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SYMBIOTIC BRANCHING

ABSTRACT. A process which we call symbiotic branching, is sug-
gested covering three well-known interacting models: mutually
catalytic branching, the stepping stone model, and the Anderson
model. Basic tools such as self-duality, particle system moment du-
ality, measure case moment duality, and moment equations are still
available in this generalized context. As an application, we show
that in the setting of the one-dimensional continuum the compact
interface property holds: starting from complementary Heaviside
states, the interface is finite at all times almost surely.
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2 ETHERIDGE AND FLEISCHMANN

1. INTRODUCTION AND MAIN RESULT

1.1. Background. Consider the following system of stochastic partial differential
equations

2
(1) 2 xba) = TAXE@) + \rXHa)XPa) W)

t>0, a€R k=1,2 starting from suitable X} > 0. (Note that by a slight
abuse of notation we always write the type k = 1,2 as an upper index, do not
misunderstand it as a power.) Here &,y > 0 are constants, called the dispersion
and collision rate, respectively. The one-dimensional Laplacian, A, acts on the real-
valued variable a. Finally, W = (Wl, W2) is a correlated pair of standard white
noises on Ry x R with correlation constant ¢ € [-1,1] :

(2) EWh(a")YW2(a?) = 0do(t* —t2)8o(a* —a?), t4,t2>0, a',a®€R,
that is,
(3) EW} (da")W2(da?) = o (t' At?) 8o(a' — a®) da'da?,

t1,t2 >0, a',a® € R, where &, denotes the delta function at 0. Hence, (1) can be
seen as a (vector-valued) stochastic partial differential equation with a “coloured
noise”. The three special cases ¢ = 0 and p = £1 already appear in the literature.

The first case, p = 0, is the mutually catalytic branching model in R of Daw-
son/Perkins [DP98| and Mytnik [Myt98]. Roughly speaking, here X[(a) is inter-
preted as the density of mass of type k at time ¢ at site a of a two-type population
X = (X1, X?), where X? evolves as “catalytic super-Brownian motion” with time-
space varying branching rate X} (a), with the analogous interpretation for X!. Of
course, the X* are not classical superprocesses: even though X' and X2 are
uncorrelated, the branching property is violated.

The case p = —1 with the additional requirement X3 + X2 =1 corresponds to
the continuous space stepping stone model

@ O xHa) = T AXHa) + \Jy XE(@) (1 - XE(a) Wi(a),

t > 0, a € R, of population genetics, see Shiga [Shi88, Shi94]. Indeed, here
W' = —W?, hence X'+ X? solves the heat equation, implying X! + X2 =1 in
law.

Finally, in the case ¢ =1 we have W' =W?2=: W. Consider the unique strong
solution X of the continuous space Anderson model

(5) %Xt(a) = %AXt(a) + 7 Xi(a) Wi(a), t>0, aeR;

see, for instance, Mueller [Mue91]. Then the pair (X, X) solves our system (1)
(with o =1).

In mutually catalytic branching (¢ = 0) each population only branches in the
presence of the other one, but conditional on branching taking place, the number
of offspring of each type is independent. In the stepping stone model (this needs
o = —1) too each population only branches in the presence of the other, but in that
setting an increase in one population must be exactly matched by a decrease in the
other in order to maintain a constant total population size. When p = 1, the two
populations increase or decrease together. The cases |g| < 1 can be regarded as
intermediate between these extremes: each population only branches in the presence
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of the other, but now the branching mechanisms are correlated, but not completely
s0.

To explain the particle model corresponding to X, we describe the branching
mechanism at a single point carrying n! type 1 particles and n? type 2 particles.
Critical binary branching events happen at rate 2yn'n2. Then with probability
(1—]e|)/2 only a type 1 particle branches, with probability (1—|g|)/2 only a type
2 particle branches, and with probability |g| one particle of each type branches.
In the last case, if p > 0, then the two populations increase or decrease together,
whereas if p < 0 an increase of one is matched by a decrease of the other.

The novelty of the present model concerns the case 0 < |g| < 1. Once more, in
contrast to the mutually catalytic branching model, here X' and X2 are corre-
lated, hence the fluctuation coefficient v X} (a)X2(a) in (1) gets smaller or larger in
the mean depending on whether p is negative or positive, respectively, (see formula
(81) below).

For reasonable initial states Xy > 0 and p < 1, the system has a unique
(weak) solution X = (X!, X?2) > 0, which we call the symbiotic' branching process
in R with correlation constant ¢ (and dispersion rate x and collision rate v),
see Theorem 3 below. Existence of X with finite moments of all orders can be
established by standard methods, as, for instance, in [FX01, Sections 3.1 and 3.2].
Under |p| < 1, uniqueness in law and the strong Markov property follow from a
self-duality, see Proposition 4 below, we skip any further details. If p = —1, then
X' + X? solves the heat equation, which gives a nice control of all moments of
X under deterministic initial states Xq; thus, uniqueness (in law) of X follows
from a particle system moment duality, see Proposition 11 below. If o = 1, then
with symbiotic branching X we mean any solution to (1) (that is, without having
established uniqueness).

1.2. Compact interface property. For a pair x = (z!,z2) of non-negative func-
tions, the interface Ifcx of x is defined by

(6) Ifcx = cl{a € R: z'(a)z%(a) > 0}

(with clA referring to the closure of a set A). To keep the setting relatively simple,
we now restrict our attention to the “Heaviside initial state”

(7) Xo = (Ir_,1r,)

with interface Ifcx = {0}. Our process X is said to have the compact interface
property, if Ifc X; is compact for all £ > 0, a.s.

In the case of the stepping stone model (4), the compact interface property holds,
see Tribe [Tri95, Corollary 3.3] (although there only continuous initial states are
considered).

The main result of our paper is that the compact interface property is true in
all p—cases. Actually, we show that the interface propagates at most with a linear
speed, see Theorem 5 below.

Remark 1 (Case ¢ = 1). At first sight, this theorem, specialized to ¢ = 1, seems
to contradict the well-known result that the continuous space Anderson model
X from (5) propagates instantaneously (see [Mue91]). The latter means, if Xj

1) Ed Perkins told us that Joe Mc Kenna (Cornel University) suggested that it would be better
to use the term “symbiotic” instead of “mutually catalytic”. Since we want to have a name for our
larger class of models covering the mutually catalytic case, we abuse this suggestion in this way.
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is a compactly supported non-negative continuous function different from 0, then
Xi(a) > 0 for all £ > 0 and a € R, a.s. But recall that the continuous space
Anderson model (5) leads to a solution of our system only in the case X! = X2
implying X! = X2, which contradicts the Heaviside initial state assumption (7) in
our theorem. In our model, X!, say, undergoes critical continuous-state branching
with branching rate X2. True, the Anderson model X can also be seen as having
the feature of critical continuous-state branching, but only if this branching hap-
pens with rate X. In our model instead it might happen that X}(a) << X?2(a),
say, implying that X} (a) is killed with very high probability, reducing the speed
of propagation drastically. Altogether, concerning p = 1 we have two different
models, our X with Heaviside initial state Xg, respectively (X, X) based on (5),
each model with its own propagation property. <

As in [Tri95, Corollary 3.3], the theorem is proved by deriving a probability
estimate on the supremum over a finite time interval of the position R(X}) of
the “rightmost individual” in the X'-population at time t. For the stepping stone
model, Tribe shows moreover, that ¢ — R(X}) is cadlag and that, under diffusive
rescaling, it converges to Brownian motion. In addition, in Mueller and Tribe
[MT97] a limiting interface is shown to exist. But the corresponding questions
remain open in our more general symbiotic branching model. Note however, that
in the special case p = 0 of the mutually catalytic branching model the behaviour
of the two populations at the interface is highly irregular; recall the hot spots seen
in simulations, or the explosions of densities everywhere at the interface in the
R?-model of Dawson et al. [DEFT02a, DEFT02b, DFM*02|. In addition, more
precise moment calculations than those included in the present paper indicate the
possibility that as p varies there is a phase transition in the rate of growth of
t — R(X}) as t 1t co. (Our estimate is uniform in g, so it is “dictated” by the
speed corresponding to g = 1.)

1.3. Outline. The rest of the paper is laid out as follows. In Section 2, after
introducing some notation, we reformulate equation (1) as a martingale problem
and state in Theorem 3 the unique existence of the symbiotic branching model under
o < 1. Here uniqueness in the cases |g| < 1 is based on self-duality (Proposition 4),
and uniqueness under ¢ = —1 follows from the particle system moment duality
(Proposition 11), whereas uniqueness for ¢ = 1 remains open. Our main result, the
compact interface property is established in Theorem 5. We conclude Section 2 with
a scaling property. The Z%version of the symbiotic model is introduced in Section
3, together with two versions of a moment dual. The discrete version is needed
to pass via a diffusion approximation in Section 4 to the corresponding moment
duals in the R-setting. The particle system moment dual is used in Subsection 4.2
to derive our basic higher moment estimate. Moment equations are contained in
Subsection 4.4. After some preparations, in Section 5 Theorem 5 concerning the
compact interface property is proved. The key is an estimation of the fluctuation
term (Lemma 22). This is used in the proof of Proposition 23 to derive a probability
estimate on the supremum over a finite time interval of the position of the rightmost
individual in the X'-population.

For background on superprocesses, we refer to Dawson [Daw93], [Eth00], [LG99],
and [Per02], for instance, for background on stochastic partial differential equations
to Walsh [Wal86], and for a recent survey on mutually catalytic branching to [DF02].
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2. SYMBIOTIC BRANCHING IN R

2.1. Preliminaries: notation and spaces. For )\ € R, introduce the reference
function

(8) pa(a) = e, a€ R
For f:R? = R, put
(9) [fx = [If/éalloo

where || - ||oo is the supremum norm. Denote by Bj the space of all measurable
functions f: R? — R with |f|x < co and such that f(a)/¢x(a) has a finite limit
as |a| = oo. Introduce the spaces

(10)  Brap = Beap(R?) := (] Bx and Biem = Biem(R?) := ] B_x
A>0 A>0

of exponentially decreasing and tempered measurable functions on R?, respectively.
(Roughly speaking, the functions in B;,, decay faster than exponentially, whereas
the ones in Biem, are allowed to have a subexponential growth.) Write Cy, Crap,
Ciem for the respective subspaces of continuous functions. We also need the space
Ceom = Ceom(R?) of all continuous functions on R? with compact (closed) support.

Write €™ = c(™(RY), ¢ = cW®Y), ¢ = (R, and ) =
cﬁ;”,,),(Rd) if we additionally require that all partial derivatives up to the order
m > 1 exist and belong to Cx, Crap, Ctem, and Ccom, respectively.

For T > 0 and ) € R, denote by C% f) the set of all real-valued functions %
defined on [0,T] x R such that ¢ — v, ¢t +— at"/’t’ and t — At are continuous

Cy—valued functions. Set C:(I}ri)p = ﬂ/\>0 C:(,,l,’f) Cg}tizn = ﬂ,\>0 C%f))‘
For each A € R, the linear space C) equipped with the norm |-|, from (9) is
a separable Banach space. On the other hand, the space C.,, topologized by the

metric
(11) drap(f,9) 22 "(If=gl-n A1), f,9€Crap,

is a Polish space. Cier, becomes a Polish space if we use the metric
(12) dtem fa 22 " |f g| 1/11,/\1) fagectema

instead. (For Ceom we will not need a topology.)
Let M = M(R?) denote the set of all (non-negative) Radon measures p on
4 and let dy be a complete metric on M which induces the vague topology. We
identify p with its density (if exists). We use the notation (u, f) for the integral
of the function f with respect to the measure p. We need the space My, =
Miem(R?) of all measures p in M such that (u,¢)) < oo, for all A > 0. We
topologize this set Myien of tempered measures by the metric

(13) Mdtem(.u‘:l’) = dO(,u'a V) + szn (|:u'_ V|1/n A 1)7 K,V E Mtem-

n=1

Here |p —v|x is an abbreviation for |(,u, o) — (v, ¢>‘)| Note that (Mtem ) Mdtem)
is a Polish space.
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Write € := C((0,00), (Cit.,)?) for the set of all continuous paths ¢ — f; in
(Citw)?, where ((Cit)2,¢d2, ) is defined as the Cartesian product of (Cif, , dtem)-

tem tem

When endowed with the metric

1/n<t<n

(14) d@:(faf) = ZQ_H( sup Cdfem(fthft) A 1)7 f af- € Q,
n=1

¢ is a Polish space. Let P denote the set of all probability measures on €. Equipped
with the Prohorov metric dg, 9B is a Polish space, too ([EK86, Theorem 3.1.7]).

Analogously, C((0,c0), (C;’;p)z) is defined and handled.

Random objects are always thought of as being defined over a large enough
stochastic basis (Q,F,F.,P) satisfying the usual hypotheses. If Y = {Y; : ¢ > 0}
is a random process, then as a rule the law of Y is denoted by PY. We use FY
to denote the completion of the o-field (., o {Y;: s <t+e}, t > 0. Sometimes
we write £(Y) and L(Y|-) for the law and conditional law of Y, respectively.

For a constant k£ > 0 let p = p* denote the heat kernel in R? related to "2—2A :

2
(15) pi(a) = pf(a) = (2nk2t)~9/2 exp[ - %], t>0, acR.
Write ¢ for the related Brownian motion in R¢, and S = {S;: t > 0} for its
semigroup.

We denote by ¢ = ¢(q) a positive constant which (in the present case) may
depend on the quantity ¢ and whose value might change from place to place.
Moreover, an index on ¢ as c¢(4) or ¢z will indicate that this constant first occurred
in formula line (#) or (for instance) Lemma #, respectively.

2.2. Basic martingale problem. It is convenient to reformulate the pair (1) of
stochastic equations on R in terms of the following martingale problem. We fiz the
constants &,y > 0 for the remainder of this article. Let d;; denote the Kronecker
symbol. We use the abbreviation

(16) cri(0) = [6ka+ (1 —6k1)el, kl=1,2,

(where p is our correlation constant).

Definition 2 (Martingale problem MP2). Fix ¢ € [-1,1] and x € (B,,)?
[resp. (B,)?]. We say a stochastic process X = {X; : ¢t > 0} with law P, on the

rap
(restricted) path space C((0,00),(C,)?) [resp. C((0,00),(Ch,)?) ] is a solution
to the martingale problem MP2 | if for each test function ¢ € Cgr), [resp. Ct(ezr)n],

(17) ME(p) = (XF,0) — (a*,0) — /0 'as (x%, %zAso},

t > 0, k = 1,2, are continuous square-integrable martingales M*(yp), k = 1,2,
with Mg(p) = 0, and with bracket

t
(19) (MH0), M), = verale) [ ds (X1X2,62),
0
£>0, kl=1,2 o
Of course, B, C By, but for x € (B},)? as a rule, by MP2 we mean the

martingale problem with the law Py on the smaller space C((0,00), (Cqh;)?).

rap
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Theorem 3 (Unique existence of symbiotic branching X in R). Let ¢ and
x be as in Definition 2. If p < 1, then there exists a unique (in law), hence strong
Markov solution X to the martingale problem MP2 .

Clearly, the unique existence of a weak solution to the stochastic equation (1)
(on an enlarged probability space) then follows from the standard martingale rep-
resentation theorem ([Wal86]).

Recall that existence of X can be established by standard methods, as, for
instance, in [FXO01, Sections 3.1 and 3.2], and that in case |p| < 1 uniqueness in
law and the strong Markov property follow from self-duality.

2.3. Self-duality. Here we establish the self-duality relation which guarantees
uniqueness in the martingale problem in the case |gp| < 1. We believe that un-
der p > —1 the moments of X grow too quickly for the moment problem to be
well-posed and hence do not characterize the law of X.

We start by introducing the self-duality function €. Fix g € [-1,1]. For (x,%) €
(Bt )% x (Bt )?, set

tem rap

(19)  €x,%) = €((,9),(2:2) = exp[—v/T=o(u,0) +iv/1+0(2.2)],
where i :=+/—1 and

(20) y:=z' +2%, z:=z'—2?

and 7,z are analogously defined.

Proposition 4 (Self-duality). Fiz o € (—1,1). Let (x,%) € (Bif_)? x (B;';p)z. If

(X, Px) and (X,P,‘&) solve the martingale problems MPZ and MP$ , respectively,
of Definition 2, then we have the self-duality relation

(21) E.¢(X,,%) = Ex¢(x,X;), t>0.

Of course, in the case p = 0, we recover Mytnik’s [Myt98| self-duality of the
mutually catalytic branching model in R. Note that we excluded |p| = 1 since
here one term in the exponent of (19) vanishes leading to a triviality.

Proof of Proposition 4. We apply the notation of (20) in an obvious way to introduce

processes Y, Z,Y, Z. For p, Y € Cgl), we have from the martingale problem MP2
that

2
Yz, p) = <Yt, H—Acp> dt + d(martingale),
(22) 2
d(Z;,¢) = <Zt, %Ad)> dt + d(martingale),
and that

(Y 0)), = 27 (1+ o) (X; X7,9%) dt,
(23) d{(Z, ), = 2v(1 - o) (X} X7, 97) dt,
d{(¥,9),(Z,9)), = 0.
Note also that the trivial identity

1
(24 XixP = L (2 - 7D)
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holds (with 2 in X2 referring to the type, whereas 2 in Y;2 and Z? referring to
a square). Next we replace ¢ and % formally by § and Z, respectively, although

7 and Z do not meet the required smoothness. Thus, formally we get from Ito’s
formula,

(25) de(X,,%) = dexp[ V1 g(Y},~>+i\/1+g<Zt,2>]
= €(X;,x { Qd Y;:7y>+7/\/1+ d<Zt,>
+5u—md«xm%—§u+md«zah

- W= F UY.0).(2,9),

—_

Using (22) —(24), this amounts to
(26)  de(X,,%)
. K2\ &
= e(xt,x){ ~Vi=e (Y, TA7) +iv1+ 0 (2, A7)
+ % (1-0*)(Y? - 22,5 — 22>} dt + d(martingale).
Analogously,

(27)  deé(x,X,)
= ¢(x, j'(t){ -V1-o0 <%2Ay, Y, > +iy/1+0 <%2Az, Z >

v
2 (
Comparing (26) and (27), the self-duality identity (21) follows by a standard proce-
dure, compare, for instance, [Myt98|. Here in particular the symmetry of the Lapla-
cian is exploited, and a regularization procedure using the heat kernel is needed to
overcome the fact that the initial states x,X do not have the smoothness required
for the test functions in the martingale problems MP2 and MPY , respectively. (I

+ 1-¢7%) <y2 - 22, 17;2 — Zt2>} dt + d(martingale),

2.4. Main result. Recall definition (6) of the interface Ifcx of a state x € (B;_)?.
Our main result reads as follows.

Theorem 5 (Compact interface property). Suppose Xy = (1r_,1r,) =: x.
Then, there is a constant cs = c5(7y, k) such that for each ¢ € [—1,1] and some
random time Ty,

(28) U IfcX; C [—csT, csT] for all T > Ty, Py-a.s.
t<T

Consequently, the interface is compact and propagates at most with a linear
speed. The proof of this theorem is postponed to Subsection 5.6.

2.5. Scaling property. The following scaling property will be a useful tool. The
symbiotic branching process X in R evidently depends on the collision rate -+.
When we want to make this dependence explicit we use the notation 7X.
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Lemma 6 (Scaling of X). The symbiotic branching process X =7X in R with
collision rate v and initial state X9 = x € (B{:m(R))z has the following scaling
property: for fized constants K,co > 0, the process Y = (Y1,Y?) defined by

(29) Y(a) == cX§,(VKa), t>0, a€R k=12,

coincides in law with the symbiotic branching process VEYX in R with collision

rate VK v and initial state a — coyx(V K a).

Proof. The multiplication by the factor c¢q is trivial, so we will set ¢y = 1. For the
remaining statement we only need observe that

(30) Vi) = K¥*Wg,(VKa), t>0, a€R, k=12,
defines a correlated pair V = (V1,V?2) of standard with noises on Ry x R with
the same correlation constant g, [recall (2)], since for each fixed a € R,

(31) the generalized function b+ K dk,(Kb) coincides with 4, .
Hence, Y satisfies (1) with v replaced by V'K v, finishing the proof. O

Note that for the Heaviside state x = (Ir_r,) or for x = (1,1), we have

x(VK a) = x(a), hence these initial states are invariant concerning the scaling
procedure in the proposition provided that ¢y = 1.

3. SYMBIOTIC BRANCHING IN Z¢

In this section, we introduce the Z? version of symbiotic branching and develop
two basic tools, the particle system moment dual (Proposition 7) and the measure
case moment dual (Proposition 9).

3.1. The Z%-model. The discrete space analogue of (1) is the following system of
stochastic differential equations

2
(32) dxHa) = - AVXE(@)dt + [y X} (a) X7 (a) AW} (o),

t>0, a €Z% k=1,2, starting with suitable X(’f > 0. Here again &,y > 0 are
constants, called the dispersion and collision rates, respectively, A1) is the discrete
Laplacian in Z9,

(33) AYf@) = > [f)-f@)], acZ?

beZ2, [b—a|=1

and

(34) {W¥a): a€Z% k=1,2}

is a family of standard Brownian motions in R with correlation
(35) EW{ (a1)W},(a2) = o (t1 Atg) do(ar — az),

ti,t2 > 0, a1,as € Z4 k,l = 1,2. The correlation constant o again belongs to
[-1,1], and, in this discrete setting, dy refers to the —measure at 0 (instead of the
delta function). Under g < 1, the unique solution to (32) is called the symbiotic
branching process in 79 with correlation constant g (whereas for o = 1 we call
any solution to (32) symbiotic branching).

Just as in the R-case, the special case p = 0 is the mutually catalytic branching
model in Z? of [DP98], ¢ = —1 with X} + X2 = 1 corresponds to the stepping
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stone model indexed by Z<9, see Shiga [Shi80, Shi88], which goes back to Kimura
[Kim53|, and in the case ¢ = 1 the Anderson model X leads through the pair
(X,X) to a special case of our model.

Existence of solutions with finite moments of all orders can be shown by standard
methods, see, for instance, [DP98, Appendix|, whereas uniqueness follows from the
Z%-analogue of the self-duality of Proposition 4 if |g| < 1, and from the particle
system moment duality if g = —1.

3.2. Particle system moment dual N on Z9 Moments of order m > 1 of the
symbiotic process X in Z¢ can be expressed in terms of a random system, N, of m
marked particles in Z<¢ with marks (types) in {1,2}. We shall call N the particle
system moment dual. In N, particles disperse according to independent random
walks generated by %ZA(I). In addition, each pair of particles of the same type in
the same site, a, at rate -y is replaced by a new pair of particles, one of each type.

More precisely, N is an MN;—valued Markov jump process with cadlag paths,
where Nf = /\ff(Zd x {1, 2}) is the set of finite counting measures on the marked
space Z<x {1,2}. Note that each n € N; has a representation Yicr O(a(i),k(i)) Bs
a finite sum of delta measures 0(4(;),r(:)) each interpreted as a particle at site a(7)
of type k(i). We can also identify n with the pair (n!,n?) of “projections”, where
nk := n((-) x {k}) € N¢(Z%). For typographical simplification, we set n*(a) :=
n¥({a}). The generator H of the process N = (N', N?) is given by

2

(86) Him) == Y nf@% Y [ +8em) - f@)]

a€Z4, k=1,2 beZ4, |b—a|=1
k
s X (M) ek - @), n= ) e,
a€Z, k=1,2

where we use ofn to denote the element of AN; obtained from n by switching

the type of one of the particles of type k at position a [provided, of course, that
n*(a) > 0]. Consequently, besides the migration of the particles, each pair of
particles of the same type and having the same position may experience a type
jump with rate . Upon a jump, exactly one of the particles involved changes its
type. Write P, for the law of N starting from Ny = n € Af.

We need to introduce a duality function M. For x = (z!,2?) € (B,
n = (n!,n?) € N}, set

(37) N(x,n) = x" = H (zk(a))"k(“).

a€Zd, k=1,2

)2 and

Here the product is taken over those finitely many a where n*(a) > 0 for some
k € {1,2}. In the duality relation (39) below we will also use the following notion:
For n = (n!,n?) € M,

nk a
6 Il = X (")l = 5 ¥ w@r.
a€Z4, k=1,2 a€Z

Thus, ||n||= is the number of pairs of particles in n having the same type and the
same position, and ||n||x is just the total number of pairs of particles in n having
the same position but different types.
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Proposition 7 (Particle system moment duality relation in Z9). Suppose
x = (z4,22) € (BE,)? and n = (n',n?) € N;. For o € [-1,1], consider the

tem

symbiotic process (X, Pyx) and the particle system moment dual (N,P,) in Z4.
Then, for all t > 0,

t
(39) BX = Bax oy [(as (NI + NI

Remark 8 (Stepping stone model). It does not seem to be possible to derive
from Proposition 7 Shiga’s ([Shi80]) moment duality of the stepping stone model
with coalescing random walks with delay. o

We mention, that for ¢ = 0 we get the particle system moment dual briefly
indicated in [DP98, bottom of p.1091].

3.3. Proof of the particle system moment duality relation. By (32),
2

(40) dXf(a) = %A(I)th(a) dt + d(martingale),

and from (35),

(41) EdW; (a)dW}, (b) = 0do(a — b) §o(t1 — t2) dt1dts

(the first & refers to a delta measure since the argument a — b € Z? is discrete,
but the second one to a delta function), implying

(42) d(X*(a), X'()), = vcra(o) dola —b) X;(a) X7 (a) dt,

where ci (o) was defined in (16). This gives the generator G of X as
2

@) 056 = | T aeta 0

s 0z*(a)

z*(a)z?(a) Z ck,i(e) m] f(x),

l

+

N[

where f is a function on x = (z',z2) € (B; )? depending on only finitely many

tem
components z*(a). Hence,

(44) GM(-,n) (x)

2 k
= ; nk(a) %A(l)mk(a) AR CROR 7; (n 2(a)) x%an + vo|n|..x"

[with o defined after (36)]. On the other hand, by (36),

@) HNx ) () = Y nt(@) A4 (@) xm s

s X (T )wtn
Therefore, |
(46)  GM(-m)(x) = AN, ) (@) + 7 [Inl- + elmll]9n(x,n).

The claimed duality relation (39) now follows by standard arguments; see [EK86,
Corollary 4.4.13]. a
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3.4. Measure case moment dual M on Z< In the case g € [0,1] there is
another way of expressing the moments of order n > 1 of X in Z¢ in terms
of a dual process. This will be a “measure-valued” dual process, that we denote
by M (we said “measure-valued”, since, later, in the analogous R—case, its states
have a measure-valued component). Such duality occurred in the case ¢ = 0 in
[DEF*02a], and played a crucial role there for constructing the mutually catalytic
branching process in R? for finite measure states as a scaling limit of the Z2-model.

For fixed n > 1, the dual process is a C;_(Z") x {1,2}"valued strong Markov
process t — M; = (®;,K;) with cadlag paths. We interpret a state (¢,k) of M
as the “law” of n marked particles described by (a,k) = ((al, k1),...,(an, kn)) in
(Z4m) x {1,2}™, where the i" particle is at site a; € Z? and is of type k; € {1,2}.
This process M can be described as follows. K changes according to the following
“autonomous” rules. If K is in the state k = (ky,...,k,), thenfor 7,5 =1,...,n
with i # j, with rate J i, a jump occurs, in which the 7P particle changes its
type k;, whereas with rate 3 (1 — &g, ;) a jump occurs which will only effect
®. Given all these jump events, ® evolves deterministically. In fact, in-between
these jump times, ® changes according to the semigroup of n independent simple
random walks in Z¢ with dispersion rate x, the related operator is denoted by
';—ZA(I). But if ¢ is a jump time point caused by the ordered pair (7,j) [that is,
caused by the rate ¥ 8z, x; + 3 0(1 — g, x;) |, then a = &, (a) jumps to

(47) <I>t(a) = 50((1,,' — (lj) [P (a), a= (al, ceey an) € Zdn,

with d—measure &y, that is, the components ¢ and j are linked together [or the
“law” ®;_(a)da is localized to §y(a; — a;) P;—(a)da]. Note that the generator G
of M is determined by

2
6 67610 = 1(FAK) +3 3 (808 [166%9 8,000~ 0,10
ij

+ 0 (1= bk [F(0 6, K)—F (4, k)]),

¢ € Cit . (Z9), k € {1,2}". Here o;k means that the j** coordinate in k is flipped

tem

to the opposite type, and for i # j,
(49) 5i’jqb(a) = 50((12' —aj)¢(a), a= (al,...,ak) € Zdn,

refers to the linking procedure as in (47).
Next we want to turn to the duality function, denoted by 9. For each state x =

(z!,2?) € (B, (Z”l))2 of X and marked point (a,k) = ((a1,...,an),(k1,...,kn))

tem
in Z9 x {1,2}", we introduce the product brackets

(50) [x, (a,k)] = z"(a1)---z*"(an)
and, if additionally ¢ € C;t,, (Z™), we set
(51) M(x,m) := M(x,(4,k)) = D () [x, (a,k)].

Furthermore, in line with the notation in (38), for k = (k1,...,kn) € {1,2}™ set

1 1
(52) Ikl= = 5> 6k, and [kl = 5 (1-0kx,)
itj i#]
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for the number of (non-ordered) pairs in k of the same and of different type,
respectively.

Proposition 9 (Measure case moment duality in Z%). Suppose ¢ € [0,1], x
= (z',2%) € (B (Zd))z, and m = (¢, k) € Ct_(Z) x {1,2}". Consider the

tem tem

symbiotic process (X,Px) and the measure case moment dual (M = (®,K), Pr)
in Z%. Then, for t >0,

5 BMm) = Bas Mo e[y [ ds (181 + el

Remark 10 (The case p € [—1,0)). The restriction to g € [0,1] in the previous
proposition is based on the fact that p enters as a factor in some jump rates of M.
Nevertheless, also for negative g, one can work formally with this dual since this
leads to useful formulae. An analogous approach to that of [AT00] should allow
one to extend this duality relation to negative p. <

3.5. Proof of the measure case moment duality relation. First of all, we
apply the generator G of M from (48) to the duality function 90t defined in (51)
to obtain

(542)  GM(x,-)(m) = GM(x, -) (,k) = M(x, %24<1)¢,k)

(54b) +2> (aki,k]. [ (x, (876, 03k)) ~Mx, (6,k))]
i#]
(549 + (1= b e[, (577,10) -, (8,10)] ).
In the non-positive term in (54b) we obtain a factor
(55) %Z%,kj = v|k|[=
i#]

in front of Sﬁ(x, (¢, k)) [recall notation (52)]. Similarly, in the non-positive term
in (54c) we obtain the factor vyp |k||. Moreover,

(56) M(x, (57 4,0;k)) = > ¢(a) [x,(m;a,0,K)]

where, for i # j, the n—tuple =; ;a is created from a by switching the 4t coordi-
nate from a; to a; (related to the linking procedure). Now, if k; = k;, since in (54)
we are summing over i # j, the occurrence of m; ja, allows us to replace o;jk by
Ui’fk in the right hand side of (56). Here 01'1’,]'21{ is obtained from k = (k1,...,kn)
by replacing the pair (k;, k;) by (1,2). Thus, in (54b),

(57) % Z 5191.,1” EDI(X, (5i’j¢), Ujk)) = Z ¢>(a) % Z 6ki,kj [X, (7r,-,ja, Ull”Jzk)] .
it a i#]
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Similarly, when k; # k;, dropping the o; in (56), we see that we may replace k
by a k Summarizing, recalling the notation c;(p) from (16),

68 MG ) m) = M(x, 5 AVK) o [kl + ol ] DG m)
+ ;qﬁ(a)g Z Chi k; (0) [x (m; ja, 01 2k)]

i3
On the other hand, for the generator G from (43),

(59)  gM(-,m)(x) = Zcﬁ(a)g[x, (a,k)]
Z < a® [ (a, k)] + g Z Cki,k; (0) [X (71'1,]a 01 Qk)])

a i
By the symmetry of the discrete Laplacian, the first term on the right hand side of
the second line of (59) coincides with the corresponding term in (58). Comparing

now (59) and (58), we find
(60)  gM(-,m)(x) = GM(x, -) (m) + v [|[k]= + e[kl ] M(x, m).
This gives the claim (53), again by standard methods. O

4. MOMENTS FOR SYMBIOTIC BRANCHING IN R

Passing from Z to R, in this section we establish the analogous moment duals
(Propositions 11 and 14). From the first one, a higher moment estimate (Proposi-
tion 12) is derived. For a third tool, moment equations, see Proposition 15.

4.1. Particle system moment duality on R. Just as the symbiotic branching
model in R from (1) can be obtained as a diffusion approximation to the symbiotic
branching model in Z from (32) by rescaling space and mass by € > 0 and time
by e /2, and letting € | 0, so also the particle system moment dual N on Z
approaches a particle system moment dual on R, that we denote by the same
symbol N. Moreover, the moment duality relation of Proposition 7 remains true.
We abstain from all the painful details in these convergence procedures and only
sketch the limiting process N and the limiting moment duality relation.

N is again an N;—valued strong Markov process with cadlag paths, where now
N = M(]Rd x {1, 2}) All particles move continuously, in fact according to inde-
pendent Brownian motions with dispersion rate x. The type of particles change
according to the same rules. More precisely, a pair of particles with paths £ and
&' (independent Brownian motions) and common type experiences a type jump at
position a € R with a rate governed by the collision local time

(61) Liee)(d(t,a) = LYo (dt) 8a(&:) da

of the pair (£,¢'), where t — Lg(t) denotes the famous continuous local time
at level 0 of a Brownian motion £. Recall that upon a jump, exactly one of the
involved particles changes its type. Note that the rule according to which the type-
changing particle is selected is irrelevant since the pair of particles involved both
have the same position and are not ordered.
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As before, the duality relation involves a “correction factor” that depends on
certain total pair collision local times that we now introduce. First of all, note that
N = (N1, N?) can be represented with the help of 6—measures,

(62) N, = 25(&(1-),%(1-))7 t>0,
i=1

where the t — £;(1) are continuous paths (Brownian motion paths) and the ¢ —
(1) are piecewise constant cadlag paths. For k,l = 1,2, introduce the total pair
collision local time t — Lyt n1)(t) between N* and N*:

(63) Linexn(dt) = D" L (e (5) () oy, e ()0
1<i<j<m

(with Kronecker deltas here). The duality function 9 is introduced just as in (37)
(where the product is taken over those finitely many a € R where n*(a) > 0).
The R-analogue of Proposition 7 reads as follows.

Proposition 11 (Particle system moment duality relation in R). Suppose
x = (z,2%) € (B,,)? and n = (n',n?) € N;. For p € [-1,1], consider the
symbiotic process (X, Px) and the particle system moment dual (N,P,) in R
Then, for all t > 0,

(64) E. X} = Eant exp I:",’ (['[Nl,Nl] + £[N2,N2] + gﬁ[Nl’NZ]) (t)] .

As in the Z%-case, it does not seem to be clear how the usual moment duality
of the continuous space stepping stone model should follow from this proposition.

4.2. A higher moment estimate. The following higher moment bound will help
us later to control the unboundedness of states (remember the hot spots seen in
simulations!). Recall that S denotes the heat flow semigroup.

Proposition 12 (Moment bound). With x the Heaviside state (1r_,1r,), for
all p€[-1,1] and ¢ > 1,

(65)  Eu[(X}(a)X7(2)"] < 260\ [Si1n (@), 20, a€R

Proof. We use the particle system moment duality of Proposition 11, with g type 1
particles and g type 2 particles, all at the position a. That is, Ng = (g4, ,qd,) =:
n. Then

FEyx I:(th (a)XtZ(a,))q] = Ean” exp [7 (L[Nl,Nl] + L[Nz,Nz] + QL[NI,NZ]) (t)] .

We bound this above by passing to ¢ = 1, and apply the Cauchy-Schwarz inequality
to obtain

E[(X}(0)X2(0)"] < (Bax™)""x
1/2
(66) (En exp [2’)’ (E[NI’NI] + [,[Nz,Nz] + £[N1,N2]) (t)] ) .

Note that the system N; must contain at least one type 1 particle. Recalling
representation (62), we estimate x*N¢ by 1g_(¢;) (where ¢ is Brownian motion
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with dispersion rate x and starting from a). That is, for all but one type one
particle we estimate z* by the constant function one. This gives

(67) E.x*Nt < S1g_(a).

Let us assign labels from I = {1,...,2q} to the 2¢ particles of N. Write L; ;
for the local time at the origin of the difference in position between the i** and
j* particle. Write also Lo for the local time at the origin of a Brownian motion
with dispersion rate /2x and starting from the origin. Notice that L;; = Lo
in law. Substituting into the expectation expression in (66) and applying Holder’s
inequality, we obtain

E, exp |:2’y (L[Nl,Nl] + ‘C[NZ,N2] + L[NI,NZ]) (t)] =& H exp [2’)’[1,’7]'(75)]
1<i<j<2q

= Eexp [2’7 (22q) Lo (t)] .

(68) < ]I (5exp[2v(22")Li,j(t)])1/(2q)

1<i<j<2q

(Here the expectation sign £ refers to the underlying probability space (2, F,P) on
which the local times are defined.) Now Lq(t) coincides in law with ‘Lo(t) / v/2k,
where Ly refers to the local time at 0 with dispersion rate 1. However, 'Lo(t)
coincides in law with |'¢;| where ¥¢ is standard Brownian motion in R starting
from 0. Hence, the last expectation expression in (68) can be estimated from above

by
(69) 2 €& exp [27 (22'1) e, /2 Kz] = 2exp [(27 (22") / V2 KZ)Z t/Z] ,
from which (65) follows. O

For convenience, we add here the following simple heat flow estimate.

Lemma 13 (An elementary heat flow estimate). There is a constant c;3 =
c13(k) such that

(70) HST]-]R_(A) + Amdb HST]-]R_(b) S C13 \1/1—;})27'(14), T,A Z 1.

Proof. We start from the estimate

_A 9
(™) Sria.(4) = [ dapr(@) < "L pr(4)

(which is valid for any T, A > 0). In the following, we write ¢(x) for a constant
which may vary from place to place. Estimate (71) implies
T3/4

(72) Stlr_(A) < c(k) 7a

par(A).

Hence,

oo 3/4 poo 3/4
(73) /A db \/Srle_(b) < c(ﬁ)Tﬁ [ ab ) < c(n)%% por(4),

where in the last step we used (71). Combining (72) and (73) gives the claim. O
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4.3. Measure case moment duality on R. By the diffusion approximation men-
tioned at the beginning of the previous subsection, the measure case moment duality
Proposition 9 can also be transferred to the R case. We will now sketch what must
be modified in the development of Subsection 3.4.

The measure case moment dual M = (®,K) is now an Miem(R™) x {1,2}"—
valued strong Markov process with cadlag paths. The underlying jump mechanism
for the K—component is exactly the same. Given these jump events, ® evolves
deterministically. In-between the jump times, ® changes according to the heat
flow in R™ with dispersion rate x, the related operator is denoted by ’“—;A. Hence,
for t in-between the jumps, ®; is an absolutely continuous measure, and, by a
slight abuse of notation, we write ®;(da) = ®;(a)da with a — ®,(a) the related
density function in C;}(R"™). If ¢ is a jump time point caused by the (ordered) pair
(,7), then the absolutely continuous measure ®;_(a)da jumps to the “slightly”
singular, localized measure

(74) 3,(da) = do(a; — a;) B,_(a) da,

with d—function §p now, that is, the components 7 and j are linked together.
The duality function, once more denoted by 9, is defined as follows. For each
state x = (z',2%) € (B, (R))2 of X and m = (¢,k) € C; (R™) x {1,2}",

tem tem

(75) Mx,m) = [ da d(a) [x, (2, K]

[with the product brackets defined in (50)], whereas for m = (¢, k) € Myiem(R™) X
{1,2}™ which is different from the previous form, that is ¢ € Miem(R*)\Cit,(R™),
we set 9 to 0. (Note that the following moment duality is formulated for a fixed
t, hence in such ¢ there will be almost surely no jump.) Recall the notation |k|=

and ||k||z from (52).

Proposition 14 (Measure case moment duality in R). Suppose o € [0,1],
x = (z1,2?) € (B;m(R))2, and m = (¢,k) € CL (R*) x {1,2}". Consider the
symbiotic process (X, Px) and the measure case moment dual (M = (®,K), Py)
in R. Then, for t >0,

1) B m) = B M) expr [ ds (111 + el |

4.4. Moment equation system. Fix an initial state x = (z!,22) € (B,j(;m(R))z
of the symbiotic branching process X in R, and an integer n > 1. For ¢ > 0,
a=(ay,...,a,) €R", and k = (ki1,...,k,) in {1,2}", introduce the n*" moment

(77) mi(a) = ExX{'(a1)--- X{" (an)
of X. Recall the notation A for the Laplacian in R”, 0:,’]-2k introduced after
identity (56), and ¢k () from (16).

Proposition 15 (Moment equation system). Let ¢ € [-1,1]. For fized n > 1,
the n'* moments of X satisfy the following closed system of heat equations on
(0,00) X R™ with singular coefficients in the creation term,

3 0.1’.21(
(78) Emi‘(a) = Amj(a) + v Z Ckik; (0) do(ai — aj) m, ™ (a),

1<i<j<n
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t >0, a€R*, with initial condition m¥(a) := z* (a;)---zF"(a,).
Proof. For non-negative ¢1,...,p, € CC(QH , by Itd’s formula,
(X5, 1) - (X o) = > dixt o) JIE 00
I
(79) + o d(xte) (X)) T & ).
i<j L#14,]

The right hand side is

d(martingale) + Z <Xfi, %2A<Pi> H(ij,wj) d¢

J#i
(80) + D ek (0) (XM X2 pip;) dt [T (XE, ).
i<j l#£1,j
Taking expectations, using the symmetry of the Laplacian A, switching to A, and
exploiting that the ¢; are arbitrary, we arrive at (78). O

Example 16 (Mixed 2"¢ moment m!+2). Solving (78) for m'? via Feynman-Kac

(or using the particle system moment duality of Proposition 11) gives the following
formula for the “mixed” second moment of the symbiotic branching process X

starting off from Xy = x = (z!,22) :

(81) m;?(a) = Maz'(€) 2% (&) exp[yoLdi_(1)],

t>0, a=(a;,az) € R%. Here &€ = (51, 52) refers to Brownian motion in R? with
dispersion rate x and law denoted by II,, that is, € starts in a at time 0, and
L° denotes Brownian local time at level 0 as in (61). O

Clearly, Proposition 15 remains valid also for the Z%-model, where in (78) then
A has to be replaced by the discrete Laplacian A®) in (Z%™, and &y has to be
read as the d—measure at 0.

In case of the Z2-model with ¢ = 0, scaled 4*® moment equations were the basic
tool in [DEFT02b] to construct the mutually catalytic branching model in R? in
the infinite measure case.

5. COMPACT INTERFACE PROPERTY

The purpose of this section is to prove Theorem 5. Here we follow closely [Tri95],
which relates to the case p = —1, but now we must overcome the additional
complication that X is no longer bounded.

The structure of the proof is as follows. First we reformulate the martingale
problem so that X* is expressed as the heat semigroup acting on X} plus a
fluctuation term (Corollary 18). This is convenient for later estimates. We then
identify the Laplace transform of the weighted occupation time of the set [r, c0)
by the process X! in terms of a solution of a parabolic partial differential equation
(Subsection 5.2). This reveals the action of X2 as a ‘counter force’ to the X!—
population and suggests estimating separately the probability that the weighted
occupation time is positive when X2(z) is bigger than some threshold (that we
take to be 1) forall z > Z, and the probability that X?(z) < ; for some z > r/2
[formula (138)] The first part is then estimated by bounding the solution of the
p.d.e. in terms of a singular boundary value problem (formula (98) implying Lemma
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21). The second part is estimated by easy estimates for the heat semigroup and by
bounding the fluctuation term in X2 (Lemma 22). This calls on our moment bound
from Proposition 12. Finally, we combine these bounds to estimate the probability
that the rightmost point in the support of X} exceeds r for some t € [0,7] and
for sufficiently large r (Subsection 5.5). An application of Borel-Cantelli finally
completes the proof (Subsection 5.6).

5.1. Extended martingale problem and Green function representation.
We now present the following consequence of the martingale problem MPZ of
Definition 2.

Lemma 17 (Extension of the martingale problem MP2). Let ¢ € [-1,1],
and x,X be as in Definition 2. Then for ', 1?2 in C:(I}ri)p (resp. C%ﬁn),

t 2

(Xbut) = R + [ ds (X, 5 At + k)

0 2 as

(82)
+/ M*(d(s,a)) ¢E(a), 0<t<T, k=12,
[0,t] xR

where M* (d(s,a)) are (zero-mean) martingale measures with bracket

{ [ e s, [ ) @)

(89) t
= you(o) [ ds (XIX2, 74 7Y), 0<e<T, Ki-12
0
Here f',f% belong to the set of predictable functions f defined on Q x R, x R
such that

(84) E/ds XX2 fs)2><oo, 0<t<T.

Proof. The proof is standard, and we will outline it only in the case x € (B_)2.
We may fix a A > 0 and note that S is a strongly continuous semigroup acting on
the separable Banach space Cy, and that each S; maps ng) into itself. We then
use Proposition 1.3.3 of [EK86] to bootstrap up to the domain of the generator of
time-space Brownian motion on Cy([0,T] x R) (the space of continuous functions

(1,2)

[0,T] x R vanishing at infinity), and this domain contains C;’ Approximate

T,rap "
P € ngl ri)p by an appropriate sequence of step functions in the time variable, and
then proceed as in the proof of Proposition IL.5.7 of [Per02]. a

By standard methods, the previous lemma gives the following result.

Corollary 18 (Green function representation of MP2). Let ¢ € [-1,1], and
x,X be as in Definition 2. Then for ¢ in Crap (resp. Ctem), k =1,2, and t >0,

(85) (XE @) = (z*,5,0) + / M*(d(s,a)) S, ap(a)
[0,t] xR

with the martingale measures M, M? from Lemma 17.

Again with standard methods, the previous corollary implies the following con-
volution form of equation (1):
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Corollary 19 (Convolution form). Let g € [-1,1], and x,X be as in Definition
2. Then, for t >0, a € R, and k=1,2 fized,

(86) XF(a) = Siz* (a) + /[0 ; RMk (d(s,b)) pt—s(b—a), Px-a.s.

Of course, this in particular implies the ezpectation formula

(87) ExXF(a) = S;z* (a).

5.2. A Laplace transform identity. From the extended martingale problem in
Lemma 17 we get the following identity.

Lemma 20 (Laplace transform identity). Let o € [-1,1]. For x € (B2,
k =1,2, t > 0, non-negative ) € C%’rza)p, @ € CL,, and each stopping time T
with respect to the filtration of X,

(88) Ex exp[ —(XE e — /0~t/\rds (xE0) ]

tAT s
— o—(a*n) 4 Ex/ ds exp[—(Xf,zbs)—/ dr <Xf,go>]
0 0
2

x <<X’c - %d)s - %Azps - <p> + % <X§X3,¢§>)-

Proof. By the extended martingale problem of Lemma 17,

2
(89) d(XE ) = <Xf, B A+ 3¢t> dt + d(martingale)
2 ot
and
(90) d((X_’“,«p.))t = y(X}{ X2 ¢?)dt + d(martingale).
Thus,

dexp[— <th,d)t> —Atds <Xf,ga>] = exp[— <th,1/)t> —/:dg <Xf,(,0>]x
(— <th, go> — <th, %2A’(/)t + %’(/Jt> + g <thXt27¢'t2>) dt + d(martingale),

and the claim follows. O

(1,2)

Trap 1S the unique solution

We now specialize Lemma 20 to the case when 9 € C
of the partial differential equation

2

0 K
(91) — a'(/)t = 7 Ad)t - Old)tz +¢ on [O)T) X R)

with terminal condition 7_ = 0.

+

Here a > 0 is a fixed constant, and ¢ € C,,. The expression in the last line of

the array (88) then simplifies to

(92) <—o¢Xf+%Xlef, ¢§>.
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5.3. A log-Laplace function estimate. Note that (91) is the log-Laplace equa-
tion of the occupation time process of a continuous super-Brownian motion on R.
We need good estimates on 1 for some special . This was essentially done by
Tribe [Tri95, formula (5)]. For completeness and ease of reference, we include here
some details on this.

Let f : R — [0,1] belong to ng,, have support Ry, and total mass (f,1)
bounded by 1. For fixed r > 0, set

(93) (@) = fla—r), aeR
In equation (91), specialize ¢ to Af", fora A > 0:
0 K2 9 .
(94) —alﬁt = 7A¢t—a¢t +Af" on [0,T) xR,
with terminal condition 7_ = 0.

Lemma 21 (Log-Laplace function estimate). There exists a constant co; =
c21(k) such that for all such f and for all )\ > 0, the solution 1 = ™" to
equation (94) satisfies

(95) P (@) < %}MT(T—G), 0<t<T, a<r—2VT.
a

This estimate will enter in the proof of Proposition 23 below.

Proof. First note that

3 2
(96) h(a) = h"(a) := = (r —a)72, a<r.
a
solves
2
97 —Ah—ah?® =0 on (—oo,r).
2

Arguing as in the proof of the maximum principle, we obtain for the solution
= 4>" > 0 to (94) and h = h" > 0 from (96)/(97), the following comparison

result:

(98) Yi(a) < h(a), a<r, 0<t<T.

In fact, h — vy =: u satisfies
0 K2

(99) —pt = 7Au —pu on [0,T)x (—oo,r),
with terminal condition wur_ =h > 0,

where we introduced the function p := a(y+h) > 0. Moreover, lim,| o u(z) =0
for all ¢ < T, whereas us(r+) = +o0o. Assume that (98) is not true. Then there is
a (tg,a0) € [0,T) x (—oo,r) such that u,(ag) =: —e < 0. Since wuy,(r+) = +o0,
there is an a; € [ag,r) such that u;, takes on its minimum < —e at a;. Then

52

(100) 7Aut0 (a1) >0 and g4, (a1)us,(a1) <O,
implying by (99) that %uto (a1) < 0. Therefore there is a t; € (tg,T) such that

ut, (a1) < —e. Again, there is an ag € [a1,7) such that u:, takes on its minimum
< —€ at az. Then %utl(az) < 0. Continuing this way, one gets a sequence
(tn,an) € [0,T) X [ag,r) where always u;, (a,) < —e. Take a subsequence of the

(tn,an), converging in [0, T] X [ag , 7] to some (teo, Goo ). Since everywhere u;, (an) <
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—e, we conclude that actually (teo,800) € [0,T) X [ag,7), and u;(ax) < —e.
Thus, we can continue our construction. Hence, we must reach 7, and get a
contradiction, proving (98).

On the other hand, the Feynman-Kac representation of (94) reads as

(101) u(a) = T, | Cds A (e enp |- / "0 abs€)], (o) €0.T) xR

where (¢, II; o) denotes Brownian motion in R with dispersion rate & and starting
from a at time £. Consider a < b < r, and let 7, denote the hitting time of b by
Brownian motion £. Notice that if n, > T, then £ will not hit r by time T, and
f7(&s) = 0. Then from the strong Markov property at time 7,

(102) ’l/)t(a) = Ht,al{anT}d)le (b) S h(b) Ht,a(nb S T)a a< b < T, 0 S t S T7

where we used (98) (cf. [DIP89, formula array (3.2.24)]). Specializing to b := r—+/T
and a <r — 2T gives

(103) b(@ < Pt <T) < 2% Ma(m <T)
t\Q = T t,a\Tlh > = T AU )
where II, :=1lp,. Now by the reflection principle,
(104) Ha(nb < T) = 2Ha(BT > b)
Next we use (71) and (b—a) > 3(r —a) > VT to see that
(105) I,(Br >b) < &*VTpr(i(r—a)).
Combining this with (104) and (103) we obtain the claim (95). This completes the
proof. O

5.4. Estimation of a fluctuation term. Let X start from the Heaviside state
x = (1g_, 1r,). With the martingale measures from Lemma 17, we set

(106) NH@ = [ M (ds0) pea(o-a),
[0,f]xR

t>0, a € R, and N¥(a) := 0. Recall that by (86),

(107) th(a) = S,z? (a) + Nf(a).

The next lemma (cf. [Tri95, Lemma 3.1]) will allow us to deduce that, for T' > 1
fixed and sufficiently large A,
1
. 2 > = . . ..
(108) tgil‘,nngA X;(a) > 5 with high probability
[see (151) below.] In fact, if NZ(a) is small with high probability, and a is big
enough that S;z? (a) is close to one, then by (107), XZ(a) cannot be small.

Lemma 22 (Fluctuation term estimate). Let ¢ € [-1,1] and x = (1r_, 1r,).
There is a constant cea = caa(7, ) such that for all € € (0,1], T,A > 1, and
k=1,2,

(109) Px( |Nt’c (a)| >e for some t<T and a> A)

T14
S Coo 5_10 65572'1"/&2 - pZT(A)

VA
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Proof. The proof mirrors the proof of the modulus of continuity of Brownian mo-
tion. We follow [Tri95, proof of Lemma 3.1], but now his trivial estimate X* <1
for the stepping stone model must be replaced by our moment estimates (65), and
so things are a little more complicated. First of all, by [Shi94, Lemma 6.2(i)],

T
(110) / ds/db [py_s(b—a') —pr_s(b—a)]’
0 R
< c(110) (|t’ — t|1/2 +]a’ — a|) ATY?, 0<t,t'<T, a,a €R,

with a constant c(110) = ¢(110) (), where we use the convention

(111) pr=0 if r<O0.

1° (Higher moment estimate). Let ¢ > 2. For 0 < t' <t < T and a,a’ € R
consider
2q‘|

2
B[ |NF(a) - NE(@)[*]
For t,t',a,a’ fixed, as a function in T, the stochastic integral in (112) is a martin-
gale (the integrability follows from the moment bound in Proposition 12). Hence,
by Burkholder’s inequality, the moment expression (112) can be estimated from

above by
Writing [pi—s(b—a) —py_s(b— a’)]2 X1(b)X2(b) as
[pr—s (b=a) =po—s 6=a)]" """ ([pr-s (b—a) —po—s (b=a)]"* [XEB)X2()]),

by Hélder’s inequality the |...|?—term can be estimated from above by

T
/0 ds /Rdb [pr—s(b—a) —py_s(b—a')]
T
X /0 ds/Rdb [pe—s(b— a) —pu_s(b—a')]” [X1(0)X2(0)]".

For the first double integral, we use (110), whereas in the second one we replace the
square of the difference by twice the sum of squares. Together with the moment
bound (65), this gives for (113) the bound

(112) = Ex[

/ W (db) [pe—o (b — @) — pir—o (b — a')] /v XL (B)X2(5)
[0,TIxR

T
(113)  c(q) Fu /Ods /R db [peo(b—a) —pu_,(b—a')]* v X}(5) X2(b)

g—1
(114)

q—1
(115) ) [equo (1 —8]'/* + o' — a]) ATH?]

T
% 4e4’72q4T/'“‘2 [/ dsAdbe,S(b_a) SSIR_(b)
0

v [Cas [0 5]
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We specialize T' to t. For the first double integral, estimate one of the p—factors
by ¢ (t — s)~1/2. Then, by Jensen’s inequality,

(H9) /Rdbp t—s(b—a) /Salr_(b) < ( /R db pe—s(b — a) sis_(b))l/2

= 4/Stlr_(a),

whereas
¢
(117) / ds (t —s)"1/2 = 2#'/2,
0
Combining (112), (113), and (115)—(117), we obtain for 0 < ¢/ <t and a,a’ € R,

(118)  Ey |Nf(a) - Nf(a')[™

-1
< cqg) [(lt: _t|1/2 n |a/ —a|) /\tl/Z]q 8

odr2att/K? (\/t Silr_(a) + 4/t Sy 1R—(a’))

for a constant €(118) = €(118) (q,7, K)-

2° (Dyadic grid technigque). For each m > 1, we introduce the dyadic grid

(119) G, = {(tn,i,an,j) Dotn =127, an =327, 4,5 € Z_,.}
partitioning R% . Two points g = (t,a) and ¢’ = (',a’) in the grid G, are called

neighbouring points, if ¢ = ¢ and |a — a'| = 1, or vice verse. Fix k = 1,2. For
€0 > 0 and neighbouring points g,¢' € G, with g < ¢', introduce the event

(120) 28, = {|NF(a) - NE(@)| > e02 10}
By Markov’s inequality and (118),
(121) P(AL2) < £520 275 By |NE(a) — Nj(a')[™

< £ 2029/5 ¢ ypg (27 7/2) T 7/ (\/t Silz_(a) + 1/t' Splz_(a') )
Fix T > 1 and set

(122) Q[Eu = U U Q[g(,’_?'n
n>1 g,9' € G,N[0,T]x[A,00)
Then,

Px (Q[EU)

<230 D Moy () TN VT S, 1k (any)
n>1 i: 0<t, ;<T,
jian j>A

= 2¢;% ci1s) °d' T/ | /T Z Z 93n(1-9)/10

n>1 i: 0<ty, ; <T

Yo 27 /S 1k (an,)-

jian i >A
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But /S;, ,1r_(an,;) is non-increasing in a,; > 0. Hence, the internal sum can
be estimated from above by

(123) 27"N/Stn,i1R_(A)+/ da 4/ 8, ;1r_(a).
A

Note that this disappears if t,; = 0 since A > 1 by assumption. On the other
hand, for 0 <t,; <T,

(124) S, 1r_(a) < (tn,i/T)_1/4\/ST1R_(a)-

Thus,
Pre(e,)
< 266241 c(118) e412q4T/n2 \/T Z Z 23n(17q)/10 x

n>1 i: 0<t, ; <T

(zn(tn,,- /T) %\ /Sr1_(A) + /A " da (tn,:/T) M* ,/sTlm_(a))

— 266241 c(118) e412q4T/n2 \/T Z 2n(13—3q)/10 x

n>1
(2"‘\[ST1R_(A) + / da ‘/STlp_(a)> Z 2-" (tn,i/T)il/‘l.
A i 0<ty i <T
However, the internal sum is bounded from above by
T 4
(125) / at (4/T) M = 5.
0

Therefore, taking ¢ = 5, there is a constant c(126) = c(126)(7, %) such that

(126) P, (2,)

S C(126) 6610 655’72’1—'/'62 T3/2 (\ / STIR_(A) + A da HST]-]R_(GI) ) -

On the other hand, on A, (where all the considered G, —neighbouring incre-
ments are bounded by £92 "/10), since Nf(a) = 0, we can estimate N} (a) for
t <T and a > A by a countable number of increments across neighbouring dyadic
points along a path from (¢, a) to the boundary part {0} x[4, 00) of [0,T]x [4, co).
This we now want to make precise.

First we choose a point (¢1,;,a1,;) =: gi,; € G1 closest to (t,a). For the fixed
a1,; , we pass along neighbouring points in G; to the ¢ = 0 axis. For this we need
at most [T/%] +1 < 3T steps. Hence, on 2A¢

€0 ?
(127) NS (ar,;)] < 3T g2 /™.

Additionally, to reach g;; from (¢,a), we need at most one time and space incre-
ment of length at most 2™ ™ each, for each n > 1. Thus, on A

€0 ?
< 22 g0 2 ™10,

n>1

(128) INE(@) = NE (ar)
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Adding up (127) and (128) gives

(129) |NF(a)| < 3Teo Z 277/10 = ¢199)T €0, t<T, a>A,
n>1

for an absolute constant c(j29). For 0 <e <1, setting

(130) g0 = €/caa0T,

on A we have

(131) INf(a)] <&, 0<t<T, a>A
Therefore,

(132) Px( |Nf(a)| > ¢ for some t <T and a > A) < Pe(ep),

and with (126), (130), and the estimate (70) in Lemma 13, we finish the proof. O
5.5. The rightmost point in the support of X}. As in [Tri95], we set
(133) Rly) = sup{a: y(a) >0}, y € Bion(R),

for the rightmost point in the support of a state component y. Recall that we
start X from the Heaviside state x = (1r_,1r,) with interface Ifcx = {0}. We
estimate the probability that, for r large, the component X! hits [r,00) by time
T (cf. [Tri95, Proposition 3.2]).

Proposition 23 (Rightmost point in the support of X}). For some constant
co3 = c23(7y, k), we have

(134) Px(tsgg R(X}) > 'r) < ca3 T prgr(r),

for T > 1, and r > 6*(yV &V 1)T. The symmetric result holds for the leftmost
point, L(X?), say, in the support of X2.

Proof. 1° (Decomposition). Introduce the first time 7, that X2 is less than the
level % beyond the space point r > 0 :

(135) Tp 1= inf{t >0: X2(a) < 1 for some a > 7'}.

Moreover, denote by o, the first time the rightmost point in the support of X}
exceeds 7 :

(136) o, == inf{t>0: R(X})>r} = inf{t >0: (X}, f") >0},

where f" was introduced in (93). Fix T > 1. We wish to estimate

(137) Px(sup R(X}) > 'r) = Py(o, <T).
t<T
For 0 <7’ <,
(138) P(0, <T) < Py(ow <T ATw) + Pe(r < T).

To see this, partition into 7, > T and 7,» < T, and note that in the first case,
T =T A 7. So we may estimate both terms on the right hand side of (138)
separately.
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2° (First term). By identity (88) in Lemma 20 with 7 = 7., ¢ = Af", and
¢ = ™", implying the simplification (92), and by choosing «a := 1 in the log-
Laplace equation (94),

tAT
Ey (1 - exp[— <th/\‘rrr ;¢’t/\m> - )\/ ds <X51,fT> ]) — 1 _ e (=" s%o)
0

tAT, s
+ 7B [ Tasens[ - (xhu) - a [ar ()]G XE - X0XE, o),
0 0
t > 0. In the last term on the right hand side, we decompose the integral over a
into two parts: the integral over (r',+00) and over (—oo,r’']. Note that
(139) 1XMa)—X.(a)X2(a) <0 for s<7v and a>r

with 7. from (135)]. Hence, we can drop the integral over (r’,+oc) to obtain:
p g )

Ex(l—exp[ < t/\r,:"/ft/\T, )\/t/\T' Xl fr>])

<1 _ o (@' %o) + _Ex/ ds <X;, 1(7oo,r’]¢§>

(140) < (e, /ds/ da/ db ps(b — @) ¥2(a),

where in the last step we applied the expectation formula (87). If we addition-
ally assume that r > 2+/T, then we may exploit Lemma 21 to obtain for some
(changing) constant c(k),

14) () < -2 / dapia(r-a) < X pir(r),

where in the last step we used (71). In the second term of (140), we estimate
f_ooodb ps(b—a) < 1. Moreover, if ' := £ and moreover r > 44/T, then for the

remainder of the second term in (140) we may exploit Lemma 21 once again to
obtain the bound

1o [ 3 _dn) [P ()
(4 17 [ o goierintr—a) = “0L [ dapar@) < T pr)

using (71) in the last step. Combined with (141), in place of (140) we have the
cruder estimate

tATr 2
Ex(l_exp[_ <Xt1/\7'r/27¢t/\7'1-/2> _AA ds <X517fr>])

(143) < @pST(r), 0<t<T, r>4JT.
¥

We now claim that
(144) Py(or <T ATy p9) < ﬂpsT(r), r> 4T,
Y
Because of (143), it suffices to show that
(145) Py(or > T A1)

TATL/2
> )l‘irn Ey exp[ - <XC%"/\TT/2’¢T/\TT/2> - )\/ ds <X T>]
too 0
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Here we take into account that the solution 1) = %*" to (94) is monotone in .
To verify (145), restrict the expectation to o, <T A 7, /5. Then the ds-integral is
positive, and the exponential expression will disappear as A 1 oo, implying that
the whole restricted expectation will disappear in the limit. On the other hand,
restricted to o, > T A 7,3, the exponential expression can be bounded by 1,
implying (145).

3° (Second term). We are now going to estimate Py(7,/o < T). Using (107),
P(1,)2 <T) = Px(St1R+(a) + N7(a) <1 for some a> % and ¢t < T)

(146) < Px(|Nt2(a)| > Silg_ (a) — % for some a>Z and t < T).
But under a > 5 and t < T,
(147) St1R+(a) S St1R+(%) S ST1R+(%) = I_ST]-R_(%)

Hence, the chain of inequalities (146) can be continued with

IN

Px(|Nt2(a)| > % — S7lg_(5) forsome a> % and t < T)

(148) < Px(|Nt2(a)| >1- 26°T pr(5) for some a > % and t < T),
where we have used (71). Now

(149) < —— if r>4kVT,

and altogether we have

(150) Py(1,2<T) < Px(|Nt2(a) >¢ forsome a> 7 and ¢t < T),
provided that r > 4kv/T, where € := %— ﬁ . Hence, by Lemma 22, for a constant
c(v, 8),
T14
Pu(rya <T) < cppe ' ST/ por(r/2)
\/r/2
(151) < e(v,6) T prer(r),

provided that = > (6 - 5%/24T) V 4k+/T. Combined with our estimate (144), this
gives the claim (134). By symmetry, the proof is finished. O

5.6. Completion of the proof of Theorem 5. Armed with Proposition 23, we
can now easily complete the proof of Theorem 5. Choose

(152) r = r(T) := cusp)T where csz) = cusz)(v,6) > 6*(y VK V1),
Then, by Proposition 23,

Z Px(SUP R(th) > C(152)T) < Z C23 T14p16T(C(152)T)

T>1 t<T T>1

(153) <e Z T e T  with constants ¢ = c(v, k).
T>1
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But the latter sum is finite, hence, by Borel-Cantelli, the rightmost point in the
support of X} exceeds c(1s2)T for some ¢ <T only for finitely many T. Thus,

(154) sup R(X}) < cis2)T  for all T sufficiently large, Px-a.s.
t<T

Therefore, the rightmost point in the support of X} propagates at most with speed
t, provided that t is sufficiently large.

Clearly, by symmetry, an analogous statement holds for the leftmost point L(X?)
of X?. Since

2 1
(155) eX, C [L(X2),R(X))),
the proof is finished. a
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