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AbstractBased on a duality approach for Monte Carlo construction of upper bounds forAmerican/Bermudan derivatives (Rogers, Haugh & Kogan), we present a new algo-rithm for computing dual upper bounds in an eÆcient way. The method is applied toBermudan swaptions in the context of a LIBOR market model, where the dual upperbound is constructed from the maximum of still alive swaptions. We give a numericalcomparison with Andersen's lower bound method and its dual considered by Andersen& Broadie.1 IntroductionEvaluation of American style derivatives on a high dimensional system of underlyingsis considered a perennial problem for the last decades. On the one hand such high di-mensional options are diÆcult, if not impossible, to compute by PDE methods for freeboundary value problems. On the other hand Monte Carlo simulation, which is for highdimensional European options an almost canonical alternative to PDE solving, is for Amer-ican options highly non-trivial since the (optimal) exercise boundary is usually unknown.In the past literature, many approaches for Monte Carlo simulation of American optionsare developed. With respect to Bermudan derivatives, which are in fact American optionswith a �nite number of exercise dates, there is, for example, the stochastic mesh method ofBroadie & Glasserman (1997,2000), a cross-sectional regression approach by Longsta� &Schwartz (2001), and for Bermudan swaptions a method by Andersen (1999). In general,the price of an American option can be represented as a supremum over a set of stop-ping times. As a remarkable result Rogers (2001) (and independently Haugh & Kogan(2001) for Bermudan style instruments) showed that this supremum representation can beconverted into a 'dual' in�mum representation, where the in�mum is taken over a set of(super-)martingales. In Andersen & Broadie (2001) this dual approach is carried out andtested with respect to Andersen's (1999) method for Bermudan swaptions. Further Joshi& Theis (2002) use the dual approach for �nding Bermudan swaption prices via a mini-mization procedure. For a more detailed overview on Monte Carlo methods for Americanoptions we refer to Glasserman (2003) and the references therein.In the papers of Anderson & Broadie (2001) and Haugh & Kogan (2001) upper bounds ofBermudan options are constructed by applying the duality approach to the (Doob-Meyer)martingale part of an approximative process. For instance, in Andersen & Broadie (2001)these upper bounds are constructed to investigate the quality of an approximative lower1



bound process obtained by suboptimal stopping, however, without particular emphasizeon the eÆciency of the upper bound computation. The central theme in this paper is theconstruction of a Monte Carlo estimator for an upper bound for a Bermudan derivativewhich is computationally most eÆcient. Our upper bound construction will be basedon duality via the martingale part of an approximative processes as well. But, as maincontribution, we will enclose the 'theoretical' upper bound by approximating from aboveand below by using a new lower estimator for the theoretical upper bound. Then, by takinga convex combination of the lower and upper estimator we obtain a family of combinedestimators for the target upper bound with usually higher computational eÆciency. ThiseÆciency gain will be demonstrated by upper bound computation of Bermudan swaptions.The paper is organised as follows. In Section 2 we give a concise recap of the Bermudanpricing problem and in Section 3 we outline the duality approach. Then, in Section 4 wepresent new eÆcient Monte Carlo estimators for constructing a target upper bound and inSection 5 we propose two canonical approximative processes to which our method couldbe applied. Finally, in Section 6 we apply our method to computation of upper bounds ofBermudan swaptions in a Libor market model. This application is based on the maximumof still alive swaptions, one of the canonical candidates in Section 5 in fact, and we givea numerical comparison with the results obtained by Andersen (1999) and Andersen &Broadie (2001).2 The Bermudan Pricing ProblemWe consider general Bermudan style derivatives with respect to an underlying processL(t); over some �nite time interval [0; T ] with time horizon T < 1: The process L isassumed to be Markovian with state space RD . For example, L can be a system of assetprices, but also a not explicitly tradable object such as the term structure of interestrates, or a system of Libor rates. Consider a set of future dates T := fT1;T2; : : : ;Tkg with0 < T1 < T2 < � � � < Tk � T: The dates are denoted with caligraphic letters to distinguishin the case where L is a Libor rate process, if necessary, from a particular Libor tenorstructure usually denoted by Tj's. An option issued at time t = 0; to exercise a cash
owCT� := C(T� ; L(�)) at a future time T� 2 T is called a Bermudan style derivative. Withoutrestriction we assume for technical reasons that the option cannot be exercised at t = 0:With respect to a pricing measure P connected with some pricing numeraire B; the valueof the Bermudan derivative at time t = 0 is given byV0 = B(0) sup�2f1;:::;kgEF0 CT�B(T� ) : (1)The fact that (1) can be considered as the fair price for the Bermudan derivative is due togeneral no-arbitrage principles, e.g. see DuÆe (2001). For example, if L is a Libor process,P in (1) could be the spot Libor measure P � induced by the spot measure numeraire B�or a bond measure P (m) induced by some zero bond Bm maturing at tenor Tm; where2



Tk < Tm: The supremum in (1) is taken over all integer valued F-stopping times � withvalues in the set f1; :::; kg; where F := fFt; 0 � t � Tg denotes the usual �ltrationgenerated by the process L: At a future time point t, when the option is not exercisedbefore t; the Bermudan option value is given byVt = B(t) sup�2f�(t);:::;kgEFt CT�B(T� )with �(t) := minfm : Tm � tg: Note that Vt can also be seen as the price of a Bermudanoption newly issued at time t; with exercise opportunities T�(t); : : : ;Tk: The processYt := VtB(t) ;called the Snell-envelope process, is a supermartingale. This can be seen as follows. Lets < t and ��t be an optimal stopping index at time t (which exists by general arguments),then it holdsEFsYt = EFsEFt CT��tB(T��t ) = EFs CT��tB(T��t ) � sup�2f�(s);:::;kgEFs CT�B(T � ) = Ys:3 Upper bounds by a Duality approachWe introduce the discrete �ltration �F (j)�j=0;:::;k with F (j) := FTj ; 1 � j � k; F (0) := F0;and consider with respect to this �ltration a discrete martingale (Mj)j=0;:::;k withM0 = 0:Following Rogers (2001) we observe thatY0 = sup�2f1;:::;kgEF0 CT�B(T� ) = sup�2f1;;:::;kgEF0 � CT�B(T� ) �M��� EF0 max1�j�k � CTjB(Tj) �Mj� : (2)Hence the right-hand-side of (2) provides an upper bound for the Bermudan price Y0:Moreover, due to the next theorem of Rogers (2001) and independently Haugh & Kogan(2001), there exists a particular martingale MY ; such that (2) holds with equality.Theorem 3.1 Let us consider the Snell envelope process Y at the discrete time set f0;T1; :::;Tkg;and de�ne Y (j) := Y (Tj); 1 � j � k; Y (0) := Y0: Let further MY be the (unique) Doob-Meyer martingale part of �Y (j)�0�j�k ; i.e. MY is an �F (j)�-martingale which satis�esY (j) = Y0 +MYj � F Yj ; j = 0; :::; k;with MY0 := F Y0 := 0 and F Y being such that F Yj is F (j�1) measurable for j = 1; :::; k:Then we have Y0 = EF0 max1�j�k � CTjB(Tj) �MYj � :3



Proof. Note that always Yj � CTj=B(Tj) and that F Yj is nondecreasing since (Y (j)) is an�F (j)�-supermartingale. So, (2) applied to MY yieldsY0 � EF0 sup1�j�k � CTjB(Tj) �MYj � = EF0 (Y0 + sup1�j�k � CTjB(Tj) � Y (j) � F Yj �)� EF0 (Y0 + sup1�j�k ��F Yj �) = Y0 � F Y1 = Y0;where F Y1 = 0 because of Y0 = EF0Y (1) = Y0 � F Y1 :4 EÆcient Monte Carlo construction of upper boundsConsider some approximative process eVt for the price of a Bermudan style option issuedat time t. As an example, for any exercise strategy, i.e. a family of integer valued stoppingtimes f�t 2 f�(t); :::; kg : t � 0g; the processeVt := B(t)EFt CT�tB(T�t) ; (3)is a lower approximation, eVt � Vt: The discounted process eY := eV =B is the with eV associ-ated approximation of the Snell envelope process. Similar as in Section 3 we introduce thediscrete processes eY (j) and eV (j); adapted to F (j) for j = 0; : : : ; k: Let fM be the martingalepart of the Doob-Meyer decomposition of (eY (j)): HenceeY (j) = eY0 + fMj � eFj ; j = 0; : : : ; k; (4)with fM0 = eF0 = 0 and eFj being F (j�1) measurable for j = 1; : : : ; k: By taking theconditional expectation with respect to F (j�1) at both sides of (4), it follows thatfMj = fMj�1 + eY (j) �EF(j�1) eY (j)= jXi=1 eY (i) � jXi=1 EF(i�1) eY (i); 1 � j � k:So, by Theorem 3.1 we obtain an upper bound for the Bermudan option viaY0 = V0B(0) � E sup1�j�k[ CTjB(Tj) � jXi=1 eY (i) + jXi=1 EF(i�1) eY (i)]= eY0 +E sup1�j�k " CTjB(Tj) � eY (j) + jXi=1 EF(i�1) [eY (i) � eY (i�1)]#= : eY0 +� =: V up0B(0) :Let us assume that (eV (j)) satis�es eV (j) � CTj ; hence, the approximative price process isnever below the cash 
ow by exercising. This is no restriction in fact, since otherwise we4



might take eeV (j) := max(eV (j); CTj ) instead. We then have the following estimate,� � E sup1�j�k jXi=1 [EF(i�1) eY (i) � eY (i�1)]� E sup1�j�k jXi=1 max(EF(i�1) eY (i) � eY (i�1); 0)� E kXi=1 max(EF(i�1) eY (i) � eY (i�1); 0): (5)When eY coincides with the Snell envelope process Y we have � = 0 by Theorem 3.1 andthen, due to the supermartingale property of the Snell envelope, EF(i�1)Y (i) � Y (i�1);so the right-hand-side estimate vanishes as well. The estimation (5) indicates that thedistance � between Y and eY is due to those exercise dates Ti; where EF(i�1) eY (i) � eY (i�1),hence where eY doesn't meet the supermartingale property.In what follows we will use the notion of regular conditional probability. This conceptprovides a rigorous base for the intuitive notion of probability conditioned on a set of zeroprobability. For readers who are not familiar with (regular) conditional probability, webrie
y state its de�nition and properties in Appendix A. For convenience, however, wewill further speak of conditional probability while meaning regular conditional probabilitywhen the conditioning is on a set of measure zero.Because the process L is assumed to be Markovian in the state space RD ; the conditionalprobability given F (j) for j = 0; : : : ; k; can be seen as a function of L(j) := L(Tj); withL(0) := L(0): I.e. for any FT -measurable random variable Z;[EF(j)Z](!) =: Z P (L(j); de!)Z(e!) a:s:; j = 0; : : : ; k:We now consider for each j; j = 1; :::; k; a sequence of random variables ��(j)i �i2N ; wherefor i 2 N; �(j)i are i.i.d. copies of eY (j) under the conditional measure P (L(j�1); de!);independent of the sigma-algebra �fL(i) : i = j; : : : ; kg: Hence,EF(j�1) eY (j) = Z P (L(j�1); de!)eY (j)(e!) = Z P (L(j�1); de!)�(j)i (e!); i 2 N:For a �xed but arbitrary K 2 N we consider a discrete process fM (K) de�ned by fM (K)0 = 0and then, recursively,fM (K)j := fM (K)j�1 + eY (j) � 1K KXi=1 �(j)i= jXq=1 eY (q) � jXq=1 1K KXi=1 �(q)i ; j = 1; : : : ; k:5



The process fM (K) is thus de�ned on an extended probability space 
 � Q with Q :=Qkj=1 RK : So a generic sample element in this space is (!; (�(j))1�j�k); with ! 2 
 beinga realisation of the process L and �(j) := (�(j)i )i=1;:::;K 2 RK ; for j = 1; : : : ; k:Clearly, fM (K) is a martingale w.r.t. the �ltration ( eF (j))j=0;:::;k; de�ned by eF (0) := F0 andeF (j) := ��F �H : 
 � F 2 F (j); Q � H 2 �f�(1); : : : ; �(j)g	; for j = 1; : : : ; k; and weobserve thatE sup1�j�k[ CTjB(Tj) � fM (K)j ] = EEF(k) sup1�j�k[ CTjB(Tj) � jXq=1 eY (q) + jXq=1 1K KXi=1 �(q)i ]� E sup1�j�k[ CTjB(Tj) � jXq=1 eY (q) + jXq=1 1K KXi=1 EF(k)�(q)i ]= E sup1�j�k[ CTjB(Tj) � jXq=1 eY (q) + jXq=1 1K KXi=1 EF(q�1)�(q)i ]= E sup1�j�k[ CTjB(Tj) � jXq=1 eY (q) + jXq=1EF(q�1) eY (q)]= V up0B(0) � V0B(0) ;where EF(k)�(q)i = EF(q�1)�(q)i holds because �(q)i is independent of L(q); : : : ; L(k): Via themartingale fM (K) we have thus obtained a new upper boundV upup;K0 := B(0)E sup1�j�k[ CTjB(Tj) � fM (K)j ] (6)which is larger than our target upper bound V up0 : It is natural to expect, however, thatV upup;K0 will be already close to V up0 for numbers K which are much smaller than thenumber of Monte Carlo trajectories needed for low variance estimation of the mathematicalexpectation in (6).We now proceed with a second approach, which gives a lower bound for our target upperbound V up0 . Consider an (F (k))-measurable random index jmax which satis�essup1�j�k[ CTjB(Tj) � jXq=1 eY (q) + jXq=1EF(q�1) eY (q)] = CTjmaxB(Tjmax) � jmaxXq=1 eY (q) + jmaxXq=1 EF(q�1) eY (q):Then, for any integer K > 0;V up0B(0) = E� CTjmaxB(Tjmax) � jmaxXq=1 eY (q) + jmaxXq=1 EF(q�1) eY (q)�= E� CTjmaxB(Tjmax) � jmaxXq=1 eY (q) + jmaxXq=1 1K KXi=1 EF(q�1)�(q)i �= E� CTjmaxB(Tjmax) � jmaxXq=1 eY (q) + jmaxXq=1 1K KXi=1 �(q)i �;6



where we have used again the fact that EF(k)�(q)i = EF(q�1)�(q)i = EF(q�1) eY (q): This bringsus to the idea of localizing jmax for each particular simulation of the process L: To thisaim, we carry out the following procedure. We consider on the extended probability space
�Q the random index bjmax which satis�es,CTbjmaxB(Tbjmax) � bjmaxXq=1 eY (q) + bjmaxXq=1 1K KXi=1 �(q)i = sup1�j�k � CTjB(Tj) � jXq=1 eY (q) + jXq=1 1K KXi=1 �(q)i �:Next, we extend the probability space once again to 
�Q�Q and simulate independentcopies b�(j) := (b�(j)i )i=1;:::;K 2 RK ; of �(j) 2 RK ; for j = 1; : : : ; k: We then consider on
�Q�Q the random variable,CTbjmaxB(Tbjmax) � bjmaxXq=1 eY (q) + bjmaxXq=1 1K KXi=1 b�(q)iwith expectationV uplow;K0B(0) := E� CTbjmaxB(Tbjmax) � bjmaxXq=1 eY (q) + bjmaxXq=1 1K KXi=1 b�(q)i �= E� CTbjmaxB(Tbjmax) � bjmaxXq=1 eY (q) + bjmaxXq=1 1K KXi=1 E eF(k)b�(q)i � (7)= E� CTbjmaxB(Tbjmax) � bjmaxXq=1 eY (q) + bjmaxXq=1 EF(q�1) eY (q)�� E� CTjmaxB(Tjmax) � jmaxXq=1 eY (q) + jmaxXq=1 EF(q�1) eY (q)� = V up0B(0) ;where, most importantly, (7) holds while the b�q are re-sampled independent of the deter-mination of bjmax and then we have E eF(k) b�(q)i = EF(k)b�(q)i = EF(q�1) b�(q)i = EF(q�1) eY (q):So we come up with two di�erent Monte Carlo estimators for the target upper V up0 :Lower estimate for V upt0 :bV uplow;K;M0 := B(0)M MXm=1 � CTbj(m)maxB(Tbj(m)max) � bj(m)maxXq=1 eY (q;m) + bj(m)maxXq=1 1K KXi=1 b�(q;m)i � (8)Upper estimate for V up0 :bV upup;K;M0 := B(0)M MXm=1 sup1�j�k � CTjB(Tj) � jXq=1 eY (q;m) + jXq=1 1K KXi=1 �(q;m)i � (9)In (8), (9), bj(m)max and eY (q;m) denote the m-th independent sample of bjmax and eY (q), respec-tively. 7



It is not diÆcult to show thatV upup;K0 # V up0 and V uplow;K0 " V up0 for K !1; (10)for a proof see Appendix B.As a third alternative, in view of (10), the estimators (9) and (8) can be combined into aconvex family of new estimators,bV (�);K;M0 := �bV upup;K;M0 + (1� �)bV uplow;K;M0 ; 0 � � � 1: (11)In Section 6 we will demonstrate in practical examples that the combined estimatorbV (1=2);K;M0 := 12 bV upup;K;M0 + 12 bV uplow;K;M0 (12)may have a much higher eÆciency than either bV upup;K;M0 or bV uplow;K;M0 :We here note that, essentially, the estimator (9) can also be found in Andersen & Broadie(2001) and Haugh & Kogan (2001).Heuristic motivation of the combined estimatorIn view of Appendix B we suppose that for some � > 0 the following expansion holds,V upup;K0 = V up0 + cK� + c1K2� +O( 1K3� ); c > 0 (13)and V uplow;K0 = V up0 + dK� + d1K2� +O( 1K3� ); d < 0:Let further �; 0 < � < 1; be such that �c + (1� �)d = 0: Then we de�neV (�);K0 := �V upup;K0 + (1� �)V uplow;K0 = V up0 + �c1 + (1� �)d1K2� +O( 1K3� ) (14)and consider the complexity of the two estimators U := bV upup;K;M0 and A := bV (�);K;M0 : Asusual, the accuracy " of an estimator bs for a target value p is de�ned via"2 := E(bs� p)2 = V ar(bs) + (Ebs� p)2:So we write,"2U : = 1MV ar(bV upup;K;10 ) + dK2� +O( 1K3� )"2A : = �2MV ar(bV upup;K;10 ) + (1� �)2M V ar(bV uplow;K;10 ) + (�c1 + (1� �)d1)2K4� +O( 1K5� )Since V ar(bV upup;K;10 ) and V ar(bV uplow;K;10 ) are uniformly bounded in K; we can deducein the spirit of Schoenmakers & Heemink (1997 ) and Du�y & Glynn (1995) that for an8



optimal eÆciency the statistical and systematical errors of the estimators (13) and (14)need to be of the same order. We therefore choose asymptotically,KU /M 12� and KA /M 14� ;yielding "2U / 1M and "2A / 1M :Hence the required computational costs to achieve an accuracy " are, respectively,CostU (") /MKU /M1+ 12� / 1"2+1=� and CostA(") /MKA /M1+ 14� / 1"2+ 12� :So, under the assumptions above,CostU (")CostA(") �!1 as " # 0: (15)Although the above analysis is build on some general restrictions, it gives a nice indicationwhy the combined estimator can be superior for a properly chosen �, as shown in theapplication, see Section 6, where � = 1=2.5 Two canonical approximative processesIn this section we consider two approximative processes for the general Bermudan stylederivative which arise from two canonical exercise strategies.Maximum of still alive European optionsSuppose the option holder has arrived at a certain exercise date Tj; 1 � j � k; and lookswhich remaining underlying European instrument has the largest value. More precisely,he considers the index de�ned bye� (j) := inf �m � j �� EF(j) � CTmB(Tm)� = maxj�i�kEF(j) � CTiB(Ti)�� : (16)This index is clearly F (j)-measurable and the option holder has the right to pin down hisexercise policy at Tj for whatever reason, by deciding at Tj to exercise at Te� (j) : In fact,this is the same as selling the Bermudan at Tj as a European option with exercise dateTe� (j) ; thus receiving a cash amount of eY (j)B(Tj); witheY (j) := maxj�i�kEF(j) � CTiB(Ti)� = EF(j) " CTe�(j)B(Te� (j))# � Y (j): (17)The process eY in (17) is a lower estimation of the Snell envelope Y since the policy (16)is suboptimal. For instance, because the optimal policy is not F (j)-measurable.9



Exercise when cash 
ow equals maximum of still alive European optionsIt is clear that exercising a Bermudan at a time where the cash 
ow is below the maximumprice of the remaining underlying European options is never optimal. This suggests analternative exercise strategy de�ned by the following stopping time,b� (j) := inf �m � j �� CTmB(Tm) = maxm�i�kEF(m) � CTiB(Ti)�� ;yielding a lower approximation of the Snell envelope,bY (j) := EF(j) " CTb�(j)B(Tb� (j))# � Y (j): (18)In fact, for the Bermudan swaption (see Section 6) the process bY (j) coincides with thelower estimation of Andersen (1999) obtained by Andersen's Strategy 2 with H = 0.The exercise policy b� is better than e� ; due to the following proposition.Proposition 5.1 For each j = 0; : : : ; k it holds,eY (j) � bY (j) � Y (j):Proof. We only need to show the �rst inequality, which we will proof by induction. Whenj = k � 1, we clearly have the equalityeY (k�1) = bY (k�1):Suppose the inequality holds for some j. Then, it follows thatbY (j�1) = EF(j�1) " CTb�(j�1)B(Tb� (j�1))#= EF(j�1) " CTj�1B(Tj�1) � 1b� (j�1)=Tj�1 + CTb�(j)B(Tb� (j)) � 1b� (j�1)>Tj�1#= CTj�1B(Tj�1) � 1b� (j�1)=Tj�1 +EF(j�1)EF(j) " CTb�(j)B(Tb� (j))# � 1b� (j�1)>Tj�1� maxj�1�i�kEF(j�1) � CTiB(Ti)� � 1b� (j�1)=Tj�1+EF(j�1) maxj�i�kEF(j) � CTiB(Ti)� � 1b� (j�1)>Tj�1� maxj�1�i�kEF(j�1) � CTiB(Ti)� � 1b� (j�1)=Tj�1+ maxj�1�i�kEF(j�1) � CTiB(Ti)� � 1b� (j�1)>Tj�1= eY (j�1): 10



Remark 5.2 In the above derivation we have used a crucial property of b� ; namely, itholds b� (j�1) 6= Tj�1 =) b� (j�1) = b� (j): Without proof we note that this property does nothold for e� :6 Application: Bermudan swaptions in the LIBOR marketmodelWe consider the Libor Market Model with respect to a tenor structure 0 < T1 < T2 <: : : < Tn in the spot Libor measure P �; induced by the numeraireB�(t) := Bm(t)(t)B1(0) m(t)�1Yi=0 (1 + ÆiLi(Ti))with m(t) := minfm : Tm � tg denoting the next reset date at time t: The dynamics ofthe forward Libor Li(t), de�ned in the interval [0; Ti] for 1 � i < n; is governed by thefollowing system of SDE's (Jamshidian 1997),dLi = iXj=m(t) ÆjLiLj 
i � 
j1 + ÆjLj dt+ Li 
i � dW �: (19)Here Æi = Ti+1 � Ti are day count fractions, andt! 
i(t) = (
i;1(t); : : : ; 
i;d(t))are deterministic volatility vector functions de�ned in [0; Ti]; called factor loadings. In (19),(W �(t) j 0 � t � Tn�1) is a standard d-dimensional Wiener process under the measure P �with d; 1 � d < n; being the number of driving factors.For our experiments we take the following volatility structure:
i(t) = cg(Ti � t)ei; where g(s) = g1 + (1� g1 + as)e�bsis a parametric volatility function proposed by Rebonato (1999), and ei are d-dimensionalunit vectors, decomposing some input correlation matrix of rank d. For generating Libormodels with di�erent numbers of factors d, we take as a basis a correlation structure ofthe form �ij = exp(�'ji � jj); i; j = 1; : : : ; n� 1 (20)which has full-rank for ' > 0; and then for a particular choice of d we deduce from � arank-d correlation matrix �d with decomposition �dij = ei � ej ; 1 � i; j < n; by principalcomponent analysis. We note that instead of (20) it is possible to use more general andeconomically more realistic correlation structures. For instance the parametric structuresof Schoenmakers & Co�ey (2003). 11



We will take a 
at 10% initial Libor curve over a 40 period quarterly tenor structure andchoose values of the parameters c, a, b, g1; '; such that the involved correlation structureand scalar volatilities can be regarded as typical for a Euro or GBP market. We thus taken = 41; Æi = 0:25; c = 0:2; a = 1:5; b = 3:5; g1 = 0:5; ' = 0:0413:For a \practically exact" numerical integration of the SDE (19), we used the log-Eulerscheme with �t = Æ=5 (e.g., see also Kurbanmuradov, Sabelfeld and Schoenmakers 2002).Let us now brie
y recall the de�nition of a (payer) swaption over a period [Ti; Tn], 1 � i �k: A swaption contract with maturity Ti and strike � with principal $1 gives the right tocontract at Ti for paying a �xed coupon � and receiving 
oating Libor at the settlementdates Ti+1,: : : ,Tn. So by this de�nition, its cash
ow at maturity isSi;n(Ti) := 0@n�1Xj=i Bj+1(Ti)Æj (Lj(Ti)� �)1A+ :In this section we consider Bermudan swaptions for which we assume for simplicity thatthe exercise dates coincide with the Libor tenor structure. I.e. k = n and Ti = Ti; for1 � i � n.A Bermudan swaption, issued at t = 0, gives the the right to exercise a cash
owCT� := S�;n(T� )at an exercise date T� 2 fT1; : : : ; Tng to be decided by the option holder (see also Sec-tion 2). The value of the Bermudan swaption, issued at t = 0, is given by (1).We now investigate upper bound estimators (8), (9) and (12) for the Bermudan swaption,for di�erent approximative processes.As a lower approximation of the Snell envelope process let us consider eY (j)max being themaximal still alive swaption process. Hence we have (17), where the European option isnow a European swaption,eY (j)max = maxj�i�k Si;n(Tj)B�(Tj) with Si;n(Tj) = B�(Tj)EF(j) �Si;n(Ti)B�(Ti) � : (21)We take a full-rank correlation structure (d = 40) and consider out-of-the-money swaptionswith strike � = 12%. For eYmax we have computed bV uplow;K;300000 and bV upup;K;300000 fordi�erent K. For this choice of M (30000) the standard deviation of both estimatorsturned out to be less than 1% relative for all K. The results are shown in Fig. 1.With growingK, the values bV uplow;K;300000 and bV upup;K;300000 tend to the same limit, namely,the target upper bound V up0 . ForK � 100, the relative distance between bV uplow;K;300000 andbV upup;K;300000 turned out to be less that 1%; hence the relative standard deviation of bothestimators. So we conclude that, within a relative accuracy of 1% based on one standard12



deviation, both estimators bV uplow;100;300000 and bV upup;100;300000 give a good approximationof the target upper bound V up0 . Therefore, we treat their average bV (1=2);100;300000 as V up0 .This value is plotted in Fig. 1 by a thin solid line.Let us consider the average bV (1=2);K;300000 for K = 1; : : : ; 100; plotted in Fig. 1 as a dashedline. Remarkably, we see that already forK � 5; bV (1=2);K;300000 coincides within 1% relativewith the target upper bound. So, in this case study, for approximating the target upperbound within 1%; by bV (1=2);K;300000 , it is suÆcient to carry 5 inner simulations, whilebV uplow;K;300000 and bV upup;K;300000 need at least 100 inner simulations for the same accuracy.We next compute bV (1=2);10;600000 and bV upup;100;300000 for di�erent strikes and for di�erentnumber of factors d. With these respective choices of K and M , which are determined byexperiment, both the values and the (absolute) standard deviations of both estimators areclose for di�erent strikes and di�erent number of factors. See Table 1, columns 5,6. But,roughly speaking, simulation of the values in column 6, hence the estimator bV (1=2);10;600000 ,involves 2.5 times less computation time than the values for bV upup;100;300000 in column 5.Now we are going to compare the estimator bV upup;K;M0 with an \up-up" estimator con-sidered by Andersen & Broadie (2001), here denoted by bV upup;K;M0;AB : The latter estimatoris due to an approximative lower bound process, denoted by eY (j)A , obtained via a partic-ular exercise boundary which is constructed by strategy 1 of the Andersen method. Theprocess eY (j)A has the following form,eY (j)A := EF(j) "S� (j)A ;n(T� (j)A )B�(T� (j)A ) # ; with � (j)A := inf �m � j j Sm;n(Tm)B�(Tm) > Hm� :The sequence of constants Hm is pre-computed by the method of Andersen using strat-egy 1, see Andersen (1999).The estimator bV upup;100;100000;AB is computed for di�erent strikes and number of factors, andthe results are given in Table 1, column 4. As we can see, the values of column 4 andcolumn 5 are rather close. In fact, except for the ATM strikes in the 1 and 2 factormodel, the di�erences do not exceed 1% relative. For a full factor model and a particularOTM strike we then compare the estimators bV upup;100;100000;AB and bV upup;100;300000 for di�erentnumbers of inner simulations, K = 1; : : : ; 100; and draw the same conclusions as above.See Fig. 2. Further in Table 1, column 3, we also give the lower Bermudan price estimationsB�(0)eY (0)A due to the stopping time � (0)A :Conclusion 6.1 (Table 1) We see that in the case of a 1-factor model the distancebetween the lower and upper bound of the Bermudan swaption price is rather close forOTM, ATM as well as for ITM strikes. This observation is consistent with the resultsreported in Andersen & Broadie. However, when the number of factors is larger than1, this distance increases from ITM to OTM strikes. For OTM strikes and more than2 factors this distance is even larger than 10%, relative to the value of the lower boundprice. 13



In Table 2 we list the required computation of one sample multiplied by its variance whichindicates, in a sense, the complexity of the respective computations.Conclusion 6.2 (Table 2) We conclude that for more than 1 factor, and particularly formany factors, ATM and OTM strikes, eY (j)max gives rise to a more eÆcient \up-up" estimatorthan the \up-up" estimator due to eY (j)A (the lower bound process of Andersen) with oneexception: ITM and d = 2. However, for the 1-factor model the eÆciency of the upperbound estimator bV upup;100;100000;AB is more than 10 times higher.Further, as expected, for all strikes and number of factors, the eÆciency of bV (1=2);10;600000(column 5) is in turn 2 to 4 times higher, than the eÆciency of bV upup;100;300000 (column 4).Remark 6.3 Without giving details we note that for this case study the estimator bV (1=2);10;M0;ABis also 2 to 4 times more eÆcient than bV upup;100;M0;AB :Remark 6.4 Naturally, the numerical analysis based on the (discounted) maximum ofstill alive swaption process in this section could also be done for the process (18) inSection 5. This process is in fact consistent with strategy 2, H = 0 in Andersen (1999).So, on the one hand, this process is dominated from above by a lower bound process dueto strategy 2 with an optimized H. On the other hand, however, as Andersen reports andwe found out also, strategy 2 with optimized H performs not substantially better thanstrategy 1 with optimized H: Therefore, it is to expect that the dual upper bound dueto process (18) will be more or less comparable with the upper bound due to eY (0)A in thissection, which in turn is comparable with the upper bound due to (17) for a more than onefactor model. Moreover, it is easily seen that the computation of the dual upper boundby the process (18) will be more costy.
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Table 1. (all values to be multiplied by 10�4)strike d B�(0)eY (0)A (SD) bV upup;100;100000;AB (SD) bV upup;100;300000 (SD) bV (1=2);10;600000 (SD)1 1116.2(1.6) 1121.4(0.1) 1128.8(0.3) 1125.6(0.4)0.08 2 1103.2(1.4) 1117.6(0.4) 1121.1(0.3) 1118.6(0.3)(ITM) 10 1097.1(1.3) 1111.0(0.4) 1113.7(0.3) 1110.9(0.3)40 1093.2(1.3) 1106.9(0.4) 1110.1(0.3) 1107.9(0.3)1 403.3(1.2) 408.3(0.1) 416.5(0.5) 416.6(0.4)0.10 2 372.6(1.1) 394.0(0.4) 397.3(0.5) 397.9(0.4)(ATM) 10 347.4(1.0) 373.6(0.5) 375.8(0.4) 375.6(0.4)40 341.6(1.0) 367.5(0.5) 368.5(0.4) 369.3(0.4)1 133.5(0.7) 135.4(0.1) 136.3(0.4) 136.2(0.3)0.12 2 119.7(0.7) 127.4(0.3) 127.5(0.3) 127.6(0.3)(OTM) 10 102.8(0.6) 113.6(0.3) 114.5(0.3) 113.5(0.3)40 98.8(0.5) 110.3(0.3) 109.6(0.3) 109.8(0.3)

Table 2. Cost � Variance per Sample (all values to be multiplied by 10�7)strike d bV upup;100;100000;AB (SD) bV upup;100;300000 (SD) bV (1=2);10;600000 (SD)1 10.1 148.8 60.80.08 2 106.9 167.7 65.0(ITM) 10 275.3 239.8 93.940 666.9 512.2 213.21 23.7 273.8 92.30.10 2 409.4 296.4 99.5(ATM) 10 1122.0 486.5 162.040 3103.4 1077.8 379.51 12.5 174.6 49.70.12 2 196.5 169.2 48.4(OTM) 10 667.9 263.2 74.140 2367.0 570.6 172.916



A Regular conditional probabilityLet G be a sub �-algebra of F : Then a map
�F 3 (!;A)! P (!;A)is called a regular conditional probability given G; if(i) For �xed ! 2 
; P (!; �) is a probability measure on (
;F);(ii) For �xed A 2 F ; the random variable ! ! P (!;A) is G measurable;(iii) For any F-measurable random variable Z it holds[EGZ](!) = Z P (!; de!)Z(e!) a:s:According to a fundamental theorem (see e.g. Ikeda and Watanabe (1981)) a regularconditional probability given G � F exists and is unique, if the basic probability space(
;F ; P ) is a standard probability space. For the de�nition of a standard probabilityspace, see also Ikeda and Watanabe (1981). Without giving further details we just noticethat all probability spaces considered in this paper are standard.B Proof of the convergence property (10)V upup;K0B(0) = E sup1�j�k[ CTjB(Tj) � jXq=1 eY (q) + jXq=1 1K KXi=1 �(q)i ]= E[ CTbjmaxB(Tbjmax) � bjmaxXq=1 eY (q) + bjmaxXq=1 1K KXi=1 �(q)i ]= E (1� 1[jmax 6=bjmax])[ CTjmaxB(Tjmax) � jmaxXq=1 eY (q) + jmaxXq=1 1K KXi=1 �(q)i ]+ E 1[jmax 6=bjmax][ CTbjmaxB(Tbjmax) � bjmaxXq=1 eY (q) + bjmaxXq=1 1K KXi=1 �(q)i ]= V up0B(0) +O((P (jmax 6= bjmax))1�1=p1)17



for any integer p1, by H�older's inequality and the fact that for any p1 the p1-th momentof both CTbjmaxB(Tbjmax) � bjmaxXq=1 eY (q) + bjmaxXq=1 1K KXi=1 �(q)iand (22)CTjmaxB(Tjmax) � jmaxXq=1 eY (q) + jmaxXq=1 1K KXi=1 �(q)iexist and are uniformly bounded in K (we omit the proof). Then, since limK!1P (jmax 6=bjmax) = 0; the convergence for K !1 of V upup;K0 ! V up0 follows.Similarly, we can show thatV uplow;K0 = V up0B(0) +O((P (jmax 6= bjmax))1�1=q1);for any integer q1; hence V uplow;K0 ! V up0 :References[1] Andersen L. (1999): A simple approach to the pricing of Bermudan swaptions in themultifactor LIBOR market model. Journal of Computational Finance, 3, No. 2, 5{32.[2] Andersen L., Broadie M. (2001): A primal-dual simulation algorithm for pricingmultidimensional American options. Working paper.[3] Broadie M., Glasserman P. (1997): A stochastic mesh method for pricing high-dimensional American options. PaineWebber Working Papers in Money, Economicand Finance #PW9804, Columbia Business School, New York.[4] Broadie M., Glasserman P., Ha Z. (2000): Pricing American options by simulationsusing a stochastic mesh with optimized weights, Probabilistic Constrained Optimiza-tion: Methodology and Applications, S. Uryasev, ed., Kluwer Publishers, Norwell,Mass, 32{50.[5] DuÆe D. (2001): Dynamic Asset Pricing Theory. Third Edition, Princeton UniversityPress, Princeton, New Jersey.[6] DuÆe D., Glyn P. (1995): EÆcient Monte Carlo simulation of security prices. TheAnnals of Applied Probability, 5, 897{905.[7] Glasserman P. (2003): Monte Carlo Methods in Financial Engineering. Springer-Verlag, New York Berlin Heidelberg. 18
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