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AbstractWe consider nonlinear estimation methods for statistical inverse prob-lems in the case where the operator is not exactly known. For a canonicalformulation a Gaussian operator white noise framework is developed. Twodi�erent nonlinear estimators are constructed, which correspond to the dif-ferent order of the linear inversion and nonlinear smoothing step. We showthat both estimators are rate-optimal over a wide range of Besov smoothnessclasses. The construction is based on the Galerkin projection method andwavelet thresholding schemes for the data and the operator.1 Introduction1.1 Linear inverse problems and ill-posednessWe consider the usual statistical formulation of a linear inverse problem: givena domain D � Rd, an unknown object of interest f 2 L2(D) is to be recoveredfrom g" = Kf + " _W; (1.1)where g" is the data, K is a known linear operatorK : L2(D)! L2(Q);Q is a domain in Rq and _W is a Gaussian white noise on L2(Q). We assess thequality of recovery of an estimator f̂ byR(f̂ ; f) := E �kf̂ � fk2L2(D)�; (1.2)E [�] denoting expectation. In most interesting cases K�1 does not exist as abounded linear operator and the crude estimate f̂" := K�1(g") is not feasiblewithout further regularisation: the estimation problem (1.1) is ill-posed. For areview of the concept in statistics and numerics see e.g. Nu�baum and Pereverzev[27], Whaba [32], Engl et al. [17].Among the most popular regularization methods, we mention the singular valuedecomposition or SVD (Johnstone and Silverman [23], Mair and Ruymgaart [26],and projection methods (Dicken and Maass [13], Math�e and Perverzev [25]) to-gether with their nonlinear counterparts (Cavalier and Tsybakov [5], Cavalieret al. [7], Tsybakov [31], Goldenshluger and Pereverzev [20], Efromovich andKolchinskii [16]), including wavelet approaches (Donoho [14], Abramovich andSilverman [1], Cohen et. al. [10], Johnstone et al. [22], Antoniadis and Bigot[2]). The main diÆculty for the statistician is whether the chosen representa-tion should be optimally adapted to K (by using the eigenfunctions in the SVD)1



or rather to f and g" (by using projection on approximation spaces). Within achosen framework, classical smoothing and regularisation techniques can then beapplied, e.g. penalisation (Tychonov regularisation, ridge regression) or �ltering(Pinsker or block constant weights, series truncation).This paper addresses the problem (1.1) when, in addition, the acting operatorK is not known exactly. In this context, we do not have access to the exactsingular value decomposition of K. Moreover, we want to provide a spatiallyadaptive estimator f̂ of f . To circumvent both diÆculties, we propose the useof projection methods based on nonlinear wavelet decompositions. The scienti�cinterest of this generalization ranges from technical applications over numericaldiscretisations to statistical inference, more in Section 2 below.1.2 Linear inverse problems with error in the operatorThe statistical model. We do not have access to K exactly, but rather toKÆ = K + Æ _B: (1.3)The process KÆ is a blurred version of K, polluted by a Gaussian operator whitenoise, at level Æ > 0. There are basically two ways of interpreting (1.3):� The operator K acting on f is unknown and treated as a nuisance parame-ter. However, preliminary statistical inference about K is possible, with anaccuracy governed by Æ. Thus (1.3) is viewed as a limiting experiment forK and can be incorporated to our dataset. More in the examples of Section2.� For experimental reasons (numerical errors or systematic de�ciency of mea-suring devices) we do not have access to K exactly, but rather toKÆ. In thiscontext, the error level Æ can be linked to the accuracy of supplementaryexperiments or training data. See Efromovich and Kolchinskii [16] for anelaboration of this approach and the examples in Section 2.Finally, our statistical model is given by the observation of (1.1) together withthe supplementary data (1.3): we observe (g"; KÆ) withg" = Kf + " _W; KÆ = K + Æ _B: (1.4)Asymptotics are taken as Æ; " ! 0 simultaneously. The interplay between Æ and" is crucial to understand Model (1.4). At �rst glance, if Æ � " one expects toapproximately recover Model (1.1). On the other hand, we will see that recoveringf is a completely di�erent issue if " � Æ. Even when the error in the signaldominates, the fact that Æ 6= 0 has to be handled carefully.Gaussian operator white noise. In rigorous probabilistic terms, observablequantities take the formhg"; ki := hKf; kiL2(Q) + "h _W; ki 8 k 2 L2(Q)and hKÆh; ki := hKh; kiL2(Q) + Æh _Bh; ki; 8 (h; k) 2 L2(D)� L2(Q):2



The mapping k 2 L2(Q) 7! h _W; ki de�nes a centred Gaussian linear form, withcovariance E [h _W; k1ih _W; k2i] = hk1; k2iL2(Q); k1; k2 2 L2(Q):Likewise, (h; k) 2 L2(D)� L2(Q) 7! h _Bh; ki de�nes a centred Gaussian bilinearform with covarianceE [h _Bh1; k1ih _Bh2; k2i] = hh1; h2iL2(D)hk1; k2iL2(Q):In particular, if (hi)i>1 and (ki)i>1 form orthonormal bases of L2(D) andL2(Q), respectively, the in�nite vector (h _W; kji)j>1 and the in�nite matrix(h _Bhi; kji)i;j�1 have i.i.d. standard Gaussian entries. Alternatively, the law of_B is centred Gaussian and characterised by its reproducing kernel Hilbert spaceHS(L2(D); L2(Q)), the space of Hilbert-Schmidt operators. Yet another descrip-tion of the operator white noise is given by stochastic integration using a Brow-nian sheet ~B on D �Q as kernel:h _Bh; ki = ZQ ZD h(x)k(y) d ~B(x; y);which gives a natural interpretation as white noise perturbation of the operatorkernel.1.3 Main resultsWe restrict our attention to selfadjoint operators K on L2(D), denote by d thedimension of D and loosely speak about a degree t of ill-posedness of the operatorK, see Section 3.2 for details.As a starting point we consider in Section 4 the linear Galerkin projection methodwithout taking care of the error in the operator. For functions in the L2-Sobolevspace Hs and suitable approximation spaces, the linear estimator converges withthe minimax rate maxfÆ; "g2s=(2s+2t+d). The standard nonparametric rate for ill-posed problems is obtained, with an accuracy dominated by the largest of thetwo noise levels " and Æ.The linear Galerkin method performs regularisation and inversion at the sametime. For a spatially adaptive procedure, we have to separate the two steps ofGalerkin inversion and adaptive regularisation or smoothing. On a rough method-ological level we can adopt one of the following two strategies:Method I: (g"; KÆ) inversion������! f̂ linearÆ;" smoothing�������! estimator f̂ IÆ;";Method II: (g"; KÆ) smoothing�������! (ĝ"; K̂Æ) inversion������! estimator f̂ IIÆ;":In this context, f̂ linearÆ;" is considered as a preliminary undersmoothed estimator.We investigate Method I and Method II, with the Galerkin scheme on a high-dimensional space as inversion procedure and wavelet thresholding as adaptivesmoothing technique. Technical details are a level-dependent thresholding rule inmethod I and a noise reduction in the operator by entrywise thresholding of the3



wavelet matrix representation in method II. To our knowledge, thresholding forthe operator has not yet been studied in the statistical literature, while advocatedin numerical analysis (a-posteriori compression, see Dahmen et al. [11]), and maybe thus of independent interest.As it turns out, the inversion step is critical in both methods and we cannot choosean arbitrarily large approximation space for the inversion, even in method II.Nevertheless, both methods are provably rate-optimal (up to a log factor in somecases) over a wide range of sparse nonparametric classes, expressed in terms ofBesov spaces Bsp;p with p 6 2. In fact, the rate maxfÆ; "g2s=(2s+2t+d) is essentiallyextended to the Besov spaces Bsp;p for all p with 1p � 12 + s2t+d . Both methods canbe classi�ed as reasonable general purpose procedures for linear inverse problemswith errors in the operator. In the case of small regularity, though, there existcertain limitations for both methods, which at a closer look give some hints whichmethod is preferable depending on the sparsity of the data.In the next Section 2 related approaches and examples are discussed. After in-troducing precise model assumptions in Section 3 the construction of the lin-ear estimator and the two nonlinear estimators f̂ IIÆ;" and f̂ IÆ;" together with theirasymptotic properties are presented in Sections 4 to 7. In Section 8 we further dis-cuss and compare both nonlinear methods. The proofs of the main theorems aredeferred to Sections 9 and 10. The appendix contains short proofs for the linearmethod and the lower bound, as well as some essential tools from approximationtheory.2 Related approaches with error in the operatorPerturbed singular values. In the context of the SVD, Cavalier and Hengart-ner [6] assume that the singular functions of K are known, but that its singularvalues are perturbed by noise. Typical examples include convolution operators.By an oracle-inequality approach, they show how to reconstruct f eÆciently whenÆ 6 ". A similar problem is encountered as blind deconvolution in image analy-sis, which shares the main ingredients of our model except that the knowledgeabout the convolution kernel is reduced to a strong localisation (e.g. Pruessnerand O'Leary [28]).Physical devices. In many physical situations we are given an integral equationKf = g on a closed boundary surface � of a domain 
 � Rd+1, where theboundary integral operatorKh(x) = Z� k(x; y)h(y)��(dy)is of order t > 0, that is K : H�t=2(�) ! H t=2(�) is given by a smooth kernelk(x; y) as a function of x and y o� the diagonal, but that is typically singular onthe diagonal. Such kernels arise, for instance, by applying a boundary integralformulation to second-order elliptic problems, e.g. in potential theory. Typicalexamples include Abel-type operators, with k(x; y) = b(x; y)=(x� y)� for some� > 0, with � = [0; 1], and b at least Lipschitz-continuous and bounded below (see4



e.g. Dahmen et al. [11], Math�e and Pereverzev [25]). Assuming that k is tractableonly up to some experimental error, due to unknown exact parameter values orvariability in the device itself, we postulate the knowledge of kÆ = k+ Æ _�; where_� is Gaussian white noise on L2(� � �). Assuming moreover that our data g isperturbed by measurement noise as in (1.1), we recover the framework of (1.4)with D = Q = �.Statistical inference. Let us �rst focus on the widespread structural model ofinstrumental variables, e.g. Florens [18], Hall and Horowitz [21]. We observe i.i.d.(Xi; Yi;Wi) for i = 1; : : : ; n, where (Xi; Yi) follow a regression modelYi = g(Xi) + Uiwith the exception that E [Ui jXi] 6= 0, but under the additional information givenby the instrumental variables Wi that satisfy E [Ui jWi] = 0. Denoting by fXWthe joint density of X and W , we de�nek(x; z) := Z fXW (x; w)fXW(z; w) dw; Kh(z) := Z k(x; z)h(z) dz:To draw inference on g, we use the identityKg(x) = E [E [Y jW ]fXW (x;W )]:The data easily allows estimation of the right-hand side and of the kernel functionk. We face exactly an ill-posed inverse problem with errors in the operator as inmodel (1.4), except for certain correlations between the two noise sources andfor the fact that the noise is caused by a density estimation problem. Note thatK has a symmetric non-negative kernel and is therefore self-adjoint and non-negative on L2. Under technical conditions, Hall and Horowitz [21] obtain intheir Theorem 4.2 the linear rate of Section 4 when replacing their terms asfollows: " = Æ = n�1=2, t = �, s = � + 1=2, d = 1.In other statistical problems random matrices or operators are of key importanceor even the main subject of interest, for instance the linear response functionin functional data analysis (Ramsay and Silverman [29]), the Markov transitionoperator in discretely observed di�usion processes (Gobet et al. [19]) or the empir-ical covariance operator for stochastic processes. A typical instance of the latteris given by Rei� [30] who considers the problem of estimating the weight functionf in stochastic delay di�erential equations of the formdXt = �Z 0�rXt+u f(u) du�dt+ dWt; t 2 [0; T ]:Maximum-likelihood theory suggests an estimator f̂T which is a solution of theequation QT f̂T = bT , whereQTh(v) = Z 0�r 1T Z T0 Xt+uXt+v dt h(u) du; bT (v) = 1T Z T0 Xt+v dXt:Under stationarity the empirical covariance operator QT can be shown to approx-imate the true covariance operator Q like Q + ÆQ _B and the noise in the data is5



coloured in the sense that bT �= Qf + "Q1=2 _W with noise levels Æ = " = T�1=2.Along a scale of Besov spaces the covariance operator Q is always ill-posed ofdegree 2. Decorrelating the noise in the data by applying formally Q�1=2, weobtain the model (1.4) with K = Q1=2, KÆ = K + ÆK _B and g" = Q1=2f + " _W .Here as well as in functional data analysis applications the coloured noise in thecovariance operator makes life generally easier, compare also the good bounds forthe principal component analysis (or SVD) derived by estimates of the Hilbert-Schmidt norm instead of the tighter operator norm in Cai and Hall [4].Numerical discretisation. Even if the operator is precisely known in theory,it must be implemented and hence discretised. For the projection methods thismeans usually that integrals over products of the kernel with the basis functionshave to be calculated. The numerical analyst is thus confronted with the samequestion of error in the operator under a di�erent angle: up to which accuracyshould the operator be discretised? Even more importantly, by not using allavailable information on the operator the objects typically have a sparse datastructure and thus require far less memory capacity and the algorithms are muchfaster, see Dahmen et al. [11].The deterministic nature of the noise in the operator leads to essentially di�erentestimates because the analysis cannot pro�t from the very strong concentrationproperties of random matrices, cf. Lemma 9.1 below. When the entries of theGalerkin sti�ness matrix are calculated independently and without a systematicbias, a stochastic error modelisation like in model (1.4) seems appropriate andyields a large reduction in the theoretical error bounds.3 Model assumptionsWe write a . b when a � cb for some constant c > 0, i.e. a = O(b) in the Landaunotation, and a � b when a . b and b . a simultaneously. The uniformity in cwill be obvious from the context.3.1 Smoothness and sparsity of the signalThe function spaces we consider are de�ned on domains D � Rd, appendedwith boundary conditions. We measure the smoothness of f in Lp-norm with1 � p � 2, cf. Appendix 11.3 for the notion of Besov and Sobolev spaces. Forp = 2 we introduce the nonparametric class of L2-Sobolev balls of regularity� � 0 and radius M : W�(M) := ff 2 H� ; kfkH� �Mg:For 1 � p < 2 we model spatial inhomogeneity and introduce the Besov balls ofregularity (s; p) and radius M :V sp (M) := ff 2 Bsp;p ; kfkBsp;p �Mg; s > 0:The restriction on (s; p) is given in (3.2) and discussed in detail in Sections 7 and8. 6



Finally, we use regular orthogonal wavelet bases ( �)� adapted to the domain Dthat provide unconditional bases forBsp;p. The multi-index � = (j; k) concatenatesthe spatial index k and the resolution level j = j�j. Thus, for f 2 L2 we havef = Xj��1 Xj�j=j f� �; f� := hf;  �i;where we use the level j = �1 to incorporate the low frequency part of thedecomposition.3.2 Smoothness and sparsity of the operatorThe ill-posedness comes from the fact thatK�1 is not L2-continuous. We quantifythis by a smoothing action with ill-posedness degree t > 0. If D = Q and K isselfadjoint, this smoothing action becomes an ellipticity property:Assumption 3.1. D = Q and K is selfadjoint. MoreoverhKf; fi � kfk2H�t=2: (3.1)This means that K1=2 is well de�ned and maps H�t=2 to L2 isomorphically. Byduality, this implies that K1=2 : L2 ! H t=2 is isomorphic, and this extends toK : H�t=2 ! H t=2 isomorphically.Remark 3.2. The restriction that K is selfadjoint can be removed by transferringAssumption 3.1 from K to K�K, with K� denoting the adjoint of K. Likewisefor Assumptions 3.3 and 3.4 below. The subsequently used Galerkin method thenbecomes the usual least squares method, see Cohen et al. [10].The choice of the loss function (1.2) in assessing the error and the range ofsmoothness for f require further mapping properties. Let us �rst introduce thefollowing restriction on (s; p), considering t and d as �xed by the problem (morein Sections 7 and 8): 1p � 12 + s2t + d: (3.2)Assumption 3.3. The parameters s > 0 and p > 1 satisfy (3.2). Moreover,K : Bsp;p ! Bs+tp;p isomorphically.Finally, we state a hypothesis on the sparsity of K expressed in its wavelet dis-cretisation, speci�ed by parameters (�s; �p) related to K. Here we allow for valuesp < 1 since only approximation properties (and not the Banach space structure)are needed.Assumption 3.4. The parameters �s � 0, and �p � 0 satisfy (3.2). Moreover,uniformly over all multi-indices � we havekK �kB�s+t�p;�p . 2j�j(�s+d=2�d=�p)for the speci�ed wavelet basis. 7



Remark 3.5. Assumption 3.4 is implied by Assumption 3.3 for �p > 1 with s = �sand p = �p due to k �kBsp;p s 2j�j(s+d=2�d=p).The case �p < 1 expresses high sparsity for K. For instance, if K is diagonal inthe wavelet basis with eigenvalues of order 2�j�jt, then Assumption 3.4 holds forall �s; �p > 0.4 A preliminary linear estimation methodWe briey study the linear Galerkin projection estimator, as a particular case ofthe approach in Efromovich and Kolchinskii [16]. For j � 0 we search for f̂Æ;" 2 Vjsuch that hKÆf̂Æ;"; vi = hg"; vi 8v 2 Vj; (4.1)where Vj = spanf �; j�j � jg is the multiresolution space associated with thewavelet basis. This makes perfect sense as soon asKÆ restricted to Vj is invertible,but, although this is true for K, the fact that Æ 6= 0 requires extra care.We introduce the Galerkin projection (sti�ness matrix) of an operator T ontoVj by setting Tj := PjT jVj , where Pj is the orthogonal projection onto Vj . Theexistence of a unique solution to (4.1) is equivalent to the invertibility of KÆ;j .Choose some � > 0 and setf̂Æ;" := 8<: K�1Æ;j Pj g"; if kK�1Æ;j kVj!Vj 6 �2jt;0; otherwise: (4.2)De�nition 4.1. Let us introduce the rate exponentr(s; t; d) := 2s2s+ 2t+ dand the mapping constantscK := supj>0 2�jtkK�1j kVj!Vj ; c0K := supj>0; h2Vj;khkHt=1 kK�1j hkL2 :Proposition 4.2. Let s > 0, M > 0 and a (bsc + 1)-regular multiresolutionanalysis (Vj) be given. Grant Assumptions 3.1 and 3.3 for K with parameters(s; p) = (0; 2). Then the following asymptotic bound holds:supf2W s(M)R(f̂Æ;"; f) . maxfÆ; "g2r(s;t;d);as soon as the estimator f̂Æ;" is speci�ed by 2j s maxfÆ; "g�2=(2s+2t+d) and � > cK.Remark 4.3. Assumption 3.1 ensures that cK is �nite, see Lemma 11.1 below.The normalised rate maxfÆ; "gr(s;t;d) gives the explicit interplay between " and Æand is indeed optimal under some restriction on K, cf. Section 7. Proposition 4.2is essentially contained in [16] but is proved in Appendix 11.1 as central referencefor the proposed nonlinear methods. 8



5 Two nonlinear estimation methods5.1 Nonlinear estimation IFor x > 0 de�ne the level-dependent hard thresholding rule Sx for h 2 L2 byh 7! Sx(h) :=X� hh;  �i1fjhh; �ij>2j�jtT (x)g �; (5.1)where the threshold is de�ned by T (x) := �xpj log xj for � > 0. Our �rst non-linear estimator is de�ned by f̂ IÆ;" := SmaxfÆ;"g(f̂Æ;"); (5.2)where f̂Æ;" is the linear estimator (4.2) speci�ed by the level J = J(Æ; ") such that2J s minf"�1=t; Æ�1=(t+d)g (5.3)and 2J 6 cJÆ�1=(t+d) for some small constant cJ > 0. Thus, f̂ IÆ;" is speci�ed bycJ , � and �.Remark 5.1.(a) In practice, the computation of f̂Æ;" and thus f̂ IÆ;" is heavy since the data isinverted on a large space VJ .(b) Since we assume K to be selfadjoint, we can reduce the error in the obser-vation KÆ by considering the symmetrisation 12(KÆ +K�Æ ).(c) Concerning the tuning parameters: the non-asymptotic choice of the resolu-tion level J should be such that the smallest eigenvalue of the matrix KÆ;Jis larger than Æ2Jd, i.e. the noise level Æ multiplied by the matrix dimen-sion. A proper choice of � could be estimated from the data, but is alreadydiÆcult in theory, cf. Abramovich and Silverman [1]. The last tuning pa-rameter � exists only for theoretical reasons and will not be enforced unlesslarge deviations occur.5.2 Nonlinear estimation IIOur second method is conceptually di�erent: we use matrix compression tech-niques to remove the operator noise by thresholding KÆ in a �rst step and thenapply the Galerkin inversion on the smoothed data g". From a computationalpoint of view, this approach is more eÆcient than the �rst one since the linearsystem we need to solve will be sparse and fast iterative solvers can be used (Dah-men et al. [11]). Also theoretically, thresholding KÆ enables us to take advantageof the possible sparsity of K in the wavelet basis. LetK̂Æ := SJÆ (KÆ;J); (5.4)9



where KÆ;J = PJKÆjVJ is the Galerkin projection and SJÆ is a hard-thresholdingrule applied to the entries in the wavelet representation:TJ 7! SJÆ (TJ) := Xj�j;j�0j6J T�;�01fjT�;�0 j>T (Æ)gh�;  �i �0; (5.5)T (Æ) is de�ned in Section 5.1 and the T�;�0 := hT �;  0�i are the entries of thematrix of the operator T represented in the wavelet basis.The estimator ĝ" of the data is obtained by the classical hard-thresholding rulefor noisy signals: ĝ" := Xj�j6Jhg";  �i1fjhg"; �ij>T (")g �: (5.6)After this preliminary step, we invert the linear system to obtain our secondnonlinear estimator: f̂ IIÆ;" := (K̂�1Æ ĝ"; kK̂�1Æ kVJ!VJ 6 �;0; otherwise. (5.7)Here � > 0 is a large cut-o� value. This time, we take J = J(Æ; ") such that2J s min�"�1=t; �Æpjlog Æj��1=(t+d)	 (5.8)and 2J 6 cJ�Æpjlog Æj��1=(t+d) for a small constant cJ > 0. We choose J a littlebit smaller than in the previous method, in order to guarantee with overwhelmingprobability the invertibility ofK̂Æ : (VJ ; k�kL2)! (VJ ; k�kHt);see Lemma 10.3. Thus f̂ IIÆ;" is speci�ed by cJ , � and �.Remark 5.2.(a) Observe that this time we do not use level-dependent thresholds since weperform the thresholding before the inversion step such that the noise levelis the same for all coeÆcients.(b) The choice of the tuning parameters for this procedure should follow thesame theoretical guidelines as that for method I. Let us stress that in prac-tice, contrary to the �rst method f̂ IÆ;", an eÆcient numerical scheme to con-struct f̂ IIÆ;", based on an iterative inversion method with thresholding in eachstep, could be used, as developed by Cohen et al. [10].6 ResultsIn the following we �x s+ > 0 and pick a wavelet basis ( �)� associated to a(bs+c+ 1)-regular multiresolution analysis (Vj). We need to specify a restrictionon the linear approximation error expressed in terms of the regularity in H�:� > s� t+ ds+ t + d=2�minn log "log Æ ; 1o in the case Æ > "1+d=t: (6.1)10



6.1 Nonlinear estimation ITheorem 6.1. Let 0 6 s 6 s+, p > 1 satisfy (3.2) and � satisfy (6.1). Grantfor K Assumption 3.1 and Assumption 3.3 in both parameters (s; p) and (0; 2).Then for suÆciently small cJ :supf2V sp (M)TW�(M)R(f IÆ;"; f) . maxnÆpjlog Æj; "pjlog "jo2r(s;t;d) ;provided f IÆ;" is speci�ed by J in (5.3), � > cK and � � c(c0K;M) > 0. Theconstant c(c0K;M) is continuous, increasing in its arguments, and explicitly com-putable from Lemmas 9.5 and 9.6 below.Remark 6.2. Assumption 3.3 with (s; p) = (0; 2) ensures that c0K is �nite byLemma 11.1.For Æ 6 "1+d=t there is no restriction on � and we obtain the optimal rate for theestimation in the class V sp (M) up to logarithmic terms, cf. Section 7. If Æ > "1+d=t,we can get rid of the linear restriction (6.1) by Sobolev embeddings (Appendix11.3) when excluding sparse functions f , that is, simultaneously small values ofp and s:Corollary 6.3. Let Æ > "1+d=t. In the setting of Theorem 6.1, f IÆ;" attains thenear-optimal rate over the scale V sp (M)supf2V sp (M)R(f̂ IÆ;"; f) . maxnÆpjlog Æj; "pjlog "jo4s=(2s+2t+d)under the additional restriction8<: s > d2 � (t+ d)�1� log "log Æ�+;1p 6 12 + sd s�d=2+(t+d)�1� log "log Æ�+s+t+d=2 : (6.2)If s > d+ d2=2t, the additional conditions are automatically ful�lled for all p > 1obeying (3.2).6.2 Nonlinear estimation IIAlso the second nonlinear method attains the optimal rate of convergence undercertain parameter restrictions. For given s and p we further impose2�s + d� 2d=�p2�s+ 2t + d 6 2s� d2t+ d with strict inequality for p > 1; (6.3)where (�s; �p) are the sparsity coeÆcients of K from Assumption 3.4. In Corollary6.5 below, we obtain an upper bound for f̂ IIÆ;" in analogy to Theorem 6.1.We �rst state a general result which gives separate estimates for the two errorlevels of f̂ IIÆ;" associated with Æ and ", respectively, and that leads to faster ratesof convergence than in Theorem 6.1 in the case of sparse operator discretisations,cf. Section 8. 11



Theorem 6.4. Let 0 6 s; �s 6 s+, p > 1, �p > 0 be such that (s; p) satisfy (3.2) and(�s; �p) satisfy (3.2) and (6.3). Let � > 0 satisfy (6.1). If K ful�lls Assumption 3.3for both parameters (s; p) and (0; 2) and Assumption 3.4 with sparsity parameters(�s; �p), then for all M > 0 and suÆciently small cJsupf2V sp (M)TW�(M)R(f̂ IIÆ;"; f) . �"pjlog "j�2r(s;t;d) + �Æpjlog Æj�2r(�s;t;d);provided f̂ IIÆ;" is speci�ed by J in (5.8), � > c0K and � > 0.Corollary 6.5. In the setting of Theorem 6.4 the following asymptotic risk boundholds: supf2V sp (M)TW�(M)R(f̂ IIÆ;"; f) . max�"pjlog "j; Æpjlog Æj	2r(s;t;d)under the additional restrictions > 14�d2 + 8(2t+ d)(d� d=p)�1=2: (6.4)Proof. Set �s = s and �p = p and use that Assumption 3.3 implies Assumption 3.4.Then (6.4) implies restriction (6.3) and Theorem 6.4 gives the result.Remark 6.6. The restriction (6.4) is automatically satis�ed for p = 1 or fors > d2(1 + 2td )1=2 since s and p always satisfy restriction (3.2). Whenever (6.2)is ful�lled the linear restriction f 2 W�(M) can be avoided using Sobolev embed-dings as in Corollary 6.3.7 Lower boundsThe lower bound in the case Æ = 0 is classical (Nussbaum and Pereverzev [27]).The lower bounds will not decrease for increasing noise levels Æ or ", whence itsuÆces to provide lower bounds for the case " = 0. In the remainder of this sectionwe consider the model given by the observation of Y = Kf and KÆ = K + Æ _B.7.1 The dense case p = 2The case p = 2 is addressed in Efromovich and Kolchinskii [16]. The followingresult can be derived from their study:inff̂Æ sup(f;K)2Fs;2;tR(f̂Æ; f) & Æ2r(s;t;d);where the nonparametric class Fs;2;t = Fs;2;t(M;C) takes the form Fs;2;t =W s(M) � Kt(C), where Kt(C) is the class of operators satisfying Assumption3.1 with cK � C for some C > 0.Remark 7.1. The same lower bound applies for Fs;p;t := V sp (M) � Kt(C) fors > 0 and p 2 [1;1]: it is universal over p and matches the upper bound attainedby f̂ IÆ;" and f̂ IIÆ;" for 1p � 12 + s2t+d up to a logarithmic factor.12



7.2 The sparse case p < 2In the sparse case the logarithmic factor is necessary. In Appendix 11.2 we provethe following lower bound:Theorem 7.2. In the setting described above, the following asymptotic lowerbound holds:inff̂Æ sup(K;f)2Fs;p;tR(f̂Æ; f) & �Æpj log Æj��s+ d2� dp�Æ�s+t+ d2� dp�: (7.1)In particular, this sparse lower bound matches the dense rate with exponentr(s; t; d) for those values of (s; p) that satisfy(d2 � dp)(s+ t + d2) = �sdp () 1p = 12 + s2t+d : (7.2)The equivalence (7.2) corresponds to the critical case of (3.2). For values of psmaller than the critical value we cannot attain the dense rate. In that case theupper bound matches the lower bound by embedding into B��;� , � < s, with� � d��1 = s� dp�1 and (�; �) satisfying restriction (3.2) with equality.8 Discussion8.1 Concerning nonlinear estimation IThe �rst nonlinear method produces an estimator that attains optimal rates inthe case of sparse data, as measured by Besov spaces Bsp;p with p 2 [1; 2). Inthe case of negligible error in the operator Æ � " this result complements theprocedures discussed in Cohen et al. [10] by showing that from an asymptoticviewpoint the order of thresholding and inversion in the estimation proceduredoes not matter.Let us now focus on the error in the operator and assume for simplicity " = 0.Then the only theoretical drawback is the linear restriction (6.1) in terms ofW�(M) for small values of s and p. Otherwise the bias would deteriorate, foronly the choice 2J s Æ�1=t avoids this extra assumption. The reason for thesmaller choice (5.3) of J is that the inverse of the Galerkin matrix KÆ;J cannotbe controlled for larger values. That we should not choose 2J s Æ�1=t is intuitivelyclear because KÆ;J = KJ + Æ _BJis the sum of a positive-de�nite operator with smallest eigenvalues of order 2�Jtand a random operator of norm Æ2Jd=2, cf. Lemmas 11.1 and 9.1, and KÆ;J isnot likely to be invertible for 2J(t+d=2) & Æ. Our even smaller choice is causedby the nonlinearity of the noise in the inverse K�1Æ;J . Looking at the toy exampleKJ = 2�Jt Id and symmetrising KÆ;J and thus _BJ (keeping the same notation),we know by spectral calculus and Lemma 9.1 (cf. also the Wigner law, e.g. inDavidson and Szarek [12]) that K�1Æ;JKJ is symmetric with a normalised trace13



that satis�es with overwhelming probability2�Jdtr(K�1Æ;JKJ) s 12Jd=2+1Æ Z 2Jd=2Æ�2Jd=2Æ 2�Jt2�Jt + x dx= log(1 + 2J(t+d=2)Æ)� log(1� 2J(t+d=2)Æ)2J(t+d=2)+1Æ= 1 + 132J(2t+d)Æ2 +O(23J(t+d=2)Æ3):Hence, invariance in law of _BJ under orthogonal transformations shows that alldiagonal elements of (K�1Æ;J �K�1J )KJ in the orthonormal basis ( �)� are also atleast of order 2J(2t+d)Æ2, which is only below the error level 2JtÆ of its linearisationK�1J Æ _BJ if 2J(t+d)Æ . 1.We thus see that our technical result in Lemma 9.5, whichhas given rise to the choice (5.3) of J , is due to the inherent nonlinearity of theinversion KÆ;J 7! K�1Æ;J .8.2 Concerning nonlinear estimation IIIn the case of a known operator K (i.e. when we set Æ = 0 in (1.4)) the secondnonlinear estimator f̂ IIÆ;" is only a combination of signal denoising and operatorcompression using wavelet bases. The thresholding of the operator is very naturaland leads to a signi�cant gain in the speed of inversion using iterative solvers.This idea is used as a-posteriori compression scheme in Dahmen et al. [11], whichdiscusses numerical issues in detail and provides mathematical results for morespeci�c integral operators with a �nger-like wavelet representation.Let us turn to the case of signi�cant errors in the operator and set " = 0 forsimplicity. To overcome the problems of inverting KÆ;J in a large approximationspace VJ , as observed in the �rst nonlinear method, it is plausible that we should�rst reduce the stochastic error and only then apply the inversion procedure.For the purpose of variance reduction, thresholding the operator seems a naturalchoice, as advocated in numerical analysis and successfully applied for variancereduction in signal detection.Unfortunately, the method in general will not reduce the error in the operatorso much that we can choose J as large as needed to render additional linearapproximation conditions unnecessary. The reason for this lack of error reductionis a stability problem. We need that the estimated operator K̂Æ is an L2 � H t-isomorphism with uniformly bounded norm constants for Æ ! 0. This propertyis needed in order to guarantee the inversion estimatek(K̂�1Æ �K�1J )PJgkL2 = kK̂�1Æ (KÆ �KJ)fJkL2 . k(KÆ �KJ)fJkHt :Let us consider for some level J an operator K with entrieshK �;  �i = 2�j�jt; hK �;  �i = ��;�2�J(t+d=2) for j�j = j�j = J , � 6= �,and all other entries equal to zero, where ��;� = ��;� 2 f��c; cg for some � 2(0; 1) and c > 0 are chosen in such a way that k(��;�)j�j=j�j=Jkl2!l2 < 2Jd=2 holds,a typical result when choosing the constant c small and independently ��;� = c14



with probability �=(1+ �) and ��;� = ��c with probability 1=(1+ �), cf. Bennetet al. [3]. Then K satis�es Assumptions 3.1 and 3.3 for all (s; 2). Let us supposeÆ = 2�J(t+d=2)c(1+ �)=2 and consider as reference the oracle estimate K̂orÆ whichsets to zero all entries of KÆ for which the modulus of the corresponding entryof K is smaller than Æ. Then K̂orÆ is obtained from KÆ by setting all entries with��;� = ��c to zero. Since still approximately 2Jd�=(1 + �) entries are of order2�J(t+d=2) and of the same sign, we get with operator norms taken on VJkK̂orÆ �KJkL2!Ht & k(��;�2�Jd=21f��;�=cg)kl2!l2 s 2Jd=2;which explodes for J ! 1. This means that even for 2J s Æ�1=(t+d=2) waveletthresholding does not reduce the error suÆciently to guarantee a stable inversionof the Galerkin matrix. A more detailed analysis shows that this is only accom-plished with the choice (5.8) of J , cf. Lemma 10.3. The fundamental reason forthis property is that component-wise thresholding does not perform a shrinkagein operator norm such that operators with a large discrepancy between their op-erator norm and their Hilbert-Schmidt norm, which equals the Euclidean normwhen represented in an orthonormal basis, behave badly under thresholding.A similar example of an operator, which in the case p = 2 is a diagonal operatorup to a random perturbation for j�j = J(s � d=2) and j�j = J , also shows thatthe additional restriction on s in (6.4) is very likely due to the method used andnot the product of a suboptimal proof. Note that this restriction is void for p = 1,since we have then s > t+d=2 anyway due to the restriction (3.2) on p. When theestimation methods are judged by their minimax-type upper bounds along thescale of Besov spaces Bsp;p with p > 1, the second nonlinear estimation methodhas a worse behaviour than the �rst one, at least for all p � 2.Typical operators, however, often do not have a huge number of small entriesof the same size in their wavelet representation, but display rather a �nger-likestructure with about J2Jd entries of considerable size, cf. Dahmen et al. [11].Hence, we can pro�t from this highly sparse structure and attain even fasterrates, compare Theorem 6.4. For an illustration let us consider the extreme casewith an operator K diagonalised in the chosen wavelet basis with eigenvalues oforder 2�j�jt. Then the estimator attains the rate Æ2�s=(2�s+2t+d) for all �s > 0 and1=�p = 1=2 + �s=(2t+ d) satisfying (6.3), that is2�s+d�d(1+2�s=(2t+d))2�s+2t+d 6 2s�d2t+d () 2�s2�s+2t+d 6 2s�d2t :Hence, we obtain up to logarithmic factors the rate maxfÆ; Æ(2s�d)=(2t)g, whichis barely parametric for not too small s and can be shown to be optimal in aminimax sense. For such highly sparse operator representations the estimatorf̂ IIÆ;" signi�cantly outperforms f̂Æ;" and f̂ IÆ;" without any special tuning.8.3 ConclusionWe have proposed two nonlinear estimation methods for inverse problems witherrors in the operator which outperform linear methods when the data are sparseand spatially inhomogeneous. From an algorithmic point of view the second15



method is preferable. In theory, both methods are provably rate-optimal (upto a logarithmic factor in some case) over a wide range of smoothness classes.They show, however, di�erent behaviour when the error in the operator domi-nates and the degree of smoothness is small. In essence, the �rst method dealsbetter with densely populated matrices and signals whereas the second methodis better suited in the case of sparse structures.The main ideas of the wavelet approach are transferable to other nonlinearsmoothing methods. For instance, when the kernel of the operator is the sub-ject of observation, e.g. in the case of instrumental variables, adaptive kernelmethods with local bandwidth choice could be used. The analogue of the �rstnonlinear method would consist in smoothing the kernel adaptively, discretis-ing it in a second step and then inverting the linear system. Alternatively, formethod II an undersmoothed kernel estimate for the inversion and an adaptivekernel smoother after the inversion could be used. We believe that the results andlimitations obtained for the wavelet methods will carry over to this approach. Inparticular, estimating the kernel function optimally in L2- or H t-loss correspondsto estimating the operator in a loss of Hilbert-Schmidt type. Due to dimension-ality e�ects this estimation usually di�ers strongly from the required operatornorm loss.9 Proofs for nonlinear estimation I9.1 PreparationsThe following result is a classical, yet intriguing bound for Gaussian randommatrices, see [12, Thm. II.4].Lemma 9.1. For universal constants �0; c; C > 0 and all � > �0; � > 0; j 2 Nwe have P(2�jd=2k _BjkVj!Vj > �) 6 exp(�c�222jd);P(2�jd=2k _BjkVj!Vj 6 �) 6 (C�)22jd ;where P(�) stands for probability. In particular, for all  > 1E [k _BjkVj!Vj ]1= . 2jd=2:Lemma 9.2. Under Assumption 3.1 for K we obtain for the Galerkin inversionfJ := K�1J PJKf uniformly over J 2 N, � > 0 and M > 0 the estimatesupf2W�(M) kf � fJkL2 .M2�J�:Proof. See the argument in [10], Section 3.1, especially Eq. (3.11).Lemma 9.3. Given the choice of J in (5.3) and the restrictions (3.2), (6.1) fors > 0, p > 1 and � > 0, we havesupf2V sp (M)\W�(M)kf � fJkL2 . maxfÆ; "g2s=(2s+2t+d):16



Proof. For Æ 6 "1+d=t we use the embeddings from Appendix 11.3 which underrestriction (3.2) yields Bsp;p � Hst=(t+d=2), and the result follows from Lemma 9.2and 2J s "�1=t in (5.3). If Æ > "1+d=t holds, then (6.1) has been built exactlysuch that Lemma 9.2 gives the result.Lemma 9.4. Grant Assumption 3.3 for (s; p) = (0; 2) and let J be chosen ac-cording to (5.3). Then there is a constant c
 > 0 such thatP(
c�;Æ;J) 6 exp(�c
�Æ�d=(2t+2d)22Jd) 8 � > 0; Æ > 0; J 2 N :The proof of Lemma 9.4 is obtained along the same lines as Lemma 11.2 in theAppendix. On the event 
�;Æ;J the random operator KÆ;J is invertible withK�1Æ;J = � Id�ÆK�1J _BJ +Xn>2(�ÆK�1J _BJ )n�K�1Jby the usual Neumann series argument such thatf̂Æ;" = K�1Æ;JPjg" = K�1Æ;JPjKf + "K�1Æ;JPJ _W:On 
�;Æ;J we thus obtain the decompositionf̂Æ;" = fJ � ÆK�1J _BJfJ + "K�1J PJ _W ++r(1)Æ;J + r(2)Æ;";J ; (9.1)with r(1)Æ;J :=Xn>2(�ÆK�1J _BJ )nfJ ; (9.2)r(2)Æ;";J := �"ÆK�1J _BJXn>2(�ÆK�1J _BJ )nK�1J PJ _W: (9.3)Lemma 9.5. Let j�j 6 J and let � 2 (0; 1� cK=�). Under Assumption 3.1 thefollowing decomposition holds:ÆhK�1J _BJfJ ;  �i = Æ2j�jtkfJkL2 c� ��;"hK�1J PJ _W; �i = "2j�jt~c� ~��;hr(1)Æ;J ;  �i = Æ2 2j�jt kfJkL2 2J(t+d) ��;J ;hr(2)Æ;";J ;  �i = Æ" 2j�jt 2J(t+d=2) ~��;J on 
�;Æ;J ;where jc�j; j~c�j . 1, �� and ~�� are standard Gaussian variables and ��;J , ~��;J arerandom variables satisfyingmaxfP(fj��;Jj > �g \ 
�;Æ;J);P(fj��;J j > �g \ 
�;Æ;J)g 6 exp(�c�22Jd)for all � > �0 with some constants �0; c > 0.Proof. By Assumption 3.1, KJ is symmetric and thus ÆhK�1J _BJfJ ;  �i =Æh _BJfJ ; K�1J  �i: By de�nition of _B, the last quantity is a centred Gaussianrandom variable with variance Æ2kfJk2L2kK�1J  �k2L2 . Moreover kK�1J  �k2L2 .17



k �k2Ht . 22j�jt by the mapping property (11.1), and the �rst equality followsfrom Lemma 9.2.For the second equality we write "hK�1J PJ _W; �i = "h _W;K�1J  �i; which is cen-tred Gaussian with variance "2kK�1J  �k2L2 ; and the foregoing arguments apply.Concerning the third decomposition, on 
�;Æ;J the term jhr(1)Æ;J ;  �ij equalsjh(ÆK�1J _BJ )2(Id+ÆK�1J _BJ )�1fJ ;  �ij=Æ2jh _BJK�1J _BJ (Id+ÆK�1J _BJ )�1fJ ; K�1J  �ij6Æ2k _BJk2VJ!VJkK�1J kVJ!VJk(Id+ÆK�1J _BJ )�1kVJ!VJ kfJkL2kK�1J  �kL2.Æ2k _BJk2VJ!VJ2Jt2j�jt;where we successively applied the Cauchy-Schwarz inequality, Lemma 11.1, esti-mate (11.2) on 
�;Æ;J and Lemma 9.2 together with the same arguments as beforeto bound kK�1J  �kL2 . Lemma 9.1 yields the result.Finally, since _W and _B are independent, we have that, conditional on _B, therandom variable hr(2)Æ;";J ;  �i1
�;Æ;J is centred Gaussian with conditional varianceÆ2"2k(K�1J _BJ (Id+ÆK�1j _Bj)�1K�1J )� �k2L21
�;Æ;J= Æ2"2k( _BJ (Id+ÆK�1j _Bj)�1K�1J )�K�1J  �k2L21
�;Æ;J. Æ2"2k( _BJ (Id+ÆK�1j _Bj)�1K�1J )�k2VJ!VJ22j�jt1
�;Æ;J. Æ2"222(j�j+J)tk _B�Jk2VJ!VJby Lemma 11.1 and estimate (11.2), which is not a�ected when passing to the ad-joint, up to an appropriate modi�cation of 
�;Æ;J incorporating B�j . We concludeby applying Lemma 9.1 which is also not a�ected when passing to the adjoint.Lemma 9.6. Let j�j 6 J and  > 0. For suÆciently large �, depending on c0Kand , we have the uniform estimateP��jhf̂Æ;";  �i � hfJ ;  �ij > 142j�jtT (maxfÆ; "g)	 \ 
�;Æ;J� . maxfÆ; "g :Proof. By decomposition (9.1) and Lemma 9.5, the above probability is boundedby the sum of four terms I + II + III + IV withI := P�ÆkfJkL2c� j��j > 116T (maxfÆ; "g)�;II := P�"j~c� ~��j > 116T (maxfÆ; "g)�;III := P�fÆ22J(t+d)kfJkL2��;J > 116T (maxfÆ; "g)g \ 
�;Æ;J�;IV := P�fÆ"2J(t+d=2)~��;J > 116T (maxfÆ; "g)g \ 
�;Æ;J�:We bound I thanks to the standard estimate P(j��j > x) 6 exp(�x2=2), x > 0,and thus obtain by straightforward calculationI 6 maxfÆ; "g�=cI . maxfÆ; "gwith some constant cI > 0 and for � > cI ; likewise, for some cII > 0 and� > cII II 6 maxfÆ; "g�=cII . maxfÆ; "g:18



We bound III by the large deviation estimate, using the de�nition (5.3) of cJ forall suÆciently large J :III 6 exp �� cc�1J kfJk�1L2 116�jlog(maxfÆ; "g)j1=222Jd�:The condition 2J & minf"�1=t; Æ�1=(t+d)g implies that term III is asymptoticallynegligible. The same argument applied to the large deviation estimate of ~��;Jshows that also term IV is asymptotically negligible.Lemma 9.7. Grant Assumption 3.3 for s = 0, p = 2 and suppose f 2 H�. Thenwe have for all coeÆcients with j�j 6 J2�j�jtjf� � f�J j . 2�J(t+�)kfkH�where f� := hf;  �i and f�J := hfJ ;  �i.Proof. We proceed using Lemma 11.1, the mapping property K : H�t ! L2,which we derive by duality from Assumption 3.3 with (s; p) = (0; 2), and thefollowing inverse estimate:2�j�jtjf� � f�J j . kPJf � fJkH�t . kKJ(PJf � fJ )kL26 kKPJf �KfkL2 . kf � PJfkH�t:A simple direct estimate from Appendix 11.3 gives the result.9.2 Proof of Theorem 6.1The error R(f̂ IÆ;"; f) is bounded by a constant times the sum of three termsI + II + III , withI := kf � fJk2L2 ;II := E �kS�;maxfÆ;"g(f̂Æ;")� fJk2L21fkK�1Æ;JkVJ!VJ6�2Jtg�;III := kfk2L2 P�kK�1Æ;JkVJ!VJ > �2Jt�:We bound the bias term I by Lemma 9.3. The term III is proved to be negli-gible by exactly the same arguments as for Theorem 4.2, using now Lemma 9.4.Likewise, by introducing the event 
�;Æ;J , using Lemma 9.4 and repeating theargument of Theorem 4.2, the control of the term II amounts to showing thatfII := E �kS�;maxfÆ;"g(f̂Æ;")� fJk2L21
�;Æ;J �= Xj�j6J E �(f�Æ;"1fjf�Æ;"j>2j�jtT (maxfÆ;"g)g � f�J )21
�;Æ;J �19



has the right order (f�Æ;" = hf̂Æ;";  �i). We split fII into the sum of four terms:fIIA := X�2I1 E [(f�Æ;" � f�J )21fjf�Æ;"j>2j�jtT (maxfÆ;"g)g \ 
�;Æ;J ];fIIB := X�2I2 E [(f�Æ;" � f�J )21fjf�Æ;"j>2j�jtT (maxfÆ;"g)g \ 
�;Æ;J ];fIIC := X�2I3(f�J )2P(fjf�Æ;"j < 2j�jtT (maxfÆ; "g)g \ 
�;Æ;J);fIID := X�2I4(f�J )2P(fjf�Æ;"j < 2j�jtT (maxfÆ; "g)g \ 
�;Æ;J);whereI1 := �jf�j > 2j�jt�1T (maxfÆ; "g)	; I2 := �jf�j 6 2j�jt�1T (maxfÆ; "g)	;I3 := �jf�J j > 2j�jt+1T (maxfÆ; "g)	; I4 := �jf�J j 6 2j�jt+1T (maxfÆ; "g)	:Observe the di�erent splitting decision, according to the size of the coeÆcientsf� and f�J , respectively. By doing so, we avoid an additional control on kfJkBsp;p .We �rst bound the nonlinear approximation term fIID byP�(f�J )21fjf�J j62j�jt+1T (maxfÆ;"g)g. Using for jaj 6 � and arbitrary b 2 Rthe general inequality jaj 6 ja� bj+ jbj1fjbj<2�g, we further bound fIID by2X� �(f�J � f�)2 + (f�)21fjf�j62j�jt+2T (maxfÆ;"g)g�:The sum over the �rst term equals 2kf � fJk2L2 and is by Lemma 9.3 of the rightorder. The sum over the second term is under restriction (3.2) for p bounded inorder by kfk2Bsp;pT (maxfÆ; "g)2�p, which is classical and follows e.g. from Theorem7.1 in [9]. Thus, fIID has the right order.Concerning the second approximation term fIIA, we havefIIA 6 Xjf�j>2j�jt�1T (maxfÆ;"g)E [(f�Æ;" � f�J )21
�;Æ;J ]:By decomposition (9.1) and Lemma 9.5 we obtain on 
�;Æ;Jf�Æ;" � f�J = Æ2j�jtkfJkL2 c� �� + "2j�jt~c� ~��+ Æ2 2j�jt kfJkL2 2J[d+t]) ��J + Æ" 2j�jt 2J[t+d=2] ~��;J :Therefore, by Lemma 9.5 we �nd E [(f�Æ;" � f�J )21
�;Æ;J ] . maxfÆ; "g222j�jt. Itfollows that fIIA is bounded byfIIA . maxfÆ; "g2 Xjf�j>2j�jt�1T (maxfÆ;"g) 22j�jt6 maxfÆ; "g2T (maxfÆ; "g)�p Xjf�j>2j�jt�1T (maxfÆ;"g) 2(2�p)j�jtjf�J jp. T (maxfÆ; "g)2�pXj6J 2(2�p)jt Xj�j=j jf�jp:20



Next, Xj6J 2j(sp+d(p=2�1)) Xj�j=j jf�jp . kfkpBsp;p 6Mp (9.4)yieldsgIIA . T (maxfÆ; "g)2�pXj6J 2j(�sp�d(p=2�1)+t(2�p)) 2j(sp+d(p=2�1)) Xj�j=j jf�jp:Noting that �sp � d(p=2� 1) + t(2� p) = 0 in view of (9.4), we derivegIIA . T (maxfÆ; "g)2�p = maxf"pj log "j; Æpj log Æjg4s=(2s+2t+d):We now turn to the �rst deviation term fIIB . By the Cauchy-Schwarz inequalityfIIB is less thanXj�j6J E [jf�Æ;" � f�J j41
�;Æ;J ] 12 P�fjf�Æ;" � f�j > 2j�jt�1T (maxfÆ; "g)g \ 
�;Æ;J� 12 :By the same argument as for fIIA to bound the expectation term, but using nowmoments of order 4, we further bound fIIB bymaxfÆ; "g2 Xj�j6J 22tj�jP��jf�Æ;" � f�j > 2j�jt�1T (maxfÆ; "g)	\ 
�;Æ;J�1=2:We infer from Lemma 9.7 and restriction (6.1) the estimate 2�j�jtjf� � f�J j .2�J(t+�) . maxfÆ; "g for all � such that this di�erence is asymptotically smallcompared to T (maxfÆ; "g). Consequently, the triangle inequality and Lemma 9.6yield for any  > 0 a bound of ordermaxfÆ; "g2 Xj�j6J 22tj�jmaxfÆ; "g=2 . maxfÆ; "g2+=22J(2t+d):For  = 4+ 2d=t this yields the bound maxfÆ; "g2 and gIIB proves negligible. Weeventually consider gIIC :gIIC . Xj�j6J(f�J )2P(fjf�Æ;" � f�J j > 2j�jt+1T (maxfÆ; "g)g \ 
�;Æ;J);and a straightforward application of Lemma 9.6 shows that this term is alsonegligible.10 Proof for nonlinear estimation II10.1 Deviation bounds in H t-normWe need precise deviation bound of the hard thresholding estimator in H t-lossand must also deal with increasing signal noise intensity. The following boundsseem to be new. 21



Lemma 10.1. Assume � > 4pt=d and 2J . "�1=t. Let s > 0, p > 0 satisfyrestriction (3.2). There exist constants c0; �0; R0 > 0 such that for all functionsg 2 Bs+tp;p the hard thresholding estimate ĝ" satis�es for all � > �0 and R > R0:P�T (")�r(s;t;d)kĝ" � PJgkHt > �maxfkPJgkBs+tpp ; kPJgkp=2Bs+tp;p g 2t+d2s+2t+d �. "c0� + "�2=8�d=t;P�kĝ" � PJgkHt > RmaxfkPJgkBs+tpp ; kPJgkp=2Bs+tp;p g� . "�2=16�d=tR�4:Proof. Denote by g� and g�" the wavelet coeÆcients of g and g". We havekĝ" � PJgk2Ht s Xj�j6J 22j�jt(g�"1jg�" j>T (") � g�)2:The usual decomposition yields a bound of the right-hand side by the sum of fourterms I + II + III + IV withI :=X 22j�jt(g�" � g�)21fjg�" j>T (")g1fjg�j> 12T (")g6X 22j�jt(g�" � g�)21fjg�j> 12T (")g;II :=X 22j�jt(g�" � g�)21fjg�" j>T (")g1fjg�j< 12T (")g6X 22j�jt(g�" � g�)21fjg�"�g� j> 12T (")g;III :=X 22j�jt(g�)21fjg�" j<T (")g1fjg�j>2T (")g6X 22j�jt(g�)21fjg�"�g�j>T (")g;IV :=X 22j�jt(g�)21fjg�" j<T (")g1fjg�j<2T (")g6X 22j�jt(g�)21fjg�j<2T (")gand where the sums in � range through the set fj�j � Jg. The approximationterm IV is bounded byT (")2�pXj6J 22jt Xj�j=jminf(g�)p; �2T (")�pg.T (")2�pXj6J 22jtminfkPJgkpBs+tp;p 2�j(s+t+d=2�d=p)p; 2jdT (")pgwhich is of order T (")22j0(2t+d) with2j0(2s+2t+d) s min �kPJgk2Bs+tp;p T (")�2; 2J(2s+2t+d)	:Therefore, we obtain IV . kPJgk2Bs+tp;p � "pjlog "jkPJgkBs+tp;p �2r(s;t;d):For the second approximation term I we need to introduce the random variables�j := "�2#fj�j = j; jg�j > 12T (")g Xj�j=j(g�" � g�)21fjg�j> 12T (")g:22



Using 1fjg�j> 12T (")g 6 j2g�=T (")jp, we obtain for 1=p = 1=2 + s=(2t+ d) that I isbounded byXj6J 22jt"2�j Xj�j=j 1fjg�j> 12T (")g .Xj6J 22jt"2�j minnT (")�p Xj�j=jjg�jp; 2jdo.Xj6J "2�jmin nT (")�p2�j(s+t+d=2�d=p)p+2jtkPJgkpBs+tp;p ; 2j(2t+d)o:Now observe that, as before, the following inequality holds:Xj6J "2min nT (")�p2�j(s+t+d=2�d=p)p+2jtkPJgkpBs+tp;p ; 2j(2t+d)o s "22j1(2t+d);2j1(2s+2t+d) s min�kPJgkpBs+tp;p T (")�2; 2J(2s+2t+d)	:By de�nition, each �j is the arithmetic mean of the squares of independent nor-malized Gaussian random variables. By independence and standard Gaussianestimates, for any sequence (aj) with k(aj)kl1 = 1, Markov's inequality yields forany � > 0:P�Xj aj�j > �� 6 exp(��=3)Yj E [exp(aj�j=3)] 6 exp(��=3):Consequently, we obtain P(I > �"22j1(2t+d)) 6 exp(�c1�) with a constant c1 > 0.Substituting for j1, we conclude with another constant c2 > 0 thatP�I > �kPJgkpBsp;p�T (")kPJgk�p=2Bs+tp;p �2r(s;t;d)� 6 exp �� c2�jlog "j�:Considering the deviation terms II and III , we observeP(fII = 0g \ fIII = 0g) >P(jg"� � g�j 6 12T (") for all j�j 6 J)>�1� exp(��2jlog "j=8)�2Jd :Using 2Jd . "�d=t, we derive P(II + III > 0) 6 1 � (1 � "�2=8)2Jd which is oforder "�2=8�d=t. Therefore we obtain for some constants c3 > 0 and �1 > 0 andfor all � > �1:P�kĝ" � PJgkHt > �maxfkPJgkBs+tpp ; kPJgkp=2Bs+tpp g 2t+d2s+2t+d T (")r(s;t;d)�6 P�I > 13�2kPJgk p(2t+d)2s+2t+dBs+tp;p T (")2r(s;t;d)�+ P(II + III > 0)+P�IV > kPJgk 2(2t+d)2s+2t+dBs+tp;p T (")2r(s;t;d)�. "c2� + 0 + "�2=8�d=t:On the other hand, the deviation terms are well bounded in probability. Whileobviously III 6 kPJgk2Bs+tp;p holds by the Cauchy-Schwarz inequality, the termE [II ] is less thanXj�j6J 22j�jt E [(g�" � g�)4]1=2P(jg�" � g�j > T (")=2)1=2:23



This is bounded in order by 2J(2t+d)"2 exp(�2jlog "j=8)1=2 � "�2=16�d=t due to2J . "�1=t. In the same way we �nd that Var[II ] is less thanXj�j6J 24j�jt E [(g�" � g�)8]1=2P(jg�" � g�j > T (")=2)1=2 . "�2=16�d=t:By Chebyshev's inequality, we infer P(II > R) . "�2=16�d=tR�2 for R > 0. Sincethe above estimates of the approximation terms yield superoptimal deviationbounds, we obtain altogether for any R > 2:P�kĝ" � PJgkHt > RmaxfkPJgkBs+tpp ; kPJgkp=2Bs+tpp g� . "�2=16�d=tR�4:10.2 Estimation in operator normProposition 10.2. Suppose �2 > 32maxfd=t; 1 + t(2t + d)=(4t(t+ d))g. GrantAssumption 3.3 with s > 0, p > 1 and Assumption 3.4 with �s > 0; �p > 0,satisfying in addition restriction (6.3) with strict inequality for p > 1. We haveE �kK̂Æ �KJk2(VJ ;k�kBsp;p)!Ht� . �Æpjlog Æj�2r(�s;t;d):Proof. The wavelet characterisation of Besov spaces (cf. Appendix 11.3) togetherwith H�older's inequality for p�1 + q�1 = 1 yieldskK̂Æ �KJk(VJ;k�kBsp;p)!Hts supk(a�)klp=1k(K̂Æ �K)�Xj�j6J 2��(s+d=2�d=p)a� ��kHt6 k�2�j�j(s+d=2�d=p)k(K̂Æ �K) �kHt�j�j6Jklq6 k(2j�j(�(s+d=2�d=p)+(�s+d=2�d=�p)(2t+d)=(2�s+2t+d)))j�j6Jklq� supj�j6J 2�j�j(�s+d=2�d=�p)(2t+d)=(2�s+2t+d)k(K̂Æ �K) �kHt:The lq-norm of the powers of 2 evaluates tok(2j(�(s�d=2)+(�s+d=2�d=�p)(2t+d)=(2�s+2t+d)))j6Jklq ;which is of order one whenever restriction (6.3) is ful�lled with strict inequalityfor q <1.By construction, K̂Æ � is the hard thresholding estimator for K � given theobservation ofKÆ �, which is K � corrupted by white noise of level Æ. Therefore,under Assumption 3.4, Lemma 10.1 applied to K � and Æ gives for any � > �0:P�k(K̂Æ �K) �kHt > �kK �k(2t+d)=(2s+2t+d)B�s+t�p;�p T (Æ)r(�s;t;d)�. Æc0� + Æ�2=8�d=t:24



By estimating the probability of the supremum by the sum over the probabilities,we obtain with a constant c1 > 0 for all � > �0:P�kK̂Æ �KJk(VJ;k�kBsp;p )!Ht > �T (Æ)r(�s;t;d)�6 Xj�j6J P�k(K̂Æ �K) �kHt > c12j�j(�s+d=2�d=�p) 2t+d2s+2t+d �T (Æ)r(�s;t;d)�. 2Jd(Æc0� + Æ�2=8�d=t). Æc0��d=(t+d) + Æ�2=8�d(2t+d)=(t(t+d)):For a suÆciently large �1 > �0, depending only on c0, d and t, with  := �2=8�d(2t+ d)=(t(t+ d)) > 0, we thus obtain:P�kK̂Æ �KJk(VJ ;k�kBsp;p)!Ht > �1T (Æ)r(�s;t;d)� . Æ :By the above bound on the operator norm and H�older's inequality for q := =2 >2 and ��1 + q�1 = 1 together with the second estimate in Lemma 10.1, we �ndfor some constant R0 > 0:E �kK̂Æ �KJk2(VJ;k�kBsp;p )!Ht�. �1T (Æ)2r(�s;t;d) + E �kK̂Æ �KJk2�(VJ ;k�kBsp;p)!Ht�1=�Æ=q. T (Æ)2r(�s;t;d) + � Z 10 R2��1P(kK̂Æ �KJk(VJ;k�kBsp;p )!Ht > R) dR�1=�Æ2. T (Æ)2r(�s;t;d) + �R0 + Z 1R0 R2��12JdÆ�2=16�d=tR�4 dR�1=�Æ2. T (Æ)2r(�s;t;d) +maxfÆ(�2=16�2d=t)=�; 1gÆ2which is of order T (Æ)2r(�s;t;d) by assumption on �.Lemma 10.3. Grant Assumption 3.3 and assume �2 > 4d=(t+ d). ThenP�kK̂Æ �KJkL2!Ht > c0(ct+dJ + �)� . Æc0�;where c0 > 0 is a constant independent of J, cJ from (5.8), Æ and �, but dependingon �.Proof. For j�j; j�j6 J we have for the entries in the wavelet representationj(K̂Æ)�;� �K�;�j = jK�;�j1fj(KÆ)�;�j6T (Æ)g + Æj _B�;�j1fj(KÆ)�;�j>T (Æ)g:A simple rough estimate yieldsj(K̂Æ)�;� �K�;�j 6 2T (Æ) + jK�;�j1fj(KÆ�K)�;�j>T (Æ)g + Æj _B�;�j:We now bound the operator norm by the corresponding Hilbert-Schmidt normand apply the estimate 2j�jtjK�;�j 6 kK �kBs+tp;p . 1 derived from Assumption25



3.3 to obtainkK̂Æ �KJk2(VJ;k�kL2)!Ht 6 Xj�j; j�j6J 22j�jt�(K̂Æ)�;� �K�;��2. 22J(t+d)T (Æ)2 +#�Æj(KÆ �K)�;�j > T (Æ)	+ Æ222Jt Xj�j; j�j6J _B2�;�= 22J(t+d)T (Æ)2 +#�j _B�;�j > �pjlog Æj	+ Æ222Jt Xj�j; j�j6J _B2�;�where the cardinality is taken for multi-indices (�; �) such that j�j; j�j � J . The�rst term is bounded by c2(t+d)J . The second term is a Binomial random variablewith expectation 22JdP(j _B�;�j > �jlog Æj1=2) . Æ�2d=(t+d)+�2=2. An exponentialmoment bound for the Binomial distribution yieldsP�#�j _B�;�j > �pjlog Æj	 > �� . exp(��(�2d=(t+ d) + �2=2)jlog Æj);which evaluates to Æ�(�2=2�2d=(t+d)).For the last term, we use a rough deviation bound for the �2-square distribution,namely P�2�2Jd Xj�j; j�j6J _B2�;� > �� 6 exp(��=2)to infer from 2J(t+d) . T (Æ) thatP�Æ222Jt Xj�j; j�j6J _B2�;� > �� 6 exp �� 2�2J(t+d)�1Æ�2�� 6 e�c0�jlog Æj = Æc1�holds with a constant c1 > 0. The choice c0 = minfc1; �2=2� 2d=(t + d)g givesthe result.10.3 Proof of Theorem 6.4For � 2 (0; 1) we introduce the event
II�;Æ;J := �kK̂Æ �KJk(VJ;k�kL2)!Ht 6 �kK�1J k�1(VJ;k�kHt)!L2	: (10.1)The Neumann series representation implies that on 
II�;Æ;J the random operatorK̂Æ : (VJ ; k�kL2)! (VJ ; k�kHt)is invertible with norm kK̂�1Æ k 6 (1��)�1kKJk�1. For the choice � 2 (0; 1�c0K=�)this bound is smaller than the cut-o� value � .On 
II�;Æ;J and assuming � 2 (0; 1� c0K=�), we bound kf̂ IIÆ;" � fkL2 bykK̂�1Æ (ĝ" � PJg)kL2 + k(K̂�1Æ �K�1J )PJgkL2 + kfJ � fkL2 :The �rst two stochastic errors are further bounded bykK̂�1Æ k(VJ;k�kHt)!L2(kĝ" � PJgkHt + kK̂Æ �KJkBsp;p!HtkfJkBsp;p):26



Because of kK̂�1Æ k(VJ ;k�kHt)!L2 . 1, the assertion on 
II�;Æ;J follows from theclassical moment estimate for hard thresholding in analogy to Lemma 10.1, fromthe operator norm estimate of Proposition 10.2 and the Galerkin estimate inLemma 9.2.On the complement (
II�;Æ;J)c the risk of f̂ IIÆ;", conditional on _B, is uniformlybounded thanks to the cut-o� rule in the construction. Consequently, Theorem6.4 follows from P�(
II�;Æ;J)c� . Æ2:By Lemma 10.3, this last bound is ful�lled for a suÆciently small choice of cJ ,depending on � and thus on c0K and � .11 Appendix11.1 Proofs for the linear estimatorPreparationsLemma 11.1. Under Assumption 3.3 with (s; p) = (0; 2) we havekK�1j kVj!Vj . 2jt:Proof. Under Assumption 3.3 the following mapping property is proved in [10]:kK�1j hkL2 . khkHt for h 2 Vj: (11.1)Therefore kK�1j k2Vj!Vj . suph2Vj;khkL2=1 khk2Ht . 22jt follows from an inverseestimate (see Appendix 11.3).Let � 2 (0; 1). On the event 
�;Æ;j := fÆkK�1j _BjkVj!Vj 6 �g, the random oper-ator (Id+ÆK�1j _Bj)�1is well de�ned by the usual Neumann series argument andsatis�esk(Id+ÆK�1j _Bj)�1kVj!Vj1
�;Æ;j 6 (1� ÆkK�1j _BjkVj!Vj)�11
�;Æ;j6 (1� �)�1: (11.2)Lemma 11.2. Grant Assumption 3.3 with (s; p) = (0; 2). Let � := 1 � (2t +d)=(2s + 2t + d) > 0 and let j be speci�ed as in Proposition 4.2. There is aconstant c
 > 0 such that for all suÆciently small Æ > 0P(
c�;Æ;j) 6 exp(�c
�Æ��22jd); � > 0; j 2 N :Proof. By de�nition of cK and Lemma 11.1 the inclusion
c�;Æ;j � fk _BjkVj!Vj > �Æ�1c�1K 2�jtg= f2�jd=2k _BjkVj!Vj > �c�1K Æ�12�j(2t+d)=2gis valid. Using Æ�12�j(2t+d)=2 & Æ�� and Lemma 9.1 we obtain the result.27



Proof of Proposition 4.2By de�nition, R(f̂Æ;"; f) is bounded by a constant times the sum of three termsI + II + III , withI := kf � fjk2L2 ;II := E [k(K�1Æ;j Pjg" � fj)1fkK�1Æ;j kVj!Vj6�2jtgk2L2 ];III := kfk2L2 P(kK�1Æ;j kVj!Vj > �2jt)By Lemma 9.2 the bias term I satis�eskf � fjk2L2 . 2�2js s maxfÆ; "g4s=(2s+2t+d)and has the right order. Concerning the third term III , we haveP(kK�1Æ;j kVj!Vj > �2jt) 6 P(fkK�1Æ;j kVj!Vj > �2jtg \ 
�;Æ;j) + P(
c�;Æ;j):The second term of the right-hand side is asymptotically negligible by Lemma11.2. For the �rst term we use that on 
�;Æ;j the operator KÆ;j = Kj(Id+ÆK�1j _B)is invertible with kK�1Æ;JkVj!Vj 6 (1 � �)�1kK�1j kVj!Vj . The restriction cK < �ensures that P(fkK�1Æ;j kVj!Vj > �2jtg \ 
�;Æ;j) = 0;provided � 2 (0; 1� cK=�), a choice we shall make from now on. We turn to themain term II . First, writing Pjg" = PjKf + "Pj _W , we haveE [kK�1Æ;j Pjg" � fjk2L21fkK�1Æ;j kVj!Vj6�2jtg1
c�;j;Æ ]. 22jt(kPjKfk2L2 + "2 E [kPj _Wk2L2 ] + kfjk2L2)P(
c�;Æ;j);where we used that the event 
c�;Æ;j is independent of Pj _W since _B and _W areindependent. Using kPjKfk2L2 + kfjk2L2 . M2 and E [kPj _Wk2L2 ] . 2jd, we seeby Lemma 11.2 that the above term is asymptotically negligible. Therefore, weare left with proving that E [kK�1Æ;j Pjg"� fjk2L21
�;j;Æ ] has the right order. By thesame Neumann series argument as in (11.2), we readily obtain on 
�;j;Æ:K�1Æ;j Pjg" � fj =Xn>1(�ÆK�1j _Bj)nfj + "(Id+ÆK�1j _Bj)�1K�1j Pj _W: (11.3)As for the second term in the right-hand side of (11.3), we haveE ["2k(Id+ÆK�1j _Bj)�1K�1j Pj _Wk2L21
�;Æ;j ]6 "2 E [k(Id+ÆK�1j _Bj)�1k2Vj!Vj1
�;Æ;j ]kK�1j k2Vj!Vj E [kPj _Wk2L2 ]. "22jt2dj s maxfÆ; "g4s=(2s+2t+d);28



where we used again the independence of 
�;Æ;j and Pj _W , Lemma 11.1 and (11.2).The �rst term in the right-hand side of (11.3) is treated byE �Xn>1(�ÆK�1j _Bj)nfj2L21
�;Æ;j �= E [kÆK�1j _Bj(Id+ÆK�1j _Bj)�1fjk2L21
�;Æ;j ]6 Æ2kK�1j k2Vj!Vj E [k _Bjk2Vj!Vjk(Id+ÆK�1j _Bj)�1k2Vj!Vj1
�;Æ;j ]. Æ2kK�1j k2Vj!Vj E [k _Bjk2Vj!Vj ]. Æ222jt2dj 6 maxfÆ; "g4s=(2s+2t+d);where we successively used Lemma 9.2, estimate (11.2) and Lemmas 11.1, 9.1.11.2 Proof of Theorem 7.2To avoid singularity of the underlying probability measures we only consider thesubclass F0 of parameters (K; f) such that Kf = y0 for some �xed y0 2 L2,i.e. F0 := ff 2 L2 jK�1y0; K 2 Kg, where K = Kt(C) abbreviates the class ofoperators under consideration. We shall henceforth keep y0 �xed and refer to theparameter (K; f) equivalently just by K.The likelihood �(�) of PK2 under the law PK1 corresponding to the parametersKi, i = 1; 2, is�(K2; K1) = exp�Æ�1hK2 �K1; _BiHS � 12Æ�2kK1 �K2k2HS�in terms of the scalar product and norm of the Hilbert space HS(L2) of Hilbert-Schmidt operators on L2 and with a Gaussian white noise operator _B. Inparticular, the Kullback-Leibler divergence between the two measures equals12Æ�2kK1 � K2k2HS and the two models remain contiguous for Æ ! 0 as longas the Hilbert-Schmidt norm of the di�erence remains of order Æ.Let us �x the parameter f0 =  �1;0 = 1 and the operator K0 which, in a waveletbasis ( �)�, has diagonal form K0 = diag(2�(j�j+1)t). Then K0 is ill-posed ofdegree t and trivially obeys all the mapping properties imposed for the upperbound. Henceforth, y0 := K0f0 = 1 remains �xed.For any k = 0; : : : ; 2Jd � 1 introduce the symmetric perturbation H" = (H"�;�)with vanishing coeÆcients except for H"(0;0);(J;k) = 1 and H"(J;k);(0;0) = 1. PutK" = K0+H" for some  > 0. By setting  := ÆJ we enforce kK"�K0kHS = ÆJ .For f" := (K")�1y0, we obtainf" � f0 = �(K")�1 � (K0)�1�y0 = (K")�1H"f0 = (K")�1 J;0:Now observe that H" trivially satis�es the conditions12 jhH"f; fij 6 2Jtkfk2H�t=2; 12kH"kL2!Ht 6 2Jt;12kH"kBsp;p!Bs+tp;p 6 2J(t+s+ d2� dp ):29



This implies that for 2J(t+s+ d2� dp ) suÆciently small K" inherits the mappingproperties from K0. Hencekf" � f0kL2 s k J;0kHt = 2Jt;kf" � f0kBsp;p s k J;0kBs+tp;p = 2J(t+s+ d2� dp )follows. In order to apply the classical lower bound proof in the sparse case [24,Thm. 2.5.3] and thus to obtain the logarithmic correction, we nevertheless haveto show that f" � f0 is well localized. Using the fact that �(H")2��;� = 1 holdsfor coordinates � = � = (0; 0) and � = � = (J; k), but vanishes elsewhere, weinfer from the Neumann series representationf" � f0 = 1Xm=1(�H")mf0 = 1Xn=1 2nf0 � 1Xn=0 2n+1 J;k = 1� 2(f0 �  J;k):Consequently, the asymptotics for  ! 0 are governed by the term � J;k, whichis well localized. The choice 2J < �1=(t+s+ d2� dp ) ensures that kf"kBsp;p remainsbounded and we conclude by usual arguments, cf. Chapter 2 in [24] or the lowerbound in [30].11.3 Some tools from approximation theoryThe material gathered here is classical, see e.g. [8]. An equivalent norming of theBesov space Bsp;p for all s 2 R and p > 0 is given in terms of weighted waveletcoeÆcients, if the wavelet basis is (bjsjc+ 1)-regular:kfkBsp;p s � 1Xj=�1 2j(s+ 12� 1p )pXk jhf;  jkijp�1=p:Here, k 2 Zd is the location parameter and j the resolution level of the wavelet.For p < 1 the Besov spaces are only quasi-Banach spaces, but still coincide withthe corresponding nonlinear approximation spaces, see Section 30 in [8]. If s isnot an integer or if p = 2, the space Bsp;p equals the Lp-Sobolev space W s;p, whichfor p = 2 is denoted by Hs. The Sobolev embedding generalizes toBsp;p � Bs0p0 ;p0 for s > s0 and s� dp > s0 � dp0 :Direct and inverse estimates are the main tools in approximation theory. In itssimplest form, a direct inequality readsinfhj2Vj kf � hjkL2 . 2�sj jf jHs;and the inverse estimate states that for all hj 2 Vjjhj jHs . 2sjkhjkL2 :The direct and inverse estimate we use in the paper are less standard since theyinvolve the Sobolev space of negative order H�t=2. The inverse estimate statesthat for all gj 2 Vj kgjkL2 . 2tj=2kgjkH�t=2;30
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