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Abstract

The present work introduces an analysis framework for the detection of

metastable signal segments in multivariate time series. It is shown that in

case of linear data these segments represent transient generalized synchro-

nization, while metastable segments in circular data reflect transient mutual

phase synchronization. We propose a single segmentation approach for both

types of data considering the space-time structure of the data. Applications

to both event-related potentials and single evoked potentials obtained from

an auditory oddball experiment reveal the lack of the component P300 in an

experimental condition, indicates attention effects in component N100 and

shows dramatic latency jitters in single trials. A comparison of the proposed

method to a conventional index of mutual phase synchronization demonstrates

the superiority of considering space-time data structures.

1 Introduction

In the last decades synchronization has been found in various systems in biology,
physics or medicine [Pikovsky et al. (2001)]. In neuroscience, synchronization has
attracted much attention as a concept of information processing in the brain (see
e.g. Singer & Gray (1995)). This approach is in the tradition of results found more
than two decades earlier, which revealed cooperative, i.e. synchronized, activity
in spatial cortical columns [Wilson & Cowan (1972); Luecke & von der Malsburg
(2004)]. In addition, several studies have shown strong correlations between coop-
erative dendritic activity of neurons and electromagnetic activity on larger spatial
scales, e.g. local field detectors or encephalographic potentials and fields [Freeman
(2000); Nunez (1995)]. The present study focus to synchronization effects in evoked
electroencephalographic potentials.

In neuropsychology, most experiments apply paradigms with several different con-
ditions to gain information about a specific functionality of the brain, as e.g. pro-
cessing of semantic differences [Kotz et al. (2001)] or prosody in stimuli [Schirmer
et al. (2002)]. In order to gain significant results, single experimental conditions
are repeated several times. The number of these repetitions depend on the com-
plexity of the task and is typically in the range of 50 − 500. In case of rather
complex experimental paradigms, the number of trials is low. To extract significant
results, trials of the same experimental condition are averaged. This procedure is
reasonable under the assumption of seldom artifacts, as head movements or low
attentiveness of the subject. However, in contrast to most experiments under con-
trolled conditions in a labortaory, more and more experiments are carried out under
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less controlled every-day-life conditions [Schrauf & Kincses (2003)]. In these cases,
only few repeated trials are acquired and artifacts play an important role. To extract
significant results anyway, the analysis of averages over few trials or even of single
trials is necessary. Several corresponding methods have been proposed in the last
years [Laskaris & Ioannides (2002); Ioannides et al. (2002); Karjalainen & Kaipio
(1999)].

One of the major aims of multivariate analysis in neuropsychological research is
the detection of functional components from observed data. Lehmann & Skrandies
(1980) developed an algorithm to extract spatial activity maps from single data sets,
which show metastable synchronized behaviour in time. These time segments are
called microstates and reflect functional states in the brain [Brandeis et al. (1995)].
Subsequent work of Pascual-Marqui et al. (1995) and Wackermann (1999) extended
this approach by a cluster algorithm and a classification scheme of the extracted
components, respectively. The original approach compares the spatial distributions
of successive time points and thus is succesfull mainly for single averaged data
sets, which exhibit smooth behaviour. In case of less smooth data, the clustering
extention is more robust and detects components in more noisy data. However, the
method applies the cross-validation method to determine the number of clusters
and, hence, fails for high dimensional data.

In the last years many studies analyzed both linear and phasic multivariate data.
The former represents the observed data itsself while the latter represent the in-
stantaneous phases extracted from the linear data. The two best-known definitions
of instantaneous phases are given by the Hilbert- and the wavelet transformation.
Recently, the analysis of phase synchronization between single time series attracted
increased attention [Tass (1999); Haig et al. (2000); Lee et al. (2003)]. However, ap-
plications to typical encephalographic data need to consider a large set of spatially-
distributed detectors as microscopic generators spread their activity on the scalp.
Some methods have been developed to extract instantaneous mutual phase syn-
chronization [Haig et al. (2000); Rosenblum et al. (2000)]. However, these methods
neglect spatial distributions of phases. In addition, we mention the work of Allefeld
& Kurths (2003), who recently developed a sophisticated method which extracts
an instantaneous index for mutual phase synchronization by considering the space-
time structure of data. However, most methods in this research field considers a
high number of trials and, to our best knowledge, the detection of mutual phase
synchronization in single data sets is still lacking.

The present work proposes a segmentation framework for both linear and phasic
data sets. It extends both the detection of mutual phase synchronization to single
trial analysis and the analysis of linear single trial analysis to the treament of phasic
data. Our approach considers the spatiotemporal behaviour of multivariate brain
signals and aims to extract segments of metastable behaviour. The key point is the
observation that all time series show a mutual change of their time scale, which yield
clusters in the corresponding data space [Hutt & Kruggel (2001); Hutt et al. (2003)].
This observation is valid for both linear and phasic data, while clusters in linear data
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represent generalized synchronization and clusters in phasic data represent mutual
phase synchronization.

Hence, a single cluster detection algorithm is applied, while its concrete impleme-
mentation depends on the data topology. Linear data behaves on a plane, while
phasic data lives on a torus. The following sections show the application to audi-
tory evoked potentials. The results reveal the effects of averaging and the latency
jitter of components in single trial subsets. Further, the component N100 exhibits
latency differences in two different experimental conditions which indicates early
cognitive processing in the brain after 100ms from stimulus onset.

This article is structured as follows. The next section introduces the examined
data, the cluster algorithm for both topologies and the applied statistical analysis.
Application results follow in Sec. 3. The discussion in Sec. 4 closes the work.

2 Methods

2.1 Clustering of linear data

Let us consider two typical time series QFz(t), QCz(t) obtained during a cognitive
experiment (Fig.1(a)). We observe mutual behaviour of the time series about 105ms,
276ms and 331ms, that is

QFz(t) = F [QCz(t)], (1)

where F is a function independant from time. This relation is known in literature
in the context of chaotic dynamics and defines generalized synchronization [Rulkov
et al. (1995); Pyragas (1996)]. We extend this definition to the N -dimensional case
and obtain the definition of global generalized synchronization

Qi(t) = Fij[Qj(t)] ∀i, j = 1, ...., N, . (2)

Figure 2(b) shows both time series as a trajectory in data space. Obviously, the
trajectory at the three time points exhibits turning points. Focussing to these
turning points, data are more dense than between these points. Since turning points
of trajectories exhibit vanishing temporal derivatives, Eq.(2) yields

dQi

dt
=

∂Fij

∂Qj

∂Qj

∂t
= 0 (3)

→ dQi

dt
= 0 ∀i = 1, ....., N. (4)

for turning points. Indeed, this inreased data density has been found in multivari-
ate data in various studies [Pascual-Marqui et al. (1995); Hutt (2004); Hutt et al.
(2000); Hutt & Kruggel (2001); Hutt & Riedel (2003)]. In case of event-related
potentials/event-related fields (ERP/ERF), such metastable phenomena have been
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Figure 1: Two typical time series of observed electroencephalographic potentials,
here taken at detectors Fz and Cz. They are plotted as single time series (top part)
and trajectory in data space (bottom part). The arrows in the bottom part denote
the temporal evolution direction of the signal.
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Figure 2: A trajectory segment in the time window [−20ms; 139ms]. The dashed
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called differently in literature, e.g. microstates by Lehmann [Lehmann & Skrandies
(1980)], quasi-stationary states [Hutt & Riedel (2003)], states of synchronization
and desynchronization Pfurtscheller & da Silva (1999) or event-related components
in many neuropsychological studies (see e.g. Rugg & Coles (1996)). In addition, we
mention the notion of chaotic itinerancy Tsuda (2001); Kay (2003), which models
the transients by phase transitions of first order Freeman (2003). Despite differences
in these approaches, they describe the mutual decrease and subsequent increase in
the time scale of data. In addition, all definitions classify such metastabilities by
their latency shift from stimulus onset and their spatial activity distribution at the
corresponding latency. In the following, we shall call these phenomena simply com-
ponents. Subsequently, re-considering the previous discussion components reflect
global synchronization.

In case of non-smooth data, mutual behaviour of time series is not that obvious
anymore, however trajectory segments of components are assumed to still exhibit
an increased data density. In mathematical terms, turning points subject to noise
obey

Qi(t) = Q̄i + Γi(t) ∀i = 1, ..., N (5)

where Q̄i = const and Γi denote random fluctuations with 〈Γi〉 = 0. Here 〈...〉
denotes an average value. Hence, at a constant sampling rate trajectories near
turning points obey 〈Qi(t)〉 ≈ Q̄i and, subsequently, components represent clusters
in data space.

To detect these clusters, we apply the K-means cluster algorithm [Duda & Hart
(1973)] which assumes a priorily a fixed number of clusters. Figure 2 shows a
trajectory segment extracted from the data in Fig. 1. Two cluster centers have been
guessed for illustration reasons. Here data between −20ms and 70ms and the two
last data points are nearer to cluster center 2 than to cluster center 1, while the data
between 71ms and 137ms belongs to cluster 1. This means the two cluster centers
segment the data into three temporal segments, whose borders at 70ms and 138ms
are determined by the distance from cluster centers. Now, we apply the K-means
algorithm to the data segment of Fig. 2 for K = 2, K = 3 and K = 5 clusters,
respectively. Figure 3 shows the computed squared Euclidean distances from cluster
centers to data for the different number of clusters and the plots exhibit the change
of nearest clusters and subsequently temporal segments.

The proposed method aims to find a reasonable quantity that distinguishes well-
separated from intersecting clusters while taking into account errors by single out-
liers. This quantity represents the cluster quality of a data point at time t and is
defined by the area al(t) in Fig. 3, while l = 1..NK and NK denotes the number of
segments for a fixed number of clusters K. This area between the nearest and the
second nearest cluster quantifies both the spatial separation of two segments and its
cardinality.

In mathematical terms, the well-known global cost function for K-means clustering
and K clusters reads
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Figure 3: The basic elements of the introduced cluster quality illustrated for number
of cluster K = 2, K = 3 and K = 5.

7



VK =
K
∑

l=1

∑

i∈Cl

(xi − x̄l)
2 =

K
∑

l=1

∑

i∈Cl

d2
ik (6)

where x̄l denote cluster centers and Cl are the corresponding sets of members. VK

gives the mean distance of data to clusters and is minimal for the optimal choice
of cluster centers. According to the previous discussion, the method extends this
formulation to temporal segments S and also considers the distance to the second
nearest cluster of each data point. That is

V ′

K =
S
∑

l=1

∑

i∈Sl

(e2
il − d2

il) =
S
∑

l=1

(Nl − 1)(σsn
l − σn

l ) =
S
∑

l=1

al (7)

where dik and eik denote the Euclidean distance from the data point xi to its cor-
responding nearest and second-nearest cluster center in segment l, respectively. Nl

represents the number of data in segment l. Here, al is proportional to the dif-
ference of cluster variances σsn

l and σn
l between second-nearest and nearest cluster

center in segment l,respectively. Now, in contrast to the global approach in (6),(7),
the method associates each data point i to the cluster quality of its segment by
Ali = alI [i] with the indicator function I [i ∈ Sl] = 1 , I [i 6∈ Sl] = 0. Finally, the
normalization of Ali and averaging over increasing number of clusters, i.e.

Āl(i) =
Ali

∑S
l=1 Ali

, p(i) =
1

U − 2

U
∑

K=2

Āl

yields the mean cluster quality p and the present work fixes the maximum number
of clusters U = 20. Previous studies [Hutt & Riedel (2003)] showed that results
are robust towards the value of U if U exceeds the maximum number of expected
clusters. According to this definition, large values of p give well-separated clusters,
that is well-detected components, while falls and rises mark transitions between
different clusters.

2.2 Clustering of circular data

In addition to the analysis of linear data, this section treats phasic or circular
data. Several previous studies examined phase synchronization in evoked brain sig-
nals [Tass (1999); Allefeld & Kurths (2003); Haig et al. (2000); Breakspear (2002)].
Since a previous theoretical study has shown increased data densities in temporal
segments of mutually phase-synchronized data [Hutt et al. (2003)], the extention of
the derived cluster algorithm to circular data is straight forward.

Phasic data are physically reasonable only in an associated narrow frequency band.
To obtain instantaneous phases from linear data, the present work applies a Gaussian
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filter in frequency space in combination with a complex Fourier transform [DeShazer
et al. (2001)] obtaining

S(t) = 2

∫

∞

−∞

e−(ν−νk)2/ν2
ν Q̃(ν)e−iνtdν. (8)

Here, Q̃(ν) denotes the Fourier transform of the signal Q(t). Since νk > 0, S(t) is
complex and the instantaneous spectral power and phase is given by

A(t) =
√

I(s(t))2 + R(s(t))2 , Φ(t) = arctan
I(s(t))

R(s(t))
(9)

for each frequency band about νk, respectively. Here, s(t) = S(t) − S̄, S̄ is the
temporal average of S(t) and R(s) and I(s) denote the real and imaginary part
of s, respectively. The width of the frequency band is given by the variance of
the filter σ2

ν , which in turn determines the variance of the resulting temporal filter
by σ2

t = 1/σ2
ν according to the uncertainty principle. The corresponding standard

deviation in the time domain represents an estimate for the number of correlated
time points and we fix it to 2 · 10 oscillations, i.e. σt = 10/ν. Subsequently, filtered
data in low frequency bands exhibit higher temporal correlations than data for
higher frequencies. In turn, the width of the frequency filter is proportional to the
center frequency by σν = ν/10. We mention the equivalence of this approach to the
analysis by Morlet wavelets.

According to Pikovsky et al. (2000), mutual phase synchronization(MPS) exhibits
bounded differences of phase pairs

|Φk(t) − Φl(t)| < const ∀ k = 1, ..., N, l = k, ...., N. (10)

Hence MPS yields data clusters in the extended space of all phase pairs defined by
a new multivariate time series y(t) ∈ RM with M = N(N − 1)/2 and {yj(t)} =
{Φk(t)− Φl(t) ∀ k > l}.
There are just two more implementation differences to the linear case, namely the
computation of circular distances and the computation of mean circular values.
These computations obey basic rules in circular statistics and we refer the reader
to Mardia & Jupp (1999) for more details. All subsequent computations of distances,
averages and variances of circular data obey these rules.

Summarizing the proposed method for circular data, choose a narrow frequency
band, then compute the circular time series by (8) and (9) and compute the new
extended data set of phase differences before applying the cluster algorithm as pro-
posed in the previous section.

Similar to the linear case, the obtained cluster quality exhibits large values in case of
strong mutual phase synchronization, while sharp falls and rises, respectively, mark
transitions between different clusters.
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2.3 Statistical analysis

Since the K-means algorithm is iterative and the obtained cluster centers are sen-
sitive to initial values, there is no guarantee that the algorithm converges to the
optimal cluster results. Hence, the method repeats the computation of p(t) 10 times
obtaining mean values P (t) and corresponding variances σ(t) for each time point t.
To verify additionally the cluster results, surrogate data is generated by randomizing
the data in time and the re-application of the cluster algorithm yields new mean
cluster qualities Ps(t) and corresponding variances σs(t). The obtained surrogate
data set exhibits a decorrelated temporal structure. Subsequently, no prominent
cluster segment occurs and Ps(t) is much smaller than in the original data. We shall
verify the missing temporal struture by visual inspection, while the lower values of
Ps are verified by the t-test for every time point t. The t-value reads

T (t) =
P (t)− Ps(t)

σ(t) + σs(t)

√
n, (11)

with the degrees of freedom n = 19. Equation (11) sets the null hypothesis such
that P is indistinguishable from random cluster results Ps. For T (t) > tα,n the test
rejects the null hypothesis at an false positive error rate α and P is significantly
different from Ps. Here tα,n denotes the Students t-distribution.

In addition, the present work considers a mutual phase synchronization index mo-
tivated by Haig et al. (2000) and applied recently by Allefeld & Kurths (2003). It
represents the global circular variance

R(t) =
1

L

L
∑

l=1

√

√

√

√

(

M
∑

j=1

sin yjl(t)

)2

+

(

M
∑

j=1

cos yjl(t)

)2

, (12)

where {yjl} are phase differences in trial l = 1 . . . L. R(t) gives a rough estimate of
mutual phase synchronization for each frequency band. This index extracts infor-
mation from trial ensembles and is not applicable for single trial analysis. However,
we shall compare our results on single trial averages to results from Eq. (12) in a
later section.

2.4 Data acquisition

Event-related potential (ERP) data are analyzed in two conditions of a 2-tone passive
oddball paradigm. Tones used were a standard at a frequency of 1kHz and an
occurence rate of 0.85 and a deviant tone at a frequency of 2Khz and an occurence
rate of 0.15. The tones were presented at a level of 70 dBSL and had a rise and fall
time of 10ms, a duration of 50ms with an inter-stimulus-interval from 3.2s to 3.8s
between the start of each stimulus. Tones were played through earphones. ERP
recordings were made from 32 sites (electrocap, 10 : 20-system, impedance < 5kΩ,
linked mastoid reference) at a sampling rate of 1kHz and amplitude resolution 0.1µV.
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Hardware filters were applied with the low cutoff at 0.5Hz, the high cutoff at 70Hz
and the notch filter at 50Hz.
Topographical scalp current source density(CSD)-maps (order of splines:4, max.
degree of Legendre polynomials: 10) were made for comparisons. The frontal (Fz),
central (Cz), and parietal (Pz) midline electrode sites were used to facilitate correct
identification of the P300 peak (Johnson (1993)). EOG artifact rejection was applied
(Gratton et al. (1989)). Data were evaluated offline using a digital low-pass 25Hz
filter (e.g. Polich (1998)). Driving tasks (with or without using an active cruse
control named distronic) were alternated every 30 min to minimize effects of sequence
and attention.
Recordings were analyzed from one physically and mentally healthy subject (male,
45 years, 25 years driving experience, about 50.000 km driven with the Mercedes
Benz S-500 test car), with no history of neurological disorder, free of medication
and corrected to normal vision. The test route was a 400 km stretch of a german
highway (Stuttgart-Duesseldorf). Digital video of forward road scene was recorded
for comparison of traffic density and to identify particular variations of traffic scenes.

3 Results

Now, we examine results from both linear and circular data for both experimental
conditions. Since the present work proposes an algorithm to examine single data
sets, we show results from averages over all trials, from averages over subsets of
trials and results from single trials.

3.1 Application to linear data

Figure 4 presents time series from averages over all trials for both experimental con-
ditions. Conventional methods identify the components N100 at ∼ 100ms, compo-
nent P200 at ∼ 200ms and component P300 at ∼ 300ms for the distronic condition.
For the non-distronic condition, we identify the components N100 at ∼ 100ms and
P200 at ∼ 200ms.

The proposed method yields the mean cluster quality P (t) which exhibits plateaus
of constant values with sharp edges, as shown in Fig. 5a. We observe various clus-
tered segments in time windows coinciding to the conventional results from Fig. 4.
Focussing to the time window [0ms; 400ms] and re-applying the method, plateaus
and edges in the same time windows occur, while subtle edges in results from the
larger time window are more pronounced.

The difference in absolute values occur mainly by virtue of the normalization of P .
Figure 5b presents the cluster results of randomized time series exhibiting poor tem-
poral structure and much lower values of cluster quality. Here and in the following,
the t-test gives p-values < 0.001 for all time windows and both experimental con-
ditions. That means the cluster results P (t) are significant. Figure 6 shows cluster
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Figure 4: Observed time series at different detectors for both experimental con-
ditions. Conventional methods classify the components N100, P200 and P300 for
the distronic condition and N100 and P200 for the non-distronic condition at corre-
sponding temporal latencies.

results for averages over trial subsets in two different time windows for both condi-
tions. It turns out that cluster segments in the data occur in similar time windows
as in Fig 5, however slightly shifted, shortend or lengthend. This finding supports
the hypothesis of latency shifts in single trials. Figure 7 presents components in
single trials, which reveal the latency jitter as well.

Now, we focus to the shorter time window [0ms; 200ms] and classify components
by their latencies and spatial distributions. Figure 8 presents results from averages
over all trials and average current source density(CSD) maps corresponding to the
detected time segments. We identify component the components N100 and P200 in
both conditions. In addition, these results reveal a time shift of component N100
between both experimental conditions. Hence component N100 depends on the
cognitive task, and thus reflects an endogeneous underlying process. This finding
contrasts to the general hypothesis that N100 is an exogeneous component, i.e.
independant from the cognitive task. Further results from trial subsets support this
finding (Fig. 9), however not such obviously.

We point out that the previously detected components are identified by latency
shift and duration only, as the corresponding spatial distributions are noisy and
do not allow a clear classification. Future research shall apply spatial denoising of
components and we refer the reader to forthcoming work.
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Figure 5: Cluster results for single averages over all trials. The cluster qual-
ity p quantifies the generalized synchronization GS(t) = p(t) in time windows
[−200ms; 1000ms] (dashed line) and [0ms; 400ms] for both experimental condition.
The top part shows results from the original signal, where we observe a distinguished
temporal structure. In contrast, the bottom part presents clustering results from
the surrogate time-randomized data, which exhibits a poor temporal structure.
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Figure 9: Cluster results from single data sets averaged over subsets of trials for
both experimental conditions. The cluster quality p quantifies the generalized syn-
chronization GS(t) = p(t). Here, the focus to a shorter time window [0ms; 200ms]
increases the analysis resolution and reveals clear temporal segments. For illustra-
tion reasons, results 20−39 and 40−59 have been shifted artificially to lower values
in both experimental conditions.
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Figure 10: Spectral power from the average over all trials and global circular variance
from all trials for both conditions. Spectral power contributions for frequencies larger
than 20Hz are negligible.

3.2 Application to circular data

Now, we examine mutual phase synchronization in the data. Since the phases are
defined in a corresponding narrow frequency band, the spectral density A(t) and the
global circular variance R(t) are computed to indicate frequency bands of functional
relevance. Figure 10 reveals low spectral power beyond 15Hz, while the data ex-
hibits increased global phase synchronization at 17Hz and 20Hz. In addition, both
increased power spectral density and global phase synchronization occurs about
ν = 6Hz in the distronic condition and about ν = 5Hz in the non-distronic condi-
tion, respectively. Hence, the analysis focus to the frequency bands ν = 6 ± 0.6Hz
and ν = 5 ± 0.5Hz.

The subsequent analysis focus to the time window [0ms; 400ms]. The first examined
datasets represent the averages over all trials and Fig. 11 shows short periods of

18



0.1

0.15

M
P

S
(t

)

average over all trials

100 200 300 400
time [ms]

0.15

0.2

M
P

S
(t

)

with distronic

without distronic

Figure 11: Cluster results from single phasic averages over all trials for both exper-
imental conditions. The cluster quality p quantifies the mutual phase synchroniza-
tion MPS(t) = p(t). The original phasic signals are chosen in the freqency bands
6 ± 0.6Hz (with distronic) and 5 ± 0.5Hz (without distronic).

increased MPS at ∼ 40ms, ∼ 80ms and ∼ 130ms in the distronic condition. Further,
MPS is strong in [240ms; 340ms] and even stronger after 340ms. In the non-distronic
condition, the results reveal increased MPS from stimulus onset to ∼ 90ms, between
110ms and 185ms and between 190ms and 240ms. After a longer transition period,
strong MPS emerges at 290ms and even stronger between 340ms and 400ms. Hence,
the time segments of increased MPS are different in both conditions, while strong
MPS coincide after ∼ 240ms. Here and in the following, the t-test gives p-values
< 0.001 for both experimental conditions, i.e. all results are statistically significant.

Since these results reflect the average behaviour of all trials and might be smeared
due to latency shifts in single trials, the focus to averages of trial subsets improves
the temporal localization of components. Figure 12 shows latency shifts between all
subset averages at rather early latencies at about 90ms in the distronic condition.
Further, all trial averages reveal a synchronous plateau of MPS about 130ms, while
averaged trials 0 − 19 reveal retarded MPS at 260ms compared to the synchronous
increase of MPS in subsets 20− 39 and 40− 59. This rather synchronous behaviour
between different trials sets does not occur in the non-distronic condition, where
only the promiment plateau of subset 40 − 59 about 200ms coincides with the less
prominent plateaus in 20−39. Finally, in the distronic condition results from single
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Figure 12: Cluster results from single phasic averages over subsets of trials for
both experimental conditions. The cluster quality p quantifies the mutual phase
synchronization MPS(t) = p(t). Here, the phasic signals are chosen in the same
freqency bands as in Fig. 11. For illustration reasons, results from 20−39 and 40−59
have been shifted artificially to lower values in both experimental conditions.
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Figure 13: Cluster results from single trials for both experimental conditions. The
specific choice of trials is arbitrary and the cluster quality p quantifies the mutual
phase synchronization MPS(t) = p(t). Here, the phasic signals are chosen in the
same freqency bands as in Fig. 11. For illustration reasons, results from 20−39 and
40−59 have been shifted artificially to lower values in both experimental conditions.

trials reveal coincident components in [0ms;70ms], [70ms;140ms] and [250ms;300ms]
in trials 30 and 50 (Fig. 13). In contrast, trial 10 exhibits components, which
are shifted in latencies compared to trial 30 and 50. Less coincident behaviour is
observed in the non-distronic condition.

3.3 Comparison to an existing method

The global circular variance R(t) is only a rough quantity for mutual phase syn-
chronization, as it smears out spatial inhomogeneities by averaging. In contrast, the
proposed cluster quality P (t) takes into account the space-time structure of data.
Figure 14 presents a direct comparison of both quantities for averages over all trials.
In the distronic condition, the rough circular variance behaves in time similar to the
cluster quality. More detailed, transients at ∼ 170ms coincide, while the transition
from the component at 250ms to the component at 350ms occurs earlier in R(t)
than in P (t). However, the most important difference between both quantities is
the more detailed analysis of substructures by the proposed method. This is obvious
in the non-distronic condition, where the substructure between 100ms and 250ms is
lost in R(t) and present in P (t).
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Figure 14: Comparison of cluster results to the conventional global circular variance
for both experimental conditions.

4 Discussion

The first part of the present work showed the relation of mutual space-time behaviour
in brain signals to synchronization effects. Metastable behaviour in linear data re-
flect transient generalized synchronization, while mutual metastability of circular
data represent transient mutual phase synchronization. Considering these aspects,
cluster analysis allows the segmentation of multivariate time series into metastable
segments. The application to empirical linear and circular evoked potentials led to
temporal segments, which show good accordance to cognitive components. Investi-
gating subsets of trials revealed latency jitters between the sets. These latency shifts
indicate that external stimuli do not reset the phase of brain activity to the same
value at each stimulus onset. Hence, our findings attenuate the general assumption
of fixed time delayed evoked response to the stimulus onset similar to previous stud-
ies (see e.g. Pfurtscheller & da Silva (1999)). That is event-related potentials do not
represent a linear superposition of signal and uncorrelated noise and, subsequently,
single trial averages have to be interpreted cautiously. In addition to the detec-
tion of latency jitters, we found a latency shift of component N100 between both
experimental conditions in the averages over all trials. Against the conventional as-
sumption, this novel result indicates an early attention effect. However, this shift is
not such clear anymore in some trial subsets due to latency jitters in the component.

The major reason for the reason for the successful analysis of single data sets is
the consideration of the space-time structure of the data. This becomes obvious by
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comparing our method to a conventional detection method for mutual phase syn-
chronization treating only the temporal structure. It turns out that the conventional
method looses important data structures, which are extracted by the proposed ap-
proach. In future work, we aim to develop a thorough single trial analysis with
improved statistical assessment in order to gain further insights to the phase syn-
chronization processes of underlying neural activity.
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