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Abstract

SIMEX was introduced by Cook and Stefanski [6] as a simula-
tion type estimator in errors-in-variables models. The idea of the
SIMEX procedure is to compensate for the effect of the measure-
ment errors while still using naive regression estimators. Polzehl
and Zwanzig [13] defined a symmetrized version of this estima-
tor. In this paper we establish some results relating these two
simulation-extrapolation-type estimators to well known consistent
estimators like the total least squares estimator (TLS) and the mo-
ment estimator (MME) in the context of errors-in-variables mod-
els. We further introduce an adaptive SIMEX (ASIMEX), which
is calculated like SIMEX, but based on an estimated variance. The
main result of this paper is that SYMEX, ASIMEX are equiva-
lent to TLS. Additionally we see that SIMEX is equivalent to the
moment estimator.

1 Introduction

In [6] Cook and Stefanski introduced a new estimator in errors-in-variables models,

see also [11]. This estimator attained broad interest in the statistical literature

and has been extended for use in a wide range of measurement error models, see

e.g. [3], [1], [4], [5], [16], [10], [8], [12], [9], [15] and [2]. The idea behind this

simulation-extrapolation estimator (SIMEX) is to compensate for the effect of the

measurement errors while still using naive regression estimators. This is achieved

by studying the naive regression estimate as a function of error variance in the

predictor variables by simulation. Extrapolation to the unobservable case of zero

measurement variance is then used to construct the SIMEX estimator.

In Polzehl and Zwanzig [13] a symmetrized modification (SYMEX) of this idea

is proposed for the case of a multiple linear errors-in-variables model.

In this paper we establish some results relating both SIMEX and SYMEX to

well known consistent estimators like the moment estimator (MME) and the total

least squares estimator (TLS) in the context of linear functional relations.

We further introduce an adaptive SIMEX (ASIMEX), which is calculated like

SIMEX, but based on an estimated variance.

Our main result is that SYMEX, ASIMEX are equivalent to TLS. Additionally

we see that SIMEX is equivalent to the moment estimator. Both results essentially
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depend on the use of an appropriate model for extrapolation. We explicitely derive

this model, see (3.1).

The comparison with TLS and the moment estimator implies, in the linear

case, the consistency of all SIMEX estimators using (3.1) for n → ∞ and fixed

variances.

The paper is organized as follows. Section 2 introduces the model and the mo-

ment and total least squares estimators. In Section 3 we explain the construction

of simulation-extrapolation-type estimators. Theoretical results are established in

Section 4 while Section 5 is used to illustrate the results by a small simulation

study. Proofs of the theorems in Section 4 are deferred to an Appendix.

2 The model and estimators

Suppose that we have observations:

Z = ζ + ε (2.1)

where

Z = (Zil)i=1...n, l=0...p, ζ = (ζil)i=1...n, l=0...p, ε = (εil)i=1...n, l=0...p.

The measurement errors εil are i.i.d. with

Eεil = 0 , V ar(εil) = σ
2. (2.2)

Further we suppose a linear relationship between the expectations of Z

0 = ζα, α = (α0, ..., αp) , min
l

|αl| > 0 (2.3)

where the parameter α consists of one known and p unknown components. With

out loss of generality we set −1 for the known component of α. We require

Mζζ =
1

n
ζT ζ is positive definite for n > n0. (2.4)

There are p+ 1 different variants for the parameterization in (2.3), depending

which of the components is −1. Set

α(0) = (−1, β1, ..., βp)
T (2.5)
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and for l = 1, ..., p

α(l) =
(
α

(l)
0 , ..., α

(l)
l−1,−1, α

(l)
l+1, ..., α

(l)
p

)T
, α(l) = − 1

βl
α(0). (2.6)

The parameter of interest is

β = (β1, ..., βp)
T .

Note each parameterization in (2.5) and (2.6) corresponds to an explicite errors-

in-variables model, where Zl, the l
′th column of Z, is the ”response” variable and

the other rows of Z correspond to the ”predictor” variables, which are observed

with measurement errors. In the same way we can also consider naive regression

models

Zl = Z(−l)α
l
(−l) + εl, for l = 0, . . . , p, (2.7)

where αl(−l) is the parameter vector formed from α(l) in (2.6) by deleting α
(l)
l = −1

and where Z(−l) is the submatrix formed from Z by deleting the column Zl. In (2.7)

the l′th variable is considered as ”response” and the errors in the other ”predictor”

variables are ignored.

Consider the data matrix:

MZZ
(p+1)×(p+1)

=
1

n
ZTZ (2.8)

The notation MZZ coincides with Fuller (1986) , [7]. We can compose the data

matrix MZZ by the different adjunct matrices

M(−l)(−l)
p×p

= ZT
(−l)Z(−l) (2.9)

Mll
1×1

= ZT
l Zl, M(−l)l

p×1

= ZT
(−l)Zl Ml(−l)

1×p

= ZT
l Z(−l). (2.10)

For l = 0 we get, again using the notation of Fuller (1986) , [7],

M00 =MY Y , M(−0)(−0) =MXX , M0(−0) =MY X , M(−0)0 =MXY . (2.11)

The naive least squares estimator α̂(l) related to the ”wrong” regression model in

(2.7) is given by

α̂l(−l) =M
−1
(−l)(−l)M(−l)l, α̂

l
l = −1. (2.12)

Thus we get (p+ 1) different naive estimators for β

β̂naive,l =
α̂l(−0)

α̂l0
, l = 0, ..., p. (2.13)
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Note that for l = 0 we have the ”traditional” naive least squares estimate

β̂naive,0 =M−1
XXMXY . (2.14)

The total least squares (TLS) estimator β̂TLS is the maximum likelihood esti-

mator under Gaussian error distribution in (2.2). Following [7] we get

β̂TLS = (MXX − λmin (MZZ) I)
−1MXY (2.15)

for the TLS estimator,

σ̂2 =
n

n− pλmin (MZZ) (2.16)

for a variance estimator and

β̂MME =
(
MXX − σ2I

)−1
MXY (2.17)

for the moment estimator.

3 SIMEX Methods

Each SIMEX procedure consists of three main steps:

1. Simulation: Generate new samples with successive higher measurement

error variances by adding pseudo errors to the original observations.

2. Model fit: Adapt a parametric model which describes the relationship be-

tween estimates and error variances.

3. Extrapolation: Determine the length of the backwards step relating to a

theoretic sample with measurement error variance zero.

In the original paper of Cook Stefanski the SIMEX procedure is introduced for

every component of the parameter βl separately. In step 1 they add pseudo errors

only on the corresponding variable Xl. In step 2 they consider a linear, a quadratic

and a nonlinear model. For justifying the backwards step in 3 they require the

knowledge of the variance of the measurement error in Xl.

In difference to this we propose a simulatenous estimation of all parameters

components in all SIMEX methods.
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3.1 SIMEX and ASIMEX

We perform the steps 1-3 for improving the naive estimator β̂naive,0 given (2.14)

related to model (2.7) with l = 0 .

1. Simulation

This step is carried out for every λ out of a set {λk; k = 0, ..., Ns} , with

λ0 = 0.

(a) Generate independent pseudo measurement errors
√
λε∗b,i,j with ε

∗
b,i,j ∼

N(0, 1), b = 1, ..., B, i = 1, ..., n, j = 1, ..., p, and add them to Xij :

Xb,i,j (λ) = Xij + λ
1/2ε∗b,i,j

(b) Define the new observation matrices Zbj(λ) using Xb,i,j (λ) instead of

Xij . Thus the new data matrix is

MZZ (λ) =
1

n B

∑
i,b

Zib(λ)Zib(λ)
t

and calculate the naive estimator β̂naive,0 (λ) =M
−1
XX (λ)MXY (λ).

2. Model fit

Define the parametric model that relates the expectation of the naive esti-

mates to λ as

β (λ, θ) = (MXX + λIp)
−1 θ, (3.1)

with parameter θ ∈ R
p. Fit this model by

θ̂ = argmin
Ns∑
k=0

∥∥∥ β̂naive,0(λk)− β(λk, θ)∥∥∥2

. (3.2)

3. Extrapolation

The backwards step for the SIMEX estimator is given by the known mea-

surement error variance σ2 . Define the SIMEX estimator as

β̂SIMEX = β(−σ2, θ̂). (3.3)

The ASIMEX estimator applies the variance estimator λmin (MZZ) , see

(2.16), instead of σ2 :

β̂ASIMEX = β(−λmin (MZZ) , θ̂). (3.4)



6 SIMEX and TLS: An equivalence result

3.2 SYMEX

The main idea is to apply the first two steps of SIMEX to all naive estimators given

in (2.13). Then the backward step is determined by the λ∗, where all estimators

deliver the same result.

1. Simulation step

In contrast to he SIMEX procedure in subsection 3.1 the simulation step is

carried out is carried out for all (p + 1) models in (2.7). Note, the pseudo

errors are only added to the ”predictor” variables in the respective model.

Define the projection matrix Pl,

Pl =


0 .0

1
. . .

0.. ..0

 . (3.5)

with all except the l’th diagonal element being zero.

(a) For every λ ∈ {λk; k = 0, ..., K} generate new samples by adding pseudo

measurement errors

Zib(λ) = Zi + (I − Pl)λ1/2ε∗ib, i = 1, ..., n, b = 1, ..., B, (3.6)

with independent pseudo errors ε∗ij ∼ P ∗ = Np+1(0, I).

(b) Calculate the (p+ 1)× (p+ 1) data matrix

MZZ (λ) =
1

n B

∑
i,b

Zib(λ)Zib(λ)
T (3.7)

and the naive estimators related to (2.12)

α̂lnaive,(−l) (λ) =M(−l)(l) (λ)
−1M(−l)l (λ) , α̂

l
naive,l (λ) = −1,

where the decomposition ofMZZ (λ) into Mll (λ) ,M(l)(−l) (λ) ,M(−l)(l) (λ)

and M(−l)(−l) (λ) is defined analogously to (2.9) and (2.10).

2. Model fit

In difference to the SIMEX procedure we now have two tasks: model fit and

reparametrization.
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(a) Apply the model fit step of subsection 3.1 to all naive estimators. In-

troduce αl(λ, θ) by

αl(−l)(λ, θ) = (M(−l)(−l) + λIp)
−1θ and αll(λ, θ) = −1, (3.8)

with parameter θ ∈ Rp . Fit this model by

θ̂(l) = argmin

Ns∑
k=0

∥∥α̂l(λk)− αl(λk, θ)∥∥2
. (3.9)

(b) Retransform the parameterization analogously to (2.13) and define

β̂l (λ) =
−1

αl0(λ, θ̂(l))
αl(−0)(λ, θ̂(l)), l = 0, ..., p. (3.10)

3. Extraploation

Determine, for λmin = minl λmin(M(−l)(−l)), an optimal value λ∗ for the ex-

trapolation step by

λ∗ = arg min
λ∈(−λmin,0]

p∑
l=0

p∑
m=l+1

||β̂l(λ)− β̂m(λ)||2. (3.11)

Define the SYMEX estimator by

β̂SYMEX =
1

p+ 1

p∑
l=0

β̂l(λ∗). (3.12)

4 Theoretical Results

Let us summarize the model assumptions (2.1), (2.2), (2.3), (2.4), under M. The

following condition C for the original observations Z is needed.

Condition C: The observations Z fulfill the condition C iff MZZ is positive

definite,

λmin (MZZ) > 0

and all components of the total least squares estimator in (2.15) are not zero,

β̂TLS,j �= 0 , for all j = 1, ..., p.
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Note that under M the total least squares estimator is consistent and the proba-

bility, that the observations fulfill the condition C, is tending to one for increasing

sample size.

All theoretical results of this section are obtained, conditionally on the obser-

vations Z, with respect to the distribution of the pseudo errors P ∗. We denote a

sequence r(Z (λ)) (possibly vector valued) by oP ∗(1) iff it converges in probability

P ∗ for B → ∞ to zero for all fixed observations Z.

Theorem 4.1 Under the assumptions M and C it holds that

1. λ∗ = −λmin (MZZ) + oP ∗(1)

2. the estimators β̂SYMEX , β̂ASIMEX, β̂TLS are the same up to a term of order

oP ∗(1).

Theorem 4.2 Under the assumptions M and C it holds

β̂SIMEX = β̂MME + oP ∗(1).

The proofs are deferred to the Appendix.

5 Numerical results

We illustrate the results from Theorem 4.1 and 4.2 using a small simulation. We

generate data according to equations (2.3) and (2.5) with p = 2, β = (2, .5) and

ζ(−0) ∼ Np,50(0p, Ip). Errors in equation (2.1) are generated as i.i.d. Gaussian ran-

dom variables, i.e. εil ∼ N(0, 0.5). Results are based on 250 simulated examples.

Figure 1 shows pairwise plots of the estimates of the second component of the

parameter β obtained by SIMEX (3.3), MME (2.17), SYMEX (3.12), ASIMEX (3.4)

and TLS (2.15). The upper triangular plots show estimates obtained with B = 50

while the plots below the diagonal reflect results for B = 2.

Figure 1 clearly illustrates the relations between SIMEX and MME and between

ASIMEX, SYMEX and TLS. Additionally, due to its symmetric construction,

SYMEX seems to provide a good approximation of TLS already for B = 2 while

SIMEX requires larger values of B for a good approximation of MME. Note that

ASIMEX uses extrapolation to approximate TLS while SYMEX can be viewed

as an approximation to ASIMEX by estimating the length of the extrapolation
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Figure 1: Pairwise plots of SIMEX, MME, SYMEX, ASIMEX and TLS estimates
of β2 = .5. The upper triangular plots show estimates obtained with B = 50 while
the lower triangular plots provide results for B = 2

step λ∗. This is reflected by a slightly weaker correlation between SYMEX and

TLS compared to the correlations between SYMEX and ASIMEX and between

ASIMEX and TLS.

Figure 2 provides scatterplots of λ∗, obtained for B = 2, 5 and 50 against

−λmin(MZZ). The plots clearly indicate that λ∗ is a simulative approximation to

−λmin(MZZ) with improving quality as B grows.

Table 1 provides results of our simulation in terms of Mean Squared Error

(MSE) for the five estimates depending on the size B of the simulation experiment

as observed in our simulations. We also give the mean squared distance of SIMEX,

ASIMEX and SYMEX to both the MME and TLS estimates in order to illustrate
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Figure 2: Scatterplots of (λ∗,−λmin(MZZ)) (B = 2, 5 and 50 from left to right).

the effect of B. The results are in complete agreement with our Theorems 4.1

and 4.2.

Table 1: Mean Squared Error of MME, TLS, SIMEX, ASIMEX and SYMEX and
mean squared difference of SIMEX, ASIMEX and SYMEX to MME and TLS
βl Criterion B MME TLS SIMEX ASIMEX SYMEX
β1 = 2 MSE 2 0.0688 0.0398 0.0672 0.0398 0.0401

5 0.0682 0.0399 0.0401
20 0.0687 0.0398 0.0398
50 0.0686 0.0397 0.0397

|β̂ − β̂MME|2 2 0 0.0180 2.0e-04 0.0185 0.0185
5 5.3e-05 0.0181 0.0180
20 1.0e-05 0.0182 0.0182
50 3.4e-06 0.0181 0.0181

|β̂ − β̂TLS|2 2 0.0180 0 0.0173 9.4e-05 1.8e-04
5 0.0179 4.2e-05 8.7e-05
20 0.0181 8.3e-06 1.3e-05
50 0.0180 2.8e-06 6.1e-06

β2 = 0.5 MSE 2 0.0442 0.0390 0.0484 0.0406 0.0419
5 0.0429 0.0380 0.0379
20 0.0436 0.0384 0.0384
50 0.0448 0.0391 0.0392

|β̂ − β̂MME|2 2 0 0.0022 0.0050 0.0028 0.0036
5 1.4e-03 0.0027 0.0031
20 3.7e-04 0.0023 0.0024
50 1.1e-04 0.0021 0.0022

|β̂ − β̂TLS|2 2 0.00215 0 0.0066 6.9e-04 0.0015
5 0.0032 3.0e-04 6.8e-04
20 0.0025 8.6e-05 1.6e-04
50 0.0024 2.8e-05 5.8e-05
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6 Appendix

We now provide the proofs of Theorem 4.1 and 4.2. Similar results, obtained using

a different argumentation can be found in [14].

First let us recall a general result for minimizing quadratic forms. Let A =

(Alk)l,k=0...p be a nonnegative definite (p + 1) × (p + 1) matrix composed by the

different adjunct matrices

A(−l)(−l)
p×p

= (Ahk)h,k=0...p,h �=l,k �=l , All
1×1
,

A(−l)l
p×1

= (Ahl)h=0...p,h �=l , Al(−l)
1×p

= (Alk)k=0...p,k �=l .

Further let γ(0), ..., γ(p) be the eigenvectors to the eigenvalues λ0, ..., λp of A, where

λ0 ≤ λ1 ≤ ... ≤ λp. Under γ(0)l �= 0 for normalized quadratic forms it holds:

x̂norm = arg min
x,xl=−1

xTAx

‖x‖2 = − 1

γ(0)l

γ(0).

Consider now the nonnormalized quadratic form.

x̂ = arg min
x,xl=−1

xTAx.

Lemma 6.1 1. Assume A(−l)(−l) is positive definite. Then

x̂(−l) = A
−1
(−l)(−l)A(−l)l.

2. Assume λ0 > 0 . Then

x̂ = − 1

cll

p∑
i=0

γ(i)l

λi
γ(i), with cll =

p∑
i=0

1

λi

(
γ(i)l

)2
3. Assume λ0 = 0 and γ(0)l �= 0. Then

x̂ = − 1

γ(0)l

γ(0).

Proof:

1. For all x with xl = −1 we have

xtAx = All − 2Al(−l)x(−l) + x
T
(−l)A(−l)(−l)x(−l).

Thus x̂(−l) = A
−1
(−l)(−l)A(−l)l.
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2. Under λ0 > 0 the inverse matrix A−1 exists. Denote the respective adjuncts

of A−1 by A(−l)(−l), A(−l)l, Al(−l), All . It holds

A(−l)l = −A−1
(−l)(−l)A(−l)lA

ll.

Hence x̂(−l) = A
−1
(−l)(−l)A(−l)l = − 1

AllA
(−l)l. Further

A(−l)l =

p∑
i=0

γ(i)l

λi
γ(i)(−l), A

ll =

p∑
i=0

1

λi

(
γ(i)l

)2
= cll,

so

x̂(−l) = − 1

cll

p∑
i=0

γ(i)l

λi
γ(i)(−l), x̂l = −1,

which gives the statement.

3. Under λ0 = 0 we have for γ(0)l �= 0

0 ≤ min
x,xl=−1

xTAx ≤ 1

γ(0)l

γT(0)Aγ(0) = λ0 = 0.

�

Applying Lemma 6.1 , if all necessary inverses exist, we get

α̂lnaive,(−l) (λ) = arg min
α(−l),αl=−1

αtMZZ (λ)α =M(−l)(−l) (λ)
−1M(−l)l (λ) (6.1)

β̂TLS = arg min
α(−0),α0=−1

αtMZZα

αtα
= − 1

γ(0)0

γ(0)(−0). (6.2)

Now we study

αl(−l)(λ) = arg min
α(−l),αl=−1

αt (MZZ + λI)α = (M(−l)(−l) + λIp)
−1M(−l)l (6.3)

Lemma 6.2 Under the assumptions M and C for all λ ∈ [0, C] holds

α̂lnaive (λ) = α
l(λ) + oP ∗(1) .

Proof: First we show that

MZZ (λ) =MZZ + λ(I − Pl) + oP ∗(1). (6.4)
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From (3.7) with (3.6) we obtain

MZZ (λ) =
1

n B

∑
i,b

(
Zi + (I − Pl)λ1/2ε∗ib

) (
Zi + (I − Pl)λ1/2ε∗ib

)t
= MZZ + λ1/2(I − Pl) 1

n

∑
i

(
ε∗iZ

t
i + Ziε

∗t
i

)
+λ(I − Pl) 1

n

∑
i

(
1

B

∑
b

ε∗ibε
∗t
ib

)
(I − Pl).

Because of

ε∗i =
1

B

∑
b

ε∗ib = oP ∗(1)

and
1

B

∑
b

ε∗ibε
∗t
ib = I + oP ∗(1),

we get for idempotent (I − Pl) the result (6.4). From (6.4) we obtain that

M(−l)(−l) (λ) =M(−l)(−l) + λIp + oP ∗(1)

and

M(−l)l (λ) =M(−l)l + oP ∗(1).

Under C for λ ∈ [0, C] the matrix M(−l)(−l) + λIp is positive definite. Then for

sufficient large B the matrix M(−l)(−l) (λ) is positive definite too. The statement

follows from (6.1) and (6.3). �

Lemma 6.3 Under the assumptions M, C and for all λ > −λmin(M(−l)(−l)) it

holds that

αl(λ, θ̂(l)) = α
l(λ) + oP ∗(1). (6.5)

Proof: We have in (3.9):

θ̂(l) = argmin
Ns∑
k=0

∥∥α̂l(λk)− (M(−l)(−l) + λkIp)
−1θ
∥∥2
.

Because Lemma 6.2 and (6.3):

Ns∑
k=0

∥∥α̂l(λk)− (M(−l)(−l) + λkIp)
−1θ
∥∥2

=
Ns∑
k=0

∥∥αl(λk)− (M(−l)(−l) + λkIp)
−1θ + oP ∗(1)

∥∥2

=
(
θ −M(−l)(l) + oP ∗(1)

)t Ns∑
k=0

(M(−l)(−l) + λkIp)
−2 (θ −M(−l)(l) + oP ∗(1)

)
.
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Hence

θ̂(l) =M(−l)(l) + oP ∗(1)

and (6.5) follows from (3.8). �
Proof of Theorem 4.1:

First we show that λ∗ = −λmin (MZZ) + oP ∗(1) . λ∗ is defined in (3.11) as

fixpoint, where all renormalized estimators are equal:

αl(−0)(λ
∗, θ̂(l))

αl0(λ
∗, θ̂(l))

=
αk(−0)(λ

∗, θ̂(k))

αk0(λ
∗, θ̂(k))

, l, k,= 0, ..., p

Use Lemma 6.3 we get

αl(−0)(λ, θ̂(l))

αl0(λ, θ̂(l))
=
αl(−0)(λ)

αl0(λ)
+ oP ∗(1). (6.6)

Compare now the leading terms in (6.6).

First assume λmin(MZZ + λI) > 0.

That is λmin(MZZ+λI) = λmin(MZZ)+λ and λ > −λmin(MZZ). From Lemma

6.1 follows that

α0(λ)

αll(λ)
= − 1

c0l

p∑
i=0

γ(i)l

λi
γ(i), c0l =

p∑
i=0

γ(i)0γ(i)l

λi
,

where γ(0), ..., γ(p) are the eigenvectors to the eigenvalues λ0, ..., λp of MZZ + λI.

Then the fixpoint equation for the leading terms is

− 1

c0l

p∑
i=0

γ(i)l

λi
γ(i) = − 1

c0k

p∑
i=0

γ(i)k

λi
γ(i) for all l, k = 0, ..., p. (6.7)

That is
γ(i)l

c0l
=
γ(i)k

c0k
for all i, l, k = 0, ..., p .

Specifically we have

p∑
l=0

γ2
(i)l =

p∑
l=0

c20l

(
γ(i)k

c0k

)2

for all i, k = 0, ..., p.

The eigenvectors are orthonormal such that
∑p

l=0 γ
2
(i)l = 1 and therefore

γ(i)k =
c0k√∑p
l=0 c

2
0l

for all i, k = 0, ..., p.

This implies a linear dependence between the eigenvectors, which is a contradic-

tion. There is no solution of (6.7) for λ > −λmin(MZZ).
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We now consider the case:λmin(MZZ + λI) = 0 . Because of C we get

λmin(MZZ) > 0. Thus λmin(MZZ + λI) = λmin(MZZ) + λ = 0, implies λ =

λ∗∗ = −λmin(MZZ). We conclude from Lemma 6.1 that

αl(λ∗∗)
αl0(λ

∗∗)
= − 1

γ(0)0

γ(0) (6.8)

where γ(0) is the eigenvector of MZZ + λ∗∗I belonging to the zero eigenvalue.

That means λ∗∗ = −λmin(MZZ) is the solution of the fixpoint equation with λ ∈
[−λmin(MZZ), 0] . Hence

λ∗ = −λmin (MZZ) + oP ∗(1). (6.9)

Let us now compare the estimators: Comparing (6.3) with (2.15) it holds

β̂TLS =
αl(−0)(λ

∗∗)

αl0(λ
∗∗)

for all l = 0, ..., p.

Because of (3.4) and Lemma 6.2 we have

β̂ASIMEX =
α0

(−0)(λ
∗∗, θ̂(l))

α0
0(λ

∗∗, θ̂(l))

=
α0

(−0)(λ
∗∗)

α0
0(λ

∗∗)
+ oP ∗(1)

= β̂TLS + oP ∗(1)

From (3.12), (6.9) and Lemma 6.2 we obtain

β̂SYMEX =
1

p+ 1

p∑
l=0

αl(−0)(λ
∗, θ̂(l))

αl0(λ
∗, θ̂(l))

=
1

p+ 1

p∑
l=0

αl(−0)(λ
∗)

αl0(λ
∗)

+ oP ∗(1)

=
1

p+ 1

p∑
l=0

αl(−0)(λ
∗∗)

αl0(λ
∗∗)

+ oP ∗(1)

= β̂TLS + oP ∗(1).

Proof of Theorem 4.2:

The SIMEX estimator is defined in (3.8) by

β̂SIMEX = α0
(−0)(−σ2, θ̂(0)).
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Thus by Lemma 6.3

β̂SIMEX = α0
(−0)(−σ2) + oP ∗(1),

where α0
(−0) is given in (6.3). Using (2.17) and (2.11) for l = 0 we obtain

α0
(−0)(−σ2) =

(
MXX − σ2I

)−1
MXY = β̂MME.
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