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Abstract

Based on a duality approach for Monte Carlo construction of upper bounds for
American/Bermudan derivatives (Rogers, Haugh & Kogan), we present a new algo-
rithm for computing dual upper bounds in an efficient way. The method is applied to
Bermudan swaptions in the context of a LIBOR market model, where the dual upper
bound is constructed from the maximum of still alive swaptions. We give a numerical
comparison with Andersen’s lower bound method and its dual considered by Andersen
& Broadie.

1 Introduction

Evaluation of American style derivatives on a high dimensional system of underlyings
is considered a perennial problem for the last decades. On the one hand such high di-
mensional options are difficult, if not impossible, to compute by PDE methods for free
boundary value problems. On the other hand Monte Carlo simulation, which is for high
dimensional European options an almost canonical alternative to PDE solving, is for Amer-
ican options highly non-trivial since the (optimal) exercise boundary is usually unknown.
In the past literature, many approaches for Monte Carlo simulation of American options
are developed. With respect to Bermudan derivatives, which are in fact American options
with a finite number of exercise dates, there is, for example, the stochastic mesh method of
Broadie & Glasserman (1997,2000), a cross-sectional regression approach by Longstaff &
Schwartz (2001), and for Bermudan swaptions a method by Andersen (1999). In general,
the price of an American option can be represented as a supremum over a set of stop-
ping times. As a remarkable result Rogers (2001) (and independently Haugh & Kogan
(2001) for Bermudan style instruments) showed that this supremum representation can be
converted into a ’dual’ infimum representation, where the infimum is taken over a set of
(super-)martingales. In Andersen & Broadie (2001) this dual approach is carried out and
tested with respect to Andersen’s (1999) method for Bermudan swaptions. Further Joshi
& Theis (2002) use the dual approach for finding Bermudan swaption prices via a mini-
mization procedure. For a more detailed overview on Monte Carlo methods for American
options we refer to Glasserman (2003) and the references therein.

In the papers of Anderson & Broadie (2001) and Haugh & Kogan (2001) upper bounds of
Bermudan options are constructed by applying the duality approach to the (Doob-Meyer)
martingale part of an approximative process. For instance, in Andersen & Broadie (2001)

these upper bounds are constructed to investigate the quality of an approximative lower



bound process obtained by suboptimal stopping, however, without particular emphasize
on the efficiency of the upper bound computation. The central theme in this paper is the
construction of a Monte Carlo estimator for an upper bound for a Bermudan derivative
which is computationally most efficient. Our upper bound construction will be based
on duality via the martingale part of an approximative processes as well. But, as main
contribution, we will enclose the 'theoretical’ upper bound by approximating from above
and below by using a new lower estimator for the theoretical upper bound. Then, by taking
a convex combination of the lower and upper estimator we obtain a family of combined
estimators for the target upper bound with usually higher computational efficiency. This
efficiency gain will be demonstrated by upper bound computation of Bermudan swaptions.

The paper is organised as follows. In Section 2 we give a concise recap of the Bermudan
pricing problem and in Section 3 we outline the duality approach. Then, in Section 4 we
present new efficient Monte Carlo estimators for constructing a target upper bound and in
Section 5 we propose two canonical approximative processes to which our method could
be applied. Finally, in Section 6 we apply our method to computation of upper bounds of
Bermudan swaptions in a Libor market model. This application is based on the maximum
of still alive swaptions, one of the canonical candidates in Section 5 in fact, and we give
a numerical comparison with the results obtained by Andersen (1999) and Andersen &
Broadie (2001).

2 The Bermudan Pricing Problem

We consider general Bermudan style derivatives with respect to an underlying process
L(t), over some finite time interval [0,7] with time horizon T' < oo. The process L is
assumed to be Markovian with state space R”. For example, L can be a system of asset
prices, but also a not explicitly tradable object such as the term structure of interest
rates, or a system of Libor rates. Consider a set of future dates T := {71, T2,..., Tx} with
0<Ti<Ta <+ <Tp <T. The dates are denoted with caligraphic letters to distinguish
in the case where L is a Libor rate process, if necessary, from a particular Libor tenor
structure usually denoted by T}’s. An option issued at time ¢ = 0, to exercise a cashflow
Cr. := C(T;, L(7)) at a future time 7, € T is called a Bermudan style derivative. Without
restriction we assume for technical reasons that the option cannot be exercised at ¢t = 0.
With respect to a pricing measure P connected with some pricing numeraire B, the value
of the Bermudan derivative at time ¢ = 0 is given by

Cr,
Vo=B(0) sup E°o_—_, (1)
re{t..ky  B(T7)
The fact that (1) can be considered as the fair price for the Bermudan derivative is due to
general no-arbitrage principles, e.g. see Duffie (2001). For example, if L is a Libor process,
P in (1) could be the spot Libor measure P* induced by the spot measure numeraire B*

or a bond measure P(™) induced by some zero bond B,, maturing at tenor 7),, where



Ti < Tpn. The supremum in (1) is taken over all integer valued F-stopping times 7 with
values in the set {1,...,k}, where F := {F;,0 < t < T} denotes the usual filtration
generated by the process L. At a future time point ¢, when the option is not exercised

before ¢, the Bermudan option value is given by

Cr,
Vi = B(t sup Eft I
! Q re{n(t),.k}  B(Tr)

with k(t) := min{m : T, > t}. Note that V; can also be seen as the price of a Bermudan

option newly issued at time ¢, with exercise opportunities 7y), ..., Tx. The process
Vi
Y= )
B(t)

called the Snell-envelope process, is a supermartingale. This can be seen as follows. Let

s < t and 7} be an optimal stopping index at time ¢ (which exists by general arguments),
then it holds

EFY,=EFEF Tt __pFf Tt < gy EF I __vy,
B(T;) B(Tz) = requs)ky  B(T7)

3 Upper bounds by a Duality approach

We introduce the discrete filtration (.7-'(3'))].:0 _, with Fl) .= Fr, 1<j <k, FO .= 7,
and consider with respect to this filtration a discrete martingale (M;),_, , with My = 0.
Following Rogers (2001) we observe that

oy

C C
Yo = sup E7o T _ sup ET0 [i — MT}
re{l,k} (T7)  reqi,..p)

Q

T.
< E7o VA
DR [3(7;-) }

Hence the right-hand-side of (2) provides an upper bound for the Bermudan price Y.
Moreover, due to the next theorem of Rogers (2001) and independently Haugh & Kogan
(2001), there exists a particular martingale MY, such that (2) holds with equality.

Theorem 3.1 Let us consider the Snell envelope process Y at the discrete time set {0, T1, ..., T },
and define YU := Y(T;), 1 < j <k, YO := Y,. Let further MY be the (unique) Doob-

Meyer martingale part of (Y(j)) i.e. MY is an (T(j))—martmgale which satisfies

0<j<k’
Y@ =vy+ M~ F, j=0,..,k
with My = Fy = 0 and FY being such that F]-Y is FU=1) measurable for j = 1,...,k.

Then we have
Cr, MY} _

Yy = E70 .
’ 1252k [3(7;-) J



Proof. Note that always Y; > Cr, /B(T}) and that F]-Y is nondecreasing since (Y4)) is an
(]:(j))—supermartingale. So, (2) applied to MY yields

Cr Cr .
Yo < E”0 sup [—]M-Y] = EP{ Yy + sup [ J Y(J)F.Y]
" 1<j<k LB(T;) 7 " i<k LB(T) !
< E” {Y0+ sup [FJ-Y]} =Yo Y =Yy,
1< <k
where FY = 0 because of Yy = EFoy(®) — vy, — FY. [

4 Efficient Monte Carlo construction of upper bounds

Consider some approximative process YN/t for the price of a Bermudan style option issued
at time ¢t. As an example, for any exercise strategy, i.e. a family of integer valued stopping
times {r; € {k(t),...,k} : t > 0}, the process

B(T,) @)

is a lower approximation, 17t < V;. The discounted process Y = ‘7/B is the with V associ-
ated approximation of the Snell envelope process. Similar as in Section 3 we introduce the
discrete processes Y @) and 17(j), adapted to F) for j = 0,..., k. Let M be the martingale
part of the Doob-Meyer decomposition of (?(j)). Hence

YO =Y+ M~ F;, j=0,...,k (4)

with M() = ﬁ(] = 0 and ﬁj being F-1) measurable for j = 1,...,k. By taking the
conditional expectation with respect to FU~1) at both sides of (4), it follows that

M; = M; ,+Y® _ g7 Vy0)
oI
= Y YO _NEFVO 1<j<k
i=1 i=1

So, by Theorem 3.1 we obtain an upper bound for the Bermudan option via

Yy = < E sup i Ny L NTEFT Y ®)
" B(0) 15j§k[3(7}) ; ; ]
= Yo+ FE sup or__ Yy 4 i gry [y@ —y (-1
1<j<k | B(T;) P
yup
= Yo+ A= 0
0+ B(O)

Let us assume that (TN/(j)) satisfies V() > C7;, hence, the approximative price process is

never below the cash flow by exercising. This is no restriction in fact, since otherwise we



= (4) ~
might take V' := max(V ), Cr;) instead. We then have the following estimate,

G-1) 5 (;

i
A < Esup Y [EFTYW -yl

1<j<k i
d -US6) S
< FE sup Zmax(Efl y @) —y (=1 o)
1<j<k =

k
< EY max(BF VYO _yED ), (5)

i=1

When Y coincides with the Snell envelope process Y we have A = 0 by Theorem 3.1 and
then, due to the supermartingale property of the Snell envelope, EF Yy ) < yt-1),
so the right-hand-side estimate vanishes as well. The estimation (5) indicates that the
distance A between Y and Y is due to those exercise dates T;, where EFVY 6 > 17("’1),

hence where Y doesn’t meet the supermartingale property.

In what follows we will use the notion of regular conditional probability. This concept
provides a rigorous base for the intuitive notion of probability conditioned on a set of zero
probability. For readers who are not familiar with (regular) conditional probability, we
briefly state its definition and properties in Appendix A. For convenience, however, we
will further speak of conditional probability while meaning reqular conditional probability

when the conditioning is on a set of measure zero.

Because the process L is assumed to be Markovian in the state space R, the conditional
probability given FU) for j = 0,...,k, can be seen as a function of LU := L(T;), with
LO) := L(0). Le. for any Fp-measurable random variable Z,

[EFY 7)(w) —:/P(L(j),d&)Z(Uu) as., j=0,...k

We now consider for each j, j = 1,..., k, a sequence of random variables (Q(j ))_ N where
1€

for 2 € N, {l(j) are i.i.d. copies of Y@ under the conditional measure P(L(j’l),diﬁ),

independent of the sigma-algebra o{L(®) : i = j,... k}. Hence,

BF0 — [ o, a@7iE) - [P 0,@)ed@),  ien

For a fixed but arbitrary K € N we consider a discrete process ME) defined by MéK) =0
and then, recursively,

K
HE) AR oG L ()
M = Mj1+Y(])?;§i
J - J 1 K (
_ q _
= ZY‘I_ZEZQ , j=1, k
q=1 g=1 i=1



The process M) is thus defined on an extended probability space  x [] with [] :=

k
[Tj=

RRE . So a generic sample element in this space is (w, (£())1<;<t), with w € Q being

a realisation of the process L and £ := (fi(j))izl,...,K eERK forj=1,...,k.
Clearly, MK) is a martingale w.r. t the filtration (.%(j))] 0,..k, defined by FO) .= 7, and
FU) !_O'{FXH Qo FeFl HDHGJ{§ (j)}},forjzl,...,k,andwe
observe that
E [ 073 ]’\Z(K)] EE]:(") [ 073 i?(q) _i_i 1 ié—(‘ﬂ]
sup — M; = sup — — ;
1<j<k B('];) J 1<j<k B(ﬁ) a=1 q=1 K i=1
> B osup | °r PR ZJ: i S B
- gk B(T) o = K '
_ g sup [ 073 B Z)’;(q) T i i ZE]:(qfl)g(q)]
<<k B(Tj) = = K= '
B sup 5 SP0 43 5 g
= sup -
<<k B(T3) o =
up
T Vo
B(0) — B(0)
where E]:(k)fz.(q) = E]:(qfl)fl(q) holds because fz-(q) is independent of L@, ..., L), Via the

martingale ME) we have thus obtained a new upper bound

u CT ~(K
vt K . BO)E sup [—2- — MO 6
0 (0) 1gjgk[B(7}) i (6)
which is larger than our target upper bound Vj*. It is natural to expect, however, that

up"P K
VO

number of Monte Carlo trajectories needed for low variance estimation of the mathematical

will be already close to V;* for numbers K which are much smaller than the
expectation in (6).

We now proceed with a second approach, which gives a lower bound for our target upper

bound VU"p. Consider an (f(k))—measurable random index jya.x which satisfies

J
T,

B(T;) ~ 4

sup |

J
y@ 4 Z EFO Yy —
1<j<k 1

Then, for any integer K > 0,

Vroup CT' Jmax
E Jmax
B0 ~ PEmy 2V
COr, Jmex
— E Jmax
BTy 2
Cr Jmax
- B jmax
BT T 2

]max Jmax

ZY +ZE_7:(q 1)

]max

Tjrmax)
]mzax Fla— 1)
)+ E
+]xnzax ZE}'(q 1)
v - L\~ ()
y@ 4 Z EZgiq ]’
q=1 =1



where we have used again the fact that Ef“"gi(") = Ef(q71)§§ 9 — pF@ Uy (@), This brings
us to the idea of localizing jnax for each particular simulation of the process L. To this
aim, we carry out the following procedure. We consider on the extended probability space

Q x [] the random index ;max which satisfies,

]max Jmax C j ] 1 K

RO IIAED O O S ERTATe) LRSS L

B
T ) 1<k g p

Next, we extend the probability space once again to Q x [ x [ and simulate independent
copies 5(1') = (a]))izl,m,;{ e RE, of ¢) ¢ RE for j = 1,...,k. We then consider on
Q x [[ x ] the random variable,

Jmax ]max K

max LS A
]me ZY +ZK§:§Z‘1
with expectation
Vumow,K Jmax Jmax
S DS
Jmax Jmax
_ me Z Y 4 Z Z EFME (7)
]max i=
Jmax Jmax Fong
= me y@ 4 E
. Z Z
- Jmax Jmax ( 1) B Vup
< B(7]}mx Z Y@ ¢ Z ETY = B[EO)’

where, most importantly, (7) holds while the Eq are re-sampled independent of the deter-
mination of jmax and then we have Ej:(k)gl(q) = Ej:(k)gq) = E]:(qfl)gq) = g7y @),
So we come up with two different Monte Carlo estimators for the target upper V.

Lower estimate for V,'*:

(0) M 07:(")) /]\1(11722( /]\x(n";)): 1 K A( )
VuplouHKyM — JImax o }A/'(q,m) + q;m 8
TRV P DEAED B O DL B
m= max q= q= 1=
Upper estimate for V,'*
M J j K
~  u B(O) C'T' ~ 1 (g;m)
yup P K,M — i Y(q,m) + - (g;m 9
0 w22, Gy - X 2@

In (8), (9), 3\1(11723( and Y (4™ denote the m-th independent sample of jmax and Y (@ respec-
tively.



It is not difficult to show that
VP E Ly and VP K A VP for K - oo, (10)

for a proof see Appendix B.

As a third alternative, in view of (10), the estimators (9) and (8) can be combined into a

convex family of new estimators,
f}ﬂ(a)7K1M = af}(]“pupaKzM + (1 o a)f}(]“plnwaKyM’ 0 S o S 1. (11)
In Section 6 we will demonstrate in practical examples that the combined estimator

c/2.kM  _ Loupr kv | Lsup, KM
Vo( /2) = PP + 5Voupz (12)
may have a much higher efficiency than either ‘A/O"p KMo 170"” tow KM

We here note that, essentially, the estimator (9) can also be found in Andersen & Broadie
(2001) and Haugh & Kogan (2001).

Heuristic motivation of the combined estimator

In view of Appendix B we suppose that for some 8 > 0 the following expansion holds,

up"P K _ y,up c C1 1
and p p )
,llp ()'U]!K J— ,l‘p 1
VUI —VO +ﬁ+ﬁ+o(ﬁ)’ d<0.

Let further a, 0 < a < 1, be such that ac + (1 — a)d = 0. Then we define

acy + (1 — a)dy 1

a),K up"P K UPlow, K U
Vo( = aVy? + (1= o)V =W+ K28 +O(K3ﬁ)

(14)

and consider the complexity of the two estimators U := %"pup’K’M and A := %(“)’K’M_ As

usual, the accuracy € of an estimator s for a target value p is defined via
2. (e 2 _ ~ -~ 2
e“:= E(s—p)° =Var(s) + (Es— p)~.

So we write,

1 SuptP d 1
2 L up"?P K1
2 2 2
2 o Supr i1y (1 —a) Suppew. K1y, (ac1 + (1 —a)d) 1
eq 1 = MVa’r'(VUp )+ ——Var(V,* )+ 7 +O(K5ﬂ)
Since Var(V*""%1) and Var(VPe=*1) are uniformly bounded in K, we can deduce

in the spirit of Schoenmakers & Heemink (1997 ) and Duffy & Glynn (1995) that for an



optimal efficiency the statistical and systematical errors of the estimators (13) and (14)

need to be of the same order. We therefore choose asymptotically,

Kyx M  and K4o M3,

yielding
€y X — an EY X —.
U= M AT M
Hence the required computational costs to achieve an accuracy € are, respectively,
145 1 1+ 1
Costy(e) x MKy o M™"28 ox ———— and Costa(e) x MK ox M348 .
e2+1/p c2+a5
So, under the assumptions above,
Costy(e
Costu(e) — 00 as el 0. (15)
Cost 4(¢)

Although the above analysis is build on some general restrictions, it gives a nice indication
why the combined estimator can be superior for a properly chosen «, as shown in the

application, see Section 6, where a = 1/2.

5 Two canonical approximative processes

In this section we consider two approximative processes for the general Bermudan style

derivative which arise from two canonical exercise strategies.

Maximum of still alive European options

Suppose the option holder has arrived at a certain exercise date 7;, 1 < j < k, and looks
which remaining underlying European instrument has the largest value. More precisely,
he considers the index defined by

~G) . , 7o | O | _ Fo | Or
T 1nf{m23 ‘ E [B(Tm)} jrgzangE [3(7;)}} (16)

This index is clearly F)-measurable and the option holder has the right to pin down his
exercise policy at 7; for whatever reason, by deciding at 7; to exercise at 7. In fact,
this is the same as selling the Bermudan at 7; as a European option with exercise date

T~i), thus receiving a cash amount of }N’(j)B(ﬁ), with

CT;(j)
B(T=)

YW .= max EFY [ Or ] — gFY <yl (17)

j<i<k B(T:)

The process Y in (17) is a lower estimation of the Snell envelope Y since the policy (16)

is suboptimal. For instance, because the optimal policy is not F()-measurable.



Exercise when cash flow equals maximum of still alive European options

It is clear that exercising a Bermudan at a time where the cash flow is below the maximum
price of the remaining underlying European options is never optimal. This suggests an
alternative exercise strategy defined by the following stopping time,

. C " C :
2(4) .— 3 > j I = " s
7). 1nf{ m > j ‘ B(Tm) mrg?%(kE B(Ti) ]}

yielding a lower approximation of the Snell envelope,

CT;(]')

yu) .— gF9
B(Tzt))

<YW, (18)

In fact, for the Bermudan swaption (see Section 6) the process Y (@) coincides with the
lower estimation of Andersen (1999) obtained by Andersen’s Strategy 2 with H = 0.

The exercise policy T is better than 7, due to the following proposition.

Proposition 5.1 For each j =0,...,k it holds,
YW <y <y,

Proof. We only need to show the first inequality, which we will proof by induction. When
j = k — 1, we clearly have the equality

Vk=1) _ P(k-1)

Suppose the inequality holds for some j. Then, it follows that

Pl-1) _ gFoy L]
B(T=i-1)
B 73?611) S ;(;-7;(:;) : 1?<J‘1>>731]
> max B [BCE%)] Rt
+E7 l)js?skEf(]) [%] e
> max 57 [ ]
+ max BT [BCE%)] >
— yu-D,

10



Remark 5.2 In the above derivation we have used a crucial property of 7, namely, it
holds 7U—1) £ Ti-1 = 70-1) = 70), Without proof we note that this property does not
hold for 7.

6 Application: Bermudan swaptions in the LIBOR market
model

We consider the Libor Market Model with respect to a tenor structure 0 < 77 < Ty <
... < T, in the spot Libor measure P*, induced by the numeraire

B . m(t)—1
B*(t) ;z%)o()t) HU (1 +6; Li(T3))

with m(t) := min{m : T}, > t} denoting the next reset date at time ¢. The dynamics of
the forward Libor L;(t), defined in the interval [0,7;] for 1 < i < n, is governed by the
following system of SDE’s (Jamshidian 1997),

7
8:LiL:~ - i
dL: = IR S oy LA - dWEL 19
i Z(t) 1+(5ij + Ly ( )
]:m

Here é; = T;41 — T; are day count fractions, and

t = 7i(t) = (i1 (t), -5 vialt))

are deterministic volatility vector functions defined in [0, T;], called factor loadings. In (19),
(W*(t) | 0 <t <T,_1) is a standard d-dimensional Wiener process under the measure P*
with d, 1 < d < n, being the number of driving factors.

For our experiments we take the following volatility structure:

7%i(t) = cg(Ti —t)ei, where g(s) = goo + (1 — goo + as)e

is a parametric volatility function proposed by Rebonato (1999), and e; are d-dimensional
unit vectors, decomposing some input correlation matrix of rank d. For generating Libor
models with different numbers of factors d, we take as a basis a correlation structure of

the form
pij =exp(—pli —jl);  4,i=1,...,n—1 (20)

which has full-rank for ¢ > 0, and then for a particular choice of d we deduce from p a
rank-d correlation matrix p? with decomposition p;-ij =e;-e;, 1 <1,j < n, by principal
component analysis. We note that instead of (20) it is possible to use more general and

economically more realistic correlation structures. For instance the parametric structures
of Schoenmakers & Coffey (2003).

11



We will take a flat 10% initial Libor curve over a 40 period quarterly tenor structure and
choose values of the parameters ¢, a, b, g, @, such that the involved correlation structure

and scalar volatilities can be regarded as typical for a Euro or GBP market. We thus take
n=41, §; =0.25, ¢=0.2, a =15, b=3.5, goo = 0.5, o = 0.0413.

For a “practically exact” numerical integration of the SDE (19), we used the log-Euler
scheme with At = /5 (e.g., see also Kurbanmuradov, Sabelfeld and Schoenmakers 2002).

Let us now briefly recall the definition of a (payer) swaption over a period [T;,Ty], 1 <i <
k. A swaption contract with maturity 7; and strike 6 with principal $1 gives the right to
contract at 7; for paying a fixed coupon 6 and receiving floating Libor at the settlement
dates T;11,...,In. So by this definition, its cashflow at maturity is

+

n—1

Sin(T:) := | Y Biy1(T3)é; (L;i(Ti) — )

j=i

In this section we consider Bermudan swaptions for which we assume for simplicity that
the exercise dates coincide with the Libor tenor structure. I.e. & = n and 7; = T;, for
1< <n.

A Bermudan swaption, issued at t = 0, gives the the right to exercise a cashflow

Cr, = Srn(T:)

)

at an exercise date Ty € {T1,...,T,} to be decided by the option holder (see also Sec-
tion 2). The value of the Bermudan swaption, issued at ¢ = 0, is given by (1).

We now investigate upper bound estimators (8), (9) and (12) for the Bermudan swaption,

for different approximative processes.

As a lower approximation of the Snell envelope process let us consider }711(1]2,( being the
maximal still alive swaption process. Hence we have (17), where the European option is

now a European swaption,

YU) = max Si’n(Tj)

= 21
max j<i<k B*(T]) ( )

) [ Sin (T
with Sz',n(Tj) = B*(Tj)E]:(]) |:S’7():| X

B*(T:)

We take a full-rank correlation structure (d = 40) and consider out-of-the-money swaptions
with strike @ = 12%. For Yiax we have computed ‘701‘;;1(,“,,1(,30000 and ‘701‘;;@,1(,30000 for
different K. For this choice of M (30000) the standard deviation of both estimators
turned out to be less than 1% relative for all K. The results are shown in Fig. 1.

S UPlow, K,30000 SupUP, K,30000
Vo and V

With growing K, the values tend to the same limit, namely,

the target upper bound V. For K > 100, the relative distance between T/}U"p"’w’K’mUOU and
VOUPMP’K’3OUOU turned out to be less that 1%, hence the relative standard deviation of both

estimators. So we conclude that, within a relative accuracy of 1% based on one standard

12



[ 14Plow100,30000 _ o Vup"P 100,30000

deviation, both estimators Vj give a good approximation

of the target upper bound V. Therefore, we treat their average V(l/Z) 100,30000° o V.
This value is plotted in Fig. 1 by a thin solid line.
p(1/2).K.30000 g e , 100, plotted in Fig. 1 as a dashed
(1/2) K.,30000

Let us consider the average Vj
line. Remarkably, we see that already for K > 5, V;
with the target upper bound. So, in this case study, for approximating the target upper

1/2),K,30000
bound within 1%, by V( /2);
Vouplm,,,K 30000 , o Vup"P K 30000

coincides within 1% relative

, it is sufficient to carry 5 inner simulations, while
need at least 100 inner simulations for the same accuracy.

P (1/2),10,60000 1 4 T/}UUPMP’NOJOUOU for different strikes and for different

number of factors d. With these respective choices of K and M, which are determined by

We next compute V)

experiment, both the values and the (absolute) standard deviations of both estimators are

close for different strikes and different number of factors. See Table 1, columns 5,6. But,

roughly speaking, simulation of the values in column 6, hence the estimator V(l/Z) 10 60000,

rup*P,100,30000

involves 2.5 times less computation time than the values for V in column 5.

HP’K’M

Now we are going to compare the estimator V;* with an “up-up” estimator con-

sidered by Andersen & Broadie (2001), here denoted by Voufl; HM The latter estimator
v (7)

is due to an approximative lower bound process, denoted by Y,’’, obtained via a partic-

ular exercise boundary which is constructed by strategy 1 of the Andersen method. The

()

process ?A has the following form,
. S o (T i) ; T,
YW —pr@ | Tan i 0 o inf{m > Smn(Tm) Hm}
BX(T,») B*(Trm)

The sequence of constants H,, is pre-computed by the method of Andersen using strat-
egy 1, see Andersen (1999).

The estimator Vouiug +100,10000° 5 computed for different strikes and number of factors, and

the results are given in Table 1, column 4. As we can see, the values of column 4 and
column 5 are rather close. In fact, except for the ATM strikes in the 1 and 2 factor

model, the differences do not exceed 1% relative. For a full factor model and a particular

. . uP,100,10000 SupUP,100,30000 .
OTM strike we then compare the estimators VO"Z B and V0 for different
numbers of inner simulations, K = 1,...,100, and draw the same conclusions as above.

See Fig. 2. Further in Table 1, column 3, we also give the lower Bermudan price estimations

B*(0)Y, Y% due to the stopping time 7-1(40).

Conclusion 6.1 (Table 1) We see that in the case of a 1-factor model the distance
between the lower and upper bound of the Bermudan swaption price is rather close for
OTM, ATM as well as for I'TM strikes. This observation is consistent with the results
reported in Andersen & Broadie. However, when the number of factors is larger than
1, this distance increases from ITM to OTM strikes. For OTM strikes and more than
2 factors this distance is even larger than 10%, relative to the value of the lower bound

price.

13



In Table 2 we list the required computation of one sample multiplied by its variance which

indicates, in a sense, the complexity of the respective computations.

Conclusion 6.2 (Table 2) We conclude that for more than 1 factor, and particularly for
many factors, ATM and OTM strikes, }ZSIQX gives rise to a more efficient “up-up” estimator
than the “up-up” estimator due to )7[(1” (the lower bound process of Andersen) with one
exception: I'TM and d = 2. However, for the 1-factor model the efficiency of the upper

. Sup?,100,10000 . : .
bound estimator V% 57 is more than 10 times higher.

Further, as expected, for all strikes and number of factors, the efficiency of 170(1/2)’10’60000

{up"”,100,30000 (
0

(column 5) is in turn 2 to 4 times higher, than the efficiency of column 4).

Remark 6.3 Without giving details we note that for this case study the estimator 170(14123)’10’]\/[

. . . SuptP 100.M
is also 2 to 4 times more efficient than V" .’ 00,0

Remark 6.4 Naturally, the numerical analysis based on the (discounted) maximum of
still alive swaption process in this section could also be done for the process (18) in
Section 5. This process is in fact consistent with strategy 2, H = 0 in Andersen (1999).
So, on the one hand, this process is dominated from above by a lower bound process due
to strategy 2 with an optimized H. On the other hand, however, as Andersen reports and
we found out also, strategy 2 with optimized H performs not substantially better than
strategy 1 with optimized H. Therefore, it is to expect that the dual upper bound due
to process (18) will be more or less comparable with the upper bound due to }71‘(10) in this
section, which in turn is comparable with the upper bound due to (17) for a more than one
factor model. Moreover, it is easily seen that the computation of the dual upper bound
by the process (18) will be more costy.
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Fig. 1. Different estimators for a target upper bound

the lower price process }ZSJQX.
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of the Bermudan swaption due to
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B*(0)Y{".
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Table 1. (all values to be multiplied by 10~4)

1 1116.2(1.6) 1121.4(0.1) 1128.8(0.3) 1125.6
0.08 | 2 1103.2(1.4) 1117.6(0.4) 1121.1(0.3) 1118.6
(ITM) | 10 1097.1(1.3) 1111.0(0.4) 1113.7(0.3) 1110.9
40 1093.2(1.3) 1106.9(0.4) 1110.1(0.3) 1107.9
1 403.3(1.2) 408.3(0.1) 416.5(0.5) 416.6(
010 | 2 372.6(1.1) 394.0(0.4) 397.3(0.5) 397.9
(ATM) | 10 347.4(1.0) 373.6(0.5) 375.8(0.4) 375.6
40 341.6(1.0) 367.5(0.5) 368.5(0.4) 369.3
1 133.5(0.7) 135.4(0.1) 136.3(0.4) 136.2
012 | 2 119.7(0.7) 127.4(0.3) 127.5(0.3) 127.6
(OTM) | 10 102.8(0.6) 113.6(0.3) 114.5(0.3) 113.5
40 98.8(0.5) 110.3(0.3) 109.6(0.3) 109.8

Table 2. Cost x Variance per Sample (all values to be multiplied by 10~7)

‘ strike ‘ d H i}up””,lOO,lOOOO (SD) ‘ %Lpup,loo,soooo (SD) ‘ %(1/2),10,60000 (SD) ‘

0,AB
1 10.1 148.8 60.8
0.08 | 2 106.9 167.7 65.0
(ITM) | 10 275.3 239.8 93.9
40 666.9 512.2 213.2
1 23.7 273.8 92.3
0.10 409.4 296.4 99.5
(ATM) | 10 1122.0 486.5 162.0
40 3103.4 1077.8 379.5
1 125 174.6 49.7
0.12 196.5 169.2 48.4
(OTM) | 10 667.9 263.2 74.1
40 2367.0 570.6 172.9




A Regular conditional probability
Let G be a sub o-algebra of F. Then a map
QX F3 (w,A) = Plw, A)
is called a regular conditional probability given G, if
(i) For fixed w € Q, P(w,-) is a probability measure on (2, F);
(ii) For fixed A € F, the random variable w — P(w, A) is G measurable;

(iii) For any F-measurable random variable Z it holds

159 7] (w) — /P(w,dw)Z(a) 0.

According to a fundamental theorem (see e.g. Tkeda and Watanabe (1981)) a regular
conditional probability given G C F exists and is unique, if the basic probability space
(Q,F, P) is a standard probability space. For the definition of a standard probability
space, see also Tkeda and Watanabe (1981). Without giving further details we just notice
that all probability spaces considered in this paper are standard.

B Proof of the convergence property (10)

Voupup’K CT J ~( ) J 1 K (q)
= Esup [ — ) YW1y —% &%
B(0) 1<j<k B(Tj) ; ; ;
- iy im*rZY<q>+Z—zw
Jmax =1 q=1 =1
]max Jmax
- POty - 55704 S S
Jmax ]max
+ E l[jmaxij;max ]max Z Y + Z Zé-
]max
T O((P(mas £ G P
B(0)
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for any integer p;, by Holder’s inequality and the fact that for any p; the p;-th moment
of both

Fmax Jenax
- S0 S S
T
and (22)
Cijax Jmax Jmax
By 2 LR (2
maxt =

exist and are uniformly bounded in K (we omit the proof). Then, since limg o0 P(jmax #
}max) = 0, the convergence for K — oo of VUUPUP’K — Vy® follows.

Similarly, we can show that

up
Vuplow K _ VO

0" = By T OUP G # Gunnx))" V™),

. K
for any integer g1, hence V'™ — V.
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