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Abstract

Wafer made from single crystal Gallium Arsenide (GaAs) are used as sub-
strate materials in micro- and opto- electronic devices. During the various
processes of manufacturing, the wafer are subjected to mechanical loads which
may lead to fracture. The characterization of the fracture strength of the wafer
needs bending tests and a theoretical calculation of various stress distributions
within the wafer.

In this study we show that the nonlinear von Kármán theory may serve
as an appropriate tool to calculate the stress distributions as functions of the
external load, while the Kirchhoff theory has turned out to be completely
inappropriate. Our main focus is devoted to (i) calculation of the contact
area between the load sphere and the wafer, (ii) study of the influence of the
anisotropic character of the material, (iii) study of the important geometric
nonlinearity. Finally we compare the calculated and theoretical load-flexure
relations in order to demonstrate the high accuracy of the von Kármán theory
and its Finite Element implementation.

1 Introduction

1.1 Objective of this study

The lower fracture toughness KIC = 0.45 MPa m1/2 of GaAs [1] compared to 0.82 -
0.95 MPa m1/2 for silicon [2] makes this brittle material significantly more suscep-
tible to wafer breakage during handling procedures in device manufacturing and,
therefore, to one of the factors determining the yield of devices. Wafer breakage
is caused by the existence or nucleation of defects acting as crack nuclei and their
uncontrolled growth during loading. Due to the low fracture toughness of GaAs
already crack nuclei of submicroscopic size like surface or subsurface defects are of
relevance. The propensity to cracking may further increase due to structural defects
like localized dislocation clusters, As-precipitates or residual stresses.

Crack nuclei can be generated either during the automatic or manual handling pos-
sibly accomplished by a shock-like loading due to liners or chucks and leading to
defects like scratches or are already present in the wafers. Therefore, it is essential
to separate wafer breakage as a result of an unproper handling from that of wafer
quality.

This requires a wafer breakage test which gives reliable estimates of fracture strength
and, furthermore, can be applied as a basis to control relevant technological steps
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during crystal growth and wafer preparation such as annealing, sawing, grinding,
damage etching and polishing.

The disc bending is used based on the double-ring loading set-up according to DIN
EN 1288-5: 2000 [9] and modified in that [13] a small diameter ball (1/8 inches)
replaces the ring for centrally loading the wafer (see also [6]). As wafer bending
at fracture is much greater than wafer thickness linear approaches were expected
to be inappropriate to describe the load - displacement behaviour and to calculate
the maximum surface stresses at fracture. Therefore, FEM analysis of the test
arrangement were performed allowing for large displacements.

Figure 1: Principle drawing of the test after Hu [6].

We describe now in detail the fracture test of a thin circular wafer. Figure 1 shows
the principle drawing of the device. During the test, the wafer lies concentrically
on the double ring. The load f is applied by a steel ball. The objective of this
study is the calculation of the distribution of the resulting stresses, because these
are not measurable directly. The measurable quantities are the displacements and
the applied loads.

The calculation of displacements, strains and stresses rely on the following assump-
tions:

� The GaAs wafer is a cubic anisotropic material, whose [001] direction is parallel
to the load axis.

� The load supply by means of a steel ball induces a contact area on the wafer,
which is calculated according to Hertz theory for an isotropic ball on a cubic
anisotropic half space. The half space is oriented so that its normal coincides
with the [001] direction. Furthermore, the Hertz theory yields the pressure
distribution on the contact area.

� The hollow cylinder, which establishes the support ring, is assumed to be rigid.
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� The contact line between the wafer and the support ring remains circular with
radius RI . Along the contact line the wafer may freely rotate and can freely be
displaced in horizontal direction. The vertical displacement along the contact
line is assumed to be zero.

1.2 The mechanical model

In order to calculate stresses and displacements, we simplify the original 3D problem
by reducing the 3D model of elasticity to a 2D model which is appropriate fort thin
plates. The 2D model yields approximate solutions, that converge to the solutions
of the original 3D problem in the limiting case of an infinitely thin plate. A 2D
plate theory is superior to the 3D problem, because a precise calculation of the
deformation of a cylinder whose height is small with respect to its diameter requires
a tremendous numerical effort.

The 2D plate theory which is used here, is the von Kármán theory [7, 3], which is
valid for small and moderate deflections. The technical terms small and moderate
have the following meaning: We call a deflection small, if it is small with respect
to the plate thickness, while moderate deflections may be several times larger as
the thickness, but they are understood to be still small with respect to the plate
diameter. In this respect we call a deflection large, if it is comparable with the plate
diameter. The well known plate theory according to Kirchhoff is the linearized ver-
sion of the von Kármán theory. The Kirchhoff theory is appropriate if the deflection
is small. Within the Kirchhoff theory, membrane and bending effects are decoupled,
while they are strongly coupled in the von Kármán Theory.

We consider a plate, whose middle surface is a plane in its stress free state. If an
external load leads to a curved but not dilated middle surface, the deformation of
the plate is called pure bending. The layers above and below the middle surface are
compressed and elongated, respectively. Elastic materials resist to these deforma-
tions and respond with bending stresses. The resistance is called bending stiffness.
Continua without bending stiffness are called flabby. Pure membrane stresses appear
due to straining of the middle surface. The resistance of an elastic plate against such
strain is called membrane stiffness. If the membrane stress is much larger than the
maximal bending stress, we may neglect the bending stress. Theories that neglect
bending stresses right at the very beginning, are called membrane theories. They
are especially applied for large flexures. The von Kármán theory describes the de-
formation appropriately if both effects appear simultaneously, and this happens in
the test under consideration.

Finally we discuss the difference between Reissner-Mindlin plate theories [10, 8],
which are also often used, and the von Kármán theory. As it was already explained,
the von Kármán theory is the 2D limiting case of conventional 3D elasticity theory,
i.e. the 3D start is the conventional Hooke’s law. In contrast, the Reissner-Mindlin
plate theories do not rely on conventional elasticity theory, but their derivation starts
from a Cosserat model [4].
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Approximative solutions of the boundary value problem for the von Kármán theory
relies on its weak formulation. The corresponding variational principle results from
the introduction of virtual displacements, and we use the method of finite elements
for its exploitation. To this end we establish a 2D finite element triangulation of
the middle surface of the plate. The higher order triangle elements are based on an
ansatz with pure displacements.

1.3 Load range and material data

The calculations are made for a wafer with the diameter 2RA = 150 mm, and the
thicknesses is h = 0.675 mm. The applied load ranges from 0 to 600 N. The inner
diameter of the support ring is 2RI = 142 mm. The load is supplied by a steel ball,
whose diameter is 2RK = 1/8” = 3.175 mm. At 300 K the Voigt constants of the
wafer material are: c11 = (119.0 ± 0.1) GPa, c12 = (53.8 ± 0.1) GPa, c44 = (59.5 ±
0.1) GPa. Young modulus and Poisson number for the steel ball are given as ES =
210 GPa and νS = 0.3 .

2 A modicum of the theory of elasticity

2.1 Description of the deformation

We consider an elastic solid body which occupies the space Ω0 ⊂ R3 in the stress free
configuration. Here we identify the material particles of the body by its coordinates
X = (X1, X2, X3) with respect to a cartesian coordinate system. The deformed
body occupies the space Ω ⊂ R3, and a particle with coordinates X = (X1, X2, X3)
in the stress free configuration has now the cartesian coordinates x = (x1, x2, x3).
The function χ : ΩR → Ω, which maps the coordinates X to x , is called motion.
We write

xi = χi(X1, X2, X3) for i = 1, 2, 3 . (1)

The quality of central importance for the description of the change of placement is
the deformation gradient

Fij =
∂χi

∂Xj

with the property J = det(F) > 0. (2)

In the reference configuration we have Fij = δij, where δij denotes the components
of the unit matrix. A given deformation can be decomposed into a rigid body
rotation and a stretching. The stretching contains the strain. The strain is zero for
a pure rigid body motion. It is a known fact, that the strain exclusively gives rise to
stresses. A possible measure of the stretching is given by the combination FkiFkj.
In the following we only consider the case, that the strain is small, but the rigid
body rotation might be quite large. As the measure of strain we introduce the so
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called Green strain tensor, which is defined by

Gij = (FkiFkj − δij)/2 . (3)

The actual position of a material particle at the location X in the reference config-
uration is conveniently be described by the displacement vector ui, according to

ui(X1, X2, X3) = χi(X1, X2, X3)−Xi (4)

so that now the deformation gradient and the Green strain tensor, respectively read

Fij = δij +
∂ui

∂Xj

(5)

and

Gij =
1

2

(
∂ui

∂Xj

+
∂uj

∂Xi

+
∂uk

∂Xi

∂uk

∂Xj

)
. (6)

2.2 Stresses

There are three different measures of stress, viz.

tij – Cauchy stress

Tij = Jtir(F
−1)jr – Piola - Kirchhoff stress of the 1th kind,

σij = J(F−1)istsr(F
−1)jr – Piola - Kirchhoff stress of the 2nd kind.

The three stresses have different meanings: The Cauchy stresses, which are also
called true stresses, give the actual forces with respect to the actual area, while the
1th Piola-Kirchhoff stresses give the actual force with respect to the correspond-
ing area of the reference configuration. The 2nd Piola-Kirchhoff stresses live with
both indices in the reference configuration, i.e. also the forces are here transformed
to the reference configuration, so that material symmetries, if there are any, can
conveniently incorporated.

The mechanical equilibrium conditions form the basic equations for the calculation
of the deformation. They may be written alternatively either

∂tik
∂xk

= 0 in actual coordinates, or
∂Tik

∂Xk

= 0 in reference coordinates. (7)

Furthermore there is a third alternative, viz.
∂Fijσjk

∂Xk
= 0 and by means of (5)

∂

∂Xk

(
σik +

∂ui

∂Xj

σjk

)
= 0. (8)

The derivation of the plate theory according to von Kármán relies on the version
(8).
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2.3 The constitutive law of St-Venant – Kirchhoff

The constitutive law of St-Venant – Kirchhoff postulates a linear and homogeneous
relation between the 2nd Piola – Kirchhoff stress and the Green strain, and restricts
its applicability to small strains. However, note that rigid body rotations are still
allowed to be arbitrary large, see [11] for more details. The linearisation of the
St-Venant – Kirchhoff law with respect to the displacement gradient ∂ui

∂Xj
leads to

the well known Hooke law. Its applicability requires also small rigid body rotation.
The St-Venant – Kirchhoff law reads

σij = CijmnGmn, and Gij = Sijmnσmn with (9)

CijmnSmnkl = (δikδjl + δilδjk)/2, respectively. (10)

The newly introduced quantities Cijmn and Sijmn denote the stiffness tensor and the
compliance, respectively.

Single crystal GaAs has cubic symmetry in the reference configuration. If we in-
troduce now a coordinate system that coincides with the three crystal axes, there
holds

Cijmn = λ δijδmn + µ(δimδjn + δinδjm) + µ′ δijmn. (11)

The material constants λ and µ are called Lamé constants. The quantity δijmn is
defined by δ1111 = δ2222 = δ3333 = 1 and δijmn = 0 otherwise. The appearance of the
constant µ′ reflects the 90◦ symmetry of the cubic crystal, while we have µ′ = 0 in
the isotropic body. The constants λ, µ and µ′ may be related to the so called Voigt
constants, which are more frequently used, according to

µ = c44, λ = c12 and µ′ = c11 − c12 − 2c44. (12)

The inverse of the stiffness matrix, which is called compliance, has the representation

Sijmn = s12δijδmn + s44(δimδjn + δinδjm) + (s11 − s12 − s44/2)δijmn, (13)

and we calculate the relations

s12 =
c12

(2c12 + c11)(c11 − c12)
, s44 =

1

c44

and s11 = −s12

(
1 +

c11

c12

)
. (14)

2.4 The boundary conditions

We describe the plate with respect to a cartesian coordinate system, whose origin
lies in the center of the middle plane. The X1- and X2-axis are lying in the middle
plane and are parallel to the {100}-plane. The X3-axis is perpendicular to the
middle plane and points downwards. We have thus fixed that the 3-component of
the displacement, u3, measures the actual flexure of the plate, while the two other
components give its horizontal displacements.
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In order to formulate the boundary conditions some further notations are needed.
According to the described device from Figure 1, we denote the middle plane of
the cylinder Ω0 by ω0. Its boundary ∂ω0 is contained in the exterior cylinder Γ0 =
∂ω0 × [−h/2, h/2] with radius RA. The lower and upper surface of the cylinder are
denoted by ∂Ω0− = ω0 × {−h/2} and ∂Ω0+ = ω0 × {h/2}, respectively. The inner
edge of the support ring generates the line S0 ∈ ∂Ω0+

S0 = {(X1, X2, X3) | (χ1(X1, X2, h/2))2 + (χ2(X1, X2, h/2))2 = R2
I , X3 = h/2}.

(15)
It will turn out later on that S0 is approximately a circle with radius RI . Finally
we introduce the exterior normals and the tangent vectors n = (n1, n2, 0) and s =
(−n2, n1, 0), respectively, at the locations X∈ Γ0.

For the evaluation of the equilibrium conditions we prevent horizontal rigid body
motions within the middle plane of the plate by the locations

P0O, P0N , P0W ∈ ω0 × {0} ⊂ Γ0 with P0O = (RA, 0, 0), P0N = (0, RA, 0)

and P0W = (−RA, 0, 0). (16)

The boundary conditions read for i ∈ {1, 2, 3} and α ∈ {1, 2}

Tijnj = 0 on Γ0 except in P0O, P0N , P0W (17)

T3jnj = 0 in P0O, P0N , P0W , (18)

ujsj = 0 in P0O, P0N , P0W , (19)

T11 = 0 in P0O and P0W as well as T22 = 0 in P0N , (20)

Tα3 = 0 on ∂Ω0+, (21)

σα3 = 0 on ∂Ω0−, (22)

σ33 = −p(X1, X2) on ∂Ω0−, (23)

σ33 = 0 on ∂Ω0+ except on S0 and (24)

u3 = 0 on S0. (25)

Recall that we use the equilibrium conditions with respect to reference coordinates,
which implies that the stress boundary conditions must be formulated for the Piola
- Kirchhoff stresses of the 1th kind.

3 A modicum of the theory of plates

According to Figure 1 we consider cylindrical plates with thickness h and with radius
RA. Thin plates are characterized by the restriction h/(2RA) ¿ 1. The objective of
the elasticity theory of thin plates is the reduction of the original 3D plate problem
to a 2D plate problem. To this end the field of deformation as well as the constitutive
law and the equilibrium conditions must be properly reduced.
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3.1 The deformation of thin plates

The deformation field of the plate theory according to von Kármán relies on five
restrictions, which are: We take care explicitly for the restriction

(i)
h ¿ 2RA

to simplify the deformation field. Furthermore we consider exclusively deformations,
so that there holds

(ii)
|Gij| ¿ 1.

The horizontal components of the displacement is restricted to

(iii) |uα| ¿ h for α = 1, 2, (26)

while the flexure must satisfy

(iv) |u3| ¿ 2RI . (27)

Thus only small deformations and small rotations are allowed within the horizontal
plane. However, flexures and the corresponding rotations out of the middle plane
might be moderate large, i.e. flexures might be several times larger as the plate
thickness, but they are understood to be still small with respect to the plate dia-
meter.

Finally we need the assumption that we may set

(v) ∂ui

∂X3

+
∂u3

∂Xi

= 0 (28)

for thin plates. This assumption, however, is only needed in the following intuitive
derivation of the von Kármán theory, whereas the assumption (v) results in a rigor-
ous derivation by means of asymptotic expansions. The evaluation of (28) exhibits
the equivalence of (28) with the often used Bernoulli hypothesis, whereupon planes
which lie perpendicular to the middle plane in the undeformed configuration remain
perpendicular after deformation.

Next we will show that displacements satisfying the condition (28) can only depend
linearly on X3, and it is thus sufficient to determine the displacements of the middle
surface ui(X1, X2, 0) in order to calculate the total displacements ui(X1, X2, X3).
To this end we start with the evaluation of (28) for i = 3. We conclude from the
condition

u3(X1, X2, X3) = W (X1, X2). (29)
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The evaluation of (28) for i = α, viz. ∂uα

∂X3
+ ∂u3

∂Xα
= 0, yields by means of (29)

uα(X1, X2, X3) = Uα(X1, X2)−X3
∂W (X1, X2)

∂Xα

. (30)

The functions U1, U2 and W depend only on X1 and X2. We evaluate (29) and (30)
on the surface X3 = 0 , and obtain

uα(X1, X2, 0) = Uα(X1, X2) and u3(X1, X2, 0) = W (X1, X2). (31)

Consequently we may interpret the functions Uα and W as displacements of the
middle surface. Note that the function u3 does not depend on X3. From this follows
that W (X1, X2) additionally gives the displacements of each material point from the
line {X1}×{X2} × [−h/2, h/2] in the direction X3.

Regarding the αβ-components of the Green strain tensor, we obtain according to
(3) and by means (29) and (30) the representation

Gαβ =
1

2

(
∂Uα

∂Xβ

+
∂Uβ

∂Xα

− 2X3
∂2W

∂Xα∂Xβ

+
∂W

∂Xα

∂W

∂Xβ

)
. (32)

Remark : The linearisation of Gij and of the 1th Piola-Kirchhoff stress and the 2nd

Piola - Kirchhhoff stress leads to the linear theory of elasticity. The corresponding
plate theory is the Kirchhoff theory, that relies on the Kirchhoff-Love displacement
field according to (28).

3.2 The St-Venant – Kirchhoff law for thin plates

In order to derive a 2D constitutive law for thin plates, we start from corresponding
3D (9). In 〈100〉-Orientation the Gαβ components of the Green strain read

Gαβ = s12δαβ(σγγ + σ33) + 2s44σαβ + (s11 − s12 − s44/2)δαβσββ. (33)

Underlined indices indicate that the summation rule will not be applied.

The stress field of the plate theory according to von Kármán relies on two restric-
tions, which are:

(vi) |σ33| ¿ ‖σα3‖ and

(vii) |σα3| ¿ ‖σαβ‖ for α = 1, 2.

If we assume that σ33 may be ignored with respect to σγγ, the representation (33)
reduces to a pure 2D representation of the strain:

Gαβ = s12δαβσγγ + 2s44σαβ + (s11 − s12 − s44/2)δαβσββ. (34)
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The inverse of this equation reads

σαβ = λ
2µ + µ′

2µ + µ′ + λ
δαβGγγ + 2µGαβ + µ′δαβGββ. (35)

and gives the 2D St-Venant – Kirchhoff law of the plane stress.

The description of the displacement field of the plate, ui, by the displacements
Ua and W of the middle surface implies at first an overdetermined system of field
equations, because a part of its solution is taken from outside the model. Such a case
is not unusual and can be resolved as follows. According to the above we relate only
the components σαβ of the stress. Hereafter integrate the remaining components
σα3 and σ33 over the thickness of the plate, and add the resulting expressions to
the list of the unknown variables. After having solved the reduced boundary value
problem, we calculate the components σα3 and σ33 by means of the remaining fields
equations and the boundary conditions for the stresses.

3.3 Evaluation of the equilibrium conditions for thin plates

We now consider in detail the equilibrium conditions (7) and (8) to obtain also here
a reduction of the original 3D to a 2D problem. To this end we calculate at first the
leading order terms of the 1th Piola - Kirchhoff stresses and assume that σα3 and
σ33 can be ignored with respect to σαβ and σα3, respectively

T = σ +




0 0 0
0 0 0

∂W
∂X1

σ11 + ∂W
∂X2

σ12
∂W
∂X1

σ12 + ∂W
∂X2

σ22
∂W
∂X1

σ13 + ∂W
∂X2

σ23


 . (36)

Next we write the equilibrium conditions
∂Tij

∂Xj
= 0 as

∂Tαβ

∂Xβ
+ ∂Tα3

∂X3
= 0, and

∂T3β

∂Xβ
+

∂T33

∂X3
= 0, respectively, and we substitute the quantities Ti3 by their corresponding

counterparts from (36). We obtain finally

∂σαβ

∂Xβ

+
∂σα3

∂X3

= 0 and
∂σ3β

∂Xβ

+
∂

∂Xβ

(
∂W

∂Xα

σαβ

)
+

∂S33

∂X3

= 0. (37)

Now we introduce those suggestive quantities, which are of central importance within
the theory of plates:

Nαβ(X1, X2) :=

h/2∫

−h/2

σαβ(X1, X2, X3)dX3 — stress resultants, (38)

Mαβ(X1, X2) :=

h/2∫

−h/2

σαβ(X1, X2, X3)X3dX3 — stress couples, (39)

Qα(X1, X2) :=

h/2∫

−h/2

σα3(X1, X2, X3)dX3 — shear force. (40)
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Stress resultants and shear stress resultants a equipped with the physical dimension
force per line, while the stress couples have the dimension of a force. All these quan-
tities appear, when we integrate the equilibrium conditions (37) over the thickness
of the plate. At first we obtain from (37)1

h/2∫

−h/2

∂σαβ(X1, X2, X3)

∂Xβ

dX3 + σα3(X1, X2, h/2)− σα3(X1, X2,−h/2) = 0

and consider the boundary conditions (21) and (22) to obtain

∂Nαβ

∂Xβ

= 0 in ω0. (41)

The corresponding integration of (37)2 yields by means of the boundary conditions
(23) through (25)

∂

∂Xβ

(
Qβ +

∂W

∂Xα

Nαβ

)
= −p for all (X1, X2) ∈ ω0 and (X1, X2, h/2) /∈ S0.

(42)
Next we multiply (37)1 by X3, and integrate over the thickness to obtain by means
of the boundary conditions (21) and (22)

∂Mαβ

∂Xβ

= Qα in ω0. (43)

Now we substitute Qα in (42) by means of (43) and obtain

∂2Mαβ

∂Xα∂Xβ

+
∂2W

∂Xα∂Xβ

Nαβ = −p for all (X1, X2) ∈ ω0 and (X1, X2, h/2) /∈ S0.

(44)

Finally we relate the resultants to the displacements, so that the equations of the
system (41) and (44) become the von Kármán field equations for the unknown
displacements.

The relations between resultants and displacements result in two steps. We insert
the 2D St-Venant – Kirchhoff law (35) into the definitions (38) and (39). Hereafter
we take for the explicit dependence on explizite X3 according to representation (32).
and integrate again over the thickness. There follows

h/2∫

−h/2

Gαβ(X1, X2, X3)dX3 = h Gαβ(X1, X2, 0)

=
h

2

(
∂Uα(X1, X2)

∂Xβ

+
∂Uβ(X1, X2)

∂Xα

+
∂W (X1, X2)

∂Xα

∂W (X1, X2)

∂Xβ

)
(45)

11



and
h/2∫

−h/2

Gαβ(X1, X2, X3)X3dX3 = −h2

12

∂2W (X1, X2)

∂Xα∂Xβ

. (46)

With G0
αβ(X1, X2) := Gαβ(X1, X2, 0) we obtain the components of the stress resul-

tants

Nαβ = h

(
λ

2µ + µ′

2µ + µ′ + λ
G0

γγδαβ + 2µG0
αβ + µ′δαβG0

ββ

)
(47)

and the stress couples, respectively,

Mαβ = −h3

12

(
λ

2µ + µ′

2µ + µ′ + λ

∂2W

∂Xγ∂Xγ

δαβ + 2µ
∂2W

∂Xα∂Xβ

+ µ′δαβ
∂2W

∂Xβ∂Xβ

)
. (48)

The three equations (41) and (44), and the constitutive laws (47) and (48) will now
be supplemented by boundary conditions and the given pressure load p(X1, X2) in
order to obtain the field equations of the von Kármán plate theory for the un-
known displacements Uα(X1, X2) and W (X1, X2). In Section 3 we will use the Hertz
pressure theory in order to calculate p(X1, X2) for a given external force f. The
necessary 2D boundary conditions rely on the 3D boundary conditions respectively
(17) through (25). Their derivation is the subject of the next subsection.

3.4 The boundary conditions of the plate theory

The necessary boundary conditions must be given along the outer boundary line
∂ω0 ⊂ Γ0, and along the contact line S0 between the wafer and the support ring.

We obtain the 2D boundary conditions along boundary line ∂ω0 from the 3D bound-
ary conditions on Γ0, (17) through (25), by the requirement, that the 3D conditions
must only be satisfied in the mean. In other words they follow by integration of the
3D boundary conditions over the thickness of the plate.

Along ∂ω0 there are five resultants Nnn, N sn, Mnn, M sn and Qn, respectively,
where we have used the abbreviations Nnn = Nαβnαnβ, N sn = Nαβsαnβ,Mnn =
Mαβnαnβ,M sn = Mαβsαnβ, Qn = Qαnα,n = (n1, n2, 0) and s = (−n2, n1, 0) denote
the normal vector and the tangent vector, respectively, on ∂ω0.

The 2D versions of the 3D boundary conditions read

Nnn = 0 along ∂ω0, (49)

N sn = 0 along ∂ω0 except in P0O, P0N , P0W , (50)

Mnn = 0 along ∂ω0 and (51)

Uαsα = 0 in P0O, P0N , P0W . (52)

Herein P0O, P0N and P0W indicate the locations, where rigid body motions of the
plate are prevented, see (16).

12



Furthermore we require

Qn +
∂Mns

∂s
+ Nnn ∂W

∂n
+ Nns ∂W

∂s
= 0 along ∂ω0 with (53)

Nn
α

∂W

∂Xα

= Nn
1

∂W

∂X1

+ Nn
2

∂W

∂X2

= Nnn ∂W

∂n
+ Nns ∂W

∂s
,

where s gives the curve parameter along ∂ω0.

Remark: The three 2D boundary conditions (49) through (51) result directly by
integration of (17) and (20), while the condition (53) requires a different reasoning.
The three 2D boundary conditions (17) and (20) cannot be supplemented by the ad-
ditional prescription of M sn and Nn

α
∂W
∂Xα

along ∂ω0, because we were then confronted
with five conditions instead of only four boundary conditions that are needed. For
this reason both quantities must be adequately combined to a single one. This can-
not be done arbitrarily, and already Kirchhoff recognized this fact in the year 1850.
He showed within the framework of his linear plate theory that the prescription
of the quantity gives the necessary fourth boundary condition. This result follows
naturally from the weak formulation of the plate equations, which, however, are not
given in this paper, see [5] for details. If we follow the strategy, which was given
by Kirchhoff, we may also deduce the additional boundary condition (53) from the
weak formulation of the von Kármán plate theory, see again [5] for details.

The boundary condition (52) on S0, which is specified in (15), yields now the con-
dition

W = 0 on S00 with (54)

S00 = {(X1, X2)|(X1 + U1(X1, X2))
2 + (X2 + U2(X1, X2))

2 = R2
I} ⊂ ω0.

This is a free boundary condition, because the locations of the line S00 depend on
the Uα, which is part of the solution. Since there holds |Uα| ¿ h ¿ RI , the line
S00 may be approximated by a line S00V , that does not depend on Uα, so that we
obtain the explicit boundary

W = 0 on S00V with S00V = {(X1, X2)|X2
1 + X2

2 = R2
I} ⊂ ω0. (55)

Thus there is now a complete set of boundary conditions, so that the fields of
displacements are uniquely determined. The calculation of the stresses will be done
in a subsequent step, which is explained in the next subsection.

3.5 Stress calculation within the von Kármán plate theory

The now known displacement fields Uα and W yield the stress resultants and couples
Nαβ, Mαβ and Qαβ, and if these are sufficiently smooth, we may also calculate their
with respect to X1 and X2. The exploitation of the 2D constitutive law (35) yields
by means of (47) and (48) to the relation

σαβ(X1, X2, X3) =
1

h
Nαβ(X1, X2) +

12X3

h3
Mαβ(X1, X2). (56)
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and the remaining stresses follow by exploitation of the equilibrium condition (37)
and the boundary conditions for various stresses viz. (17), (18), and (20) through
(24). We obtain

1

h

∂Nαβ

∂Xβ

+
12X3

h3

∂Mαβ

∂Xβ

+
∂σα3

∂X3

= 0 and
∂

∂Xβ

(
σ3β +

∂W

∂Xα

σαβ

)
+

∂T33

∂X3

= 0. (57)

The left equation of (57) and the boundary conditions (21) and (22) yield

σα3(X1, X2, X3) =
6

h3

(
h2

4
−X2

3

)
∂Mαβ(X1, X2)

∂Xβ

, (58)

while the third equation of (57) gives the differential equation

6

h3

(
h2

4
−X2

3

)
∂2Mαβ

∂Xα∂Xβ

+
∂2W

∂Xα∂Xβ

(
1

h
Nαβ +

12X3

h3
Mαβ

)

+
12X3

h3

∂W

∂Xα

∂Mαβ

∂Xβ

+
∂T33

∂X3

= 0.

After its integration we obtain

T33(X1, X2, X3) = −∂2W (X1, X2)

∂Xα∂Xβ

X3

(
1

h
Nαβ(X1, X2) +

6X3

h3
Mαβ(X1, X2)

)

−X3
6

h3

(
h2

4
− 1

3
X2

3

)
∂2Mαβ(X1, X2)

∂Xα∂Xβ

− 6X2
3

h3

∂W (X1, X2)

∂Xα

∂Mαβ(X1, X2)

∂Xβ

+ C(X1, X2),

so that we finally obtain with σ33 = T33 − ∂W
∂Xα

σα3 the representation

σ33(X1, X2, X3) = −∂2W (X1, X2)

∂Xα∂Xβ

X3

(
1

h
Nαβ(X1, X2) +

6X3

h3
Mαβ(X1, X2)

)

−X3
6

h3

(
h2

4
− 1

3
X2

3

)
∂2Mαβ(X1, X2)

∂Xα∂Xβ

− 3

2h

∂W (X1, X2)

∂Xα

∂Mαβ(X1, X2)

∂Xβ

+ C(X1, X2).

Next we eliminate by means of (44) the stress resultants Nαβ and obtain

σ33(X1, X2, X3)

=

((
h2

4
−X2

3

)
Nαβ(X1, X2)− 3X3Mαβ(X1, X2)

)
2X3

h3

∂2W (X1, X2)

∂Xα∂Xβ

− ∂W (X1, X2)

∂Xα

3

2h

∂Mαβ(X1, X2)

∂Xβ

+
2X3

h3

(
3h2

4
−X2

3

)
p(X1, X2)

+ C(X1, X2).
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For the determination of the function C(X1, X2) we exploit the boundary condi-

tions (23) or (24), and obtain with C(X1, X2) = ∂W (X1,X2)
∂Xα

3
2h

∂Mαβ(X1,X2)

∂Xβ
− p(X1,X2)

2
+

∂2W (X1,X2)
∂Xα∂Xβ

3
2h

Mαβ(X1, X2) the 33-component of the stress according to

σ33(X1, X2, X3)

=

(
h2

4
−X2

3

)
2

h3

(
X3Nαβ(X1, X2) + 3Mαβ(X1, X2)

)∂2W (X1, X2)

∂Xα∂Xβ

+

(
2X3

h3

(
3h2

4
−X2

3

)
− 1

2

)
p(X1, X2)

on Ω0 except on S00V × [−h/2, h/2]. (59)

4 Calculation of the external pressure and the

contact surface between the load sphere and the

plate

According to the theory of Hertz, we now calculate the shape and the size of the
contact area K ⊂ Ω0− of the load-sphere / plate system and the pressure distribution
on K. To this end we assume that the contact problem for a sphere and an infinite
half-space is an approximate model. This problem was posed and solved already in
the year 1881 by Heinrich Hertz.

The result reads: An isotropic steel sphere, with radius RS, Young modulus ES and
Poisson ratio νS, in contact with an isotropic half space with elastic constants E
and ν induces due to an external force f a contact surface with radius

RK = 3
√

3/4 f RS k with k =
1− ν2

S

ES

+
1− ν2

E
. (60)

The pressure distribution on the contact surface is given by

pf (r) = pf
0

√
1− (r/RK)2 with pf

0 =
3f

2πR2
K

, r =
√

X2
1 + X2

2 , (61)

so that

∫∫

∂Ωf

pf (r(X1, X2))dX1dX2 = f and pf
0 =

1

I
3

√
48f

R2
K

with I = 2π k
2
3 , (62)

respectively.

This result was extended by Willis [14] to an isotropic sphere, which in contact with
a material of cubic symmetry. However, Willis only allows ellipses as the boundary
of the contact area, and concluded that the boundary of the contact area must be a
circle.
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Figure 2: The main frame of the crystal is rotated in the (100)-plane by the angel
ϕ. The thin lines represents the symmetry of the cubic material.

We proceed differently as follows: We start our calculation of the Hertz relations
from the equations (60) through (62) . However, we take into account for a material
with cubic symmetry, that the effective Young modulus and the effective Poisson
ration must be depend on a direction.

In the case at hand, only rotations with respect to the X3-axis must be considered,
and the rotation matrix thus reads

Q =




cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1


 (63)

The compliance tensor Sijmn (13), which is originally given with respect to a coor-
dinate frame that coincides with the crystal axes can by means of (63) calculated in
a frame whose X1- and X2- axis does not coincide with the crystal axes. We denote
the components of the compliance with respect to a frame whose X1- and X2- axis
are rotated against the crystal axes by the angle ϕ with Sijmn(ϕ), and we note the
relation

Sijkl(ϕ) = QimQjnQkpQlqSmnpq. (64)

which is used to identify the angle- dependent Young modulus and Poisson ratio
according to the representation:

1

E(ϕ)
= S1111(ϕ) = Q1mQ1nQ1pQ1qsmnpq = s11 − 2

(
s11 − s12 − s44

2

)
Q2

11Q
2
12

= s11 − 1

2

(
s11 − s12 − s44

2

)
sin2(2ϕ)

(65)
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and

ν(ϕ) = −E(ϕ) s1122(ϕ) = −E(ϕ) Q1mQ1nQ2pQ2qsmnpq

= −E(ϕ)

(
s12 +

1

2

(
s11 − s12 − s44

2

)
sin2(2ϕ)

)
.

(66)

In an analogous manner we obtain the angle dependent contact

RK(ϕ) = 3
√

3/4 f RS k(ϕ) with k(ϕ) =
1− ν2

S

ES

+
1− (ν(ϕ))2

E(ϕ)
. (67)

The Figure 3 shows the shape of the boundary of the contact surface for a given
force f = 100 N. Additionally, Figure 3 shows a circle, which gives the boundary of
the contact surface according to an iso-tropic mean according to the Reuss rule.

The anisotropic pressure distribution on the contact surface reads analogously to
(61)

p(r, ϕ) = p0

√
1− (r/RK(ϕ))2. (68)

Figure 3: Contact area of the sphere-wafer-system. Outer curve: cubic symmetry.
Inner circle: an isotropic mean according to the Reuss rule.

The calculation of p0 in (68) needs the exploitation of

∫∫

K

p(r(X1, X2), ϕ(X1, X2)) dX1 dX2 = f
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force radius in mm force radius in mm
in N 〈100〉 〈110〉 in N 〈100〉 〈110〉

50 0.09607 0.09076 300 0.17458 0.16492

100 0.12104 0.11435 350 0.18378 0.17362

150 0.13856 0.13090 400 0.19215 0.18152

200 0.15251 0.14407 450 0.19984 0.18879

250 0.16428 0.15520

Table 1: Contact radii as a function of the pressure force and the orientation of the
single crystal.

by means of the angle dependent contact radius according to (64). There results
analogously (62)

p0 =
1

I
3

√
48f

R2
K

mit I = 8

π/4∫

0

(k(ϕ))
2
3 dϕ. (69)

Figure 4: Pressure distribution on the contact surface.

We conclude from the figures 3 and 4 that there is only a weak anisotropy in GaAs.
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5 Some remarks on the weak formulation of the

von Kármán plate theory and its Finite-Ele-

ment approximation

In the following we deduce the weak formulation of the three equations (41)1,2 and
(44) for the displacements of the middle surface Ua and W, which form the basis for
Finite-Element formulations.

To this end we introduce sufficiently smooth test function Vi(X1, X2), i ∈ 1, 2, 3.
The boundary condition (52) fort he displacement implies that the components
Vα(X1, X2), α ∈ 1, 2 must vanish in the horizontal rigid body bond points (16)

Vαsα = 0 in P0O, P0N , P0W . (70)

Furthermore, according (55), the third component V3 must vanish along the trust
line:

V3 = 0 along S00V . (71)

Next we multiply the membrane equations (41) with Vα and hereafter we integrate
on the middle surface ω0 of the plate to obtain

∫∫

ω0

∂Nαβ

∂Xβ

Vα dX1dX2 = 0. (72)

After partial integration we obtain by means of the boundary conditions (49) and
(50) ∫∫

ω0

Nαβ
∂Vα

∂Xβ

dX1dX2 = 0. (73)

Analogously we multiply the equation (44) with V3 and integrate again on the middle
surface w of the plate. There results

∫∫

ω0

(
∂

∂Xα

(
Qα + Nαβ

∂W

∂Xβ

)
+ p

)
V3 dX1dX2 = 0. (74)

Partial integration of (74) and the equation (43) yield

∫∫

ω0

(
∂Mαβ

∂Xβ

+ Nαβ
∂W

∂Xβ

)
∂V3

∂Xα

dX1dX2

=

∫

∂ω0

(
Qα + Nαβ

∂W

∂Xβ

)
V3 nα ds +

∫∫

ω0

p V3 dX1dX2. (75)
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A further partial integration of the left hand side of (75) gives rise to the following
consequence of (75)

∫∫

ω0

(
Nαβ

∂W

∂Xβ

∂V3

∂Xα

−Mαβ
∂2V3

∂Xα∂Xβ

)
dX1dX2

=

∫

∂ω0

((
Qα + Nαβ

∂W

∂Xβ

)
V3 −Mαβ

∂V3

∂Xβ

)
nα ds +

∫

ω0

p V3 dX1dX2

=

∫

∂ω0

((
Qn + Nn

β

∂W

∂Xβ

)
V3 −Mns ∂V3

∂s
−Mnn ∂V3

∂n

)
ds +

∫

ω0

p V3 dX1dX2.

Now we recall that the moments and the resultants vanish according (51) and (53)
on the boundary ∂ω0, so that we finally obtain

∫∫

ω0

(
Nαβ

∂W

∂Xβ

∂V3

∂Xα

−Mαβ
∂2V3

∂Xα∂Xβ

)
dX1dX2 =

∫

ω0

p V3 dX1dX2. (76)

The equations (73) and (76) and the boundary conditions (52) and (55) yield a
coupled system for the functions Uα und W, which generate weak solutions of the
original boundary value problem for all admissible test functions Vi. Approximative
weak solutions follow from Finite-Element discretisations of this system , if we as-
sume that (73), (76) and (52), (55) must only hold for a finite subset of all admissible
test functions Vi. In other words: For N independent test functions we approximate
the displacements by ansatz-functions, which are fully characterized by N indepen-
dent parameter. The objective of the Finite-Element method is the determination
of these parameters. The details of the used ansatz- and test- functions and their
subsequent exploitation are found in the thesis [5].

6 Numerical Results

6.1 Test regarding the numerical accuracy of plate elements

At first we check the performance of the used finite elements code. To this end
we compare well known analytical solutions with their approximations. As a test
example we choose an isotropic circular plate, whose outer boundary is simply sup-
ported, and which can be described by the Kirchhoff plate theory. The following
figure shows the flexure that is induced by a concentric point load which corresponds
to the force f = 1 N. The curve represents the analytical solution, while the dots
result from the Finite-Element approximation. Both solutions coincide up to at least
four digits, which exhibits the high quality of the approximation.

The used Finite Element mesh is shown in Figure 6. We can seen, that we use in
contact area and in the vicinity of of the plate boundary a very fine mesh.
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Figure 5: Comparison of an analytical solution according to Kirchhoff (line) and
the corresponding Finite-Element solution (dots) for a cental point load.

Figure 6: Mesh of whole circle for the 2D plate problem with special marked area
for the post process analysis. Top: Upper half of the full mesh. Down: Mesh of the
contact area with a zoom factor of 350.
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6.2 Numerical results versus experiment

The only possibility to test the validity of the modelling assumptions and their nu-
merical implementation is a comparison of calculated and experimental load-flexure
curves, which give the dependence of the maximal displacement W on the applied
load f.

Figure 7: Comparison of maximal displacements, theory vs. experiment, for a wafer
with diameter 150 mm.

We compare in Figure 7 the experimental load-flexure relations with the results
according to the FE discretisation of the model that is described in Sections 3
and 4. The geometric data of the considered wafer are given in Section 1.3. The
experiments are carried out for two different load spheres made from steel and teflon
(PFTE), respectively. We observe the following facts: (i) The experimental data
do satisfactorily agree with the numerical data. (ii) The numerical wafer, however,
behaves somewhat more stiff as the experimental wafer, if we exclude experimental
errors. The maximal deviations between experimental and numerical data are 4%.
The calculated data can be read off from the Table 2. (iii) The experimental load-
flexure relations do not depend on the material of the load sphere.

The exploitation of the experimental data give also important hints regarding the
modelling assumptions. 1. The load-flexure relations exhibit an apparently non-
linear behaviour. This cannot be described within the framework of a linear plate
theory, which always predict a linear load-flexure dependence. Consequently, the
linear model is not applicable for the considered load range. 2. The boundary con-
ditions (22) that were formulated in Section 2.4 rely on the assumption that the
wafer may slip without friction on the support ring. This is not an obvious assump-
tion, rather it is motivated by the experimental data. The alternative assumption
were that the wafer does not slip on the support ring is excluded by the experimen-
tal data, because in this case the calculated displacements are by far too small in
comparison with the experimental displacements. The details can be read off from
Figure 8 which also contains the load-flexure dependence according to the (linear)
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Kirchhoff theory.

Figure 8: Comparison of maximal displacements for two different boundary condi-
tions: points: slip is allowed, squares: no slip. The linear dependence results from
the (linear) Kirchhoff theory.

6.3 Stress fields with anisotropic effects

In this section we consider a plate subjected to the load f = 100 N, and study the
dependence of the radial stress σrr, the tangential stress σϕϕ, and the torsion shear
stress σrϕ, on three rotation angels, viz. ϕ = 0◦, 22.5◦, 45◦, with respect to the 〈100〉-
crystal axes. The angle ϕ is defined according to the figure 2. The radial as well as

Figure 9: Radial stress / radius dependence at the lower plate surface X3 = h/2 for
three angels of orientation and the load f = 100 N.

the tangential stresses in figure 9 and figure 10 increase monotonously for decreasing
radius. Their anisotropic contributions are small in GaAs. Let us now consider the
radial stress in the vicinity of the center of the plate. We observe in figure 11 that
the radial stress has an inflection point within the interval 0.113 mm < r < 0.122
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Figure 10: Tangential stress / radius dependence at the lower plate surface X3 = h/2
for three angels of orientation and the load f = 100 N.

mm and assumes its maximum at r = 0. The values of the angle dependent contact
radius can be read of from the table 1 on page 18. The torsion- shear stress σrϕ

Figure 11: Radial stress / radius dependence at the lower plate surface X3 = h/2
for three angels of orientation and the load f = 100 N. Note the different scale with
respect to Figure 9.

results exclusively from the anisotropy of GaAs, because σrϕ vanishes identically for
an isotropic material. Note that σrϕ = 0 at ϕ = 0◦, i.e. along the 〈100〉-axes. The
maximal values of the torsion- shear stress reach at most 4 of the maximal values
of tangential and radial stresses, and this happens at the boundary of the contact
surface.

It is important to note that the stresses can not be measured, so that we can test the
appropriateness of the calculated displacements only by the load-flexure dependence.
However, if all the assumptions of Sections 3.1 and 3.2 for the passage from the 3D-
model to the 2D-model are met in the experiment, a correct calculate load-flexure
dependence might motivate that the stresses are also correctly calculated.

A careful study of the reported results reveal that the conditions on the displace-
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Figure 12: Torsion shear stress / radius dependence at the lower plate surface X3 =
h/2 for three angels of orientation and the load f = 100 N.

f w(0, 0, X3) σrr(0, 0,
h
2
) σrr(0, 0,−h

2
) σ33(0, 0,−h

2
)

in N in mm in MPa in MPa in MPa

50 1.670 383.3 -328.6 -2719
100 2.584 691.6 -580.5 -3426
150 2.668 972.5 -805.6 -3921
200 2.994 1237 -1014 -4316
250 3.269 1488 -1209 -4649
300 3.510 1729 -1395 -4940
350 3.725 1962 -1572 -5201
400 3.920 2188 -1742 -5438
450 4.100 2406 -1904 -5655

Table 2: Maximal stresses and maximal displacements as functions of the load f at
(X1, X2, X3) = (0, 0,±h/2). For all f there holds σ33(0, 0,

h
2
) = σr3(0, 0,±h

2
) = 0.

ments, viz. |uα| ¿ |u3| ¿ RI , are satisfied, while the conditions on the stresses,
viz. |σ33| ¿ |σ3α| ¿ ‖σαβ‖, are only satisfied in the range X2

1 + X2
2 > (5h)2. For

X2
1 + X2

2 < (ρh)2 both inequalities are only satisfied in the vicinity of the lower
plate surface X3 = h/2. The maximal contradiction to the inequalities arises at the
point (X1, X2, X3) = (0, 0,−h/2). In particular we have here σr3 = 0.The other
corresponding values of the stresses are given in Table 2.

We observe that the basic assumption of the plate theory are violated at (X1, X2, X3)
= (0, 0,−h/2). Thus the calculated stresses are not correct in the vicinity of that
point. Furthermore we observe that the violation of the stress conditions is larger
for smaller loads as for larger loads, because the contact surface increases super-
proportional with the load. However, the principle of Saint-Venant [12] guarantees,
that this has no influence to the calculated stresses outside of that region.

If we were interested in the correct stresses also in the vicinity of (X1, X2) = (0, 0)
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and X3 ∈ [−h/2, h/2], we have to calculate the stresses here by means of the 3D
theory. A detailed analysis of this subtle problem was carried out by F. Duderstadt
in his thesis [5]. It is shown that a linear 3D theory is sufficient to calculatet those
stresses that cannot be obtained from a 2D theory, so that the stresses are given by
analytic solutions. For example, for a load f =450 N, the maximal tensile stress at
(0, 0, X3 = h/2) is approximately 4% smaller as the stress that results at this point
from the 2D theory.
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Hertz’schen Pressung für die Spannungsanalyse zur Biegung von GaAs-Wafern
im modifizierten Doppelringtest, Ph.D. thesis, Technical University Berlin, 2003,
also published as WIAS-Report, no. 24, URL http://www.wias-berlin.de/

publications/reports/24/.

[6] S. M. Hu, Critical stress in silicon brittle fracture, and effect of ion implantation
and other surface treatments, J. Appl. Phys. 53 (1982), no. 5, 3576–3580.
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