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Abstract

A non-critical branching immigration superprocess with dependent spatial motion

is constructed and characterized as the solution of a stochastic equation driven by a

time-space white noise and an orthogonal martingale measure. A representation of its

conditional log-Laplace functionals is established, which gives the uniqueness of the

solution and hence its Markov property. Some properties of the superprocess including

an ergodic theorem are also obtained.

1 Introduction

A class of superprocesses with dependent spatial motion (SDSM) over the real line R were

introduced and constructed in Wang (1997, 1998). A generalization of the model was then

given in Dawson et al (2001). Let c 2 C
2
b (R) and h 2 C

2
b (R) and assume both h and h0

are square-integrable. Let

�(x) =

Z
R

h(y � x)h(y)dy; x 2 R;

and a(x) = c(x)2 + �(0). Let � 2 C
2
b (R)

+ . We denote by M(R) the space of �nite Borel

measures on R endowed with a metric compatible with its topology of weak convergence.

For f 2 Cb(R) and � 2 M(R) set hf; �i =
R
fd�. Then an SDSM fXt : t � 0g is

characterized by the following martingale problem: For each � 2 C2
b (R),

Mt(�) = h�;Xti � h�;X0i �
1

2

Z t

0

ha�00;Xsids; t � 0; (1.1)

is a continuous martingale with quadratic variation process

hM(�)it =
Z t

0

h��2;Xsids+
Z t

0

ds

Z
R

hh(z � �)�0;Xsi2dz: (1.2)

Clearly, the SDSM reduces to a usual critical branching Dawson-Watanabe superprocess

if h(�) � 0; see e.g. Dawson (1993). A general SDSM arises as the weak limit of critical

branching particle systems with dependent spatial motion. Consider a family of indepen-

dent Brownian motions fBi(t) : t � 0; i = 1; 2; � � �g, the individual noises, and a time-space

white noise fWt(B) : t � 0; B 2 B(R)g, the common noise. The migration of a particle in

the approximating system with label i is de�ned by the stochastic equation

dxi(t) = c(xi(t))dBi(t) +

Z
R

h(y � xi(t))W (dt; dy); (1.3)

where W (ds; dy) denotes the time-space stochastic integral relative to fWt(B)g. When

c(�) � 0, the SDSM lives in the space of purely atomic measures; see Dawson and Li

(2003), Li et al (2004) and Wang (1997, 2002).
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In this paper, we consider a further extension of the model of Dawson et al (2001) and

Wang (1997, 1998). Let b 2 C
2
b (R) and let m 2 M(R). A modi�cation of the above

martingale problem is to replace (1.1) by

Mt(�) = h�;Xti � h�;X0i � th�;mi � 1

2

Z t

0

ha�00;Xsids+
Z t

0

hb�;Xsids: (1.4)

We shall prove that the martingale problem given by (1.2) and (1.4) really has a solution

fXt : t � 0g. The process may be regarded as a non-critical branching SDSM with

immigration (SDSMI), where b(�) is the linear growth rate andm(dx) gives the immigration

rate. This modi�cation is closely related to the recent work of Dawson and Li (2003), where

an interactive immigration given byZ t

0

hq(�; Xs)�;mids

was considered, where q(�; �) is a function on R�M(R) giving a state dependent immigra-

tion density. However, Dawson and Li (2003) assumed b(�) � c(�) � 0 and used essentially

the purely atomic property of the process, which is not available for the present model.

The main purpose of this paper is to give a representation of the conditional log-Laplace

functionals of solution of (1.2) and (1.4) and to illustrate some applications of the represen-

tation. This work was stimulated by Xiong (2003), who established a similar characteriza-

tion for the model of Skoulakis and Adler (2001). The key idea of the representation is to

decompose the martingale (1.4) into two orthogonal components, which arise respectively

from the migration and the branching. Since the decomposition uses additional informa-

tion which is not provided by (1.2) and (1.4), we shall start with the corresponding particle

system and consider the high density limit following Dawson et al (2000). In this way, we

can easily separate the two kinds of noises. It turns out that the common migration noise

fW (ds; dy)g remains after the limit procedure and the limit process satis�es the following

martingale problem: For each � 2 C2
b (R),

Zt(�) = h�;Xti � h�;X0i � th�;mi � 1

2

Z t

0

ha�00;Xsids

+

Z t

0

hb�;Xsids�
Z t

0

Z
R

hh(y � �)�0; XsiW (ds; dy) (1.5)

is a continuous martingale orthogonal to fWt(�)g with quadratic variation process

hZ(�)it =
Z t

0

h��2;Xsids: (1.6)

This formulation suggests that we may regard fXt : t � 0g as a generalized inhomogeneous

Dawson-Watanabe superprocess with immigration, whereZ
R

h(y � �)W (dt; dy)

gives a generalized drift in the underlying migration. Based on the techniques developed

in Kurtz and Xiong (1999) and Xiong (2003), we prove that for each � 2W 1
2 (R) \ Cb(R)

there is a unique strong solution of the non-linear SPDE

 r;t(x) = �(x) +

Z t

r

�
1

2
a(x) 00s;t(x)�

1

2
�(x) s;t(x)

2

�
ds

�
Z t

r

b(x) s;t(x)ds+

Z t

r

Z
R

h(y � x) 0s;t(x) �W (ds; dy); (1.7)
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where the last term on the right hand side denotes the backward stochastic integral rel-

ative to the white noise. Then we show that the conditional log-Laplace functionals of

fXt : t � 0g given fW (ds; dy)g can be represented by the solution of (1.7). Since the

parameters in (1.7) do not meet the requirements of the results of Kurtz and Xiong (1999)

and Xiong (2003), the investigation of (1.7) itself is of interest from the point of view of

non-linear SPDE's. The representation of the conditional log-Laplace functionals is proved

by direct analysis based on (1.5), (1.6) and (1.7). This approach is di�erent from that

of Xiong (2003), where a Wong-Zakai type approximation was used. The idea of condi-

tional log-Laplace approach has also used by Crisan (2002) for another di�erent model.

In fact, the approach in Section 5 is adapted from Crisan (2002) which simpli�es our orig-

inal arguments. It is well-known that non-conditional log-Laplace functionals play very

important roles in the study of classical Dawson-Watanabe superprocesses. We shall see

that conditional Laplace functionals are almost as eÆcient as the non-conditional Laplace

functionals in studying some properties of the SDSMI. In particular, the characterization

of the conditional Laplace functionals gives immediately the uniqueness of solution of (1.5)

and (1.6), which in turn implies the Markov property of fXt : t � 0g. We also prove some

properties of the SDSMI including an ergodic theorem, which show the potential of other

applications of the conditional log-Laplace functionals.

The remainder of the paper is organized as follows. In Section 2 we give a formulation of the

system of branching particle with dependent spatial motion and immigration. Some useful

estimates of the moments of the system are also given. In Section 3 we obtain a solution of

the martingale problem (1.5) and (1.6) as the high density limit of a sequence of particle

systems. The existence and uniqueness of the strong solution of (1.7) is established in

Section 4. In Section 5 we give the representation of the conditional log-Laplace functionals

of the solution of (1.5) and (1.6). Some properties of the SDSMI are discussed in Section

6.

2 Branching particle systems

The main purpose of this section is to give an explicit construction for the immigration

branching particle system with dependent spatial motion by modifying the constructions

of Dawson et al (2000) and Walsh (1986). This construction set up the process in a useful

form.

We start with a simple interacting particle system. Let � > 0 be a constant and (c; h) be

given as in the introduction. Let N(R) �M(R) be the set of integer-valued measures on

R and let M�(R) := f��1
� : � 2 N(R)g. Given fai : i = 1; � � � ; ng, let fxi(t) : t � 0; i =

1; � � � ; ng be given by

xi(t) = ai +

Z t

0

c(xi(s))dBi(s) +

Z t

0

Z
R

h(y � xi(s))W (dy; ds): (2.1)

We may de�ne a measure-valued process fXt : t � 0g by

h�;Xti =
nX
i=1

�
�1
�(xi(t)); t � 0: (2.2)

By the discussions in Dawson et al (2001) and Wang (1997, 1998), fXt : t � 0g is a

di�usion process in M�(R) with generator A� given by

A�F (�) =
1

2

Z
R2

�(x� y)
d
2

dxdy

Æ
2
F (�)

Æ�(x)Æ�(y)
�(dx)�(dy)
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+
1

2

Z
R

a(x)
d
2

dx2

ÆF (�)

Æ�(x)
�(dx)

+
1

2�

Z
R2

c(x)c(y)
d
2

dxdy

Æ
2
F (�)

Æ�(x)Æ�(y)
Æx(dy)�(dx); (2.3)

where

ÆF (�)

Æ�(x)
= lim

r!0
r
�1[F (�+ rÆx)� F (�)]

and Æ2F (�)=Æ�(x)Æ�(y) is de�ned by the above limit with F (�) replaced by ÆF (�)=Æ�(y).

In particular, if Ff;f�ig(�) := f(h�1; �i; � � � ; h�n; �i) with f 2 C
2
b (R

n) and f�ig � C
2
b (R),

then

A�Ff;f�ig(�) =
1

2

nX
i;j=1

f
00
ij(h�1; �i; � � � ; h�n; �i)

Z
R2

�(x� y)�0i(x)�
0
j(y)�(dx)�(dy)

+
1

2

nX
i=1

f
0
i(h�1; �i; � � � ; h�n; �i)ha�00i ; �i

+
1

2�

nX
i;j=1

f
00
ij(h�1; �i; � � � ; h�n; �i)hc2�0i�0j ; �i; (2.4)

is well-de�ned.

A more interesting particle system involves branching and immigration. Let 
 > 0 be a

constant and let m 2M(R). Let p(x; �) = fp0(x); p1(x); p2(x); � � �g be a family of discrete

probability distributions which measurably depends on the index x 2 R and satis�es

p1(�) � 0. Suppose that

q(x) :=

1X
i=1

ipi(x); x 2 R; (2.5)

is a bounded function. We shall construct a immigration branching particle system with

parameters (a; �; 
; p; �m; 1=�). Let A be the set of all strings of the form � = n0n1 � � �nl(�),
where l(�) is the length of � and the nj are non-negative integers with 0 � n0 � 1 and

nj � 1 for j � 1. We provide A with the arboreal ordering, that is, m0 � � �mp � n0 � � �nq
if and only if p � q and m0 = n0; � � � ;mp = np. Then � has exactly l(�) predecessors,

which we denote respectively by � � 1, � � 2, � � �, � � l(�). For example, if � = 12431,

then �� 2 = 124 and �� 4 = 1.

Consider a sequence of random variables fa01; � � � ; a0ng � R. Let fW (ds; dx) : s � 0; x 2
Rg be a time-space white noise and fN(ds; dx) : s � 0; x 2 Rg a Poisson random measure

with intensity �dsm(dx). We shall assume h1;mi > 0, otherwise the construction of the

immigration part is trivial. In this case, we can enumerate the atoms of N(ds; dx) as

f(si; a1i) : 0 < s1 < s2 < � � � ; a1i 2 Rg: (2.6)

We also de�ne the families

fB�(t) : t � 0; � 2 Ag; fS� : � 2 Ag; f�a;� : a 2 R; � 2 Ag; (2.7)

where fB�g are independent standard Brownian motions, fS�g are i.i.d. exponential ran-
dom variables with parameter 
, and f�a;�g are independent random variables with distri-

bution p(a; �). We assume that the families fW (ds; dx)g, fN(ds; dx)g, fa0ig, fB�g, fS�g
and f�a;�g are independent.
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We de�ne �0n1 = 0 if 1 � n1 � n and �0n1 = 1 if n1 > n, and de�ne �1n1 = sn1 for all

n1 � 1. For � 2 A with l(�) = 1 we let �� = �� + S�. Heuristically, S� is the life length

of the particle with label �, �� is its birth time and �� is its death time. The random

variables a� de�ned above can be interpreted as the birth place of the particle with label

�. The trajectory fx�(t) : t � ��g of the particle is the solution of the equation

x(�� + t) = a� +

Z ��+t

��

c(x(s))dB�(s) +

Z ��+t

��

Z
R

h(y � x(s))W (ds; dy): (2.8)

For � 2 A with l(�) > 1 the trajectory fx�(t) : t � ��g is de�ned by the above equation

with a� = x��1(�
�
��1), �� = �� + S� and

�� =

�
���1 if nl(�) � �x��1(���1�);��1

1 if nl(�) > �x��1(���1�);��1,
(2.9)

where x��1(���1�) denotes the left limit of x��1(t) at t = ���1. Then

h�; Yti =
X
�2A

�
�1
�(x�(t))1[��;��)(t); t � 0; (2.10)

de�nes a process fYt : t � 0g in M�(R). This process has countably many jumps, and

between those jumps it behaves just as the di�usion process fXt : t � 0g constructed by

(2.2). The jumps of fYt : t � 0g corresponds to the generator

B�F (�) =

1X
j=0

Z
R

�
pj(x)[F (�+ (j � 1)��1
Æx)� F (�)]�(dx)

+

Z
R

�[F (�+ �
�1
Æx)� F (�)]m(dx): (2.11)

Note that

B�Ff;f�ig(�) =

1X
j=0

Z
R

�
pj(x)[f(h�1; �i+ �
�1
�1(x); � � � ; h�n; �i+ �

�1
�n(x))

�f(h�1; �i; � � � ; h�n; �i)]�(dx)

+

Z
R

�[f(h�1; �i+ �
�1
�1(x); � � � ; h�n; �i+ �

�1
�n(x))

�f(h�1; �i; � � � ; h�n; �i)]m(dx): (2.12)

Indeed, we may regard fYt : t � 0g as a concatenation of a sequence of independent copies

of fXt : t � 0g. See e.g. Sharpe (1988) for discussions of concatenation of general Markov

processes. This analysis shows that fYt : t � 0g is a Markov process with generator L� :=

A� + B�. We call the process an immigration branching particle system with parameters

(c; h; 
; p; �m; 1=�). Let D1(L�) denote the collection of all functions Ff;f�ig with f 2
C

2
0 (R

n) and f�ig � C
2
b (R). Then we have

Theorem 2.1 The process fYt : t � 0g constructed by (2.10) solves the (L�;D1(L�))-

martingale problem.

Let us give another useful formulation of the immigration particle system. From (2.8),

(2.10) and Itô's formula we get

h�; Yti = h�; Y0i+
1X
i=1

�
�1
�(a1i)1(0;t](si)

5



+
X
�2A

[�x�(���);� � 1]��1
�(x�(���))1(0;t](��)

+
X
�2A

Z t

0

�
�1
�
0(x�(s))1[��;��)(s)c(x�(s))dB�(s)

+
X
�2A

Z t

0

Z
R

�
�1
�
0(x�(s))1[��;��)(s)h(y � x�(s))W (ds; dy)

+
1

2

X
�2A

Z t

0

�
�1
�
00(x�(s))1[��;��)(s)a(x�(s))ds;

which can be rewritten as

h�; Yti = h�; Y0i+
Z
(0;t]

Z
R

�
�1
�(x)N(ds; dx)

+
X
�2A

[�x�(���);� � 1]��1
�(x�(���))1(0;t](��)

+
X
�2A

Z t

0

�
�1
�
0(x�(s))1[��;��)(s)c(x�(s))dB�(s)

+

Z t

0

Z
R

hh(y � �)�0; YsiW (ds; dy) +
1

2

Z t

0

ha�00; Ysids: (2.13)

It is not hard to see that, for any  2 Cb(R),

Ut( ) :=
X
�2A

Z t

0

�
�1
 (x�(s))1[��;��)(s)c(x�(s))dB�(s) (2.14)

is a continuous local martingale with quadratic variation process

hU( )it :=
Z t

0

h��1
c
2
 
2
; Ysids: (2.15)

In the sequel, we assume

�(x) =

1X
i=0

pi(x)(i� 1)2; x 2 R; (2.16)

is a bounded function on R.

Proposition 2.1 For any � 2 Cb(R),

Zt(�) :=
X
�2A

[�x�(���);� � 1]��1
�(x�(���))1(0;t](��)�

Z t

0

h
(q � 1)�; Ysids (2.17)

is a local martingale with predictable quadratic variation process

hZ(�)it =
Z t

0

h��1

��

2
; Ysids: (2.18)

Proof. Recall that fS�g are i.i.d. exponential random variables with parameter 
. Let

Jt(�) =
X
�2A

�
�1[�x�(���);� � 1]�(x�(���))1(0;t](��): (2.19)

6



Observe that the process fJt(�) : t � 0g jumps only if a particle in the population splits.

It is not hard to show that f(Yt; Jt(�)) : t � 0g is a Markov process with generator J�
such that

J�F (�; u) = A�F (�; u)(�) +
Z
R

�[F (�+ �
�1
Æx; u)� F (�; u)]m(dx)

+

1X
j=0

Z
R

�
pj(x)[F (�+ (j � 1)��1
Æx; u+ (j � 1)��1

�(x))� F (�; u)]�(dx):

In particular, if F (�; u) = u, then

J�F (�; �) =
1X
j=0

Z
R


pj(x)(j � 1)�(x)�(dx) = h
(q � 1)�; �i:

This shows that (2.17) is a local martingale. For l > 0 let �l = inffs � 0 : h1; Ysi � lg.
Let �n := f0 = tn;0 < tn;1 < � � � < tn;n = tg be a sequence of partitions of [0; t] such that

k�nk := max1�i�n jtn;i � tn;i�1j ! 0 as n!1. Observe that

nX
i=0

�Z tn;i^�l

tn;i�1^�l

jh
(q � 1)�;Xsijds
�2

� 
lkq � 1kk�nk
Z t^�l

0

jh
(q � 1)�;Xsijds:

The right hand side goes to zero a.s. as n!1. Let At;l = f� 2 A : 0 < �� � t ^ �lg and
for � 2 At;l let (rn;�; tn;�] be the unique interval in f(tn;i�1 ^ �l; tn;i ^ �l] : i = 1; � � � ; ng
containing the jump time �� of (2.19). Then we have

nX
i=0

jJtn;i^�l(�)� Jtn;i�1^�l(�)j
Z tn;i^�l

tn;i�1^�l

jh
(q � 1)�; Ysijds

�
X

�2At;l

�
�1j�x�(���);� � 1jj�(x�(���))j

Z tn;�

rn;�

jh
(q � 1)�; Ysijds

� �
�1

lkq � 1kk�nk

X
�2At;l

j�x�(���);� � 1jj�(x�(���))j:

Under the assumptions, At;l is a.s. a �nite set so the right hand side goes to zero a.s. as

n!1. It follows that

[Z(�)]t^�l := lim
n!1

nX
i=0

jZtn;i^�l(�)� Zti�1^�l(�)j2

= lim
n!1

nX
i=0

jJtn;i^�l(�)� Jti�1^�l(�)j2

=
X
�2A

�
�2[�x�(���);� � 1]2�(x�(���))21(0;t^�l](��):

By martingale theory, Zt^�l(�)
2� [Z(�)]t^�l is a martingale. Note that [Z(�)]t^�l has same

jump times as Jt^�l(�) with squared jump sizes. By an argument similar to the beginning

of this proof, we conclude that [Z(�)]t^�l�hZ(�)it^�l is a martingale. Then hZ(�)it^�l is a
predictable process such that Zt^�l(�)

2 � hZ(�)it^�l is a martingale, implying the desired

result.
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Let ~N(ds; dx) = N(ds; dx)��dsm(dx). Note that the assumptions on independence imply

that the four martingale measures fW (ds; dx)g, f ~N (ds; dx)g, fZ(ds; dx)g are fU(ds; dx)g
are orthogonal to each other. Now we may rewrite (2.13) into

h�; Yti = h�; Y0i+ th�;mi+
Z
(0;t]

Z
R

�
�1
�(x) ~N (ds; dx)

+

Z t

0

h
(q � 1)�; Ysids+ Zt(�) + Ut(�
0)

+

Z t

0

Z
R

hh(y � �)�0; YsiW (ds; dy) +
1

2

Z t

0

ha�00; Ysids: (2.20)

Clearly, the third term on the right hand side of (2.20) has a c�adl�ag modi�cation. By

Dellacherie and Meyer (1982, p.69, Theorem VI.4), the martingale fZt(�) : t � 0g has a

c�adl�ag modi�cation. All other terms on the right hand side have continuous modi�cations.

Therefore, the measure-valued process fYt : t � 0g has a c�adl�ag modi�cation and (2.20)

gives an SPDE formulation of this immigration branching particle system. The following

result shows that (2.14) and (2.17) are in fact square-integrable martingales.

Proposition 2.2 Let B1 := k
(q�1)k and B2 := k�
�k, where k�k denotes the supremum

norm. Then there is a locally bounded function C2 on R
3
+ such that

Efsup0�s�th1; Ysi2g � C2(B1; B2; t)(1 + h1; �i2 + h1;mi2); t � 0: (2.21)

Proof. Applying (2.20) to � � 1 we get

h1; Yti = h1; �i+ �
�1
N((0; t]� R) +

Z t

0

h
(q � 1); Ysids+ Zt(1); (2.22)

where fZt(1) : t � 0g is a local martingale with quadratic variation process

hZ(1)it =
Z t

0

h��1

�; Ysids:

For l > 0 let �l = inffs � 0 : h1; Ysi � lg. Then we have

Efh1; Yt^�lig � h1; �i + th1;mi +E
�Z t^�l

0

hj
(q � 1)j; Ysids
�

� h1; �i + th1;mi +B1

Z t

0

Efh1; Ys^�ligds:

By Gronwall's inequality, we have

Efh1; Yt^�lig � (h1; �i + th1;mi)eB1t; t � 0:

By Fatou's lemma we may let m!1 in the above to get

Efh1; Ytig � (h1; �i + th1;mi)eB1t; t � 0: (2.23)

By (2.22) there is a universal constant C � 0 such that

Efsup0�s�th1; Ys^�li2g � C

�
h1; �i2 + �

�2
EfN((0; t] � R)2g+Efsup0�s�tZs^�l(1)2g

+B2
1E

��Z t^�l

0

h1; Ysids
�2��

;
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where EfN((0; t] � R)2g = �th1;mi + �
2
t
2h1;mi2 by a formula for the Poisson random

measure. By a martingale inequality,

Efsup0�s�tZs^�l(1)2g � 4EfZt^�l(1)2g � 4B2

Z t

0

Efh1; Ysigds:

Then we use H�older's inequality to see that

Efsup0�s�th1; Ys^�li2g � C

�
h1; �i2 + �

�1
th1;mi + t

2h1;mi2 + 4B2

Z t

0

Efh1; Ysigds

+B2
1t

Z t

0

Efsup0�s�th1; Ys^�li2gds
�
:

By Gronwall's inequality, we get an estimate for Efsup0�s�th1; Yt^�li2g. Then we obtain

(2.21) by Fatou's lemma.

3 Stochastic equation of the SDSMI

Let (c; h; �; b;m) be given as in the introduction. Suppose that W (ds; dx) is a time-space

white noise. For � 2M(R) we consider the stochastic equation:

h�;Xti = h�; �i+ th�;mi+ 1

2

Z t

0

ha�00; Xsids�
Z t

0

hb�;Xsids

+

Z t

0

Z
R

�(y)Z(ds; dy) +

Z t

0

Z
R

hh(y � �)�0; XsiW (ds; dy); (3.1)

where Z(ds; dy) is an orthogonal martingale measure which is orthogonal to the white

noise W (ds; dy) and has covariation measure �(y)Xs(dy)ds. Clearly, this is equivalent

with the martingale problem given by (1.5) and (1.6). We shall prove that (3.1) has a

weak solution fXt : t � 0g, which will serve as a candidate of the SDSMI with parameters

(c; h; �; b;m). For a function F on M(R), let

AF (�) =
1

2

Z
R2

�(x� y)
d
2

dxdy

Æ
2
F (�)

Æ�(x)Æ�(y)
�(dx)�(dy)

+
1

2

Z
R

a(x)
d
2

dx2

ÆF (�)

Æ�(x)
�(dx) (3.2)

and

BF (�) =
1

2

Z
R

�(x)
Æ
2
F (�)

Æ�(x)2
�(dx)�

Z
R

b(x)
ÆF (�)

Æ�(x)
�(dx)

+

Z
R

ÆF (�)

Æ�(x)
m(dx) (3.3)

if the right hand sides are meaningful. We shall also prove that fXt : t � 0g solves a martin-

gale problem associated with L := A+B. In particular, if Ff;f�ig(�) = f(h�1; �i; � � � ; h�n; �i)
for f 2 C2

0 (R
n) and f�ig � C

2
b (R), then

AFf;f�ig(�) =
1

2

nX
i;j=1

f
00
ij(h�1; �i; � � � ; h�n; �i)

Z
R2

�(x� y)�0i(x)�
0
j(y)�(dx)�(dy)

+
1

2

nX
i=1

f
0
i(h�1; �i; � � � ; h�n; �i)ha�00i ; �i (3.4)
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and

BFf;f�ig(�) =
1

2

Z
R

�(x)

� nX
i;j=1

f
00
ij(h�1; �i; � � � ; h�n; �i)�i(x)�j(x)

�
�(dx)

�
Z
R

b(x)

� nX
i=1

f
0
i(h�1; �i; � � � ; h�n; �i)�i(x)

�
�(dx)

+

Z
R

� nX
i=1

f
0
i(h�1; �i; � � � ; h�n; �i)�i(x)

�
m(dx): (3.5)

Let D1(L) denote the collection of all functions Ff;f�ig with f 2 C2
0 (R

n) and f�ig � C
2
b (R).

We shall obtain (3.1) as the limit of a sequence of equations of immigration branching

particle systems. Let (c; h; 
k ; p
(k)
; �km; �

�1
k ) be a sequence of parameters such that �k !

1 as k ! 1. Let qk and �k be de�ned by (2.5) and (2.16) in terms of (
k; p
(k)
; �k). We

assume that fX(k)
t : t � 0g is a immigration particle system which satis�es

h�;X(k)
t i = h�;X(k)

0 i+ th�;mi+
Z
(0;t]

Z
R

�
�1
k �(x) ~N (k)(ds; dx)

+

Z t

0

h
k(qk � 1)�;X(k)
s ids+ Z

(k)
t (�) + U

(k)
t (�0)

+

Z t

0

Z
R

hh(y � �)�0;X(k)
s iW (k)(ds; dy) +

1

2

Z t

0

ha�00;X(k)
s ids; (3.6)

where (N (k)
; Z

(k)
;M

(k)
;W

(k)) are as in (2.20) with parameters (c; h; 
k; p
(k)
; �km; �

�1
k ).

We assume that the X
(k)
0 are deterministic and X

(k)
0 ! � as k !1.

Lemma 3.1 Suppose that B1 := supk�1 k
k(qk�1)k <1 and B2 := supk�1 k��1
k 
k�kk <

1. Then for any � 2 C
2
b (R), each term in equation (3.6) gives a tight sequence in

D([0;1);R).

Proof. The tightness of fh�;X(k)
t i : t � 0; k = 1; 2; � � �g will follow if we can prove each

term on the right hand side is tight. The tightness of the �rst two term is immediate. Let

f�kg be an arbitrary sequence of stopping times bounded above by some constant T > 0.

Let

V
(k)
t (�0) =

Z t

0

Z
R

hh(y � �)�0;X(k)
s iW (k)(ds; dy):

Then we have

EfjV (k)
�k+t

(�0)� V
(k)
�k

(�0)j2g = E
�Z t

0

ds

Z
R

hh(y � �)�0; X(k)
�k+s

i2dy
�

= E

�Z t

0

ds

Z
R2

�(x� z)�0(x)�0(z)X
(k)
�k+s

(dx)X
(k)
�k+s

(dz)

�

� k�k
Z t

0

Efh�0;X(k)
�k+s

i2gds:

By Proposition 2.1, the right hand side is bounded by a constant independent of k � 1.

In particular, the estimate holds if �k = 0. By Chebyshev's inequality, we have

supk�1P fjV
(k)
t (�0)j > �g ! 0 (� !1)

10



and

supk�1P fjV
(k)
�k+t

(�0)� V
(k)
�k

(�0)j > �g ! 0 (t! 0):

Then fV (k)
t (�0) : t � 0; k = 1; 2; � � �g is tight in D([0;1);R); see Adlous (1978). Let

Y
(k)
t (�) =

Z t

0

h
k(qk � 1)�;X(k)
s ids: (3.7)

By H�older's inequality,

EfjY (k)
�k+t

(�)� Y
(k)
�k

(�)j2g � B
2
1t

Z t

0

Efh�;X(k)
�k+s

i2gds:

By the same reason as the above, fY (k)
t (�) : t � 0; k = 1; 2; � � �g is also a tight sequence in

D([0;1);R). The tightness of the remaining four terms follows by similar arguments.

Lemma 3.2 Suppose that 
k(1 � qk(�)) ! b(�) and ��1
k 
k�k(�) ! �(�) uniformly for b 2

Cb(R) and � 2 Cb(R)
+
. Then the sequence fX(k)

t : t � 0; k = 1; 2; � � �g is tight in

D([0;1);M(R)). Moreover, the limit process fXt : t � 0g of any subsequence of fX(k)
t :

t � 0; k = 1; 2; � � �g is a.s. continuous and solves the (L;D1(L))-martingale problem.

Proof. By Lemma 3.1 and a result of Roelly-Coppoletta (1986), fX(k)
t : t � 0; k = 1; 2; � � �g

is tight in D([0;1);M(�R )). We write � 2 C
2
b (
�R) if � 2 C

2
b (R) and its derivatives up to

the second degree can be extended continuously to �R . If f�ig � C
2(�R), we can extend

Ff;f�ig, AFf;f�ig and BFf;f�ig continuously to M(�R). Let �Ff;f�ig,
�A �Ff;f�ig and �B �Ff;f�ig

denote respectively those extensions. Let (Ak;Bk) and ( �Ak;
�Bk) denote the corresponding

operators associated with fX(k)
t : t � 0g. Clearly, if �k 2 Mk(�R) and �k ! �, then

�Ak
�Ff;f�ig(�k)! �A �Ff;f�ig(�). By Taylor's expansion,

�Bk �Ff;f�ig(�k)

=

1X
j=0

Z
R

�k
kpj(x)[f(h�1; �ki+ (j � 1)��1
k �1(x); � � � ; h�n; �ki+ (j � 1)��1

k �n(x))

�f(h�1; �ki; � � � ; h�n; �ki)]�k(dx)

+

Z
R

�k[f(h�1; �ki+ �
�1
k �1(x); � � � ; h�n; �ki+ �

�1
k �n(x))

�f(h�1; �ki; � � � ; h�n; �ki)]m(dx)

=

Z
R


k(qk(x)� 1)

� nX
i=1

f
0
i(h�1; �ki; � � � ; h�n; �ki)�i(x)

�
�k(dx)

+

Z
R


k�k(x)

2�k

� nX
i;j=1

f
00
ij(h�1; �ki+ �k�1(x); � � � ; h�n; �ki+ �k�n(x))�i(x)�j(x)

�
�k(dx)

+

Z
R

nX
i=1

�
f
0
i(h�1; �ki+ �k�1(x); � � � ; h�n; �ki+ �k�n(x))�i(x)

�
m(dx);

where 0 < �k; �k < �
�1
k . Then �Bk �Ff;f�ig(�k) ! �B �Ff;f�ig(�) under the assumption. Let

fXt : t � 0g be the limit of any subsequence of fX(k)
t : t � 0; k = 1; 2; � � �g. As in the

proof of Lemma 4.2 of Dawson et al (2001) one can show that

�Ff;f�ig(Xt)� �Ff;f�ig(X0)�
Z t

0

�L �Ff;f�ig(Xs)ds (3.8)

11



is a martingale, where �L = �A + �B. It is not hard to check that the \gradient squared"

operator associated with �L satis�es the derivation property of Barkry and Emery (1985).

Then fXt : t � 0g is actually almost surely continuous as an M(�R)-valued process. By

a modi�cation of the proof of Theorem 4.1 of Dawson et al (2001) one can show that

fXt : t � 0g is almost surely supported by R. Thus fX(k)
t : t � 0; k = 1; 2; � � �g is tight in

D([0;1);M(R)) and fXt : t � 0g is a.s. continuous as an M(R)-valued process.

Lemma 3.3 If fXt : t � 0g is the continuous solution of the (L;D1(L))-martingale prob-

lem, then for each integer n � 1 there is a locally bounded function Cn on R
3
+ such that

Efsup0�s�th1; Xsing � Cn(kbk; k�k; t)(1 + h1; �in + h1;min); t � 0: (3.9)

Proof. If fXt : t � 0g is the continuous solution of the (L;D1(L))-martingale problem,

then

Zt(1) := h1;Xti � h1; �i � th1;mi +
Z t

0

hb;Xsids (3.10)

is a continuous local martingale with quadratic variation process

hZ(1)it =
Z t

0

h�;Xsids: (3.11)

For l > 0 let �l = inffs � 0 : h1;Xsi � lg. The inequalities for n = 1 and n = 2 can be

proved as in the proof of Proposition 2.2. Now the Burkholder-Davis-Gundy inequality

implies that

Efsup0�s�th1;Xs^�li2ng � C

�
h1; �i2n + t

2nh1;mi2n +E
��Z t^�l

0

hjbj; Xsids
�2n�

+E

��Z t^�l

0

h�;Xsids
�n��

:

where C � 0 is a universal constant. Then we use the H�older's inequality to see that

Efsup0�s�th1;Xs^�li2ng � Cn

�
h1; �i2n + t

2nh1;mi2n + �
�n
t
nh1;min

+ kbk2nt2n�1

Z t

0

Efsup0�r�sh1;Xr^�li2ngds
�

+ k�kntn�1

Z t

0

Efh1; Xsingds: (3.12)

By using (3.12) and Gronwall's inequality inductively, we get some estimates forEfsup0�s�th1;
Xt^�ling. Then we obtain the inequalities for Efsup0�s�th1;Xting by Fatou's lemma.

Lemma 3.4 Suppose there are constants d0 > 0 and Æ > 1=2 such that h(x) � d0(1 +

jxj)�Æ for all x 2 R. If 
k(1�qk(�))! b(�) and ��1
k 
k�k(�)! �(�) uniformly for b 2 Cb(R)

and � 2 Cb(R)
+
, then the limit process fXt : t � 0g of any subsequence of fX(k)

t : t �
0; k = 1; 2; � � �g is a weak solution of (3.1).
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Proof. By Lemma 3.1, f(X(k)
t ; U

(k)
t ;W

(k)
t ; Z

(k)
t ) : t � 0; k = 1; 2; � � �g is tight in D([0;1),

M(�R)�S 0(R)3 ); see Mitoma (1983). By passing to a subsequence, we simply assume that

f(X(k)
t ; U

(k)
t ;W

(k)
t ; Z

(k)
t ) : t � 0g converges in distribution to some process f(Xt; Ut;Wt; Zt) :

t � 0g. By Lemma 3.2, fXt : t � 0g is a.s. continuous and solves the (L;D1(L))-martingale

problem. Considering the Skorokhod representation, we assume f(X(k)
t ; U

(k)
t ;W

(k)
t ; Z

(k)
t ) :

t � 0g converges almost surely to the process f(Xt; Ut;Wt; Zt) : t � 0g in the topology

of D([0;1);M(�R ) � S 0(R)3). Since each fW (k)
t : t � 0g is a time-space white noise, so

is fWt : t � 0g. In view of (2.15), we have a.s. Ut(�) = 0 for all t � 0 and � 2 S(R).
Then the theorem follows once it is proved that f(Xt;Wt; Zt) : t � 0g satis�es (3.1).

Clearly, it is suÆcient to prove this for � 2 S(R) with compact support supp(�). Let

Yt(y) = hh(y � �)�0;Xti and Y (k)
t (y) = hh(y � �)�0;X(k)

t i. Note that the weak convergence

of measures can be induced by the Vasershtein metric; see Ethier and Kurtz (1986, p.150).

For l > 0 let �l = inffs � 0 : h1; X(k)
s i � l for some k � 1g. Then it is easy to see that

fY (k)
t 1ft<�lg : t � 0g converges to fYt1ft<�lg : t � 0g in D([0;1); C0(R)), where C0(R) is

furnished with the uniform norm. By Cho (1995, Theorem 2.1), for  2 S(R) we have

almost surely

lim
k!1

Z t

0

Z
R

 (y)Y (k)
s (y)1fs<�lgW

(k)(ds; dy) =

Z t

0

Z
R

 (y)Ys(y)1fs<�lgW (ds; dy): (3.13)

Setting a = supfjxj; x 2 supp(�)g we have

sup
jzj�a

jh(y � z)j � d(y) := d0[1fjyj�ag + 1fjyj>ag(1 + jyj � jaj)�2Æ ]; (3.14)

and hence

jYt(y)j � h�0;Xtid(y) and jY (k)
t (y)j � h�0;X(k)

t id(y): (3.15)

By the Burkholder-Davis-Gundy inequality,

E

��Z t

0

Z
R

 (y)Y (k)
s (y)1fs<�lgW

(k)(ds; dy)

�4�

� const �E
��Z t

0

Z
R

 (y)2Y (k)
s (y)21fs<�lgdsdy

�2�

� const � l4k�0k4h 2
d
2
; �i2t2; (3.16)

where � denotes the Lebesgue measure on R. Since the right hand side of (3.16) is

independent of k � 1, the convergence (3.13) also holds in the L2-sense. For each � > 0,

it is not hard to choose  2 S(R) so that

E

��Z t

0

Z
R

(1�  (y))Y (k)
s (y)1fs<�lgW

(k)(ds; dy)

�2�

� const � l2k�0k2hj1�  j2d2; �it � �: (3.17)

The same estimate is available with Y
(k) and W

(k) replaced respectively by Y and W .

Clearly, (3.13) and (3.17) imply that

lim
k!1

Z t

0

Z
R

Y
(k)
s (y)1fs<�lgW

(k)(ds; dy) =

Z t

0

Z
R

Ys(y)1fs<�lgW (ds; dy) (3.18)
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in the L2-sense. Passing to a suitable subsequence we get the almost sure convergence for

(3.18). Now letting k !1 in (3.6) we get

h�;Xt^�li = h�; �i + (t ^ �l)h�;mi +
1

2

Z t^�l

0

ha�00;Xsids�
Z t^�l

0

hb�;Xsids

+

Z t^�l

0

Z
R

�(y)Z(ds; dy) +

Z t^�l

0

Z
R

hh(y � �)�0; XsiW (ds; dy);

from which (3.1) follows. The extensions from � 2 S(R) to � 2 C2
b (R) is immediate.

Theorem 3.1 Suppose there are constants d0 > 0 and Æ > 1=2 such that h(x) � d0(1 +

jxj)�Æ for all x 2 R. Then the stochastic equation (3.1) has a continuous weak solution

fXt : t � 0g. Moreover, fXt : t � 0g also solves the (L;D1(L))-martingale problem.

Proof. Given b 2 Cb(R) and � 2 Cb(R)
+ , we set �k = k, 
k =

p
k and

p
(k)
0 = 1� p

(k)
2 � p

(k)
k ; p

(k)
2 =

(k � 1)2(1� b=
p
k)� k�k

2(k � 1)2 � k
; p

(k)
k =

2�k � 1 + b=
p
k

2(k � 1)2 � k
;

where �k(�) =
p
k�(�) + 1. Then the sequence (
k; p

(k)
; �k) satis�es the conditions of

Lemma 3.4. By Lemmas 3.2 and 3.4, equation (3.1) has a continuous weak solution

fXt : t � 0g which solves the (L;D1(L))-martingale problem.

4 Stochastic log-Laplace equations

In this section, we establish the existence and uniqueness of solution of the stochastic

log-Laplace equation (1.7). The techniques here are based on Kurtz and Xiong (1999)

and have been stimulated by the recent work Xiong (2003), which considers a model of

Skoulakis and Adler (2001). Let (c; h; �; b;m) be given as in the introduction. Suppose

thatW (ds; dx) is a time-space white noise. The main objective is to discuss the non-linear

SPDE:

 t(x) = �(x) +

Z t

0

�
1

2
a(x)@2x s(x)� b(x) s(x)�

1

2
�(x) s(x)

2

�
ds

+

Z t

0

Z
R

h(y � x)@x s(x)W (ds; dy); t � 0: (4.1)

We write � 2 W
k
2 (R) if � together with its derivatives up to the kth degree are square-

integrable. For � 2W k
2 (R) let

k�k2k =
kX

i=0

k@(i)x �k20: (4.2)

Following Xiong (2003), we �rst consider a smoothed version of equation (4.1). Let (Tt)t�0

denote the transition semigroup of a standard Brownian motion. Let fhj : j = 1; 2; � � �g
be a complete orthonormal system of L2(R). Then

Wj(t) =

Z t

0

Z
R

hj(y)W (ds; dy); t � 0 (4.3)
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de�nes a sequence of independent standard Brownian motions fWj : j = 1; 2; � � �g. For

� > 0 let

W
�(dt; dx) =

[1=�]X
j=1

hj(x)Wj(dt)dx; s � 0; y 2 R: (4.4)

For any bounded non-negative � 2 L
2(R) de�ne d�(�) = (kT��k ^ ��1)kT��k�1. By a

general result in Kurtz and Xiong (1999, Theorem 3.5), there is a unique strong solution

 
�
t (x) of the equation

 
�
t (x) = T��(x) +

Z t

0

�
1

2
a(x)@2x 

�
s(x)� b(x) �s(x)�

1

2
�(x) �s(x)d�( 

�
s)T� 

�
s(x)

�
ds

+

Z t

0

Z
R

h(y � x)@x 
�
s(x)W

�(ds; dy); t � 0; (4.5)

see also Rozovskii (1990).

Lemma 4.1 For the solution f �t : t � 0g of (4.5) we have a.s. k �tkess � e
�b0tk�kess

for all t � 0, where b0 = infx b(x).

Proof. Indeed, for a non-trivial � 2 L
2(R)+ , the solution of (4.5) can be obtained in the

following way. Let fBi(t)g be a sequence of independent Brownian motions which are also

independent of the white noise fW (ds; dy)g. Let \k � k0" and \h�; �i0" denote respectively

the norm and the inner product in L2(R). By Kurtz and Xiong (1999, Theorems 2.1 and

2.2), there is a unique strong solution  �t (x) of the stochastic system

�i(t)� �i(0) =

Z t

0

c(�i(s))dBi(s) + 2

Z t

0

c(�i(s))c
0(�i(s))ds

�
Z t

0

Z
R

h(y � �i(s))W
�(ds; dy); (4.6)

mi(t)�mi(0) =

Z t

0

�
1

2
a
00(�i(s))� b(�i(s))

�
mi(s)ds

�1

2

Z t

0

�(�i(s))d�( s)T� s(�i(s))mi(s)ds

�
Z t

0

Z
R

h
0(y � �i(s))mi(s)W

�(ds; dy); (4.7)

and

 t(x)dx = lim
n!1

1

n

nX
i=1

mi(t)Æ�i(t)(dx); t � 0; x 2 R; (4.8)

where f(mi(0); �i(0)) : i = 1; 2; � � �g is a sequence of exchangeable random variables on

[0;1)�R which are independent of fBi(t)g and fW (ds; dy)g and satisfy limn!1 n
�1
Pn

i=1mi(0)Æ�i(0)(dx)

= T��(x)dx. By Kurtz and Xiong (1999, Theorems 3.1 { 3.5),  �t (x) is also the pathwise

unique solution of (4.5). By a duality argument similar to the proof of Xiong (2003,

Lemma 2.2) we get k �tkess � e
�b0tk�kess.
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Lemma 4.2 For the solution f �t : t � 0g of (4.5) we have

E

�
sup
0�r�t

k �rk40
�
� K(t) (4.9)

for a locally bounded function K(�) on [0;1).

Proof. Although the arguments are similar to those of Xiong (2003), we shall give the

detailed proof for the convenience of the reader. For any f 2 C
1
b (R) with compact

support,

h �t ; fi0 = hT��; fi0 +
Z t

0

�
1

2
ha@2x �s; fi0 � hb �s; fi0 �

1

2
h� �sd�( �s)T� �s; fi0

�
ds

+

[1=�]X
j=1

Z t

0

Z
R

hj(z)

� Z
R

hj(y)hh(y � �)@x �s; fi0dy
�
W (ds; dz):

By Itô's formula,

h �t ; fi20 = hT��; fi20 +
Z t

0

h �s; fi0ha@2x �s � 2b �s � � 
�
sd�( 

�
s)T� 

�
s; fi0ds

+2

Z t

0

Z
R

h �s; fi0hh(y � �)@x �s; fi0W �(ds; dy)

+

[1=�]X
j=1

Z t

0

� Z
R

hhj(y)h(y � �)@x �s; fi0dy
�2
ds:

Adding f over in a complete orthonormal system of L2(R) we get

k �tk20 = kT��k20 +
Z t

0

ha@2x �s � 2b �s � � 
�
sd�( 

�
s)T� 

�
s;  

�
si0ds

+2

Z t

0

Z
R

hh(y � �)@x �s;  �si0W (ds; dy)

+

[1=�]X
j=1

Z t

0

ds

Z
R

� Z
R

hj(y)h(y � z)@x 
�
s(z)dy

�2
dz

� kT��k20 +
Z t

0

hc2@2x �s;  �si0ds+
Z t

0

h�2b �s � � 
�
sd�( 

�
s)T� 

�
s;  

�
si0ds

+2

Z t

0

Z
R

hh(y � �)@x �s;  �si0W (ds; dy)

+

Z t

0

h�(0)@2x �s;  �si0ds+
Z t

0

ds

Z
R

� Z
R

h(y � z)2(@x 
�
s(z))

2
dy

�
dz: (4.10)

Since  �s 2 W
2
2 (R), there exists a sequence fn 2 C

1
0 (R) such that fn !  

�
s in W

2
2 (R).

Note that

hc2f 00n ; fni = h(c2)00; f2ni=2 � hc2; (f 0n)2i � Kkfnk20:

Taking n!1 we have

hc2@2x �s;  �si0 � Kk �sk20: (4.11)
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It is easy to see that

h�2b �s � � 
�
sd�( 

�
s)T� 

�
s;  

�
si0 � Kk �sk20:

Therefore, we can continue (4.10) with

k �tk20 � kT��k20 +K

Z t

0

k �sk20ds+ 2

Z t

0

Z
R

hh(y � �)@x �s;  �si0W (ds; dy)

+�(0)

Z t

0

h@2x �s;  �si0ds+ �(0)

Z t

0

ds

Z
R

(@x 
�
s(z))

2
dz:

Similar to (4.11), we have

h@2x �s;  �si0 +
Z
R

(@x 
�
s(z))

2
dz � Kk �sk20;

and hence

k �tk20 � k�k20 +K

Z t

0

k �sk20ds+ 2

Z t

0

Z
R

hh(y � �)@x �s;  �si0W (ds; dy):

By Burkholder's inequality, we get

E

�
sup
0�r�t

k �rk40
�

� 4k�k20 +KE

Z t

0

k �sk40ds+K

Z t

0

Z
R

hh(y � �)@x �s;  �si20dyds

� 4k�k20 +KE

Z t

0

k �sk40ds: (4.12)

where the last inequality follows from the same arguments as those leading to (4.11).

By Rozovskii (1990), we have Efk �tk40g < 1 for each t � 0. Then we obtain (4.9) by

Gronwall's inequality.

Lemma 4.3 For the solution f �t : t � 0g of (4.5) we have

E

�
sup
0�r�t

k �rk41
�
� K(t) (4.13)

for a locally bounded function K(�) on [0;1).

Proof. We shall omit some details since they are similar to those in the proof of Lemma 4.2.

From (4.5) we have

@x 
�
t (x) = @xT��(x) +

Z t

0

�
1

2
a
0(x)@2x 

�
s(x) +

1

2
a(x)@3x 

�
s(x)� b

0(x) �s(x)� b(x)@x 
�
s(x)

�1

2
�
0(x) s(x)d�( 

�
s)T� 

�
s(x)�

1

2
�(x)@x 

�
s(x)d�( )T� 

�
s(x)

�1

2
�(x) �s(x)d�( )T�@� 

�
s(x)

�
ds

+

Z t

0

Z
R

[h(y � x)@2x s(x)� h
0(y � x)@x s(x)W (ds; dy):

17



Then we have

k@x �tk20 = kT�@x�k20 +
Z t

0

�
h@x �s; a0@2x �s + a@

3
x 

�
si0 � 2h@x �s; b0 �s + b@x 

�
si0

�d�( �s)h@x �s; �0 sT� �s + �@x 
�
sT� 

�
s + � 

�
sT�@x 

�
si0
�
ds

+2

Z t

0

Z
R

h@x �s; h(y � �)@2x �s � h
0(y � �)@x �si0W (ds; dy)

+

Z t

0

ds

Z
R

kh(y � �)@2x �s � h
0(y � �)@x �sk20dy:

Similar to the previous lemma, we have that

E

�
sup
0�r�t

k@x �tk40
�
� 4k@x�k40 +KE

Z t

0

�
k �sk40 + k@x �sk40

�
ds: (4.14)

By Rozovskii (1990), E

�
sup0�r�t k@x �rk40

�
<1 for all t � 0. Then we obtain (4.13) by

Gronwall's inequality.

Theorem 4.1 Suppose that fa; bg � C
2
b (R); � 2 C

1
b (R), h 2 L2(R) \ C1

b (R) and h
0 2

L2(R)\C1
b (R). For � 2W 1

2 (R)\Cb(R)
+
, equation (4.1) has a unique L

2(R)+ -valued strong

solution f t : t � 0g. We have a.s. k tk � e
�b0tk�k for all t � 0, where b0 = infx b(x).

Moreover, there is a locally bounded function K(�) on [0;1) such that

E

�
sup
0�r�t

k rk41
�
� K(t); (4.15)

and so f t(�) : t � 0g has an W
1
2 (R) \ Cb(R)

+
-valued version.

Proof. Let zt(x) =  
�
t (x)�  

�
t (x). As for (4.12), by the same arguments leading to (2.12)

of Xiong (2003) we have

E sup
0�s�t

kzsk40 � K

Z t

0

Ekzrk40dr + 3k�k41E
Z t

0

�Z
jT� �r (x)� T� 

�
r (x)j2dx

�2

dr

+KE

Z t

0

jd�( �r)� d�( 
�
r )j4dr

+KE

[1=�]X
j=[1=�]+1

Z t

0

�Z
R

hh(y � �)@x �s ; zsi hj(y)dy
�2

ds (4.16)

As in Section 2.4 in Xiong (2003), the second and third terms on the right hand side of

(4.16) converge to 0 as �; � ! 0. On the other hand, the last term is bounded by

Z t

0

Z
R

[1=�]X
j=[1=�]+1

�Z
R

hj(y)h(y � x)dy

�2

Efzs(x)2gdx
Z
R

Ef(@x �s )2gdxds;

which tends to zero as �; � ! 0. As in Section 2.4 of Xiong (2003) we can show that

 
� is a Cauchy sequence whose limit  is the unique L2(R)+ -valued strong solution for
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equation (4.1). The second assertion follows from Lemma 4.1. The last assertion follows

by Lemma 4.3 and Sobolev's result.

Based on Theorem 4.1, let us consider the following more useful backward SPDE:

 r;t(x) = �(x) +

Z t

r

�
1

2
a(x)@2x s;t(x)� b(x) s;t(x)�

1

2
�(x) s;t(x)

2

�
ds

+

Z t

r

Z
R

h(y � x)@x s;t(x) �W (ds; dy); t � r � 0; (4.17)

where \�" denotes the backward stochastic integral.

Theorem 4.2 Suppose that fa; bg � C
2
b (R); � 2 C

1
b (R), h 2 L2(R) \ C1

b (R) and h
0 2

L2(R) \ C
1
b (R). Then for � 2 W

1
2 (R) \ Cb(R)

+
, the backward equation (4.17) has a

unique W
1
2 (R) \ Cb(R)

+
-valued strong solution f r;t : t � r � 0g. Further, we have a.s.

k r;tk � e
�b0(t�r)k�k for all t � r � 0.

Proof. For �xed t > 0, de�ne the white noise

Wt([0; s]�B) = �W ([t� s; t]�B); 0 � s � t; B 2 B(R): (4.18)

By Theorem 4.1, there is a unique strong solution f�r;t : 0 � r � tg of the equation

�r;t(x) = �(x) +

Z r

0

�
1

2
a(x)@2x�s;t(x)� b(x)�s;t(x)�

1

2
�(x)�s;t(x)

2

�
ds

+

Z r

0

Z
R

h(y � x)@x�s;t(x)Wt(ds; dy): (4.19)

Setting  r;t(x) := �t�r;t(x), we have

 r;t(x) = �(x) +

Z t�r

0

�
1

2
a(x)@2x t�s;t(x)� b(x) t�s;t(x)�

1

2
�(x) t�s;t(x)

2

�
ds

+

Z t�r

0

Z
R

h(y � x)@x t�s;t(x)Wt(ds; dy)

= �(x) +

Z t

r

�
1

2
a(x)@2x s;t(x)� b(x) s;t(x)�

1

2
�(x) s;t(x)

2

�
ds

+

Z t

r

Z
R

h(y � x)@x s;t(x) �W (ds; dy):

That is, f r;t : t � r � 0g solves (4.17). The remaining assertions are immediate by

Theorem 4.1.

5 Conditional log-Laplace functionals

Let (c; h; �; b;m) be given as in the introduction and assume that the conditions of Theo-

rems 3.1 and 4.2 are satis�ed. Let fXt : t � 0g be a continuous solution of the SPDE:

h�;Xti = h�; �i+ th�;mi+ 1

2

Z t

0

ha�00; Xsids�
Z t

0

hb�;Xsids

+

Z t

0

Z
R

�(y)Z(ds; dy) +

Z t

0

Z
R

hh(y � �)�0; XsiW (ds; dy); (5.1)
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where W (ds; dx) is a time-space white noise and Z(ds; dy) is an orthogonal martingale

measure which is orthogonal to W (ds; dy) and has covariation measure �(y)Xs(dy)ds. Let

(Ft)t�0 denote the �ltration generated by fW (ds; dy)g, fZ(ds; dy)g and fXs(dy)g. By

Theorem 4.2, for � 2W 1
2 (R)

+ the equation

 r;t(x) = �(x) +

Z t

r

�
1

2
a(x) 00s;t(x)� b(x) s;t(x)�

1

2
�(x) s;t(x)

2

�
ds

+

Z t

r

Z
R

h(y � x) 0s;t(x) �W (ds; dy); t � r � 0; (5.2)

has a unique strong solution  r;t =  
W
r;t . The main result of this section is the following

Theorem 5.1 Let E
W

denote the conditional expectation of fXt : t � 0g given the white

noise fW (ds; dy)g. Then for t � r � 0 and � 2W 1
2 (R) \ Cb(R)

+
we have a.s.

E
W fe�h�;XtijFrg = exp

�
� h Wr;t ;Xri �

Z t

r

h Ws;t;mids
�
; (5.3)

where  
W
r;t is de�ned by (5.2). Consequently, fXt : t � 0g is a di�usion process with Feller

transition semigroup (Qt)t�0 given by

Z
M(R)

e
�h�;�i

Qt(�; d�) = E exp

�
� h W0;t; �i �

Z t

0

h Ws;t;mids
�
: (5.4)

We shall give a proof of the theorem by direct calculations based on (5.1) and (5.2). This

argument is di�erent from that of Xiong (2003), where the Wong-Zakai approximation

was used to get the result. Let a and b be bounded measurable functions on [0;1) � R

such that Z t

0

Z
R

a(s; y)2dsdy <1:

For t � r � 0, de�ne

�(r; t) = exp

�Z t

r

Z
R

a(s; y)W (ds; dy)� 1

2

Z t

r

Z
R

a(s; y)2dsdy

�
; (5.5)

and

�(r; t) = exp

�Z t

r

Z
R

b(s; y)Z(ds; dy) � 1

2

Z t

r

h�b(s; �)2; Xsids
�
: (5.6)

Note that �(r; t) and �(r; t) are both martingales in t � r. By the property of independent

increments of the white noise fW (ds; dy)g we have

�r;t(x) := Ef r;t(x)�(r; t)g = Ef r;t(x)�(r; t)jFrg (5.7)

and

�r;t(x) := Ef r;t(x)2�(r; t)g = Ef r;t(x)2�(r; t)jFrg: (5.8)

Lemma 5.1 For t � r � 0, we have a.s.

Efh r;t;Xri�(0; t)�(0; t)jFrg = h�r;t;Xri�(0; r)�(0; r) (5.9)

and

Efh� 2
r;t;Xri�(0; t)�(0; t)jFrg = h��r;t;Xri�(0; r)�(0; r): (5.10)
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Proof. Since EW f�(r; t)jFrg = 1, by properties of conditional probabilities we have

Efh r;t;Xri�(0; t)�(0; t)jFrg = Efh r;t;Xri�(r; t)�(r; t)jFrg�(0; r)�(0; r)
= Efh r;t;Xri�(r; t)EW [�(r; t)jFr ]jFrg�(0; r)�(0; r)
= Efh r;t;Xri�(r; t)jFrg�(0; r)�(0; r)
= h�r;t; Xri�(0; r)�(0; r):

A similar calculation gives (5.10).

Lemma 5.2 For t � r � 0 and x 2 R, we have a.s.

�r;t(x)� �(x) =

Z t

r

�
1

2
a(x)�00s;t(x)� b(x)�s;t(x)�

1

2
�(x)�s;t(x)

�
ds

+

Z t

r

hh(� � x); a(s; �)i�0s;t(x)ds; (5.11)

where the derivatives are taken in the classical sense.

Proof. Note that the backward and forward integrals coincide for deterministic integrands.

Then we may �x t > 0 and apply Itô's formula to the process f�(r; t) : r 2 [0; t]g to get

�(r; t) = 1�
Z t

r

Z
R

�(s; t)a(s; y) �W (ds; dy): (5.12)

By (5.2), (5.12) and backward Itô formula, for any f 2 C1
b (R) we have

h r;t; fi�(r; t) = h�; fi+
Z t

r

�
1

2
ha 00s;t; fi � hb s;t; fi �

1

2
h� 2

s;t; fi
�
�(s; t)ds

+

Z t

r

Z
R

[hh(y � �) 0s;t; fi � h s;t; fia(s; y)]�(s; t) �W (ds; dy)

+

Z t

r

Z
R

hh(y � �) 0s;t; fi�(s; t)a(s; y)dsdy: (5.13)

Observe that for �xed t > 0, the process

Z t

r

Z
R

[hh(y � �) 0s;t; fi � h s;t; fia(s; y)]�(s; t) �W (ds; dy)

is a backward martingale in r � t. Taking the expectation in (5.13) we obtain

h�r;t; fi � h�; fi =

Z t

r

�
1

2
ha�00s;t; fi � hb�s;t; fi �

1

2
h��s;t; fi

�
ds

+

Z t

r

Z
R

hh(y � �)�0s;t; fia(s; y)dsdy:

Then f�r;tg must coincides with the classical solution of the parabolic equation (5.11).

Lemma 5.3 For any t � r � 0, we have a.s.

h�;Xti = h r;t;Xri+
Z t

r

Z
R

 s;t(x)Z(ds; dx) +
1

2

Z t

r

h� 2
s;t;Xsids+

Z t

r

h s;t;mids:(5.14)
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Proof. By (5.1) and (5.11),

dh�s;t;Xsi =
1

2
h��s;t; Xsids+ h�s;t;mids�

Z
R

hh(y � �)�0s;t;Xsia(s; y)dsdy

+

Z
R

hh(y � �)�0s;t;XsiW (ds; dy) +

Z
R

�s;t(y)Z(ds; dy):

Since the two martingale measures fW (ds; dy)g and fZ(ds; dy)g are orthogonal, by Itô's

formula we have

dh�s;t;Xsi�(0; s)�(0; s) =
1

2
h��s;t; Xsi�(0; s)�(0; s)ds + h�s;t;mi�(0; s)�(0; s)ds

+

Z
R

hh(y � �)�0s;t; Xsi�(0; s)�(0; s)W (ds; dy)

+

Z
R

�s;t(y)�(0; s)�(0; s)Z(ds; dy)

+

Z
R

h�s;t; Xsi�(0; s)�(0; s)a(s; x)W (ds; dy)

+

Z
R

h�s;t; Xsi�(0; s)�(0; s)b(s; y)Z(ds; dy)

+ h��s;tb(s; �); Xsi�(0; s)�(0; s)ds:

It then follows that

Efh�;Xti�(0; t)�(0; t)g �Efh�r;t; Xri�(0; r)�(0; r)g

=
1

2
E

�Z t

r

h��s;t;Xsi�(0; s)�(0; s)ds
�
+E

�Z t

r

h�s;t;mi�(0; s)�(0; s)ds
�

+E

�Z t

r

h��s;tb(s; �);Xsi�(0; s)�(0; s)ds
�
: (5.15)

From (5.6) it is easy to see that

�(0; t) = 1 +

Z t

0

Z
R

�(0; s)b(s; y)Z(ds; dy);

and hence

E

�Z t

r

Z
R

 s;t(y)Z(ds; dy)�(0; t)�(0; t)

�

= E

�
E

W

� Z t

r

Z
R

 s;t(y)Z(ds; dy)�(0; t)

�
�(0; t)

�

= E

�
E

W

� Z t

r

h� s;tb(s; �); Xsi�(0; s)ds
�
�(0; t)

�

=

Z t

r

E

�
h� s;tb(s; �);Xsi�(0; t)�(0; s)

�
ds

=

Z t

r

E

�
h��s;tb(s; �);Xsi�(0; s)�(0; s)

�
ds: (5.16)

By a calculation similar to the proof of Lemma 5.1 we get

Efh s;t;mi�(0; t)�(0; t)jFsg = h�s;t;mi�(0; s)�(0; s): (5.17)
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Combining (5.10) and (5.15) { (5.17) gives

Efh�;Xti�(0; t)�(0; t)g �Efh�r;t;Xri�(0; r)�(0; r)g

=
1

2
E

�Z t

r

h� 2
s;t; Xsi�(0; t)�(0; t)ds

�
+E

�Z t

r

h s;t;mi�(0; t)�(0; t)ds
�

+E

�Z t

r

Z
R

 s;t(y)Z(ds; dy)�(0; t)�(0; t)

�
:

But by (5.9) we have

Ef[h�;Xti � h r;t; Xri]�(0; t)�(0; t)g
= Efh�;Xti�(0; t)�(0; t)g �Efh�r;t;Xri�(0; r)�(0; r)g

It follows that

E

��
h�;Xti � h r;t;Xri �

1

2

Z t

r

h� 2
s;t;Xsids�

Z t

r

h s;t;mids

�
Z t

r

Z
R

 s;t(x)Z(ds; dx)

�
�(0; t)�(0; t)

�
= 0:

Then we have the desired equation.

Proof of Theorem 5.1. Recall that Z(ds; dy) is an orthogonal martingale measure with

covariation measure �(y)Xs(dy)ds. Then for �xed t1,

exp

�
�
Z t

r

Z
R

 s;t1(y)Z(ds; dy)�
1

2

Z t

r

h� 2
s;t1 ;Xsids

�

is a martingale in t � r with respect to PW . By Lemma 5.3 we get a.s.

E
Wfe�h�;XtijFrg

= E
W

�
exp

�
� h r;t;Xri �

Z t

r

Z
R

 s;t(y)Z(ds; dy)

�1

2

Z t

r

h� 2
s;t; Xsids�

Z t

r

h s;t;mids
�����Fr

�

= exp

�
� h r;t; Xri �

Z t

r

h s;t;mids
�
;

giving (5.3). In particular, we have

Efe�h�;Xtig = E exp

�
� h 0;t; �i �

Z t

0

h s;t;mids
�
: (5.18)

The distribution of Xt is uniquely determined by (5.18) and the uniqueness of solution

of (5.1) follows. This in turn implies the strong Markov property of fXt : t � 0g. Since

 r;t(x) is continuous in x 2 R, the transition semigroup (Qt)t�0 de�ned by (5.4) is Feller.
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6 Some properties of the SDSMI

We here investigate some properties of the SDSMI. Let (c; h; �; b;m) be given as in the

introduction and assume that the conditions of Theorems 3.1 and 4.2 are satis�ed. By

Theorem 5.1, for t � r � 0,

Z
M(E)

e
�h�;�i

Q
W
r;t(�; d�) = exp

�
� h Wr;t ; �i �

Z t

r

h Ws;t;mids
�

(6.1)

a.s. de�nes a probability kernelQW
r;t(�; d�) onM(R). Indeed, conditioned upon fW (ds; dy)g,

the SDSMI is an inhomogeneous immigration process with transition semigroup (QW
r;t)t�r�0;

see Li (2002). As a special case of the above formula,

Z
M(E)

e
�h�;�i

Q
0
r;t(�; d�) = exp f � h Wr;t ; �ig (6.2)

a.s. de�nes a kernel Q0
r;t(�; d�). Let N

W
r;t = Q

W
r;t(0; �). We have a.s.

N
W
r;t = (NW

r;sQ
0
s;t) �NW

s;t ; t � s � r � 0; (6.3)

and

Q
W
r;t(�; �) = Q

0
r;t(�; �) �NW

r;t ; t � r � 0: (6.4)

The two equations (6.3) and (6.4) uncover some connections between the SDSM and the

SDSMI and suggest there might be a decomposition of the sample paths of the SDSMI

into excursions of the SDSM in the lines set up in Dawson and Li (2003) and Li (2002).

A systematic investigation of this phenomenon is left to future research.

As another application of the conditional Laplace functionals, we prove the following

ergodicity property of the SDSMI.

Theorem 6.1 Suppose that there is a constant � > 0 such that b(x) � � for all x 2 R.

Then the SDSMI has a unique stationary distribution Q1 given by

Z
M(R)

e
�hf;�i

Q1(d�) = E exp

�
�
Z 1

0

h Wt ;midt
�
; (6.5)

where  
W
t (x) is the solution of (4.1). Moreover, we have limt!1Qt(�; �) = Q1(�) by weak

convergence for each � 2M(R).

Proof. Using the notation of the proof of Theorem 4.2, for any t � r � 0 we have

E

�Z
M(R)

e
�h�;�i

N
W
r;t (d�)

�
= E exp

�
�
Z t

r

h Ws;t;mids
�

= E exp

�
�
Z t

r

h�Wt�s;t;mids
�

= E exp

�
�
Z t�r

0

h�Ws;t;mids
�

= E exp

�
�
Z t�r

0

h Ws ;mids
�
:
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By Theorem 4.2 we have k Ws;tk � e
��(t�s)k�k for s � t. It follows that

lim
t!1

Z
M(R)

e
�h�;�i

Qt(�; d�) = lim
t!1

E exp

�
� h W0;t; �i �

Z t

0

h Ws;t;mids
�

= lim
t!1

E exp

�
�
Z t

0

h Ws;t;mids
�

= E exp

�
�
Z 1

0

h Ws ;mids
�
:

On the other hand, by Theorem 4.1 it is easy to get

lim
k�k!0

E exp

�
�
Z 1

0

h Ws ;mids
�
= 1:

Then (6.5) de�nes a probability measure Q1 on M(R) and limt!1Qt(�; �) = Q1(�) by
weak convergence; see e.g. Li (2002, Lemma 2.1).

The properties of the SDSMI varies sharply for di�erent choices of the parameters. The

special case where b(�) � 0 and h1;mi = 0 was discussed in Dawson et al (2000, 2001) and

Wang (1997, 1998). In this case, we have

h�;Xti = h�; �i+ 1

2

Z t

0

ha�00;Xsids+
Z t

0

Z
R

�(y)Z(ds; dy)

+

Z t

0

Z
R

hh(y � �)�0; XsiW (ds; dy): (6.6)

The solution of (6.6) is a critical branching SDSM without immigration. In particular, if

c(�) is bounded away from zero, then fXt : t > 0g is absolutely continuous for any initial

state X0; see Dawson et al (2000, 2001) and Wang (1997). On the other hand, if c(�) � 0,

then fXt : t > 0g is purely atomic for any initial state X0; see Dawson and Li (2003) and

Wang (1997, 2002).

Another special case is where �(�) � 0 and h1;mi = 0. In this case, we get from (6.6) the

linear equation

h�;Xti = h�; �i+ 1

2

Z t

0

ha�00;Xsids�
Z t

0

hb�;Xsids+
Z t

0

Z
R

hh(y � �)�0;XsiW (ds; dy):(6.7)

The process de�ned in this way is closely related with the superprocesses arising from

isotropic stochastic 
ows investigated by Ma and Xiang (2001). The following theorem

shows that fXt : t � 0g is absolutely continuous for a large class of absolutely continuous

initial states.

Theorem 6.2 If fXt : t � 0g is a solution of (6.7) with X0(dx) = v0(x)dx for some

v0 2 L2(R), then there is an L
2(R)-valued process fvt : t � 0g such that Xt(dx) = vt(x)dx

a.s. holds.

Proof. By Kurtz and Xiong (1999, Theorem 3.5), the equation

vt(x) = v0(x) +

Z t

0

�
1

2
(avs)

00(x)� b(x)vs(x)

�
ds�

Z t

0

Z
R

(h(y � �)vs)0(x)W (ds; dy) (6.8)

has a unique L2(R)-valued solution fvt : t � 0g. Let Xt(dx) = vt(x)dx. Clearly, fXt : t �
0g solves (6.7).
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