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Abstract

We introduce a new Monte Carlo method for constructing the exercise

boundary of an American option in a generalized Black-Scholes framework.

Based on a known exercise boundary, it is shown how to price and hedge the

American option by Monte Carlo simulation of suitable probabilistic represen-

tations in connection with the respective parabolic boundary value problem.

The methods presented are supported by numerical simulation experiments.

1 Introduction

We consider the general one-dimensional American style option in a generalized

Black-Scholes framework

dXt = Xt(a(t; Xt)dt+ �(t; Xt))dWt); X0 = x; (1)

dBt = r(t; Xt)Btdt; B0 = 1; 0 � t � T: (2)

In (1), (2), the process X is the price of a risky asset, B is the price of a lo-

cally riskless asset, and r, a, � are in general smooth and bounded functions from

[0;T]�R+ ! R. Due to the American style option contract the holder has the

right to exercise the option at any time t with 0 � t � T , yielding a payo� f(Xt);

where f is a continuous function from R+ to R+: For example, an American put

with strike price K > 0 is speci�ed by f(x) = (K � x)+:

If we set a = r in (1) we obtain the price process X in the risk neutral measure. We

recall that with respect to the risk neutral measure the discounted process eX(t) :=

e�
R t
0
r(s;Xs)dsX(t) is a martingale and the price u(t; Xt) of the option is given by

u(t; x) = sup
�2Tt;T

E[e�
R �
t
r(s;X

t;x
s )dsf(X t;x

� )] (3)

where Tt;T represents the set of stopping times � taking values in [t; T ]; and X t;x
s is

the solution of (1) with X t;x
t = x, see e.g. [2]. It is well known that if the function f

is bounded, non-increasing and convex, then u(t; x) in (3) can be seen as the solution

of a free boundary value problem where the free boundary 
 is given by an equation

x = g(t); such that

u(t; x) = f(x); for t = T or x � g(t);

Lu :=
@u

@t
+
1

2
�2x2

@2u

@x2
+ rx

@u

@x
� ru = 0 ; x > g(t): (4)
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See e.g. [2] for a detailed study of American options. The curve 
 is called the

exercise boundary or critical price curve in the sense that it is optimal to hold the

option if Xt > g(t) and to exercise when Xt � g(t): For known exercise curve 
;

the option price u(t; x) in the domain G := f(t; x) : 0 � t < T; x > g(t)g is the

solution of the Dirichlet boundary value problem

Lu : =
@u

@t
+
1

2
�2x2

@2u

@x2
+ rx

@u

@x
� ru = 0 ; (5)

uj�
 = f(x) ; (6)

where the boundary �
 consists of 
 for 0 � t < T and the ray f(T; x) j x > g(T )g:
A hedging strategy for the American option is a self-�nancing portfolio ('t;  t);

where 't and  t are the amounts an option writer should hold in riskless B and

risky asset S, respectively, in order to hedge the payo� of the option when the

option holder exercises. It is known [2], that a self-�nancing hedging strategy is

given by

't =
1

Bt

(u(t; Xt)�Xt

@u

@x
(t; Xt)) ; (7)

 t =
@u

@x
(t; Xt);

where

Vt = u(t; Xt) = 'tBt +  tXt

is the value of the replicating portfolio, i.e. at any time � the holder exercises, it is

guaranteed that V (�) � f(S� ) and the portfolio satis�es the self-�nancing condition

dVt = 'tdBt +  tdXt:

Moreover, the function v(t; x) :=
@u

@x
(t; x) satis�es the boundary value problem

@v

@t
+
1

2
�2x2

@2v

@x2
+ (�2x+ rx)

@v

@x
= 0 ; (8)

vj�
 = f 0(x) : (9)

In general, determination of the exercise boundary 
 is a challenging task and, in

particular, if 
 is known, both the option value and the hedging strategy can be

computed by Monte Carlo simulation of (5), (6), (8), (9).

For the standard American put where f(x) = (K�x)+ with respect to the standard

Black Scholes model, analytical approximations and asymptotic expressions for the

exercise boundary near maturity have been studied extensively in the literature. For

instance, see [1]. For the general case, however, the problem has to be solved by

numerical methods. As a new alternative, we construct in Section 4 for the general

one-dimensional American option a Monte Carlo method for the determination of

the critical exercise boundary 
:
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Since for construction of a hedging strategy one needs at any time t the individual

values u(t; Xt) and v(t; Xt) =
@u

@x
(t; Xt) at the known state Xt of the market, Monte

Carlo methods are quite appealing, particularly in more dimensions. Of course, the

computation time for attaining an accuracy � by a standard Monte Carlo method

which is typically of order O("�2) independent of the dimension might be higher than

the required time of some �nite di�erence method for dimension one. However, due

to ease of implementation, various possibilities of variance reduction (see Section

2), application of higher order integration schemes, and parallelizing opportunities,

even in one dimension Monte Carlo simulation turns out to be a valuable tool. In

Section 2, we give various probabilistic representations for solutions of boundary

value problems (5)-(6) and (8)-(9) connected to respective stochastic di�erential

equations (SDEs), provided that the critical price curve 
 is known. There we

also investigate some issues of variance reduction. In Section 3, we propose some

algorithms for Monte Carlo evaluation of u(t; x) and v(t; x) under known exercise

boundary. These algorithms are based on the results of [4], [5].

Usually, the exercise curve 
 is not explicitly known and so for implementation

of the methods presented in Section 2 and Section 3, one needs to construct 


�rst. For example, 
 may be obtained by a �nite di�erence method [2] which solves

u(t; x) by a parabolic system of di�erential inequalities. In a standard Black-Scholes

environment, 
 can also be constructed from the solution of a canonical optimal

stopping problem (3). So the critical price curve plays a key role in pricing and

hedging American options. In Section 4 we present a Monte Carlo construction of

the curve 
 without preliminary knowledge of the price u(t; x) in the whole domain

G: The critical price curve 
 is built step-by-step where at each step we principally

use the Snell envelope. The proposed procedure can be seen as an alternative to

direct solutions of the corresponding Stefan problem (for example, by �nite di�erence

methods). Besides the fact that a pure Monte Carlo construction of the exercise

boundary 
 is interesting from a theoretical point of view, this procedure is easy to

implement and requires only few storage capacity.

2 Probabilistic representations for price and hedge

of the American option under known exercise

boundary

The solution to the problem (5)-(6) has the following probabilistic representation

u(t; x) = E
h
e�

R �
t
r(s;X

t;x
s )dsf(X t;x

� )
i
; (t; x) 2 G; (10)

where X t;x
s is the solution of the SDE

dXs = Xs(r(s;Xs)ds+ �(s;Xs)dWs); Xt = x; s � t; (11)
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and

� = � t;x = T ^ inffs : (s;X t;x
s ) 2 
g (12)

is a stopping time which is de�ned as the �rst time the process of (s;Xs) reaches

the boundary �
 (see Fig. 1). We should note that a more rigorous notation for (11)

would be

dXs = Xs(rds+ �dWs) 1f�>sg;

but we use (11) as long as it does not lead to confusion.

As a probabilistic representation for the solution to problem (8)-(9) we have,

v(t; x) = E[f 0(X t;x
� )]; (t; x) 2 G; (13)

where X t;x
s satis�es the equation

dXs = Xs((r(s;Xs) + �2(s;Xs))ds+ �(s;Xs)dWs); Xt = x; s � t; (14)

and � as in (12).

In general, the solution to problem (5)-(6) has various probabilistic representations:

u(t; x) = E[f(X t;x
� )Y t;x;1

� + Zt;x;1;0
� ]; (15)

where X; Y; Z satisfy the system of SDEs

dXs = Xs(r(s;Xs)� �(s;Xs)�(s;Xs))ds+ �(s;Xs)XsdWs; Xt = x; (16)

dYs = �r(s;Xs)Ysds+ �(s;Xs)YsdWs; Yt = 1; (17)

dZs = F (s;Xs)YsdWs; Zt = 0; (18)

where �(�; �) and F (�; �) are rather arbitrary functions, however, with good analytical
properties and � = � t;x is the �rst time the process X in (16) hits the boundary �
.

Consider the random variable � := f(X t;x
� )Y t;x;1

� + Zt;x;1;0
� : While the mathematical

expectation E� does not depend on � and F; the variance Var � = E�2 � (E�)2

does. So, for a Monte Carlo estimation of (15) the variance may be reduced by

suitably choosing the functions � and F: In this respect two variance reduction

methods are well known: The method of importance sampling where one takes

F = 0 and seeks for a proper �; and, the method of control variates where one takes

� = 0 and seeks for a proper F: For both methods it is shown that, in principle,

the variance can be reduced to zero. A generalization of these methods is obtained

in [6]. We should note that, in fact, these variance reduction methods concern the

Cauchy problem for equations of parabolic type, although the method of importance

sampling is considered for boundary value problems as well in [3]. Here we carry

over the results of [6] for the boundary value problem (5)-(6). We introduce the

process

�s := u(s ^ �;X t;x
s^�)Y

t;x;1
s^� + Zt;x;1;0

s^� :

Clearly

�t = u(t; x); �� = f(X t;x
� )Y t;x;1

� + Zt;x;1;0
� = �T = �:
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Theorem 2.1 Let � and F be such that for any x 2 G there is a solution of the

system (16)-(18) on the interval [t; � ]: The variance Var � is equal to

Var � = E

Z T^�

t

Y 2
s (�Xs

@u

@x
(s;Xs) + u(s;Xs)�(s;Xs) + F (s;Xs))

2ds (19)

provided that the mathematical expectation in (19) exists. In particular, if � and F

are such that

�x
@u

@x
+ u�+ F = 0 ; (20)

then Var � = 0 and �s is deterministic and independent of s 2 [t; � ]:

Proof. By Itô's formula, we obtain

d�s = 1f�>sg[Lu(s;Xs)Ysds+
@u

@x
(s;Xs)XsYs�(s;Xs)dWs

+u(s;Xs)�(s;Xs)YsdWs + F (s;Xs)YsdWs]

= 1f�>sg[
@u

@x
(s;Xs)Xs�(s;Xs) + u(s;Xs)�(s;Xs) + F (s;Xs)]YsdWs;

where Lu = 0 is taken into account. We thus get

�(s) = u(t; x) +Z s

t

1f�>�g

�
@u

@x
(�;X�)X��(�;X�) + u(�;X�)�(�;X�) + F (�;X�)

�
Y�dW�:

Hence, (19) follows and the last assertion is obvious.

Remark 2.2 Clearly � and F from Theorem 2.1 cannot be constructed without

knowing u(s; x): Nevertheless, the theorem claims a general possibility of variance

reduction by properly choosing the functions � and F:

In the same way, we obtain via (13)-(14) the following representations for the solution

of problem (8)-(9):

v(t; x) = E[f 0(Xt;x(�))Yt;x;1(�) + Zt;x;1;0(�)]; (21)

where X; Y; Z satisfy the system of SDEs

dXs = Xs(r(s;Xs) + �2(s;Xs)� ~�(s;Xs)�(s;Xs))ds+ �(s;Xs)XsdWs; (22)

dYs = ~�(s;Xs)YsdWs; (23)

dZs = ~F (s;Xs)YsdWs; (24)

with the initial conditions

Xt = x; Yt = 1; Zt = 0: (25)
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Remark 2.3 It is interesting to see that for

~� = �+ �;

(22) coincides with (16) and, as a consequence, their solutions X as well as the

stopping times � for hitting the boundary �
 coincide as well. In particular, for

� = 0, ~� = �, ~F = 0 we obtain

u(t; x) = E exp

�Z �

0

�r(s;Xs)ds

�
f(X t;x

� )

v(t; x) = E exp

�Z �

0

��
2(s;Xs)

2
ds+ �(s;Xs)dWs

�
f 0(X t;x

� ); (26)

where X satis�es SDE (11) and � is de�ned by (12). Formulas (26) allow us to

evaluate u(t; x) and v(t; x) by Monte Carlo simulation using the same trajectories

for X:

Analogue to Theorem 2.1 we can proof

Var(f 0(X t;x
� )Y t;x;1

� + Zt;x;1;0
� ) = 0 (27)

if ~� and ~F are such that

�x
@v

@x
+ v~�+ ~F = 0: (28)

Let � and F be such that (20) is ful�lled. Di�erentiating (20) with respect to x

then yields

�x
@v

@x
+ (� + �)v + u

@�

@x
+
@F

@x
= 0 : (29)

Hence, by comparing (28) and (29) we see that for

~� = �+ �; ~F = u
@�

@x
+
@F

@x
; (30)

the variances of the Monte Carlo estimators of the probabilistic representations (15)

and (21) for evaluation of u and v respectively are both equal to zero. Moreover,

according to Remark 2.3, in both simulations the we can use the same trajectories

for X.

Remark 2.4 In particular, if one reduces the variance (19) by the method of con-

trol variates, i.e. by taking � = 0 and choosing F suitably, then for ~� = � and
~F = @F=@x we may expect for (27) reduced variance too.

Remark 2.5 In [2] it is shown that an American option is equivalent to a Euro-

pean option with a consumption process involved. As a consequence, there exists a

consumption function c(t; x) � 0 such that u(t; x) in (4) satis�es

@u

@t
+
1

2
�2(t; x)x2

@2u

@x2
+ r(t; x)x

@u

@x
� r(t; x)u+ c(t; x) = 0; u(T; x) = f(x) :

6



Due to (4) it follows that

c(t; x) =

�
0 if x � g(t);

�1
2
�2(t; x)x2f 00(x)� r(t; x)xf 0(x) + r(t; x)f(x) if x < g(t):

In particular, if f(x) = (K � x)+, we get

c(t; x) =

�
0 if x � g(t);

Kr(t; x) if x < g(t):

3 Numerical random walk algorithms under known

critical price curve

For a European option we have to solve the Cauchy problem for a partial di�erential

equation of parabolic type. In particular, in the European case we have � = T in

representations (10) and (15), and so we can use a Monte Carlo approach based on

usual numerical schemes for SDEs both in mean-square and weak sense (see, e.g.

[6]). For American options, however, we are faced with boundary value problems

and then a number of complications arise. For example, � � t in (10) may take

arbitrarily small values and therefore numerical integration of (11) with a �xed

step h is not appropriate. In particular, it is not possible to apply mean-square

Euler approximations. Nonetheless, application of simple weak approximations is

possible, when we take into account restrictions connected with the requirement

that X cannot leave the domain G:

3.1 Methods of orders 1 and 1=2

Let consider the explicit weak Euler scheme applied to (16)-(18):

X t;x

t+h � X := x + h(r(t; x)x� �(t; x)�(t; x)x) + h1=2�(t; x)x� ;

Y t;x;y

t+h � Y := y � hr(t; x)y + h1=2�(t; x)y� ;

Z
t;x;y;z

t+h � Z := z + h1=2F (t; x)y� ; (31)

� is a random variable taking values �1 with probability 1=2: P [� = �1] = P [� = 1]

= 1=2 and h > 0 is a time integration step being suÆciently small. We see that if

x is close to g(t) the variable X can be outside of �G and therefore a random walk

due to a scheme with �xed step h for all points of the t-layer Gt := fx : (t; x) 2 �Gg
is not quite suitable. As a better approach, which is essentially developed in [4],

it is possible to control the step of numerical integration h when (t; x) is close to

the boundary 
: In principle, we decrease the integration step such that the next

state of the chain (31) remains in the domain �G. The idea is basically as follows.

First we follow a random walk based on (31) until we reach a narrow layer near the

boundary @G of G where in particular the solution u may be approximated with

7



suÆcient accuracy by known boundary conditions. Then we proceed by suitably

replacing the state x reached at the last step by either a state at the boundary or a

state in the inside of G where the scheme (31) may be used again. Some methods

based on this idea have been obtained in [4]. In [5] one constructs a random walk

with respect to scheme (31) where a �xed time step h can be chosen for each t-layer.

However, if a point (tk; xk) of the random walk is close to the boundary 
; we replace

(tk; xk) in an appropriate way by a random point (tk; X
�

k) where X
�

k can take two

well speci�ed values with certain probabilities: either x�k = g(tk); i.e. the random

walk stops at the boundary, or a value x+k inside G where (31) applies again. Below

we explain this method more precisely.

Let us denote the two di�erent states ofX in (31) by x++ and x��; x�� < x++: Since

the coeÆcients in (31) are bounded by assumption there exists (for each particular

t-layer) a magnitude � > 0 such that x � g(t) + �h1=2 implies x�� � g(t + h): If

(t; x) is such that x�� � g(t + h); we perform a usual step according to (31). If

x�� < g(t+ h) (and consequently x < g(t)+�h1=2) we introduce a random variable

X� which takes two values x� = g(t) and x+ = x + �h1=2 with probabilities p and

q = 1� p; respectively, where

p =
�h1=2

x+ �h1=2 � g(t)
: (32)

We note that always p > 1=2; and if x = g(t); then p = 1:

The idea behind is that for any function V (x) with continuous second derivative we

have,

E[V (X�)] = pV (g(t)) + qV (x+ �h1=2) = V (x) +O(h) (33)

for p given by (32), q = 1 � p: Hence, E[V (X�)] is given by linear interpolation at

x of the function V between g(t) and x + �h1=2: Now we are ready to present the

complete algorithm.

Let (t0; x0) 2 G be a point at which the value u(t0; x0) is required. We introduce a

time discretization

t0 < t1 < ::: < tm = T; tk+1 � tk = hk; k = 0; :::; m� 1:

By the following algorithm we construct a Markov chain (tk; Xk; Yk; Zk) with (tk; Xk)

in the bounded domain �G, k = 0; 1; :::; �; up to a random time t� , � � m; where

the chain is stopped, for solving the boundary value problem (5)-(6).

Algorithm 3.1

Initialisation: Set (t0; X0; Y0; Z0) := (t0; x0; 1; 0);

If X0 = g(t0) then � := 0, i.e. t� := t0; and stop.

While (Xk > g(tk) and k < m) do:

8



Consider the values x++ and x��; x�� < x++

given by (31) for � = �1; with t = tk; x = Xk; and h = hk:

If x�� < g(tk+1) then:

Carry out the following step: With probability p, given by (32) with

t = tk; x = Xk; h = hk; and an appropriate choice of �k; we assign,

(tk; Xk; Yk; Zk) := (tk; g(tk); Yk; Zk); � := k:

With probability q = 1� p we set

(tk; Xk; Yk; Zk) := (tk; Xk + �kh
1=2

k ; Yk; Zk):

else: (hence if x�� � g(tk+1)):

Carry out (31) to obtain (tk+1; Xk+1; Yk+1; Zk+1).

Logically, Algorithm 3.1 will end up with either Xk = g(tk) and � = k; or k = m;

where in the latter case we set � = m:With respect to the above constructed Markov

chain we have the following theorem.

Theorem 3.2 It holds

jE(f(X�)Y� + Z�)� u(t0; x0)j � Ch ; (34)

where h = max1�k�m hk; and C does not depend on t0; x0; h:

We omit the proof (which can be done similar to [5]), but give some heuristic ar-

guments justifying (34). The one-step error for the points which are not too close

to @G (\usual" points) is O(h2) and because the number of all the steps does not

exceed O(1=h); the contribution of these steps to the global error is O(h): Further,

due to (33), the one-step error of the other points is O(h): Fortunately, it turns out

that the mean number of these large (O(h)) one-step errors is bounded by a constant

which is independent of h: As a consequence, their total error contribution is O(h)

also and as a result the global error is O(h); i.e. (34) holds.

Clearly, the result of Theorem 3.2 is also true for the function v solving the boundary

value problem (8)-(9). For instance, if we take in (22)-(24) ~� = �; ~F = 0; we get

jE[f 0(X�)Y�]� v(t0; x0)j � Ch ; (35)

where the process X and in particular � and X�; coincide with the solution of the

�rst SDE in (31) under � = 0. So in this example we can use the paths of X

obtained by Algorithm 3.1 for computing both u and v: However, the process Y in

(35) has to be computed by the scheme (see (23))

Yk+1 = Yk + h
1=2

k �(tk; Xk)Yk� k ; Y0 = 1: (36)

9



Remark 3.3 If we simplify Algorithm 3.1 by stopping the chain, � := k; hence

X� = Xk; as soon as x�� < g(tk+1); we obtain a more simple random walk. It can

be shown that the method based on simulation of the expectation in (34) by this

algorithm converges also, but, the order of convergence is then only O(h1=2) (see

[5]). However, if one takes advantage of the known fact that
@u(t; x�)

@x
= f 0(x�) at

the curve 
 we can obtain even with this simple random walk again a method of

order 1 by Monte Carlo simulation of

E((f(x�) + f 0(x�)(X� � x�))Y� + Z�);

due to the fact that

jE((f(x�) + f 0(x�)(X� � x�))Y� + Z�)� u(t0; x0)j � Ch:

3.2 Methods of order 3=2

For constructing a method of an order higher than one we use instead of the

Euler scheme a weak second order scheme and use the fact that the derivative

@u(t; x)=@x = f 0(x) is known on the critical price curve 
: It should be noted, how-

ever, that knowledge of this derivative is a special feature of American options which

does not apply for general boundary value problems.

Let us write the �rst equation of the system (16)-(18) in the form

dXt = Xt(~a(t; Xt)dt+ �(t; Xt))dWt): (37)

Application of weak second order scheme (see, for example, [3]) to (16)-(18) gives

the following one-step approximation for X t;x

t+h; which we denote by X again,

X t;x

t+h � X := x + x��h1=2

+x~ah+
1

2
(x�2 + x2�

@�

@x
)(�2 � 1)h

+
1

2
[x
@�

@t
+ x~a(� + x

@�

@x
) +

1

2
x2�2(2

@�

@x
+ x

@2�

@x2
) + x�(~a + x

@~a

@x
)]�h3=2

+[x
@~a

@t
+ x~a(~a + x

@~a

@x
+
1

2
x2�2(2

@~a

@x
+ x

@2~a

@x2
))]
h2

2
: (38)

In (38) the functions ~a and � and their derivatives are computed at (t; x) and

� is a three point random variable taking values �
p
3, 0,

p
3, with probabilities

P (� = 0) = 2=3, P (� = �
p
3) = 1=6: For the corresponding approximations Y and

Z of Y
t;x;y

t+h and Z
t;x;y;z

t+h , respectively, we have similar expressions. For instance, if

� = 0, we obtain for Y :

Y t;x;y

t+h � Y := y � ryh� 1

2
�xy

@r

@x
�h3=2

+
1

2
(�@r

@t
� ~ax

@r

@x
+ r2 � 1

2
�2x2

@2r

@x2
)yh2: (39)
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For constant a and � and � = F = 0 we obtain,

X t;x

t+h � X = x + x��h1=2 + xah +
1

2
x�2(�2 � 1)h+ xa��h3=2 +

1

2
xa2h2;

Y
t;x;y

t+h � Y = y � yrh+
1

2
yr2h2;

Z
t;x;y;z

t+h = Z = z:

Thus, we now have three values for X corresponding to three values of �; which we

denote by x++ > x00 > x��: Clearly, again there exists a � > 0 (� may depend on t)

such that if x � g(t)+ �h1=2, then x�� � g(t+ h). If x is such that x�� � g(t+ h),

we carry out a usual step according to (38). If x is such that x�� < g(t+ h) which

implies x < g(t)+�h1=2; i.e. x is close to g(t), we now consider a random variableX�

taking two values x� = g(t) and x+ = x + �h1=2 with probabilities p and q = 1� p

given by

p = 1� (x� x�)2

(x+ � x�)2
; q = 1� p =

(x� x�)2

(x+ � x�)2
; (40)

respectively. The idea behind (40) is based on expansion of u(t; �) at x� and utilizes

the fact that @u(t; x)=@x = f 0(x) on the exercise curve 
 as follows. For any p and

q with p+ q = 1 we may write

u(t; x) = pu(t; x) + qu(t; x)

= p[u(t; x�) +
@u

@x
(t; x�)(x� x�) +

1

2

@2u

@x2
(t; x�)(x� x�)2 + : : : ]

+q[u(t; x+) +
@u

@x
(t; x+)(x� x+) +

1

2

@2u

@x2
(t; x+)(x� x+)2 + : : : ]

= p[u(t; x�) +
@u

@x
(t; x�)(x� x�) +

1

2

@2u

@x2
(t; x�)(x� x�)2 + : : : ]

+q[u(t; x+) +
@u

@x
(t; x�)(x� x+) +

@2u

@x2
(t; x�)(x+ � x�)(x� x+)

+
1

2

@2u

@x2
(t; x�)(x� x+)2 + : : : ]

= pf(x�) + qu(t; x+) + pf 0(x�)(x� x�) + qf 0(x�)(x� x+)

+
@2u

@x2
(t; x�)[

1

2
p(x� x�)2 + q(x+ � x�)(x� x+) + q

1

2
(x� x+)2] + : : :

(41)

where the dots denote terms of order higher than one with respect to h. By next

choosing p and q according to (40) the second order terms in (41) vanish and we

then obtain

u(t; x) = pf(x�) + qu(t; x+) + pf 0(x�)(x� x�) + qf 0(x�)(x� x+) + : : :

= p[f(x�) + f 0(x�)(x� x�) + f 0(x�)(x� x+)
q

p
] + qu(t; x+) + : : :

= p[f(x�) + f 0(x�)(x� x�)� f 0(x�)�h1=2
q

p
] + qu(t; x+) +O(h3=2): (42)
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We are now ready to present a method of order 3=2 by the following algorithm. By

Algorithm 3.4 we construct a Markov chain (tk; X
0

k; Xk; Yk; Zk) with (tk; Xk) in the

bounded domain �G and X
0

k being an auxiliary dummy process, for k = 0; 1; :::; �;

up to a random time t� , � � m; where the chain is stopped:

Algorithm 3.4

Initialisation: Set (t0; X
0

0; X0; Y0; Z0) := (t0; x0; x0; 1; 0);

If X0 = g(t0) then � := 0, i.e. t� := t0; and stop.

While (Xk > g(tk) and k < m) do:

Consider the values x++; x00; x�� with x++ > x00 > x�� given by (38),

for � = 0;�
p
3; with t = tk; x = Xk; and h = hk:

If x�� < g(tk+1) then:

Carry out the following step: With probability p, given by (40) with

t = tk; x = Xk; h = hk and an appropriate choice of �k; we assign,

(tk; X
0

k; Xk; Yk; Zk) := (tk; X
0

k; g(tk); Yk; Zk); � := k:

With probability q = 1� p we set

(tk; X
0

k; Xk; Yk; Zk) := (tk; Xk + �kh
1=2

k ; Xk + �kh
1=2

k ; Yk; Zk):

else: (hence if x�� � g(tk+1))

Carry out (38) and set X 0

k+1 = Xk+1 to obtain

(tk+1; X
0

k+1; Xk+1; Yk+1; Zk+1).

Like Algorithm 3.1, the procedure 3.4 will end up with either Xk = g(tk) and � = k;

or k = m; where in the latter case we set � = m:

For the Markov chain constructed in Algorithm 3.4 we then have the following

theorem due to interpolation formula (42).

Theorem 3.5 It holds

jE( ef(X 0

k; X�)Y� + Z�)� u(t0; x0)j � Ch3=2 ; (43)

where h = max1�k�m hk; C does not depend on t0; x0; h and the function ef is de�ned

by

ef(X 0

�; X�) =

(
f(X�) + f 0(X�)(X

0

� �X�)� f 0(X�)��h
1=2

k

q�

p�
; if � < m;

f(X�) ; if � = m:
:

The proof is similar to the proof of Theorem 3.2

12



Remark 3.6 As we will see in Section 4, we also know the continuous extension of

the second derivative @2u(t; x)=@x2 inside of G to the boundary 
 :

@2u

@x2
(t; g(t)) := lim

(s;x)!(t;g(t))
(s;x)2G

@2u

@x2
(s; x) =

r(t; g(t))f(g(t))� r(t; g(t))g(t)f 0(g(t))
1
2
�2(t; g(t))g2(t)

We thus have

u(t; x) = f(x�) + f 0(x�)(x� x�) +
r(t; x�)f(x�)� r(t; x�)x�f 0(x�)

�2(t; x�)(x�)2
(x� x�)2 + :::

(44)

By using (44) we then get a method of order 3=2 via Monte Carlo simulation of

E( bf(X�)Y� + Z�);

with

bf(X�) := f(x�) + f 0(x�)(X� � x�) +
r(t; x�)f(x�)� r(t; x�)x�f 0(x�)

�2(t; x�)(x�)2
(X� � x�)2;

using a simpli�ed random walk obtained by stopping Algorithm 3.4 as in Remark 3.3

when the guard x�� < g(t) is true (of course the dummy X 0 can then be omited).

Remark 3.7 Let us consider the case hk = h; k = 0; :::; m � 1, and assume that

the global error R of Algorithm 3.1 admits a certain expansion in the time step h;

R = C0h+O(h�) (45)

for some � > 1: The conjecture is that at least � � 3=2; but, practical experiments

even suggest � = 2: Assuming that the conjecture � � 3=2 is true we can use a

kind of generalized Richardson extrapolation to obtain a method of order O(h3=2)

by applying two times the algorithm with di�erent time steps. Namely, let uh1 and

uh2 are approximations of u(t0; x0) computed with Algorithm 3.1. Then, we obtain

a more accurate approximation eu via

eu := uh1
h2

h2 � h1
� uh2

h1

h2 � h1
; eu = u(t0; x0) +O(h3=2) : (46)

For further details see [7].

4 Monte Carlo construction of the critical price

curve

In this section we propose a Monte Carlo method for determination of the exercise

curve 
: For this we assume that 
 is known on the interval [�t; T ] : x = g(t);
�t � t � T (see Fig. 1) and then proceed with evaluating g(�t� h) for a small step h

13



to the left. We �rst derive some useful relations on the curve 
 by assuming that all

derivatives of u within G extend continuously to the boundary at each point (t; g(t))

of 
 with t < T: It should be noted that, while the �rst derivatives from the inside

coincide with the derivative from the outside of G; the second derivatives do not

coincide in general. In what follows all derivatives of u on 
 have to be considered

as limits from the inside of G: By thus extending equations (5)-(6) and (8)-(9) to

boundary points (t; g(t)) of 
 with t < T; it follows that

@u

@t
(t; g(t)) +

1

2
�2(t; g(t))g2(t)

@2u

@x2
(t; g(t))+

+r(t; g(t))g(t)
@u

@x
(t; g(t))� r(t; g(t))u(t; g(t)) = 0 (47)

u(t; g(t)) = f(g(t)); (48)

@u

@x
(t; g(t)) = f 0(g(t)); 0 � t < T: (49)

Di�erentiating (48) with respect to t yields

@u

@t
(t; g(t)) +

@u

@x
(t; g(t))g0(t) = f 0(g(t))g0(t) ; (50)

so by taking (49) into account we obtain

@u

@t
(t; g(t)) = 0 : (51)

Then, combining (47)-(51) gives

@2u

@x2
(t; g(t)) = 2

r(t; g(t))f(g(t))� r(t; g(t))g(t)f 0(g(t))

�2(t; g(t))g2(t)
(52)

and di�erentiating (49) with respect to t gives

@2u

@t@x
(t; g(t)) +

@2u

@x2
(t; g(t))g0(t) = f 00(g(t))g0(t) ; (53)

whence { with notations shortened in an obvious way:

g0(t) =
u00tx(t; g(t))

f 00(g(t))� u00xx(t; g(t))
: (54)

It is important to note that due to (48) and (49) the price and its derivative with

respect to x ("delta") are continuous on 
: However, the second derivative u00xx
("gamma" in �nancial terms) has on 
 a jump of magnitude f 00(g(t))� u00xx(t; g(t):

For example, for the standard American put where r and � are constant and f(x) =

(K � x)+; this jump equals 2rK=(�g(t))2:
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Since D2(t) := u00xx(t; g(t)) is known from (52), we may determine g0(t) from (54) by

computing u00tx(t; g(t)) only. For this purpose we di�erentiate the left-hand side of

(5) with respect to x in the interior of G to get

u00tx +
1

2
�2x2u000xxx + (�2x+ rx +

1

2
x2(�2)0x)u

00

xx + xr0xu
0

x � r0xu = 0;

where the argument (t; x) is suppressed for convenience. Next, by taking the bound-

ary limit to 
 and using (48), (49) and (52) we obtain

u00tx+
1

2
�2g2(t)u000xxx+(�

2g(t)+rg(t)+
1

2
g2(t)(�2)0x)D2(t)+g(t)r

0

xf
0(g(t))�r0xf(g(t)) = 0

(55)

with partially suppressed argument (t; g(t)): Thus, to �nd g0(�t) by (54) we need

u00tx(�t; g(�t)) which in turn may be computed from u000xxx(�t; g(�t)) by (55).

Now let � and q be positive numbers to be speci�ed later. For �x := g(�t) we then

have

u(�t; �x + �hq) = u(�t; �x) + u0x(�t; �x)�h
q +

1

2
u00xx(�t; �x)�

2h2q +
1

6
u000xxx(�t; �x)�

3h3q +O(h4q)

= f(�x) + f 0(�x)�hq +
1

2
D2(�t)�

2h2q +
1

6
u000xxx(�t; �x)�

3h3q +O(h4q): (56)

We are now going to compute u(�t; �x + �hq) with accuracy of order O(h4q) by one

of the Monte Carlo methods discussed in Section 3, using the known part of the

exercise boundary 
; see Figure 1.

Figure 1: Backward construction of the exercise boundary
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Then u000xxx(�t; �x) can be obtained from (56) with accuracy O(hq): As a consequence,

see (55) and (54), u00tx(�t; �x) and g
0(�t) can then be found with accuracy O(hq) also.

Then, since g0(�t) can thus be approximated as eg0(�t) = g0(�t) +O(hq), we may extend

the exercise curve one step h to the left with accuracy by

g(�t� h) = g(�t)� eg0(�t)h +O(h2) +O(h1+q) : (57)

From (57) we see that it doesn't make sense to choose q > 1: For q � 1; the

evaluation of g(�t� h) by g(�t)� eg0(�t)h has accuracy O(h1+q):

Let us consider the case q = 1=4:We may use Algorithm (3.1) with time steps h for

simulating u(�t; �x + �h1=4) with accuracy O(h) = O(h4q): Note that this simulation

takes place in the time segment [�t; T ] where 
 is known. The one-step error of the

evaluation of g(�t�h) is thus equal to O(h5=4): Most likely, this method of backwards

evaluating the whole critical price curve converges and its order of convergence is

equal to O(h1=4):

By similar arguments it follows that by computing u(�t; �x + �h3=8) via an 3=2-order

algorithm with time steps h, for instance by Algorithm 3.4 (see Section 3.2), or more

simply by a Richardson like method (46) assuming that the conjecture in Remark 3.7

holds true, we can obtain an algorithm for evaluating the exercise boundary with

accuracy O(h3=8):

As another alternative, we may follow an approach which is based on u000xxx(�t; �x) =

v00xx(�t; �x), the computation of v00xx(�t; �x) from

v(�t; �x+ �hq) = v(�t; �x) + v0x(�t; �x)�h
q +

1

2
v00xx(�t; �x)�

2h2q +O(h3q) (58)

with accuracy O(hq); after the computation of v(�t; �x + �hq) from the boundary

value problem (8) (9) with accuracy O(h3q): For instance, by taking q = 1=3 and

using the order 1 algorithm (3.1) with time steps h we can compute v(�t; �x + �h1=3)

with accuracy O(h) to obtain u000xxx(�t; �x) = v00xx(�t; �x) by (58) with accuracy O(h1=3)

and, as a result, a method of order O(h1=3) for evaluating the exercise boundary.

Furthermore, by using a Richardson like method (46) in Remark 3.7, or a method

analogue to Section 3.2 based on the fact that v0x = u00xx is known at the exercise

boundary by (52), we may get order 3=2 Monte Carlo methods for the problem

(8)-(9) as well. Using such a method we may simulate v(�t; �x+ �h1=2) with accuracy

O(h3=2) by taking time steps h and so obtain via (58) and u000xxx(�t; �x) = v00xx(�t; �x); a

method with accuracy of at least O(h1=2).

Finally we note that further increase of accuracy requires more powerful schemes

for solving boundary value problems.

Remark 4.1 It should be noted that the here proposed method for constructing

the exercise boundary does not work at �t = T in general, for the reason that j
0(t)j
may go to in�nity as t " T: In this respect we note that the denominator in equation

(54) vanishes for t " T; and that for the standard American put it is well known

that all left derivatives of 
 go to in�nity as t " T:
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5 Numerical experiments

In this section we present an experimental study of the Monte Carlo procedure in

Section 4 for the computation of the exercise boundary of the standard American

put option. The results computed with our new Monte Carlo procedure will be

compared with benchmark solutions obtained by a standard PDE method.

For the standard American put in a Black Scholes model, r and � in (1)-(2), are

constant, and f(x) = max(K � x; 0) in (3), with K being the strike of the option.

For a particular choice of the parameters r; � and K; the "exact" exercise boundary


 is computed by the projected Successive Over Relaxation (SOR) algorithm, a

standard PDE method for solving American options, see e.g. [2], [8]. The result is

shown in Figure 2.

Figure 2: "Exact" exercise boundary computed by a PDE

method; K = 10; r = 0:1; � = 0:4:

Unfortunately, due to the fact that 
0(T�) = 1; i.e., 
 has a vertical tangent at

maturity T; the Monte Carlo method in presented in Section 4 needs to be started

up by some other method on a short interval, say [T � Æ; T ]: In this respect one

could apply on [T � Æ; T ] a PDE method again, or one could use an in some sense

"canonical" Monte Carlo method which is basically as follows: The interval [T�Æ; T ]
is provided with a small time grid and it is assumed that the option may be exercised

only at these grid points. Then, in the interval [T � Æ; T ] the exercise boundary is

constructed backwardly at the grid points by a bi-section Monte Carlo search.

Since the here considered problem is autonomous, only the time T � t to maturity

of the option is relevant, rather than speci�cation of the maturity date T itself.

Starting from the point (t; g(t)) = (T � 0:05; 8:5239), computed with high accuracy

by a PDE method, we construct the exercise boundary backwards to t = T�0:25 by
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two Monte Carlo methods described in Section 4. The results are given in Table 1.

T � t gPDE(t) gMC
1=4 (t) err :=

gMC
1=4

�gPDE

gPDE
gMC
1=3 (t) err :=

gMC
1=3

�gPDE

gPDE

0 10.0000

0.025 8.8439

0.05 8.5239

0.075 8.3102 8.2685 -0.0050 8.3122 0.00025

0.10 8.1470 8.1073 -0.0049 8.1292 -0.0022

0.125 8.0145 7.9784 -0.0045 7.9766 -0.0047

0.15 7.9027 7.8729 -0.0038 7.8724 -0.0038

0.175 7.8058 7.7780 -0.0036 7.8058 -0.0040

0.2 7.7202 7.6939 -0.0034 7.68340 -0.0047

0.225 7.6436 7.6198 -0.0031 7.6025 -0.0054

0.25 7.5745 7.5538 -0.0027 7.5265 -0.0063

Table 1.

Remarkably, for the example of the American put, the accuracy of both methods is

much better than one would expect from Section 4. Even more, the O(h1=4)-method

seems to be more accurate than the method of order O(h1=3): It is possible to give

an heuristic explanation for these phenomenon, which rely on the special structure

of the pay-o� function f and the fact that the parameters r and � are taken to be

constant. However, a detailed investigation concerning accuracy and convergence of

the proposed methods requires considerable further study.
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