(E) < T*.

Proof. Fix n'”” € Q. Note that, by (1.3.12), we have H(n'?") = I'* — A. First, we detach
the 1-protuberance from the (£, — 1) X £. quasi-square, which costs U and raises the energy
to I — A4+ U(< IT'*), move the particle to the boundary of the box, which costs nothing, and
move it out of the box, which pays A. We are then left with a quasi-square of energy

I —2A 4+ U. (2.3.1)

Second, we detach a particle from a corner of the quasi-square, which costs 2U, and move it
out of the box, which pays A. Thus, the energy increases by 2U — A when detaching and
removing a particle from a corner of the quasi-square. We repeat this operation another £, — 3
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times, each time picking particles from the bar on the same shortest side. To guarantee that
we never reach energy I'*, we have the condition that

(2U — A)k+2U <2A ~-U for0<k </, 3, (2.3.2)
or
U
2U — A
The second inequality holds by the definition of /. in (1.3.3), the first inequality by our
exclusion of £, = 2 (recall the statement made just prior to Theorem 1.4.1). Third, detaching

the last particle costs U instead of 2U. To guarantee that we still do not reach energy I'*, we
have the condition that

3< 0, < +1. (2.3.3)

(2U — A)(l, —2) + U < 2A — T, (2.3.4)

which is weaker than (2.3.2) because 2U — A < U. Removal of the last particle pays A, so
that we arrive at energy

(T* —2A + U) + (2U — A)(le — 2) + (U — A) =T* —2A + (2U — A)(fe — 1),  (2.3.5)

which is strictly smaller than (2.3.1) by the second inequality in (2.3.3). Thus, removal of a

row of length £, — 1 from the (¢, — 1) x £, quasi-square in n'?" € Q lowers the energy (see Fig.
9).

saddle

(2U—A)(£—2)+2U

Fic. 9. Cost of adding or removing a row of length 2.

We now have a square of side length ¢, — 1. It is obvious that we can remove further rows
without encountering new conditions, until we reach [J. Q

2. For n'P" € Q, let 7%’ be the configuration obtained from 7'P" by attaching an extra
particle next to the l-protuberance, thereby forming a 2-protuberance. We next show that
n?P" is connected to W by a path that stays below I'*.

Lemma 2.3.3 For any n'P" € Q there exists an w: n°"" — M such that maxee, H (&) < T'.
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Proof. Fix n'P" € Q. Note that H(n?"") = I'* — 2U. First, we create a particle, which costs
A and raises the energy to I'" — 2U + A(< I'*), move it to the droplet, which costs nothing,
and attach it next to the 2-protuberance, which pays 2U, thereby forming a bar of length 3.
This operation pays 2U — A. We can repeat this operation another £, — 3 times until the row
is filled. By that time we have a square of side length /. and energy

I* —2U — (2U — A) (£, — 2). (2.3.6)

Second, we create another particle and attach it anywhere to the square to form a new 1-
protuberance. This operation costs A — U. We must make sure that we can still create a
particle without reaching energy I'*, which gives us the condition

(A—U)+ A <2U + (2U — A)(£, — 2), (2.3.7)

or
U
T
which holds by the definition of /. and the non-degeneracy hypothesis in (1.3.4). Third, we
create another particle and attach it next to the new 1-protuberance. This brings us to energy

/ (2.3.8)

I* U - (2U — A, (2.3.9)

which is below the energy of 1?P" by (2.3.8). It is obvious that we can add further rows without
encountering new conditions, until we reach W. Y%

3. We can now conclude the proof of ®(CJ, @) < I'* by constructing a bridge between n'?" and
n?P" that does not exceed I'*. Namely, create a particle at the boundary, which costs A and
raises the energy to I'*, move it to the droplet, which costs nothing, and place it next to the
1-protuberance, which pays 2U. The desired path w: [0 — B is realized by tracing the path
in Lemma 2.3.2 in the reverse direction, back from [ to n'P", going over the bridge from n'?"
to n?P", and then following the path in Lemma 2.3.3 from 1??" to WM. This w will be called the

reference path through n for the nucleation.
¢(CJ, M) > I'*: The proof comes in three steps.

1. The first crucial ingredient in the proof is the following observation:

Lemma 2.3.4 Any w € (OO0 — M), must pass through a configuration consisting of a single
(e — 1) x £, quasi-square somewhere in A~ .

Proof. Any path w: [J — B must cross the set V; . _1). As shown in Alonso and Cerf
[1], Theorem 2.6, in Vy (s, _1) the unique (modulo translations and rotations) configuration of
minimal energy is the (. — 1) x £. quasi-square, which we denote by n and which has energy

H(p) =T* —2A + U. (2.3.10)

All other configurations in Vy (s, _1) have energy at least I'* —2A +2U. To increase the particle
number starting from any such configuration, we must create a particle at cost A. But the
resulting configuration would have energy I'* — A + 2U (> I'*) and thus would lead to a path
exceeding energy I'*. Y%

2. The second crucial ingredient in the proof is the following observation:
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Lemma 2.3.5 Any w € (0 — M),y must pass through Q.

Proof. Follow the path until it hits the set V, (). According to Lemma 2.3.4, the con-
figuration in this set must be an (¢, — 1) x /. quasi-square. Since we need not consider any
paths that return to the set V, (s, 1) afterwards, a first step beyond the quasi-square must be
the creation of a new particle. This brings us to energy

™ —A+U. (2.3.11)

Before any new particle is created, we must lower the energy by at least U. The obviously
only possible way to do this is to move the particle to the quasi-square and attach it to one
of its sides, which reduces the energy to

r“—A (2.3.12)
and gives us a configuration in Q. V)

3. It now suffices to show that to reach B from Q we must reach energy I'*. This goes as
follows. Starting from Q, it is impossible to reduce the energy without lowering the particle
number. Indeed, this follows from Alonso and Cerf [1], Theorem 2.6, which asserts that the
minimal energy in Vy (g, 1)41 18 realized (although not uniquely) by the configurations in Q.
Since any further move to increase the particle number involves the creation of a new particle,
the energy must reach I'*.

This completes the proof of Proposition 2.3.1(i).
(ii) Our final observation is the following:
Lemma 2.3.6 The set of configurations in Vi, 1)1 that can be reached from O by a path

that stays below I'* and for which it is possible to add a particle without exceeding I'* coincides
with the set D defined in Definition 1.3.2(b).

Proof. From step 2 above it is clear that the definition of D precisely assures that the
assertion holds true. Indeed, by Lemma 2.3.5, any w € (00 — M),y crosses Vi (s, _1)41 in
Q. Once it is in 9, before the arrival of the next particle, which costs A, it can reach all
configurations that have the same energy, the same particle number, and can be reached at
cost < U < A. Q

By adding a particle to a configuration in D we arrive in C* = D/P, the set defined in
Definition 1.3.2(c). This completes the proof of Proposition 2.3.1(ii). Q@

We conclude the following:

Proposition 2.3.7 Any w € (O — W),y passes first through Q, then possibly through D\ Q,
and finally through C*.

Proof. Combine Lemmas 2.3.5 2.3.6 and Proposition 2.3.1(i). @
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2.3.2 Motion on C*

The next proposition will be important later on.

Proposition 2.3.8 (i) Starting from C*\ QP the only transitions that do not raise the energy
are motions of the free particle, as long as the free particle is not attached to the protocritical
droplet.

(ii) Starting from QIP, the only transitions that do not raise the energy are motions of the
free particle and motions of the 1-protuberance along the side of the quasi-square where it is
attached, as long as the free particle is at lattice distance > 3 from the protocritical droplet.
When the lattice distance is 2, either the free particle can be attached to the protocritical
droplet or the 1-protuberance can be detached from the protocritical droplet and attached to
the free particle, to form a quasi-square plus a dimer. From the latter configuration the only
transition that does not raise the energy is the reverse mowve.

(1i) Starting from C*, the only configurations that can be reached by a path that lowers the
energy and does not decrease the particle number are those where the free particle is attached
to the protocritical droplet.

Proof. Obvious. The restriction in (i) that the free particle must be at lattice distance > 3
from the protocritical droplet is needed for the following reason: If the protocritical droplet
is a configuration in D \ Q and the free particle sits at lattice distance 2 from a corner of
a bar, diagonally opposite the particle that sits in the corner of the bar, then at zero cost
this particle may detach itself from the bar and slide inbetween the quasi-square and the free
particle. For (iii) note the following: if we start from the configuration described above and
slide the remaining particles in the bar one by one, all at zero cost except the last one, which
pays U, then we reach a configuration where the free particle is attached to the protocritical
droplet with the bar shifted. Q

For n € C*, we write n = (1), z) with 7j € D the protocritical droplet and 2 € A the position
of the free particle. Let us denote the configurations that can be reached from n = (7, z)
according to Proposition 2.3.8(iii) by

CY(n) if the particle is attached in 9~ CR(7).

— CB(#) if the particle is attached in T CR(7),

BBBBBBBBBB

12 x 12

ssBvsRosBosleslvclvslvsRusRusios)

TTTTETETET ™

BBBBBBBB

Fig. 10. Good sites (G) and bad sites (B) for £, = 14.
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Let
C% = Uep CY(),  C" =Usep CP (). (2.3.13)

The next proposition shows that when we reach C% we have made it “over the hill”, while
when we reach C? we have not.

Proposition 2.3.9 (i) Ifn € C, then there exists an w: n — M such that maxec, H(&) < T*.
(ii) If n € CB, then there are no w:n — O or w: n — W such that maxec, H(E) < T'*.

Proof. (i) If n € C“, then its energy is either I'* — 2U or I'* — U, depending on whether the
particle was attached in a corner or as a 1-protuberance. In the latter case we can move the
particle at no cost into a corner and gain an extra —U. After that it is possible to create a
new particle and re-attach it, which leads to energy I'* — 2U — (2U — A). We can continue
in this way, filling up all rows in 9~ CR(7n), until we reach either an ¢, X ¢, square or an
(o — 1) x (£, + 1) rectangle, depending on whether 1 arose from D or D (recall Fig. 3). In
the first case we can proceed along the reference path for the nucleation constructed in the
proof of Proposition 2.3.1. In the latter case, however, we can connect to this reference path
as follows. The energy of the (£, — 1) x (£. + 1) rectangle is I'* — 2U — (2U — A)(¢. — 3). This
is lower than I'* — A, because £. > 3. Create a particle, which costs A, and attach it to one
of the longest sides of the rectangle, which pays U. Now slide particles along the corner of
the rectangle, following the mechanism described in Figs. 6 and 7, until an £, x £, square is
reached. This costs U and keeps the energy below I'*. From there again proceed along the
reference path for the nucleation.

(ii) If n € CP, then H(n) = T'* — U, so as long as the energy stays below I'* it is impossible to
create a new particle before further lowering the energy. But there are no moves available to
lower the energy. The only moves available are those where the particle that was last attached
is moving along the side or is detached again, which brings us back to C*, or those starting a
motion of particles along the border of the droplet (as in Fig. 6), which may or may not bring
us back to C*. In both cases the cost is U and the energy returns to I'*.

An example of a path from C? to B that does not return to C* is obtained as follows.
Suppose that 77 € D is such that one bar completes one side of 9~ CR(7)), and suppose that the
free particle attaches itself on top of that bar, forming a 1-protuberance (see Fig. 3). Then
the energy is I'* — U. Slide this bar to the end of the side it is attached to (at cost and gain
U) and slide the two bars on the neighboring sides to the end as well (at cost and gain U).
Then the energy is again I'* — U. Now move the shorter bar on top of the longer bar via a
motion as in Fig. 6. When the last particle of the bar is moved, it can be detached (at cost
U) and re-attached (at gain 2U). Then the energy is I'* — 2U. Now create a free particle (at
cost A), move it to the droplet (at cost 0), and attach it in a corner of the droplet (at gain
2U). Continue “downhill” in this way, adding on successive rows as in the reference path that
was used above, until B is reached. Q

Proposition 2.3.9(ii) shows that the configurations in C? are wells, i.e., their energy is
< I'*, but to move to either [J or B the energy must return to I'*. The configurations of the
form “quasi-square plus dimer” described in (ii) in the proof of Proposition 2.3.8 are elements
of S(OJ, M) but not of C*. Indeed, the only possible move at zero cost is the one where the
free particle jumps back to the quasi-square. Thus, we see that

C* is a union of plateaus, index by 7] € D; each plateau consists of a protocritical droplet
f) and a collection of positions of the free particle, indexed by A\ (7Ud7%); each plateau
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has wells and dead-ends when the free particle is within distance 1 of the protocritical
droplet.

This property is special for Kawasaki dynamics. We will not attempt to describe the wells
and dead-ends in full detail. For our sharp asymptotics of the average nucleation time we will
not need this detail.

2.3.3 Graph structure of the energy landscape

Let us summarize what we have shown so far:

Theorem 2.3.10 View X as a graph whose vertices are configurations and whose edges con-
nect communicating configurations. Let

X* be the subgraph of X obtained by removing all vertices n with H(n) > T'* and all
edges incident to these vertices;

— X** be the subgraph of X* obtained by removing all vertices n with H(n) = T'* and all
edges incident to these vertices;

X and X be the connected components of X** containing O and B, respectively.

Then
(i) Xo # Xm, and so X and Xg are disconnected in X**.
(i) D C X, CY C Xm, CB C X2\ (Ao U Am).

Propositions 2.3.7 2.3.9 and Theorem 2.3.10 will play a crucial role in Section 3.3, where
we derive sharp estimates for the average nucleation time. We will see that they are in fact
all that is needed for these estimates.

2.4 Two global geometric facts

In Sections 2.2 2.3 we have analysed the geometry of the configurations on and incident to C*
that are relevant for the nucleation. This will be sufficient for the computation of the average
nucleation time. To make full use of the results of Bovier, Eckhoff, Gayrard, and Klein [5], we
must establish two further facts, both concerning the global geometry of the energy landscape.

Proposition 2.4.1 below shows that there are no valleys in the energy landscape whose
depth equals or exceeds the communication height between [, .

Proposition 2.4.1 For alln e X\ {OJ, W},
B(n, {0, W}) — H(y) < T* = (0, M), (2.4.1)

Proof. This is the analogue of Proposition 3.4.6 in den Hollander, Nardi, Olivieri, and
Scoppola [8] for three dimensions. The proof can be carried over to two dimensions verbatim.

Q

Proposition 2.4.2 below shows that [J is a proper metastable configuration because it lies
at the bottom of its valley:

Proposition 2.4.2 Ifn € X\ O is such that
®(n,0) < @(n, W), (2.4.2)
then H(n) > 0.
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Proof. Recall that n. = ¢.({. — 1) + 1. Define
Van, = |J Voo Vo =X\ Ve, (2.4.3)

0<n<ne¢
First, we claim that if 7 satisfies (2.4.2) and H(n) < 0, then n € V<. . Indeed, since
O(n, {,W}) = &(n,0) A d(n, M), it follows from (2.4.1-2.4.2) that ®(n,00) < I'™* + H(n). So,
if H(n) <0, then ®(n,0) < I'*. But in the proof of Proposition 2.3.1(i) we have shown that
®(n,0) > T* for all n € Vs, (ne is the volume of the clusters in D).
Second, we claim that [J is the only configuration in V<, with zero energy, while all other
configurations have strictly positive energy. Indeed, inserting the isoperimetric inequality

InNA~| < (@)2 v #0 (2.4.4)

into (2.1.1), we get

H(n) > o y(n)] — (2U = A)lnn A~
>S4y AT - (U - A)nn A

= (2U — A)/|InNA—| (2 2UU— X nmA) (2.4.5)

> (2U — A)/[n N A (2(@0 1) = (b, — 1)+ 1)
> (2U = A)n A A (£ — 1) > 0.

3 Average nucleation time in two dimensions

In this section we analyze the average nucleation time. Section 3.1 recalls the definition of
Dirichlet form and capacity, and provides an a priori estimate for capacities between arbitrary
sets. Section 3.2 shows that {{J, M} is a metastable pair in the proper sense, and provides
the link between the average nucleation time and the capacity of the pair {{J, B}. Section 3.3
contains the proof of Theorem 1.4.4 in two steps: (1) a priori estimates of the equilibrium
potential associated with the capacity of the pair {{J, B}; (2) reduction of the Dirichlet form
for this capacity to one involving simple random walk. Section 3.4 gives the proof of Theorem
1.4.5, Section 3.5 of Theorem 1.4.3.

3.1 Dirichlet form and capacity

In the proof of Theorem 1.4.4, a key role is played by the Dirichlet form

Es(h) =5 3 mmesln)hn) — hOi)P b X - [0,1] (3.1.1)

n.n' €X

where p5 is the Gibbs measure defined in (1.1.5) and cg are the transition rates of the Kawasaki
dynamics defined in (1.2.6). Given two non-empty disjoint sets A, B C X, the capacity of the
pair A, B is defined by

CAPg(A,B) = min  Eg(h), (3.1.2)

h: X—[0,1]
hlg=1, h|g=0
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where h|4 = 1 means that h(n) = 1 for all n € A and h|g = 0 means that h(n) = 0 for all
n € B. The right-hand side of (3.1.2) has a unique minimizer by g, called the equilibrium
potential of the pair A, B, given by

b p(n) = Py(1a < 78), ne X\ (AUB) (3.1.3)

(recall (1.3.10)). This is the solution of the equation

(cgh)(n) =0, ne€ X\ (AUB),
h(in) =1,  neA, (3.1.4)
h(n) =0, n € B.
Moreover,
CAP4(A, B) =~ p1g(n) cs(n, X \ n) Py (75 < 74) (3.1.5)
neA

with cg(n, X \n) = ZH’GX\H cg(n,n') the rate of moving out of 7). This rate enters because 7.4
is the first hitting time of A after the initial configuration is left (recall (1.3.10)). Note from
(3.1.1-3.1.2) that

CAPg(A, B) = CAPg(B, A). (3.1.6)

The following elementary estimate will be important. Here ®(A, B) = min,ec 4,8 ®(n,7')
is the communication height between the pair A, .

Lemma 3.1.1 For every non-empty disjoint A, B C X there exist constants 0 < C1 < Uy <
oo (depending on A, B) such that for all j3,

C) < PPAB) 75 capg(A, B) < Co. (3.1.7)

Proof. The proof uses basic properties of communication heights.

Upper bound: The upper bound is obtained from (3.1.2) by picking h = 1x (4 5) With
K(A,B) = {n€ X: &, A) < &z, B)}. (3.1.8)
The key observation is that if n — 7' is a transition from K (A, B) to X' \ K(A, B), then

(1) H(n') < H(n),

(2) H(n) > ®(AB). 19
To see (1), suppose that H(n') > H(n). Clearly,
Hn')>H(n) <= o0, F)=enF)VH@)VFCX. (3.1.10)

But n € K (A, B) tells us that ®(n, A) < ®(n, B), hence ®(n', A) < ®(n, B) by (3.1.10), and
hence 1’ € K(A, B), which is a contradiction.
To see (2), note that (1) implies the reverse of (3.1.10):

Hnp) > Hiy) < 9n,F) =@, F) v H(n) VFCX. (3.1.11)

Trivially, ®(n, B) > H(n). We claim that equality holds. Indeed, suppose that equality fails.

Then we get
H(n) < ®(n,B) = @(1, B) < (', A) = ®(n, A), (3.1.12)
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where the two equalities come from (3.1.11), while the second inequality uses that ' € X'\
K (A, B). Thus, ®(n, A) > ®(n, B), which contradicts n € K(A, B). From ®(n, B) = H(n) we
obtain ®(A, B) < ®(A,n) VvV &(n,B) = ®(n, B) = H(n), which proves (2).

Combining (3.1.9) with (1.1.5), (1.2.6) and (1.2.7), we find that

/ L /
ps(n)es(nn') < 7" PeAB) vy e K(A,B), 0 € X\ K(A,B). (3.1.13)

Hence X
CAPs(A, B) < E5(1i(ap) < Carpm e POAB) (3.1.14)
B

with Cy = [{(n,7'): n € K(A, B),n' € X\ K(A,B)}|.

Lower bound: The lower bound is obtained by picking any path w = (wg,w1,...,wr) that
realizes the minimax in ®(A, B) and ignore all the transitions that are not in this path, i.e.,
CAPg(A,B) > h_mir[(l“] &g (h), (3.1.15)
h(wo)=1,h(w g )=0
where the Dirichlet form £3 is defined as £ in (3.1.1) but with X replaced by w. Due to the
one-dimensional nature of the set w, the variational problem in the right-hand side can be
solved explicitly by elementary computations. One finds that the minimum equals

K—1 -1

M=|> ! , (3.1.16)

E—0 pp(wr)cp(wk, we1)

and is uniquely attained at h given by

1
h(wg) = M . k=0,1,... K 3.1.17
() ; pp(wi)es (wi, wit) ( )

We thus have
CAPg (A,B) > M

1 .
Z E k=0 r]n.l..ni(71 Mﬂ(wk)cﬂ(wkvwar])
= r min e BHWk)VH (wky1)] (3.1.18)
K Zg k=01,.,K-1
1
— O — ¢ BOAD)
1 Zﬂ e

Lemma 3.1.1 is a typical a priori bound for capacities. In particular, the use of one-
dimensional subgraphs is a tool that with little effort produces rough estimates, which can be
lifted to sharp estimates with some more effort, as we will see later on.

3.2 Metastable pair, link between average nucleation time and capacity

In Bovier, Eckhoff, Gayrard, and Klein [5] metastability is defined in terms of properties of
capacities, namely:
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Definition 3.2.1 Consider a family of Markov chains, indexed by B, on a finite state space
X. A set M C X is called metastable if

o maXng g g (m)[CAPS (m, M)] !
oo minge v pg(n)[CAPg(n, M\ )]~

- =0. (3.2.1)

For our model we have:
Lemma 3.2.2 The set {{1, B} is metastable in the sense of Definition 3.2.1.

Proof. The numerator in (3.2.1) can be bounded above by (' =98 /(. via Proposition 2.4.1
and Lemma 3.1.1. The denominator, on the other hand, can be bounded below by erﬂ/CQ
(the minimum being attained at [J). Therefore the ratio is bounded above by e¢=%%(Cy/C}).

Q@

Lemma 3.2.2 allows us to apply the theory in Bovier, Eckhoff, Gayrard, and Klein [5]. To
obtain our sharp estimate of E(7m), we will use the following key relation:

Proposition 3.2.3 Eq(mm) = m [1+0(1)] as B — oc.

Proof. Bovier, Eckhoff, Gayrard, and Klein [5], Theorem 1.3(i), written in our notation,
states that

R xRS (322
where
Ro={neX: Py <) >Py(m<m)}. (3.2.3)

It follows from the proof of Lemma 3.3.1 below that for large enough S,
Ro={ne&: @(n,0) < &(nW)} (3.2.4)
and hence, via Proposition 2.4.2,

min H(n) > H(O) =0. 3.2.5

min_H(s) > H(O) (3.2:5)
This in turn implies that pg(Ro)/pg(0) =14 o(1). Since pug(0) = 1/Zs, we get the claim.
Q@

Proposition 3.2.3 shows that the computation of E- (7m) revolves around getting sharp bounds
on Zz CAP4(0,M). From Lemma 3.1.1 we know that C; < 7" Z5CAP5(0, M) < Cy. In what
follows we narrow down the constants.

3.3 Average nucleation time: Proof of Theorem 1.4.4

In this section we will show how to turn the geometric information obtained in Theorem 2.3.10
into sharp bounds on ZzCAPg([], M). We follow the general strategy outlined in Bovier and
Manzo [6] and Bovier [3]:

— Note that all terms in the Dirichlet form in (3.1.1) involving configurations 1 with

H(n) > T*, ie, n€ X\ X* contribute at most Ce (" 98 for some § > 0 and can be
neglected. Thus, effectively we can replace X by X*.
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— Show that hf, g = O(e %) on Xm and h} g =1 — O(e %) on A for some § > 0.

— Prove sharp upper and lower bounds for A}, g on X*\ (X7U Xg) in terms of a variational
problem involving only the vertices and the bonds on and incident to A* \ (Ag U Am).

The last two steps are carried out in Sections 3.3.1-3.3.2. We identify the resulting variational
problem with capacities associated with simple random walk. In Section 3.4 we analyse the
asymptotics of these capacities for large A.

3.3.1 A priori estimates on the equilibrium potential

Note that
Xog={ne&x”: o(n0) < o(n M},

Xm={nex*: onm < o(n0)]}. (3.3.1)

The guiding idea behind the sharp estimate of Zg CAPz(CJ, M) is that h’, g is exponentially
close to 1 on A and exponentially close to 0 on Xg. This is the content of the following
estimate, which will be needed later on.

Lemma 3.3.1 There exist C < oo and § > 0 such that for all 3,

min hi g(n) > 1 Ce %, max hi; (1) < Ce™P, (3.3.2)
UEXD ’ WEXI ’

Proof. A standard renewal argument gives the relations, valid for n ¢ {OJ, B},

Pyl < rm) = — 2D <) g

a 1-— PW(TI:IUI > 7'77)

IP)77(7] < TDUn)
1-— PW(TEJUI > 7'n)7

Py (mm < T7) =

For n € A5 \ O, we estimate

P, (mm < moun) P (mm < 1)
) =1-P(m<m)=1- L= =" > 1T =1 3.34
D’.(n) 77( u D) PU(TDUI < Tﬁ) o Pn(ﬂj < Tn) ( )
and, with the help of (3.1.5) and Lemma 3.1.1,
P < 73 CAPg(n, 1 _ _ _
n(m<7y) _ Zs 5(n, W) < C(n) e @M =2mD8 < C(p) e 98, (3.3.5)

IP”(’TD < 7'77) N Zﬂ CAPg(n,D) -

which proves the first claim with C' = max;cx \oC(n). Note that hf g(0) is a convex
combination of hf; g(n) with n € A\ O, namely, those 5 that communicate with [J. Hence
the claim includes n = O.

For n € Xg \ B, we estimate

IP(TD<’T.U) P(T|:|<T)
; =P)(ro < m) = " < 4 3.3.6
I:I,I(n) 77( O l) Pn(TEJUI < Tﬂ) = PH(T. < Tﬂ) ( )
and, with the help of (3.1.5) and Lemma 3.1.1,
Py (o < 79) _ Zp CAPs(n, D) < O(n) e [*MO)-2MIB < Gy =08 (3.3.7)
Pn(T. < 7’77) Zg CAP[g(n, H)
which proves the second claim with C' = max;c yg\m C(7)- Q
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Knowing that hf, g is trivial on X5 U Am, it remains to understand what hf; g looks like
on the set
X\ (X0 U ) = [ € X2 0(n,0) = &(n, M)}, (3.3.8)

which separates A and Xg and contains S(CJ, W) (recall (1.3.9)). This will be carried out in
Section 3.3.2.

Before doing so, we first show that A}, g is also trivial on X**\ (A7 U A@). This set can
be partitioned into maximally connected cvomponents,

1
X\ (Apuxe) =X (3.3.9)
i=1

where each X is a well in S([J, M), i.e., a set of communicating configurations with energy
< I'* but with communication height I'* towards both T and H.

Lemma 3.3.2 There exist C < oo and § > 0 such that for allt=1,...,1 and all 3,

max |h; (1) — bt m(n')| < Ce . (3.3.10)
n,n €X;

Proof. Fixi=1,...,I and 1,7’ € X;. Estimate
hiym(n) = Py(mo < ) < Py(mo < 1) + Py(my < 100 < 7). (3.3.11)

First, as in the proof of Lemma 3.3.1, we have

Py (101 < i) < Py (0 < 7))

P, (o <T1y) = <
77( n ) 1— HD?](TDUU’ > 7—77) Pn(Tn/ < 7'77) (3 3 12)
7Z3CAPg(n, ) B o _ o
= —Zﬁ = < O, ) e PO 208 < (') e 98,
sCAPs(1, 1)

where we use that ®(n,0) =T and ®(n,7n’) < T. Second,

Py(ry < < ) =Pp(ry < 1oum)Py (10 < Tm) < Pp(mo < m) = h*D,.(n'). (3.3.13)
Combining (3.3.11 3.3.13), we get

htym(n) < C(n,n')e %% + bt g(n'). (3.3.14)
Interchange 7 and 7’ to get the claim with C' = max; max, , cx, C(n,7'). Q@

REMARK: We saw in Proposition 2.3.9(i) that for each 7 € D the four bars of bad sites in
0T CR(7) (see Fig. 10) each form a well. Lemma 3.3.2 shows that h¥, g is close to a constant
on each of these wells. These are not the only wells, but Lemma 3.3.2 shows that we not need
care too much about wells anyway: only the transitions in and out of the wells contribute to
the Dirichlet form at the order we are after, not those inside the wells. Later we shall see
that we can even ignore the wells altogether, provided we are content with obtaining bounds.
Indeed, in Proposition 2.3.8 we saw that the wells only occur when the free particle is at
distance 2 from the protocritical droplet.
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3.3.2 Reduction of the Dirichlet form

The reduction is done in two steps. First we reduce the full Dirichlet form to a Dirichlet form
involving only the immediate vicinity of the communication level set.

Proposition 3.3.3 There exists § > 0 such that for f — oo,

Z3CAP5(C, M) = [1+O(e /)@ P, (3.3.15)
where
) . 1 "2
© = min . Inin 5 2. ey [h(n) = (). (3.3.16)
hl =1 bl xg =0: hlx, =Ci Vi=1,....1 n,n €X*

Proof. First, recalling (1.1.5 1.1.6), (1.2.6) and (3.1.1 3.1.2), we have

. 1
Z3 CAPg(L, W) = Z5  min = o > wsm)es(n, ) h(n) = h(n')]?
h([ij:l,h(l’):o n,n eX

e , 1
=0 (e (T +5)5) + 25 min o0y pg(n)es(nn)[h(n) = h(n)].
h(ll:ll):l,h(l’):o n,n €X*

(3.3.17)
Next, with the help of Lemmas 3.3.1-3.3.2, we get
) 1
Lomin o ST ug(m)es () [A(n) — hr'))”

r(Od)=1,h(M)=0 7, €X*

, 1
= ,, min 5 ug(n)es(n,n')[h(n) —h(n')]”
h,:ha’. ON xpuxgU(Xy,..x;) 1NN E€X*
1
— 1 O ‘7(5ﬂ : : - - ! h 7]71 \12
[1+0(e ™)) jmin, ., min 5 ps(m)es(n,m)[h(n) — h(n)]7,

h\XDELh\X.EO,h\XiEOiVizl ..... I n,n €X*
(3.3.18)
where the error term O(e~%%) arises after we replace the approximate boundary conditions

1-0( ) on &n,
h=< O(e %) on Ag, (3.3.19)
Ci+0(e™ ) on X, i=1,...,1,
by the sharp boundary conditions

1 on Aq,
h=<¢ 0 on An, (3.3.20)
C; onX;,i=1,...,1.

Finally, by (1.1.5 1.1.6) and (1.2.6 1.2.7) we have

ng(mes(n,n') = Loy e "8 for all n,n' € X* that are not

both in A7 or both in Xg or both in &; for some 1 =1,..., 1. (3.3.21)

Indeed, in each of these cases either H(n) = TI'* > H(n') or H(n) < I'* = H(n), because there

are no direct transitions between X, Xg and &;, i = 1,...,I (use Proposition 2.3.10(i) and
recall the decomposition in (3.3.9)). Combining (3.3.17-3.3.18) and (3.3.21), we arrive at the
claim. Y%

Next we estimate © in terms of capacities associated with simple random walk.
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Proposition 3.3.4 O € [0, O3] with

01 = cap™ (97A, CR(#))

A, (3.3.22)
Oy =Y AP (9TA CcRTF (7)),
AED
where CRTT = (CRT)" and
At + _ . l - 12 C +
cAPT (A F) min Zﬁ l9(z) —g(«")]?,  F CAT, (3.3.23)
I,I’E

9\3+A51,9\F50 Y

and © ~ 1’ means that © and x' are nearest-neighbor sites.

Proof. The variational problem in (3.3.16) decomposes into disjoint variational problems for
the maximally connected components of X*. Only those components that contain X5 or Xm
contribute, since for the other components the minimum is achieved by picking h constant.

© > O;: The lower bound is obtained from (3.3.16) by removing all transitions that do not
involve a protocritical droplet and a free particle that is moving. This removal gives

1
0 > i i - — g(z")]? 3.3.24
2 o asa 0 3 2 i) —al@f - (3a2)

- ARt _ oAt
5‘807‘;:0’9‘57£3ﬁ:(’1‘7‘(")’]*1’2’3’4’9‘6+A:1 z,xl €A

z~a!

where 97 denotes the set of good sites in 9~ CR(7}) and 8.7]'377’ j =1,2,3,4, denote the four
bars of bad sites in 9T CR(7)) (see Fig. 10). To see how this bound arises from (3.3.16), pick

h(n) = h(n,z) = g(x), HeD, e AT\, (3.3.25)

and use Proposition 2.3.10(ii) to match the boundary conditions in (3.3.16) (recall the de-
composition in (3.3.9)). Note that z € 9T A in n = (1), z) corresponds to 1 € D (i.e., the free
particle at z is outside A), while z € 95 corresponds to n € C%(7}) UCP(#). The right-hand
side of (3.3.24) may be further bounded below by 01, because the latter has less stringent
boundary conditions.

© < 0y The upper bound is obtained from (3.3.16) by picking C; = 0,47 =1,....I, and

1 for n € A,
h(n) =< g(z) forneC'T, (3.3.26)
0 forn e X*\ [XnUCTT],

where
Ct ={n=,2): €D,z A\ R ()} (3.3.27)

This choice satisfies the boundary conditions in (3.3.16), because
cttcc* and C*N[XmU (UL, X)) =0. (3.3.28)

By Proposition 2.3.10(ii), D C X, so that h(n) = 1 for n = (), z) with € D and z € 0T A,
which is consistent with the boundary condition g|z+, = 1 in (3.3.23). Moreover, h(n) = 0
for n = (7, z) with ) € D and z € CRTT (7)), which is consistent with the boundary condition
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9|CR++(77) = 0 in (3.3.23) with F = CR™" (7). Note that, by Proposition 2.3.7, the only
transitions in X* between A and C* are those where a free particle is entering at 9~ A. Hence,
there are no transitions between Xm and X* \ [Xg U CT']. Also note that, by Proposition
2.3.8(i-ii), the only transitions in X* between C™ and X* \ [X5 UCT*] are those where the
free particle moves to distance 1 from the protocritical droplet. Thus, (3.3.23) includes all the
relevant transitions. Q

Propositions 3.3.3 3.3.4 complete the proof of the first half of Theorem 1.4.4, with K
identified as K = 1/0 with © defined in (3.3.16) and bounded in (3.3.22). The second half,
i.e., the exponential limit law in (1.4.7), follows from Bovier, Eckhoff, Gayrard, and Klein [5],
Theorem 1.3(iv).

The capacity defined in (3.3.23) is the capacity of the pair {07 A, D} for continuous-time
simple random walk on A" where transitions between sites occur at rate 1. In Section 3.4 we
will show that ©; and ©, have the same asymptotics for A — Z2.

3.4 Capacity asymptotics: Proof of Theorem 1.4.5

As A — Z2, the capacities CAPA" (9T A, CR(7)) and CAPAN" (8T A, CRTF (7)) tend to zero in a
way that depends neither on the shape of the protocritical droplet 7) nor on its location in A,
provided it is far from 0 A:

Lemma 3.4.1 Write A = By = [-M,+M]|>N7Z2. For any e > 0,

log M
lim  max | —2 cAPPU(9T By, CR()) — 1| = 0 (3.4.1)
M—oc nED s
d(d+T By, 1)>eM
and low 1
lim  max | —22 CAP P (9T By, cRYT () — 1] =0, (3.4.2)
M—o0 neD s

d(0T By . 7)>eM
where d(0T By,n) = min{|z — y|: x € 0T By, y € 7}
Proof. Let us first prove (3.4.1). For ) € D, let y € By, denote the center of CR(7).

The capacity decreases when we enlarge the set over which the Dirichlet form is minimized.
Therefore we have

CAP Bt (97 By, CR(7)) > CAP Bar (9 Byy,y) > CAP P2n (97 Byy, 0). (3.4.3)

According to Révész [12], Lemma 22.1, we have

2
CAPB;M(@“"BQM’O) = 4Py (Ty+ B, < T0) ~ m M — oo, (3.4.4)

where [P is the law on path space of the discrete-time simple random walk on Z? starting at
0. This proves the desired lower bound. The factor 4 arises because for the continuous-time
simple random walk underlying our capacities all transitions occur at rate 1.

Similarly, by monotonicity we have

CAP By (97 Byy, CR(7)) < CAP B (9% By, Su.(y)) < CAPBov (9% Boyr, S, (0)),  (3.4.5)
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where Sy, (y) is the £, x £, square or (£, —1) x (£.+ 1) rectangle centered at y containing CR(7}),
and the last inequality uses that d(9% By, 7)) > eM. By the recurrence of simple random walk,
we have

CAP B (04 Bops, Su,(0)) ~ CAP B (9% BLpr,0) M — . (3.4.6)

Therefore the desired upper bound follows from (3.4.4).
The proof of (3.4.2) is similar. @

Combining (3.3.22) and Lemma 3.4.1, we find

O =0(EM)+ S CAPPU(9" B, CR(7))

d(5+ﬂﬁz\i€i)st
=0(M) + 102g—7TM {n € D: d(8+BM7ﬁ) > eM}|[1+ o(1)] (3.4.7)
= O(eM) + 10273\4 N(£)[(1 = )M [1 4+ o(1)]

and the same expression for ©9 (recall that N (4.) is defined to be the cardinality of D modulo
shifts). Let M — oc followed by e | 0, to conclude that © ~ (27/log M)N (£.)M?. Since
|A| = M? and K = 1/0, this proves the claim in Theorem 1.4.5 after we prove the formula
for N(£.) stated in (1.4.9). This is done in Lemmas 3.4.2-3.4.3 below.

REMARK: The asymptotics in Lemma 3.4.1 shows that © ~ 43"\ Py (7544 < 75) as A — 72
(recall (3.4.4)). In van den Berg [2] this sum is studied in more detail and for more general
domains than the square box A.

Lemma 3.4.2 [D| = (¢l — 1)€.(. + 1) (£, + 2).

Proof. We have to count how many different shapes the clusters in D can take on (recall
Fig. 3). Return to Theorem 1.4.1. We will do the counting by starting from an £, X £. square
and counting in how many ways ¢, — 1 particles can be removed from the four bars. We will
split the counting according to the number k = 1,2, 3,4 of corner particles that are removed.

k = 1: There are 4 choices for the one corner. Let mq, mj_ denote the number of particles
that are removed in the two directions away from the corner. Then m y,m_; > 0 and
my1+m_1 = €. — 2. There are £, — 1 ways to choose these. Therefore the contribution to
|D| is 4(£. — 1).

k =2: There are 6 choices for the two corners. Let miy,mj_ and meo,,mo_ denote the
number of particles that are removed in the two directions away from the two corners. Then
my1,m_1,mar,mo_ > 0and mig +m_1+moy +mo_ = ¢, — 3. There are (£, — 1)(¢. — 2)
ways to choose these. Therefore the contribution to |D] is 6(4, — 1)(4. — 2).

k =3: There are 4 choices for the three corners. A similar argument as above shows that

there are (/. — 1)(f. — 2)(f. — 3) ways to remove £, — 4 particles in the two directions away

from the three corners. Therefore the contribution to [D| is 2(£. — 1)(£. — 2)(£. — 3).

k = 4: There is 1 choice for the four corners. There are (. — 1)(£. — 2)(£, — 3)(£. — 4) ways
to remove /. — 5 particles in the two directions away from the four corners. Therefore the
contribution to [D| is §(£c — 1)(£. — 2) (£ — 3)(£c — 4).

Sum the contributions to get the claim. V)
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Lemma 3.4.3 |D| = L(¢. — 2)(, — 1)e(4 +1).

Proof. Similar. Start from an (£, —1) x (¢, + 1) rectangle and count in how many ways £, —2
particles can be removed from the four bars. The answer is the same as in Lemma 3.4.2 with
£, — 1 replaced by £, — 2. Q@

It follows from Lemmas 3.4.2 3.4.3 that N(£,) = |D| = |D| + |D| = +(¢, — 1)62(¢, + 1), a
claimed in (1.4.9).

1
3

3.5 Gate for the nucleation: Proof of Theorem 1.4.3

(i) We saw in Proposition 2.3.8(ii) that the configuration consisting of an (¢, — 1) x £, quasi-
square plus a dimer at distance 1 is a dead-end in S(CJ, M). Therefore S(C, M) 2 G(O, M),
which is the first part of Theorem 1.4.3(i).

To prove the second part of Theorem 1.4.3, we first prove that G(CI, M) D C*. This needs
some argument, because although we know that C* is a gate it is not a minimal gate. We
have to show that for all n € C* there exists a minimal gate W containing 7. To do so we first
need some definitions.

For n € C*, let € D be the configuration obtained from 7 by removing the free particle.
For A C A and =z € A, let d(z, A) denote the lattice distance between z and A. Define,
recursively,

Bii) = {z € A: o g, dmi) = 1) (35.1)
and
Ba(i) = {z € As & &, dlo B (1) = 1) 559
By(1) = Ba(n),
and
By(i) = o € A & & By(i) A~ dia, Byi)) = 1) .
B (i7) = B3 (1) U [Ba(77) N 9~ Al a
and, for s =4,5,...,
Bila) = (v € A & ¢ By o(a), dia. B () = 1}, 55
B;(A) = B;(H) U[Bi_1(n) N0~ Al -
Note that Bi(7) N9~ A = (). The following sets are minimal gates:
*:{UEC* :(f],’l’),f]ED,T€B7(ﬁ)},7:2,3,, (3.5.5)
Chpa={ne€C*:n=(7),7 €D, zecd A} a

The union of the minimal gates in (3.5.5) is equal to C*. Therefore indeed C* C G([1, ®). Note
that the minimal gates in (3.5.5) are not disjoint. For instance, if the protocritical droplet 7
is at distance 2 from 9~ A, then C3 and Cj_, have a non-empty intersection.

To complete the proof of the second part of Theorem 1.4.3, we must exhibit a configuration
in G(O, M) that is not in C*. For that we return to the proof of Proposition 2.3.9(ii), where
we exhibited a path from C? to M that does not exceed energy I'* and avoids C*. The
configurations with energy I'* visited by this path are elements of G(CJ, ).

(ii) We will show that there exist ¢ > 0 and C' < oo such that for all g,

Py (to < e+ < TmlTm < ) > 1= Ce P, (3.5.6)
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which implies (1.4.4). The proof goes as follows.
By (3.1.5), CAPg(0, M) = ug(0) cg(d, X \ O)Po(mm < 70) with pg(dd) = 1/Zg. From the
lower bound in Lemma 3.1.1 it therefore follows that

* 1
P > S R — 3.5.7
D(T. < 7’|:|) > le’ Cﬂ(D,X \ D) ( )
We will show that
* 1
. c SO I ) A — 3.5.8
D({’TQ<TC <7'.]},7'.<7'D)7026 CQ(D,X\D) ( )

Combining (3.5.7 3.5.8), we get (3.5.6) with C = Cy/C;.
In Proposition 2.3.7 we saw that any path from [J to B that does not pass first through
Q and then through C* must pass the set Vg, _1)32 2 S(O, W) in a configuration n with
H(n) > I'*. Therefore there exists a set S, with H(n) > I'* + § for all n € S and some § > 0,
such that
Po ({170 < 7e+ < T}, @ < 1) < P (15 < 1) . (3.5.9)

Now estimate, with the help of reversibility (recall (3.1.5 3.1.6)),

Mﬂ s(n, X\ n)
Py (15 < 1) ZPD Ty < T0) = Z DX\D)PH(TD<T77)
nes nGS (3 5 10)
1 1 x e
< PR AUV Qu—— ] Pl L
Cﬂ(D’X\D)nzG;S cg(0, 2\ 0)
Combine (3.5.9 3.5.10) to get the claim in (3.5.8) with Cy = |S].
(iii) Let 0~ C* be those configurations in C* where the free particle is in 9~ A. Write
0 (1, . =0 To-c- < 0) _
Po (e . =nlTo-cr <70) = o-c : coC. 3.5.11
0 My e = 0l79-c- < 0) O Pp— 7 ( )
By reversibility,
pa(n)cg(n, X\ n)
Po (nry_ o =15 To-cx <) = Py (10 < 79-c+)
( Ta—c ) NB(D)Cﬂ(DaX \ |:|) n (3 . 12)
—rep 8, X \n) o . .
Moreover,
cg(n.n’) . / s
P (7'|:| < Ta—c*) = ———h — *(T] ), YRS o C s (3513)
g 2 i o
nen’
where /
. n_ | O ity € 07C*,
hoo-ce (M) = { Py (Th < Tg-c+) otherwise. (3.5.14)
Because D C A by Theorem 2.3.10(ii), it follows from Lemma 3.3.1 that
min bty 5 c.(n') > 1 - Ce™*, (3.5.15)

n' €D
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Moreover, letting 3~ ~C* be the set of configurations obtained from d~C* by moving the free
particle from 9~ A to 9~ ~A =97 (A7), we have

max h . ..(n) < Ce P,
weo--cr 0C )= (3.5.16)
cg(n,n) <e®  V¥neoaCn¢DUI C e,

because removal of a particle from the protocritical droplet costs at least U. By restricting
the sum in (3.5.13) to n € D and inserting (3.5.15), we get

25(n, D
P, (75 < To-c-) > (1 — Ce %) e D\n) o (3.5.17)
cp(n, X\ n)
On the other hand, by inserting (3.5.16), we get
25(n, D
P, (10 < Ty-¢-) < e(m D\ n) +Ce P19 C* |+ e P|lX\ (DU CY), neaCr
cg(n, X\ n)
(3.5.18)

Next, we note that for all n € 9~ C*,

if the free particle in 9~ A sits in a corner,

s D\ o sy { (35.19)

cs(n, X \n)

N I

if the free particle in 9~ A sits not in a corner,

because moves of the free particle from 9~ A do not raise the energy (whether it stays in A or
exits A), while all other moves raise the energy by at least U. Combining (3.5.18-3.5.19), we

obtain ( \ )
- g\, Ui

P (15 < 750.) < (1 4+ Ce-08y BDPAT).

77( 3C) ( )Cﬂ(n,X\n)

Inserting (3.5.17) and (3.5.20) into (3.5.12), we deduce from (3.5.11) that

neoC (3.5.20)

cg(n, X\ n) Py(mo < 79-¢-)
ned=c* cg(n, X \ n) Py(m0 < 75-¢-)
cg(n, D\ n)
Zneafc* cg(n, D\ n)’

P (11r,_p. =0 | T9-c <) = 5
(3.5.21)

=1+ 0(e %) neoCr

Via (3.5.19) this proves the assertion in (1.4.5), because the free particle is created in 9~ A
twice as fast in a corner as not in a corner.

4 Extension to three dimensions

The extension of our results to three dimensions is in principle straightforward and involves
no new ideas. However, the geometry of the communication level set is more difficult and
we are unable to fully identify the set D. In Section 4.1 we look at the structure of S(CJ, H).
Section 4.2 gives the proof of Theorem 1.5.2, Section 4.3 of Theorem 1.5.3.

4.1 Structure of the communication level set

We use the notation of Section 1.5.
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Proposition 4.1.1 (den Hollander, Nardi, Olivieri, and Scoppola [8], Eq. (2.0.23) and Propo-
sition 3.3.1) ®(CJ, M) =T and S(T, M) D C*, with T'* and C* given by Definition 1.5.1(c-d).

Proof. The argument is similar as for d = 2. A key ingredient is the following fact, shown in
Alonso and Cerf [1], Theorem 3.5: the configurations consisting of a single (m, — 1) x (m., —
dc) X m, quasi-cube anywhere in A~ with, attached anywhere to one of its faces, an (£, — 1) x £,
quasi-square are the unique (modulo translations and rotations) minimizers of H in V,, 1.
The energy of these configurations is I'* — 2A + 2U, while all other configurations in V,,__1
have energy at least I'* — 2A + 3U > I' — A and therefore do not permit the creation of a
particle without exceeding energy I'*. Thus, all optimal nucleation paths must visit this set,
i.e., the analogue of Lemma 2.3.4 holds. Similarly, Lemmas 2.3.5 2.3.6 and Proposition 2.3.7
carry over. Q

Thus, the only difficult part in identifying the reduced graph X*, analogous to the one in
Theorem 2.3.10, is the explicit construction of the set D and the analogues of the sets C® and
C%, which remains open. Nonetheless, a few facts about D are easy to establish:

Proposition 4.1.2 For all ) € D,
(i) CR(7) is contained in a cube of side length m. + 1.
(11) CR(7) contains a cube of side length m. — [/mc |.

Proof. (i) In den Hollander, Nardi, Olivieri, and Scoppola [8], Proposition 5.2.1, it is shown
that
CR(7) = CR(f)  for all &, € D. (4.1.1)

Clearly, this is stronger than (i). For reasons of completeness we give the proof of (i).

Note that any configuration in D can, on either of its faces, have a protruding rectangle
with a 1-protuberance attached to it. Indeed, if we fix the number of particles sitting on top
of each of the faces of CR™ (7)), then it is clear that these “two-dimensional configurations on
a face” must minimize their energy. Obviously, none of them can have two 1-protuberances,
since detaching one l-protuberance (which costs 2U) and moving it next to the other 1-
protuberance (which pays 3U) would lead to a lowering of the energy. Moreover, if any of the
six clusters attached to the faces is not a rectangle, then none of the other clusters can have
a 1-protuberance, since detaching this 1-protuberance (which costs 2U) and moving it into a
corner of the cluster that is not a rectangle (which pays 3U) would lead to a lowering of the
energy.

From any configuration of the above form, if we detach the 1-protuberance and place it
on top of one of the rectangles in 9~ CR(7)), then we raise the energy to I'* — A + U. From
there, moving any particle except this 1-protuberance costs energy 2U and leads to an energy
exceeding ['*. Therefore all we can do is move the 1-protuberance around on top of the
rectangle, until finally we have to detach it again and re-attach it to CR™ (7).

(ii) All configurations in D have volume n, and are “minimal polyominoes”, i.e., among the
configurations with volume n, their surface is minimal. Pick 5 € D. Let j1,j9,73 be the
smallest integers such that 7 is contained in the j; X jo X 73 parallelepiped. Then 7 can be
obtained from this parallelepiped by removing j;j2j3 —n. unit cubes. By (4.1.1) and Definition
1.5.1(a), we have j;jaj3 — ne < m? — (b, — 1)f. — 1 (the bound corresponding to the case where
the (£, — 1) x £, quasi-square is attached to an m, x m, face). Since m. € {20, — 1,24}, it
follows that j17273 — n. < 3m?2/4. Thus, no more than 3m?/4 unit cubes need to be removed
from the parallelepiped to obtain 7.
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Next, according to Alonso and Cerf [1], Corollary 3.26, all minimal polyominoes can be
obtained from their circumscribing parallelepiped by removing a succession of bars, as many
as possible, and then removing a succession of corner cubes. In our case, by (4.1.1), each
bar has length either m,. — 1 or m,, so no more than m. bars and m. corner cubes can be
removed. But any such removal can only involve bars and corner cubes that lie in a layer of
thickness at most [,/m. | of CR(7}) (the bound corresponding to the case where the bars form

a parallelepiped with an [\/m. | x [/m. | face). @

REMARK: Recall from the remark made below (2.2.4) that in two dimensions a U-path can
shift the protocritical droplet. In contrast, (4.1.1) shows that in three dimensions a 2U-path
cannot (see [8], Section 5).

The two global geometric facts proved in Section 2.4 continue to holds in three dimensions
as well.

4.2 Average nucleation time: Proof of Theorem 1.5.2

Based on the information obtained so far, we can proceed to estimate ZgCAPg(C], M) in ex-
actly the same way as was done in Section 3.3 for two dimensions. Lemmas 3.3.1 3.3.2 and
Propositions 3.3.3-3.3.4 carry over verbatim. The resulting reduction of the Dirichlet form,
together with Proposition 3.2.3, proves the first half of Theorem 1.5.2. As before, the second
half follows from Bovier, Eckhoff, Gayrard, and Klein [5], Theorem 1.3(iv).

4.3 Capacity asymptotics: Proof of Theorem 1.5.3

By the transience of simple random walk in three dimensions,

lim CAPA" (97A, F) = cap?’(F) (4.3.1)
A—=73
exists for any finite nonempty F C Z3. The limit, which is positive and finite, is the capacity
of F. This proves Theorem 1.5.3. The bounds in (1.5.9) come from Proposition 4.1.2 in
combination with Proposition 3.3.4.
If F,, is a cube of side length m, then

APZY(F,
lim CAP” (Fum) _ K (4.3.2)

m—o0 m

with & the capacity of the unit cube for standard Brownian motion on R?. This explains
(1.5.11). Since 27 R is the capacity of the ball with radius R for standard Brownian motion
on R?, we have that k € (27,27/3) as claimed below (3.4.1).
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