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Abstract

Consider a system of particles which move in R
d according to a sym-

metric �{stable motion, have a lifetime distribution of �nite mean,

and branch with an o�spring law of index 1+�: In case of the critical

dimension d = �=�, the phenomenon of multi-scale clustering oc-

curs. This is expressed in an fdd scaling limit theorem, where initially

we start with an increasing localized population or with an increas-

ing homogeneous Poissonian population. The limit state is uniform,

but its intensity varies in line with the scaling index according to a

continuous-state branching process of index 1+�: Our result gener-

alizes the case � = 2 of Brownian particles of Klenke (1998), where

pde methods had been used which are not available in the present

setting.
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1 Introduction and statement of results

1.1 Motivation and purpose

Multi-scale clustering phenomena had been exposed by several models as

the voter model (e.g. Cox and Gri�eath ([CG86]) and interacting di�usions

(e.g. Fleischmann and Greven [FG94]). They occur in the critical dimension.

Here \multi-scale" means that clusters grow on di�erent macroscopic scales.

For spatial branching processes this was dealt with in Klenke [Kle97, Kle98].

In the latter two papers, Markov branching processes in R
d had been

considered in a particle model as well as in a superprocess setting. These

models are based on two driving components: migration and branching. For

the particle model this means, that �rst of all particles move independently

according to (standard) Brownian motions in R
d
: But additionally, at a

�xed rate, that is after independent identically exponentially distributed

lifetimes, branching occurs. In such a branching event, a particle is in-

dependently replaced by a random number of o�spring in a critical way.

Here \critical" means that the expected number of o�spring of a particle

equals one. Moreover, the common o�spring law is assumed to be of index

1 + � 2 (1; 2] (see Hypothesis 1(c) below). In the special case � = 1; the

number of o�spring is maximally two. For � < 1 instead, the o�spring law

has in�nite variance. The o�spring evolve independently according to the

same rules. The only dependence assumption in the model is that o�spring

start from their \parents' " position.

In this model, the driving e�ects compete to each other: The critical

branching leads to extinction if started from a �nite population, and the

spatial spread has a smoothing e�ect in space. But the latter is dimension

dependent: As higher the dimension is, as more smoothing occurs. Thus, if

the dimension is high enough, even steady states for in�nite populations are

possible. \High enough" here means, that d > 2=�; and these dimensions

are called supercritical.

In non-supercritical dimensions d � 2=� instead, the system locally

dies as time tends to in�nity. That is, the extinction features of critical

branching dominates the spatial dispersion by the independent Brownian

motions. But by the criticality of branching, the system is mean mass

preserving, hence the overall density of particles is conserved at all �nite

times. Therefore, starting with an in�nite population, besides the local

extinction, huge clumps of particles are present at rare escaping places.

In the critical dimension d = 2=� (that is d = 2 in the �nite variance

case � = 1); there is an additional e�ect: clumps grow at a whole range

of macroscopic scales. To expose this, the population system is spatially

contracted in a time dependent way. In addition, the initial system is fed

with more and more particles also in a time dependent way.

By the mentioned maximal independence assumptions in the model,

log-Laplace functionals are a basic technical tool. In fact, they connect the
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stochastic system to initial value problems of the reaction-di�usion equation

@

@t
u =

1

2
�u� c u1+� on (0;1)� Rd: (1)

Here the d{dimensional Laplacian � stands for the Brownian migration and

the non-linear term for the branching. The multiple clustering behavior is

related to asymptotic properties of solutions to (1). To get hands on them,

the main method in [Kle97, Kle98] was to construct sub- and super-solutions

to equation (1). Here the explicit form of the heat kernel helped to �nd

such semi-solutions. (See also Samarski et al. [SGKM87, Section 1.2] and

Bramson et al. [BCG93]).

Our purpose is twofold. Mainly we want to pass from Brownian motions

to symmetric stable processes of index � 2 (0; 2]: That is, to replace in

equation (1) the di�erential operator 1

2
� by the fractional Laplacian �� :=

�(��)�=2: The critical dimension is then d = �=�: If � < 2; the pde tools
mentioned above break down since �� is not a di�erential operator. But

we also want to give up the Markovian nature of the process in the particle

setting: We replace the exponential life times by i.i.d. life times with a

�nite mean (in the spirit of classical Bellman-Harris branching processes or

age-dependent branching processes). By this �nite mean assumption, the

critical dimension will not be changed. The model is available from the

literature, we essentially take it from Fleischmann et al. [FVW03].

As in the latter paper, the main tool is an integral equation �rst studied

by Kaj and Sagitov [KS98], for which we have to investigate asymptotic

properties of its scaled solutions. If the lifetimes of particles are exponen-

tially distributed, the mentioned integral equation is related to the function-

valued ordinary di�erential equation

d

dt
u = ��u� c u1+� on (0;1)� Rd: (2)

Our approach covers the case � = 2; so that in particular we give an

alternative proof for results of [Kle98].

1.2 The (d; �; �;G){branching particle system

The model we are dealing with is a spatial generalization of Bellman-Harris

branching process. This is based on the following ingredients, for conve-

nience we put it in a hypothesis.

Hypothesis 1 (Ingredients of the branching particle system)

(a) (Particles' motion process �) For a �xed constant � 2 (0; 2]; con-
sider the symmetric �{stable process (�; Px ; x 2 R

d) in R
d; (cf.

Breiman [Bre68, p.317] or Bertoin [Ber96, Ch. VIII]). This is the

(time-homogeneous) Markov process with generator �� = �(��)�=2;
the fractional Laplacian (Yosida [Yos74, p.260]), and with c�adl�ag
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paths. We denote by p =
�
pt(y) : t > 0; y 2 R

d
	

the continuous

transition densities of this particle motion process (migration process)

�:

(b) (Particles' lifetime �) Introduce the non-lattice lifetime distribu-

tion function G of a random variable � > 0 with �nite expectation

E� =: � > 0:

(c) (Critical branching mechanism) Consider the o�spring generating

function

f(s) := Es
� = s+ cf (1� s)

1+�
=: s+	(1� s); (3)

0 � s � 1; of the random number � of o�spring of a particle, with

constants � 2 (0; 1] and cf 2
�
0; 1

1+�

�
: Consequently,

P (� = k) = Æ1;k + cf (�1)
k

�
1 + �

k

�
; k � 0;

where Æ1;k is the Kronecker symbol. Clearly, E� = 1 (criticality), and

we are dealing with a branching mechanism in the normal domain of

attraction of a stable law of index 1 + �: Of course, E�2 <1 if and

only if � = 1:

(d) (Test functions) Pick a constant p 2 (d; d+�] (recall that � is the

motion index), and introduce the reference function

�p(x) :=
�
1 + jxj

2
�
�p=2

; x 2 R
d
: (4)

Let Cp = Cp(R
d) denote the set of all continuous functions ' : Rd ! R

such that

k'k := sup
x2Rd

��'(x)��
�p(x)

< 1; (5)

and such that the map x 7! '(x)=�p(x) can continuously be extended

to a function on _R
d
; where _R

d is the one-point compacti�cation of

R
d
: Then

�
Cp ; k � k

�
is a separable Banach space.

(e) (State space Np) Let Mp = Mp(R
d) denote the set of all p{tem-

pered measures on R
d
; that is (non-negative) measures � on R

d

such that the integral
R
Rd
�(dx)�p(x) is �nite. Introduce the weakest

topology in Mp such that for each ' 2 Cp the mapping

� 7! h�; 'i :=

Z
Rd

�(dx)'(x)

is continuous. Note that the (normed) Lebesgue measure ` on R
d

belongs to Mp : Write Np = Np(R
d) for the subset of all counting

measures � in Mp ; that is, measures with values in f0; 1; :::;1g:
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The set Np inherits the topology of Mp : It serves as the state space

of the branching particle system we will introduce. Especially, the

Dirac delta measure Æx 2 Np describes a single particle with position

x 2 Rd. 3

Recall that a random counting measure � = �� on R
d is called a

Poissonian particle �eld with intensity measure � 2 Mp if it has log-

Laplace transform

� logE exp h�;�'i =


�; 1� e�'

�
; ' 2 C +

p
:

(As with R+ ; an index + on a set refers to all of its non-negative members.)

In particular, �i0 ` denotes the homogeneous Poissonian particle �eld with

intensity i0 > 0.

Here now is our basic model. (In order to get a Markovian setting, in-

clude residual life times in the description of the phase space, see [FVW03].)

De�nition 2 (Branching particle system Z) The (in general non-Mar-

kovian) process Z =
�
Zt : t � 0

	
we are dealing with can be described by

the following properties:

� At time t = 0, start with a measure Z0 = � 2 Np(R
d):

� Each particle Æx � � starts, independently of the other particles of

�; a path � in R
d with law Px :

� But it lives only a �nite time (with probability one) which is an inde-

pendent copy of �:

� In the moment of its death, it produces o�spring which number is an

independent copy of �:

� Newly born particles get paths, which are independent copies of �

starting at the parents' death time from the parents' position.

� And they get lifetimes, which are independent copies of � .

� Write P� for the law of Z: This is considered as a measure on the

set D(R+ ;Np) of all Np{valued c�adl�ag paths.

For convenience, this process (Z;P�) is said to be a (d; �; �;G){branching

particle system. Write Pi0
instead, if Z0 is the homogeneous Poissonian

particle �eld �i0 `
with intensity i0 > 0. 3

Note that we imposed maximal independence assumptions in de�ning Z:

The main dependence assumption is that newly born particles start from the

ancestor's death place. Clearly, Z is Markovian if and only if the lifetime

distribution G is an exponential law.
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1.3 Main result: Multi-scale clustering of Z

We are interested in the long-time behavior of the spatial correlations of

the (d; �; �;G){branching particle system Z of De�nition 2 in the critical

dimension d = �=� (meaning always that this is assumed to be an integer).

Recall that � and 1+� are the motion and branching indices, respectively.

Here is the more precise setting: For each constant h < 1; introduce the

following time-dependent mass-space scaling

Zh
t (B) := (th log t)�1=� Zt(t

h=�B); t > 0; Borel B � R
d: (6)

Consequently, space is contracted and mass renormalized, both in a t{

dependent way. Moreover, we will feed the initial state of Z additionally

with particles, also in a t{dependent way, that is to look at Zh
t 2 Mp under

the laws P[i0 (t log t)1=�]Æt1=�x
and Pi0 (log t)1=�

; i0 > 0; respectively.

To describe our main result, we also need to introduce a \classical"

object.

De�nition 3 (Continuous-state branching of index 1 + �) For a pos-

itive constant ; denote by � = f�t : t � 0g the continuous-state branch-

ing process with index 1 + � and branching rate : That is, � is the

(time-homogeneous) non-negative Markov process with c�adl�ag paths hav-

ing log-Laplace transition function

� logE
�
e���t

�
� �0

	
= �0 v(t; �); t; � � 0; (7)

where, for � �xed, v = v( � ; �) = fv(t; �) : t � 0g is the unique solution to

the ordinary di�erential equation

d

dt
v = �  v1+� with initial condition v(0; �) = �: (8)

Consequently,

v(t; �) = �
�
1 +  � t ��

�
�1=�

; t; � � 0: (9)

3

Recall that under suitable scalings, � arises as a limiting process from

Galton-Watson processes with o�spring generating function f from Hy-

pothesis 1(c) (see, for instance, Lamperti [Lam67]).

Here is our main result :

Theorem 4 (Multi-scale clustering for Z) Let d = �=�: Consider the

Mp(R
d){valued processes

�
Zh
t : 0 � h < 1

	
; t > 1; and f�1�h ` : 0 � h < 1g;
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with Zh
t de�ned in (6) and where � is the continuous-state branching pro-

cess of De�nition 3, but with branching rate

 := cf D where D :=
1

�

Z
Rd

dy p
1+�
1 (y): (10)

Under laws of Z and � which still have to be described, we ask for the

convergence

�
Zh
t : 0 � h < 1

	 fdd
�!
t"1

f�1�h ` : 0 � h < 1g (11)

in the sense of convergence of �nite-dimensional distributions. Fix i0 > 0:

(a) (Localized initial state) Fix a point x 2 Rd: Claim (11) holds un-

der the distributions P[i0 (t log t)1=�]Æt1=�x
of Z and if �0 = i0 p1(x):

(b) (Homogeneous initial state) Claim (11) also holds under the dis-

tributions Pi0 (log t)1=� of Z and if �0 = i0 :

Consequently, the limit state is uniform, and its intensity varies in de-

pendence on the multi-scale index h and according to the continuous-state

branching process �: In the in�nite population case of (b), as t " 1;

for each �xed scaling index h 2 [0; 1); clusters grow at scale (th log t)1=�

as t " 1: Recall that we started Z with a t{dependent initial inten-

sity i0 (log t)
1=� : In particular, if h = 0; for t large, Zt(B) is of order

(log t)1=� �1 `(B) with �1 � 0 the (random) state of the continuous-state

branching process � at time 1 if started at time 0 at �0 = i0 :

Remark 5 (Tightness) Unfortunately, it remains open whether the fdd

convergence statement (11) can be lifted up to convergence of laws on Sko-

rohod path space. 3

1.4 Re�ned asymptotics

Theorem 4 is based on some re�ned asymptotic statements we now want

to describe. For this purpose, we introduce the following notations. Fix

' 2 C+p (R
d); and set

Qt' (x) := EÆx

�
1� e�hZt ;'i

�
; t � 0; x 2 Rd; (12)

and

'h;t(x) := (th log t)�1=� '(t�h=�x); 0 � h < 1; t > 0; x 2 Rd: (13)

Theorem 6 (Re�ned asymptotics for Q) Assume d = �=�: Then, for

�xed x 2 Rd and h 2 [0; 1);

(t log t)1=� Qt('h;t)(t
1=�x) �!

t"1
p1(x) v

�
1� h; h`; 'i

�
; (14)

with the \macroscopic" log-Laplace function v from (9), but with branching

rate  as in (10).

The proof of this theorem is postponed to Subsection 2.9 below.
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1.5 Multi-scale clustering for the (d; �; �){superprocess

In order to pass to a superprocess setting via a high density limit, we con-

sider a whole family
�
Z(") : 0 < " � 1

	
of (d; �; �;G"){branching particle

systems. On them we assume that

� the (deterministic) initial states Z
(")
0 satisfy "Z

(")
0 ! � in Mp(R

d)

as " # 0;

� the lifetime distributions G" are given by G"(s) := G("��s); s � 0;

with G as before (with mean �).

Then the "Z(") converge in law on Skorohod space D(R+;Mp) to a limit

process denoted by X = fXt : t � 0g : Here (X;P�) is the famous (d; �; �){

superprocess with initial state X0 = � and with branching rate % = cf=�

with cf from (3). Recall that the (time-homogeneous) Markov process X

is determined by its log-Laplace functional

� logP�e
�hXt;'i =



�; u(t; � )

�
; t � 0; ' 2 C +

p
;

where u = u(�; �;') =
�
u(t; x;') : t � 0; x 2 Rd

	
is the unique non-negative

solution of the log-Laplace equation

u(t; x;') = Ex

�
'(�t) � %

Z
t

0

ds u1+�(t� s; �s ;')

�
; (15)

t � 0; x 2 Rd; which is a more detailed version of (2). For the convergence

statement, see, for instance, [KS98].

For this (d; �; �){superprocess X the following result holds analogously

to Theorem 4. Here the scaled quantities Xh

t
are de�ned just as in (6).

Theorem 7 (Multi-scale clustering for X) Let d = �=�: Consider the

Mp(R
d){valued processes

�
Xh

t
: �1 < h < 1

	
; t > 1; and f�1�h ` : �1 < h < 1g; (16)

where � is the continuous-state branching process of De�nition 3, but with

branching rate

 := cf D where D :=
1

�

Z
Rd

dy p
1+�
1 (y):

Under laws of X and � which still have to be described, we ask for the

convergence

�
Xh

t
: �1 < h < 1

	 fdd
�!
t"1

f�1�h ` : �1 < h < 1g (17)

in the sense of convergence of �nite-dimensional distributions. Fix i0 > 0:
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(a) (Localized initial state) Fix a point x 2 Rd: Claim (17) holds un-

der the distributions P[i0 (t log t)1=�]Æt1=�x
of X and if �0 = i0 p1(x):

(b) (Homogeneous initial state) Claim (17) also holds under the dis-

tributions Pi0 (log t)1=�` of X and if �0 = i0 :

Note that in the superprocess setting also negative scaling indices are

allowed. This multi-scale clustering of X is based on the following analogy

of Theorem 6.

Theorem 8 (Re�ned asymptotics for u) Assume d = �=�: Then, for

�xed x 2 Rd and �1 < h < 1;

(t log t)1=� u
�
t; t

1=�
x;'h;t

�
�!
t"1

p1(x) v
�
1� h; h`; 'i

�
; (18)

with the macroscopic log-Laplace function v from (9), but with branching

rate  as in (10).

The proofs of Theorems 8 and 7 are easier than the ones concerning the

statements in the (non-Markovian) particle model case, and we will indicate

them in Subsection 3.6 below.

2 Re�ned asymptotics for Q

The purpose of this section is to prove the re�ned asymptotics for Q as

stated in Theorem 6. A key step will be an approximate renewal equation

(Proposition 12) and an L
1{convergence statement (Proposition 16).

2.1 On the renewal function

The symbol c will always denote a positive constant which may vary from

place to place. Notation c(#) and c# instead will refer to such a con-

stant which �rst occurred in formula line (#) and, for instance, Lemma #,

respectively.

For convenience, here we collect some properties of the renewal function,

say N; related to the lifetime distribution G from Hypothesis 1(b):

Nt :=

1X
i=1

G
�i(t); t � 0: (19)

Lemma 9 (A renewal function weighted increment) There is a con-

stant c9 = c9(G) such that

0 �

Z r

q

N
�
t�ds

1

s
� c9

�
2 + log

r

q

�
; 1 � q < r � t; (20)

where N
�
t�ds refers to a Stieltjes integration with respect to the non-decrea-

sing function s 7! N
�
t�s := �Nt�s :
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Proof By the key renewal theorem (see e.g. Feller [Fel71, Chapter XI, x 1]),

Ns �Ns�1 �!
s"1

1

�
: (21)

Combined with the fact that s 7! Ns is non-decreasing, we get

0 < sup
s�0

(Ns �Ns�1) =: c9 < 1;

where we use the convention Ns := 0 if s < 0: Let 1 � q < r � t: With

this constant c9 ;

Z
r

q

N�

t�ds

1

s
�

[r]X
i=[q]

Z
i+1

i

N�

t�ds

1

s
�

[r]X
i=[q]

1

i
(Nt�i �Nt�i�1)

� c9

[r]X
i=[q]

1

i
� c9

�
2 + log

r

q

�
; (22)

as desired.

Lemma 10 (A renewal measure asymptotics) Let g : [0; 1]! R+ de-

note a non-increasing function and 0 � h < 1: Then

lim
"#0

lim sup
t"1

sup
r2[th+";t]

1

log t

���� 1�
Z

r

th

ds
1

s
g
�
log s

log t

�

�

Z
r
1�"

th+"

N�

r�ds

1

s
g
�
log s

log t

����� = 0:

Note that this statement (and also several later ones) becomes trivial if

G is the exponential distribution, since here Nr = r=�; r � 0:

Proof Let 0 � h < 1, 0 < " � (1� h)=4; and 1 < th+" � r � t: Because

g is monotone, by (21), for t � t0 = t0(");

Z
r
1�"

th+"

N�

r�ds

1

s
g
�
log s

log t

�
�

[r1�"]X
i=[th+"]

Z
i+1

i

N�

r�ds

1

s
g
�
log s

log t

�

�

[r1�"]X
i=[th+"]

1

i
g
�
log i

log t

�
(Nr�i �Nr�i�1) �

1 + "

�

[r1�"]X
i=[th+"]

1

i
g
�
log i

log t

�

�
1 + "

�

Z
r
1�"=2

th+"=2

ds
1

s
g
�
log s

log t

�
: (23)

By similar arguments,

Z
r
1�"

th+"

N�

r�ds

1

s
g
�
log s

log t

�
�

1� "

�

Z
r
1�2"

th+2"

ds
1

s
g
�
log s

log t

�
: (24)
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On the other hand, by boundedness of the g,

�Z th+"

th
+

Z r

r1�"

�
ds

1

s
g
�
log s
log t

�
� c " log t: (25)

Estimates (23){(25) together imply the claim.

2.2 The scaled renewal equation

From now on we �x for a while ' 2 C +
p and 0 � h < 1: Also, we only pay

attention to the critical parameter constellation

d = �=�: (26)

To prepare for the proof of the re�ned asymptotics, it will be advantageous

to introduce some additional parameters at the left hand side of (14). In

fact, we pass to

(r log t)1=� Qr(�'h;t) (r
1=�

x) =: Fr;t;�
�
ah(r; t); x

�
; (27)

1 � t
h
< r � t; � � 0; 0 � h < 1; x 2 Rd; with

ah(r; t) :=
log r

log t
� h =

log(rt�h)

log t
2 (0; 1] (28)

and

Fr;t;�(a; x) := (r log t)1=� Qr

�
(a log t)1=�

(log(rt�h))1=�
�'h;t

�
(r1=�x); (29)

0 < a � 1:

Recall from [KS98, Lemma 3] that the following \renewal equation"

holds:

Qt' (x) = Ex

�
1� e�'(�t)

�
�

Z t

0

N
�

t�ds Ex	
�
Qs' (�t�s)

�
; (30)

t � 0; x 2 Rd: It implies the expectation formula

EÆxhZt ; 'i = Ex'(�t); x 2 Rd; t � 0; ' 2 Cp(R
d); (31)

(for instance, pass from ' � 0 to �' and di�erentiate to � > 0 at � = 0+);

and the domination

0 � Qt' (x) � Ex'(�t); x 2 Rd; t � 0; ' 2 Cp(R
d): (32)

We want to use equation (30) to study some asymptotic properties of

Fr;t;�

�
ah(r; t); x

�
from (27). For this aim, in (30) replace the pair t; x by

r; r
1=�

x; and ' by �'h;t; as well as multiply the equation by (r log t)1=� :

Then we get the scaled renewal equation

Fr;t;�

�
ah(r; t); x

�

= Lr;t;�(x) � (r log t)1=�
Z r

0

N
�

r�dsEr1=�x	
�
Qs(�'h;t) (�r�s)

�
; (33)
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1 � th < r � t; � � 0; 0 � h < 1; x 2 Rd; where

Lr;t;�(x) := (r log t)1=� Er1=�x

h
1� exp

�
� �'h;t(�r)

�i
: (34)

2.3 Dominations concerning the scaled equation

Clearly,

Fr;t;�

�
ah(r; t); x

�
� Lr;t;�(x) � (r log t)1=� Er1=�x �'h;t(�r): (35)

But from de�nition (13) of 'h;t and the self-similarity

bd=� pbs(b
1=�y) = ps(y); b; s > 0; y 2 Rd; (36)

of the �{stable kernel p we obtain

(r log t)1=� Er1=�x 'h;t(�r) =

Z
Rd

dy p1(t
h=�r�1=�y � x)'(y); (37)

since d=� = 1=� by criticality (26). Hence

(r log t)1=� Er1=�x 'h;t(�r) � p1(0) h`; 'i: (38)

Combining (35) and (38),

0 � Fr;t;�

�
ah(r; t); x

�
� Lr;t;�(x) � p1(0) h`; �'i: (39)

In particular,

��1Fr;t;�

�
ah(r; t); x

�
is uniformly bounded (40)

in the considered r; t; h; � and x: On the other hand, integrating the right

hand side of equation (33) with respect to dx; from its non-negativity we

get the estimate

0 � (log t)1=�
Z r

0

N�r�ds

Z
Rd

dx 	
�
Qs(�'h;t) (x)

�

�

Z
Rd

dx Lr;t;�(x) �

Z
Rd

dx (r log t)1=� Er1=�x �'h;t(�r) = h`; �'i; (41)

where we used twice the criticality (26) as well as (35).

Lemma 11 (Convergence of Lr;t;�) For 0 < " � 1� h and � � 0;

lim
t"1

sup
r2[th+";t]

��Lr;t;�(x)� p1(x) h`; �'i
�� = 0; x 2 Rd; (42)

and

lim
t"1

sup
r2[th+";t]

Z
Rd

dx
��Lr;t;�(x) � p1(x) h`; �'i

�� = 0: (43)



Multi-scale clustering 13

Proof From de�nition (34) of Lr;t;�(x); similarly to (37),

Lr;t;�(x) = (th log t)1=�
Z
Rd

dy p1(t
h=�r�1=�y � x) �

h
1� exp

�
� (th log t)�1=��'(y)

�i
: (44)

But

0 � th=�r�1=� � t�"=� �!
t"1

0

in the considered range of r: Then the extended dominated convergence

theorem implies (42).

Distinguishing between jyj � K and jyj > K in (44), and letting

K " 1; also (43) follows. This �nishes the proof.

2.4 Approximate renewal equation

A crucial tool in our development is the following asymptotic equation.

Recall that we �xed ' 2 C
+
p

and 0 � h < 1; and that Fr;t;� and Lr;t;�

had been de�ned in (27) and (34).

Proposition 12 (Approximate renewal equation) Let � � 0; 0 < " �

(1� h)=2; and 1 < th+"
� r1�" � t1�": Then, for each x 2 Rd;

Fr;t;�
�
ah(r; t); x

�
= Lr;t;�(x) � S"

r;t;�
(x)

� p1(x)
1

log t

Z
r
1�"

th+"

N�

r�ds

1

s

Z
Rd

dy 	
�
Fs;t;�

�
ah(s; t); y

��
: (45)

Here S"

r;t;�
(x) is an error term satisfying

lim
"#0

lim sup
t"1

sup
r2[th+";t]

� ��S"

r;t;�
(x)

�� +
Z
Rd

dz
��S"

r;t;�
(z)

��� = 0: (46)

As a preparation for the proof we expose the following estimate.

Lemma 13 (A partial bound) There is a constant c13 = c13(') such

that

Ex	
�
Qs(�'h;t) (�r�s)

�
� c13 �

1+� (log t)�1
�
s�1

^ t�h
�
Ex'h;t(�r)

for t > 1; 0 � s � r � t; � � 0; and x 2 Rd:

Proof First of all,

Ex'h;t(�s) �
�
ps(0) h`; 'h;ti

�
^ k'h;tk1 : (47)

Moreover,

ps(s
1=�x) = s�1=� p1(x) (48)
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by self-similarity (36), as well as

h`; 'h;ti � (log t)�1=� h`; 'i; k'h;tk1 = (log t)�1=� t�h=� k'k1 : (49)

Combining with the critical parameter constellation d = �=� yields

�
Ex'h;t(�s)

��
� c13

�
s�1 ^ t�h

�
(log t)�1 (50)

for some constant c13 = c13('): Then domination (32) with ' replaced by

�'h;t gives

Ex	
�
Qs(�'h;t) (�r�s)

�
� �1+� Ex	

�
E�r�s'h;t(�

0

s)
�

with �0 an independent copy of �: Now (50) and the Markov property of

� imply the claim.

2.5 Some error terms

Related to the expectation expression occurring in the scaled renewal equa-

tion (33) we introduce six error terms : For the �xed ' 2 C+
p and 0 � h < 1;

as well as � � 0; 0 < " � (1� h)=2; 1 < th+" � r1�" � t1�"; K � 0; and

x 2 Rd; set

1I(x) = 1Ir;t;�(x) :=

Z th

0

N�

r�dsEr1=�x	
�
Qs(�'h;t) (�r�s)

�
;

2I(x) = 2I"r;t;�(x) :=

Z th+"

th
N�

r�dsEr1=�x	
�
Qs(�'h;t) (�r�s)

�
;

3I(x) = 3I"r;t;�(x) :=

Z r

r1�"
N�

r�dsEr1=�x	
�
Qs(�'h;t) (�r�s)

�
;

4I(x) = 4I
";K
r;t;�(x)

:=

Z r1�"

th+"
N�

r�dsEr1=�x1fj�r�sj>Ks1=�g	
�
Qs(�'h;t) (�r�s)

�
;

5I(x) = 5I";Kr;t;�(x) :=

Z r1�"

th+"
N�

r�ds

Z
jyj�Ks1=�

dy �

�
pr�s(y � r1=�x)� pr(�r

1=�x)
�
	
�
Qs(�'h;t) (y)

�
;

6I(x) = 6I
";K
r;t;�(x) := pr(�r

1=�x)

Z r1�"

th+"
N�

r�ds �Z
jyj>Ks1=�

dy 	
�
Qs(�'h;t) (y)

�
:

Lemma 14 (Error terms) Let 0 < Æ � 1 and 0 < " < (1 � h)=2: Then

there exists a constant c14 = c14('); a t0 = t0('; h; "; Æ); and a K0 =
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K0('; Æ) � 1 such that for all t � t0 ; � � 0; 1 < th+" � r1�" � t1�"; x 2

R
d; and K � K0 ;

0 �
X

1�i�6

� ��iI(x)�� +
Z
Rd

dz
��iI(z)�� �

� c14
�
"+ Æ + ~Æt(";K; h; t0)

�
(� + �1+�) (r log t)�1=� ; (51)

where, for "; h; t0 �xed,

lim
K"1

lim sup
t"1

~Æt(";K; h; t0) = 0: (52)

Proof 1Æ
�
1I(x)

�
By Lemma 13,

0 � 1I(x) � c13 �
1+� (log t)�1 Er1=�x'h;t(�r) t

�h

Z th

0

N�

r�ds : (53)

From the key renewal theorem follows that

t�h (Nr �Nr�th) ��!
r;t"1

1

�
; (54)

while (log t)�1 � " for t � t0(") > 1: Therefore

iI(x) � c " �1+� Er1=�x'h;t(�r) (55)

holds for i = 1:

2Æ
�
2I(x) + 3I(x)

�
Again by Lemma 13,

0 � 2I(x) + 3I(x) � c13 �
1+� (log t)�1�

Er1=�x'h;t(�r)

�Z th+"

th
+

Z r

r1�"

�
N�

r�ds

1

s
:

But by Lemma 9 the latter integral expressions are bounded by

2 c9 (2= log t+ ") log t � c " log t:

This yields (55) also for i = 2; 3: Now by inequality (38) and the last

identity in the array (41),

Er1=�x'h;t(�r) +

Z
Rd

dz Er1=�z'h;t(�r) � c (r log t)�1=� : (56)

Therefore, from (55) for i � 3; the assertion concerning i � 3 within

estimate (51) follows.

3Æ
�
4I(x)

�
By domination (32), for an independent copy �0 of �;

0 � 	
�
Qs(�'h;t) (�r�s)

�
� �1+� 	

�
E�r�s'h;t(�

0

s)
�

(57)
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(given �): But by de�nition (13), substitution, self-similarity (36) of p; and

critical parameter constellation (26),

Ey'h;t(�
0
s
) = (s log t)�1=�

Z
Rd

dz p1
�
th=�s�1=�z � s�1=�y

�
'(z): (58)

Decompose the latter integration range into jzj > K=2 and jzj � K=2: In

the �rst case,

Z
jzj>K=2

dz p1
�
th=�s�1=�z � s�1=�y

�
'(z) � p1(0)

Z
jzj>K=2

dz '(z) � Æ1=�

for K � K0 = K0('; Æ): In the remaining case, with y = �r�s ;

Z
jzj�K=2

dz p1
�
th=�s�1=�z � s�1=��r�s

�
'(z) � Æ1=�

for K � K0 ; enlarging K0 = K0('; Æ) if needed. In fact, s � th implies��th=�s�1=�z
�� � jzj � K=2; whereas

��s�1=��r�s
�� > K: Consequently, for all

K � K0 we use the estimate

�
E�r�s

'h;t(�
0
s
)
��

1
fj�r�sj>Ks1=�g

� Æ (s log t)�1 (59)

in (57) and then go back to the de�nition of 4I(x) :

0 �
4I(x) � Æ (log t)�1 �1+� Er1=�x'h;t(�r)

Z
r
1�"

th+"

N�

r�ds

1

s
;

for K � K0 : But

0 < log
r1�"

th+"
� (1� h� 2") log t � log t;

hence Lemma 9 yields

Z
r
1�"

th+"

N�

r�ds

1

s
� c9 (2 + log t) � c log t: (60)

Thus,

0 �
4I(x) � c Æ �1+� Er1=�x'h;t(�r):

Using again (56), we see that 4I(x) contributes to (51) as claimed.

4Æ
�
5I(x)

�
By self-similarity (36) and critical parameter constellation we

have

��pr�s(y � r1=�x)� pr(�r
1=�x)

��
= r�1=�

��p1�s=r(r�1=�y � x)� p1(�x)
�� �

~Æ
(1)
t

(";K; h; t0) r
�1=� : (61)
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In fact, 1� s=r � 1� r
�"

� 1� t
�"

� 1� t
�"

0 > 0; as well as

��r�1=�y�� � K (s=r)1=� � K t
�h"=�

�!
t"1

0; (62)

since the assumption t
h+"

� r
1�" implies t

h
� r; and because p is jointly

uniformly continuous for the time variable away form the origin. Here
~Æ
(1)
t (";K; h; t0) ! 0 as t " 1; for �xed ";K; h; t0 : At the same time,

again by (61),

Z
Rd

dz
��pr�s(y � r

1=�
z)� pr(�r

1=�
z)

�� (63)

= r
�1=�

Z
Rd

dz
��p1�s=r(r�1=�y � z)� p1(�z)

��:
Decomposing the latter integral concerning jzj � K and jzj > K: In

the �rst case, we use once more jointly uniform continuity to bound the

restricted integral expression as before, whereas in the second one we exploit

that the restricted integral converges to 0 as K " 1; uniformly in the other

variables. Altogether, (63) can be bounded by ~Æ
(2)
t (";K; h; t0) r

�1=�
; where

~Æt(";K; h; t0) := ~Æ
(1)
t (";K; h; t0) + ~Æ

(2)
t (";K; h; t0)

has the required property (52). Consequently, from the inequality in array

(61) and the derived bound for (63),

��5I(x)�� +
Z
Rd

dz
��5I(z)��

� ~Æt(";K; h; t0) r
�1=�

Z r

0

N
�

r�ds

Z
Rd

dy 	
�
Qs(�'h;t) (y)

�

� ~Æt(";K; h; t0) (r log t)
�1=�

� h`; 'i;

where we used (41) in the last step. Thus, 5
I(x) enters into (51) in the

desired way.

5Æ
�
6
I(x)

�
Using (57) and (59), for K � K0 ;

0 �

Z
jyj>Ks1=�

dy 	
�
Qs(�'h;t) (y)

�

� cf Æ (log t)
�1

�
1+� 1

s

Z
jyj>Ks1=�

dy Ey'h;t(�s):

Delete the restriction in the integration domain and apply the �rst identity

of (49). Moreover, exploit self-similarity (48). Then,

0 �
6
I(x) � c Æ (log t)�(1+�)=� r�1=� �1+� p1(x)

Z
r
1�"

th+"

N
�

r�ds

1

s
:

With (60) we �nish the proof.
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2.6 Proof of Proposition 12

Starting from the scaled renewal equation (33), we have to rewrite the sec-

ond term at its right hand side. It equals

(r log t)1=�
� X

1�i�6

i
I(x) + 0

I(x)

�

with the error terms 1
I(x); : : : ; 6I(x) de�ned in the beginning of the previous

subsection, and the main term

0
I(x) = 0

I
"
r;t;�(x)

:= pr(r
1=�

x)

Z r1�"

th+"
N
�
r�ds

Z
Rd

dy 	
�
Qs(�'h;t) (y)

�
: (64)

By a simple substitution,

(r log t)1=� 0
I(x) = (r log t)1=� pr(r

1=�
x)

Z r1�"

th+"
N
�
r�ds�Z

Rd

dy s
1=� 	

�
Qs(�'h;t) (s

1=�
y)
�
:

Using de�nition (27) of Fs;t;�

�
ah(s; t); y

�
; and identity (48), we arrive at

the desired last term in (45).

It remains to show that

S
"
r;t;�(x) = (r log t)1=�

X
1�i�6

i
I(x) (65)

satis�es (46). Note that S
"
r;t;�(x) does not depend on K; despite K occurs

implicitly at the right hand side of (65) via the i
I(x); 4 � i � 6: From

decomposition (65) and estimate (51),

��S"
r;t;�(x)

��+
Z
Rd

dz
��S"

r;t;�(z)
��

� c

�
"+ Æ + ~Æt(";K; h; t0)

�
(� + �

1+�); (66)

for K � K0 = K0('; Æ) and t � t0 : First we built the supremum on r in

the range as required in (46), and then we let t " 1: Since the left hand

side in inequality (66) does not depend on K; we now let K " 1; which

gives

lim sup
t"1

sup
r2[th+";t]

� ��S"
r;t;�(x)

��+
Z
Rd

dz
��S"

r;t;�(z)
���

� c ("+ Æ) (� + �
1+�):

Then �rst " # 0 and afterwards Æ # 0 �nishes the proof.
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2.7 Approximate limiting equation

Here we want to derive a certain limiting counterpart to the approximate

renewal equation of Proposition 12. For the �xed ' 2 C +
p
; set

F�(a; x) := p1(x) v
�
a; h`; �'i

�
; �; a � 0; x 2 R

d
; (67)

with v the log-Laplace function of � as in (9), with branching rate  from

(10). Note that

F�(a; x) = p1(x) h`; �'i � p1(x)
1

�

Z
a

0

ds

Z
Rd

dy 	
�
F�(s; y)

�
(68)

and, for � > 0;

0 � �
�1

F�(a; x) � p1(x) h`; 'i � p1(0) h`; 'i: (69)

Recall that besides ' 2 C +
p

also 0 � h < 1 are �xed.

Lemma 15 (Approximate limiting equation) Let � � 0; 0 < " � (1�

h)=2; and 1 < t
h+" � r

1�" � t
1�"

: Then for each x 2 Rd
;

F�

�
ah(r; t); x

�
= p1(x) h`; �'i �

0

S
"

r;t;�
(x)

� p1(x)
1

log t

Z
r
1�"

th+"

N
�

r�ds

1

s

Z
Rd

dy 	
�
F�

�
ah(s; t); y

��
:

Here 0

S
"

r;t;�
(x) is an error term satisfying a statement as in (46).

Proof Let �; "; r; t; x as in the lemma. From (68) and substitution

s 7! ah(s; t) =
log s

log t
� h (70)

[recall (28)], we obtain

F�

�
ah(r; t); x

�
= p1(x) h`; �'i

� p1(x)
1

log t

1

�

Z
r

th

ds
1

s

Z
Rd

dy 	

�
F�

�
log s

log t
� h; y

��
: (71)

By Lemma 10, the second term at the right hand side of (71) equals

p1(x)
1

log t

Z
r
1�"

th+"

N
�

r�ds

1

s

Z
Rd

dy 	

�
F�

�
log s

log t
� h; y

��

except the error term 0

S
"

r;t;�
(x) = p1(x) �

"

r;t;�
satisfying (46). With the

de�nition of ah(s; t); the proof is then �nished.
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2.8 Convergence in L
1(dx)

We will use Proposition 12 to derive the following result.

Proposition 16 (Convergence in L1(dx)) There exists a positive �0 =

�0('; h) such that

lim
t"1

sup
r2[th+";t]

Z
Rd

dx

���Fr;t;�

�
ah(r; t); x

�
� F�

�
ah(r; t); x

���� = 0

for 0 < " � 1� h and 0 � � � �0 :

Proof Set

J
(�)

r;t;�
:=

Z
Rd

dx

���F 1+�

r;t;�

�
ah(r; t); x

�
� F

1+�

�

�
ah(r; t); x

����; (72)

where for the purpose of this notation we also allow � = 0: In virtue of

Proposition 12 and Lemma 15,

���Fr;t;�

�
ah(r; t); x

�
� F�

�
ah(r; t); x

���� �

���Lr;t;�(x)� p1(x) h`; �'i

���

+
��S"

r;t;�(x) +
0S"

r;t;�(x)
�� + p1(x)

cf

log t

Z r
1�"

th+"

N�
r�ds

1

s
J
(�)

s;t;�
: (73)

From the elementary inequality

��a1+�
� b1+�

�� � (1 + �) ja� bj
�
a� + b�

�
; a; b � 0; (74)

and since ��1Fs;t;� and ��1F� are uniformly bounded [recall (40) and (69)],

there is a constant c(75) = c(75)(') such that

J
(�)

s;t;�
� c(75) �

� J
(0)

s;t;�
: (75)

By Lemma 11, there is a t0 = t0('; �) > 1 such that for all t � t0 the

L1(dx){norm of the �rst term at the right hand side of inequality (73) is

bounded from above by " = "(�); uniformly in the considered r: Therefore,

integrating inequality (73) with dx; using (75) we get

J
(0)

r;t;�
� " + �"

r;t;� +
cf

log t

Z r
1�"

th+"

N�
r�ds

1

s
c(75) �

� J
(0)

s;t;�
; t � t0 ;

where

�"
r;t;� :=

Z
Rd

dx
��S"

r;t;�(x) +
0S"

r;t;�(x)
�� :

Introduce

J
(0)

t;�
:= sup

r2[th+";t]

J
(0)

r;t;�
: (76)
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Then the previous estimate yields

J
(0)
t;�

� " + sup
r2[th+";t]

�"
r;t;�

+ J
(0)
t;�

�
�

0 c(75)
cf

log t
sup

r2[th+";t]

Z r
1�"

th+"

N�

r�ds

1

s
; t � t0 :

But by Lemma 9,

Z r
1�"

th+"

N�

r�ds

1

s
� c (1� h) log t; t � t0 ; (77)

enlarging t0 if needed. Altogether,

J
(0)
t;�

� " + sup
r2[th+";t]

�"
r;t;� + J

(0)
t;�

�� c(75) c9 cf (1� h); t � t0 :

We choose �0 > 0 so small that

�
�

0 c(75) c9 cf (1� h) =: � < 1:

Then, for � 2 [0; �0] and t � t0 ;

(1� �)J
(0)
t;�

� "+ sup
r2[th+";t]

�"
r;t;� :

Letting t " 1 and then " # 0; by (46) [applied to S"
r;t;�(x) and 0S"

r;t;�(x) ]

we obtain limt"1 J
(0)
t;�

= 0: This �nishes the proof.

2.9 Re�ned asymptotics for Q (proof of Theorem 6)

Recall de�nition (72) of J
(�)
r;t;�

: Exploit the elementary inequality (74) and

use that Fr;t;� and F� are uniformly bounded (for the �xed �): Then by

Proposition 16, for 0 < " � 1� h; there exists a �0 = �0('; h) such that

lim
t"1

sup
r2[th+";t]

J
(�)
r;t;�

= 0; 0 < " � 1� h; 0 � � � �0 : (78)

From Proposition 12 and Lemma 15,
���Ft;t;�(1� h; x)� F�(1� h; x)

��� �
���Lt;t;�(x)� p1(x) h`; �'i

���
+

��S"
t;t;�(x) +

0S"
t;t;�(x)

�� + p1(x)
cf

log t

Z t
1�"

th+"

N�

t�ds

1

s
J
(�)
s;t;�

: (79)

By Lemma 11, the �rst term at the right hand side converges to 0 as t " 1:

Also, for a given Æ > 0; by (78), there is a t0 = t0(Æ; �) > 1 such that for

all t � t0 Z t
1�"

th+"

N�

t�ds

1

s
J
(�)
s;t;�

� Æ

Z t
1�"

th+"

N�

t�ds

1

s
:
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Hence, recalling (77), the third term at the right hand side of (79) will

vanish, too. Finally, the middle term will disappear by (46). Consequently,

Ft;t;�(1� h; x) �!
t"1

F�(1� h; x); 0 < � � �0 ;

which by de�nitions (29) and (67) can be rewritten as

(t log t)1=� Qt(�'h;t) (t
1=�x) �!

t"1
p1(x) v

�
1� h; h`; �'i

�
: (80)

Assume for the moment, both sides are analytic functions in � � 0 (or

<� > 0): Then (80) holds for all � � 0: Then we can specialize to � = 1

to �nish the proof.

To get this analyticity, for later use we put additionally a factor i0 > 0:

Then, for any � � 0; by (7),

i0 p1(x) v
�
1� h; h`; �'i

�
= � logE

n
e�h`;'i��1�h

��� �0 = i0 p1(x)
o
; (81)

which is a log-Laplace function, hence analytic in the considered �{domain.

On the other hand, by de�nitions (12), (13), and (6),

Qt(�'h;t) (t
1=�x) =

�
1�EÆ

t1=�x
exp

�
��hZh

t ; 'i
��
; (82)

and we reduced it to a Laplace function, implying again analyticity. This

completes the proof.

3 Multi-scale clustering

The purpose of this section is to verify the multi-scale clustering as stated in

Theorem 4. With the re�ned asymptotics for Q established in the previous

section, convergence of one-dimensional distributions can easily be proven.

More e�orts are needed for the multi-dimensional case.

3.1 Convergence of one-dimensional distributions

Proof of Theorem 4(a) Fix again ' 2 C +
p and 0 � h < 1: By (82),

EÆ
t1=�x

exphZh
t ;�'i = 1�Qt('h;t) (t

1=�x):

Thus, by the branching property,

logE[i0 (t log t)1=�]Æt1=�x
exphZh

t ;�'i

=
�
i0 (t log t)

1=�
�
log

�
1�Qt('h;t) (t

1=�x)
�
:

Now we can apply the re�ned asymptotics of Theorem 6 to get

lim
t"1

logE[i0 (t log t)1=�]Æt1=�x
exphZh

t ;�'i = �i0 p1(x) v
�
1� h; h`; 'i

�
:
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Then (81) gives statement (a).

Proof of Theorem 4(b) Recall that the initial population Z0 is here

assumed to be a homogeneous Poisson point �eld with intensity i0 (log t)
1=� :

Then this time we get

� logEi0 (log t)1=� exphZ
h
t ;�'i = i0 (log t)

1=�


`;Qt('h;t)

�
: (83)

Since we are in the critical dimension d = �=�; the right hand side of

identity (83) can be rewritten as

i0 (t log t)
1=�

Z
Rd

dx Qt('h;t) (t
1=�x) = i0

Z
Rd

dx Ft;t;1;h(1� h; x): (84)

But from (35) and Lemma 11,

Ft;t;1;h(1� h; x) � Lt;t;1;h(x) �!

t"1
p1(x) h`; 'i:

Thus, by the extended dominated convergence theorem and again by The-

orem 6, in (84) we may pass to the limit as t " 1 to arrive at

i0 v
�
1� h; h`; 'i

�
= � logE

n
e�h`;'i�1�h

��� �0 = i0

o
;

giving statement (b).

3.2 Approximate multi-variate limiting equation

Here we want to generalize Lemma 15 to the multi-variate case. To prepare

for this, recall that the �nite-dimensional distributions of the continuous-

state branching process � of De�nition 3 satisfy

� logE

�
exp

h
�

X
1�i�n

bi �ai

i ���� �0
�

= �0 v
(n)(a;b); (85)

where n � 1 is �xed, a = (an; : : : ; a1) with 0 < an < � � � < a1 <1; b =

(bn; : : : ; b1) � 0; and where v(1) := v from (9), and for n � 2;

v(n)(a;b) := v(n�1)
�
an; : : : ; a3; a2; bn; : : : ; b3; b2 + v(a1 � a2; b1)

�
: (86)

(This follows simply from the Markov and branching property.) Since v

solves (8), one can show that

v(n)(a;b) =
X

1�i�n

bi � 

Z a1

0

ds
�
v(n)(a � s;b)

�1+�

with the conventions that a� s := (an � s; : : : ; a1 � s) and that for n � 2;

v(n)(a � s;b) := v(n�1)(an�1 � s; : : : ; a1 � s; bn�1; : : : ; b1)
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if an � s < 0; that is, if the minus operation leaves the non-negatives.

In analogy with (67), for �xed functions ' = ('1
; : : : ; '

n) 2 (C +
p
)n;

with ordered a as before and n � 2; we introduce

F
(n)

�
(a; x) := p1(x) v

(n)
�
a; h`; �'i

�
; � � 0; x 2 R

d
: (87)

Here we abbreviated h`; �'i :=
P

1�i�n



`; �'

i
�
: Also, from now on we

take the branching rate  from (10). Note that the F
(n)

�
solve

F
(n)

�
(a; x) = p1(x)h`; �'i � p1(x)

1

�

Z
a1

0

ds

Z
Rd

dy 	
�
F

(n)

�
(a� s; y)

�
:

(Opposed to (68), here we cannot provide a substitution as s 7! a� s:)

Besides the '
i
; �x now h = (h1; : : : ; hn) satisfying 0 � h1 < � � � <

hn < 1 =: hn+1 : Recalling notation ah(r; t) from (28), put

ah(r; t) := (ah1(r; t); : : : ; ahn(r; t)):

Analogously to (71), for thn � r � t;

F
(n)

�

�
ah(r; t); x

�

= p1(x)h`; �'i � p1(x)
1

log t

1

�

Z
r

t
h1

ds
1

s

Z
Rd

dy 	
�
F

(n)

�

�
log s
log t

� h; y
��

= p1(x)h`; �'i � p1(x)
1

log t

1

�

Z
t
hn

t
h1

ds
1

s

Z
Rd

dy 	
�
F

(n�1)

�

�
ah(s; t); y

��

� p1(x)
1

log t

1

�

Z
r

thn

ds
1

s

Z
Rd

dy 	
�
F

(n)

�

�
ah(s; t); y

��
:

Here in the last step we have applied the equality

F
(n)

�
(ah(s; t); x) = F

(n�1)

�
(ah(s; t); x) if t

h1 < s � t
hn :

Using Lemma 10 this gives the following analogy with Lemma 15:

Lemma 17 (Approximate multi-variate limiting equation) Let

� � 0; 0 < " � min1�i�n(hi+1 � hi)=2; and 1 < t
hn+"

� r
1�"

� t
1�"

:

Then for each x 2 R
d
;

F
(n)

�

�
ah(r; t); x

�
= p1(x) h`; �'i �

0S"
r;t;�

(x)

� p1(x)
1

log t

Z
t
hn�"

t
h1+"

N
�
r�ds

1

s

Z
Rd

dy 	
�
F

(n�1)

�

�
ah(s; t); y

��

� p1(x)
1

log t

Z
r
1�"

thn+"

N
�
r�ds

1

s

Z
Rd

dy 	
�
F

(n)

�

�
ah(s; t); y

��
: (88)

Here 0S"
r;t;�

(x) is an error term satisfying a statement as in (46) [with h

replaced by hn ]:



Multi-scale clustering 25

3.3 Scaled multi-variate renewal equation

We use the abbreviation

'h;t =
�
'
1
h1;t

; : : : ; '
n

hn;t

�
with '

i

hi;t
as in (13). Set

Q
(n)
t

�
'h;t

�
(x) := E

Æx

�
1� exp

h
�

X
1�i�n



Z
t
; '

i

hi;t

�i�
; x 2 R

d

:

From (30),

Q
(n)
t
'h;t(x) = E

x

�
1� exp

h
�

X
1�i�n

'
i

hi;t
(�

t
)
i�

�

Z
t

0

N
�
t�ds Ex

	
�
Q

(n)
s
'h;t (�t�s)

�
: (89)

Moreover, de�ne

F
(n)

r;t;�
(ah(r; t); x) := (r log t)1=� Q(i)

r
(�'h;t) (r

1=�
x) (90)

if t
hi < r � t

hi+1 ; 1 � i � n:

We want to use the multi-variate version of the renewal equation (89) to

investigate the asymptotic behavior of F
(n)

r;t;�
(ah(r; t); x): This leads to the

scaled multi-variate renewal equation

F
(n)

r;t;�
(ah(r; t); x) = L

(n)

r;t;�
(x)�R

(n)

r;t;�
(x)

� (r log t)1=�
Z

r

t
hn

N
�
r�dsEr

1=�
x
	
�
Q

(n)
s

(�'h;t) (�r�s)
�
; (91)

1 � t
hn < r � t; � � 0; 0 � h

n
< 1; x 2 R

d

; where

L
(n)

r;t;�
(x) := (r log t)1=�E

x

�
1� exp

h
� �

X
1�i�n

'
i

hi;t
(�

t
)
i�

(92)

and

R
(n)

r;t;�
(x) := (r log t)1=�

Z
t
hn

0

N
�
r�dsEr

1=�
x
	
�
Q

(n)
s

(�'h;t) (�r�s)
�
: (93)

In analogy with Lemma 11 we have the following statement.

Lemma 18 (Convergence of L
(n)

r;t;�
) For 0 < " � 1� h

n
and � � 0;

lim
t"1

sup
r2[thn+";t]

���L(n)

r;t;�
(x) � p1(x)h`; �'i

��� = 0; x 2 R
d

;

and

lim
t"1

sup
r2[thn+";t]

Z
Rd

dx

���L(n)

r;t;�
(x)� p1(x)h`; �'i

��� = 0:
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3.4 Approximate multi-variate renewal equation

Similarly to Proposition 12 one needs the following key result.

Proposition 19 (Approximate multi-variate renewal equation) Let

� � 0; 0 < " � min1�i�n(hi+1 � hi)=2; and 1 < thn+" � r1�" � t1�":

Then, for each x 2 Rd;

F
(n)

r;t;�

�
ah(r; t); x

�
= L

(n)

r;t;�(x) � S"r;t;�(x)

� p1(x)
1

log t

Z thn

th1+"
N�

r�ds

1

s

Z
Rd

dy 	
�
F
(n�1)

s;t;�

�
ah(s; t); y

��

� p1(x)
1

log t

Z r1�"

thn+"
N�

r�ds

1

s

Z
Rd

dy 	
�
F
(n)

s;t;�

�
ah(s; t); y

��
: (94)

Here S"r;t;�(x) is an error term satisfying a statement as in (46).

Note that F
(n)

r;t;�

�
ah(s; t); x

�
= F

(n�1)

r;t;�

�
ah(s; t); x

�
if th1 < s � thn :

However, it will be convenient for us to keep two integral terms at the

right-hand side of (94).

The proof of Proposition 19 splits into three lemmas.

Lemma 20 (Representation of the second integral) Let � � 0; 0 <

" � (1� hn)=2; and 1 < thn+" � r1�" � t1�": Then, for each x 2 Rd;

(r log t)1=�
Z r

thn
N�

r�dsEr1=�x	
�
Q(n)

s (�'h;t) (�r�s)
�

= p1(x)
1

log t

Z r1�"

thn+"
N�

r�ds

1

s

Z
Rd

dy 	
�
F
(n)

s;t;�

�
ah(s; t); y

��
+ 00S"r;t;�(x):

Here 00S"r;t;�(x) is an error term satisfying a statement as in (46).

Proof Applying the elementary inequalities

1� exp
h
�

nX
i=1

xi

i
�

nX
i=1

�
1� e�xi

�
; (x1; : : : ; xn) � 0; (95)

and � nX
i=1

bi

�1+�

� n1+�

nX
i=1

b
1+�
i ; (b1; : : : ; bn) � 0; (96)

with xi =


Zt ; '

i
hi;t

�
and bi = Qs(�'

i
hi;t

) (y) ; we get

	
�
Q(n)

s (�'h;t) (y)
�
� n1+�

nX
i=1

	
�
Qs(�'

i
hi;t

) (y)
�
: (97)

This inequality shows that in order to evaluate from above the integrals

and quantities involving 	
�
Q
(n)
s (�'h;t) (y)

�
we may deal separately with
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the summands entering the right-hand side of (97). Using this fact in com-

bination with Lemma 14 and Proposition 12, and taking into account that

[thn ; r] � [thj ; r]; j = 1; 2; :::; n; we will be able to establish the needed

representation.

Lemma 21 (A further representation) Let � � 0; n � 2; and i 2

f1; 2; :::; n�1g be �xed. Take 0 < " � (1�hn)=2; and 1 < thn+" � r1�" �

t1�": Then, for each x 2 Rd;

(r log t)1=�
Z thi+1

thi

N
�

r�dsEr1=�x	
�
Q(n)
s (�'h;t) (�r�s)

�
= Ŝr;t;�(x; i)

+ (r log t)1=�
Z thi+1

thi

N
�

r�dsEr1=�x	
�
Q(i)
s (�'h;t) (�r�s)

�
(98)

where

lim sup
t"1

sup
r2[thn ; t1�"]

�
Ŝr;t;�(x; i) +

Z
Rd

dz Ŝr;t;�(z; i)

�
= 0: (99)

Proof Using inequality (74) and the estimate

�
1� exp

h
�

nX
j=1

xj

i�
�

�
1� exp

h
�

iX
j=1

xj

i�
�

nX
j=i+1

xj ; (100)

(x1; : : : ; xn) � 0; with a = Q
(n)
s : : : � b = Q

(i)
s . . . and xi =



Zt ; '

i
hi;t

�
;

and applying (32) we get

0 � 	
�
Q(n)
s (�'h;t) (y)

�
�	

�
Q(i)
s (�'h;t) (y)

�

� cf (1 + �)
�
Q(n)
s (�'h;t) (y)

�� �
Q(n)
s (�'h;t) (y)�Q(i)

s (�'h;t) (y)
�

� cf (1 + �) �1+�
� nX
k=1

Ey'
k
hk ;t

(�s;k)
�� nX

j=i+1

Ey'
j
hj ;t

(�s;j)

� cf (1 + �) �1+� n�
nX

k=1

�
Ey'

k
hk ;t

(�s;k)
�� nX

j=i+1

Ey'
j
hj ;t

(�s;j); (101)

where �s;k; k = 1; 2; :::; n; are independent copies of �s: In view of (50),

nX
k=i+1

�
Ey'

k
hk;t

(�s;k)
��

� c13 (log t)
�1

nX
k=i+1

t�hk � c13n (log t)
�1

t�hi+1 :

(102)

On the other hand, by (50) and (57){(59) we see that for any Æ > 0 there

exist t0 = t0 (Æ) and K0 = K0 ('; Æ) such that for all t � t0 and K � K0 ;

iX
k=1

�
Ey'

k
hk ;t

(�s;k)
��

� c(103) (s log t)
�1 �

Æ 1fjyj>Ks1=�g + 1fjyj�Ks1=�g

�

� c(103) (s log t)
�1 �

Æ + 1fjyj�Ks1=�g

�
(103)
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if s � maxk�i
�
t
hk
	
= t

hi : Using (102) and (103) in (101) with y = �r�s

we obtain

Er1=�x

�
	
�
Q
(n)
s (�'h;t) (�r�s)

�
�	

�
Q
(i)
s (�'h;t) (�r�s)

��

� cf (1 + �) (log t)
�1

�
1+�

�
c9nt

�hi+1 + Æc(103)s
�1
�
�

nX
j=i+1

Er1=�x

�
E�r�s'

j
hj ;t

(�s;j)
�
+ cf (1 + �) (s log t)

�1
�
1+� �

nX
j=i+1

Er1=�x

�
1fj�r�sj�Ks1=�gE�r�s'

j
hj ;t

(�s;j)
�
: (104)

For subsequent arguments we need to evaluate the right-hand side of in-

equality (104). By the Markov property and (38) we see that

(r log t)
1=�

nX
j=i+1

Er1=�x

�
E�r�s'

j
hj ;t

(�s;j)
�
� p1 (0)

nX
j=i+1

h`; 'ji: (105)

On the other hand, by (58) for any j � i+ 1 we have

(r log t)
1=�

Er1=�x

�
1fj�r�sj�Ks1=�gE�r�s'

j
hj ;t

(�s;j)
�
= (r=s)

�1=�
�

Er1=�x1fj�r�sj�Ks1=�g

Z
Rd

dz '
j (z) p1

�
t
hj=�s

�1=�
z � s

�1=�
�r�s

�

= r
1=�
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jwj�K
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�
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r
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Z
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dz '
j (z)

Z
jwj�K
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�
t
hj=�s
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�
: (106)

Combining (105), (106), and (104) we �nally get

(r log t)
1=�

Er1=�x

�
	
�
Q
(n)
s (�'h;t) (y)

�
�	

�
Q
(i)
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� c p1 (0) (log t)
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Z
Rd

dz '
j (z)

Z
jwj�K

dw p1
�
t
hj=�s

�1=�
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for all t � t0 and K � K0 : Hence, we conclude that

0 � Ŝr;t;�(x; i) � c �
1+� (log t)

�1
�
t
�hi+1

Z
t
hi+1

t
hi

N
�

r�ds + Æ

Z
t
hi+1

t
hi

N
�

r�ds

1

s

�
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1+� (log t)

�1

Z
t
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thi

N
�

r�ds

1

s

nX
j=i+1

Z
Rd

dz '
j (z) �

Z
jwj�K

dw p1
�
t
hj=�s

�1=�
z � w

�
(107)

for all t � t0 (Æ) ; K � K0 ('; Æ) ; and a constant c = c(t0;K0;h). From

the convergence statement (54) and Lemma 9,

(log t)
�1

�
t
�hi+1

Z
t
hi+1

thi

N
�

r�ds + Æ

Z
t
hi+1

thi

N
�

r�ds

1

s

�
� c(108)Æ (108)

for t � t0 (by enlarging t0 if needed). Again by Lemma 9, for any "1 2

(0; hj+1 � hj) ;

(log t)
�1

Z
t
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t
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N
�

r�ds

1

s

nX
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Z
jwj�K
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N
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s

nX
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Z
Rd

dz '
j (z) � c(109)"1 (109)

for all t � t0 = t0 (Æ; "1) (again by enlarging t0 if needed). Thus, it remains

to deal with

(log t)
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Z
t
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t
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N
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1

s

nX
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Z
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Z
Rd

dz 'j (z) p1
�
thj=�s�1=�z�w

�
:

Since for j � i+ 1 and s 2
�
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�
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t
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�
t
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�1=�
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�
� "1K
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for all jzj � t�"1=(2�) and jwj � K; and, in addition,

nX
j=i+1

Z
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dz '
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Hence, for all t � t1 ;

sup
s2[thi ;thi+1�"1 ]

nX
j=i+1

Z
Rd

dz 'j (z)

Z
jwj�K

dw p1
�
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Z
jzj�t�"1=(2�)
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Z
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�

� c(110)"1 : (110)

Combining (108){(110) with (107) we conclude that there exists a t1 =

t1 (Æ; "1;K) such that for all t � t1 ;

0 � Ŝr;t;�(x; i) � c(108)Æ + (c(109) + c(110))"1 :

Thus, letting �rst t " 1 and than Æ ! 0 and "1 ! 0; we get the state-

ment of Lemma 21 for Ŝr;t;�(x; i): To obtain the desired statement forR
Rd

dz Ŝr;t;�(z; i) one should apply the same lines of arguments with the

di�erence that instead of (105) and (106) one needs to use the equalities

[recall (41)]

nX
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Z
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Z
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respectively.

The next lemma deals with R(n) de�ned in (93).

Lemma 22 (Asymptotic representation of R(n)) Let � � 0; 0 < " �

min1�i�n(hi+1 � hi)=2; and 1 < thn+" � r1�" � t1�": Then, for each

x 2 R
d;
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r;t;�
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r�ds
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dy 	
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�
ah(s; t); y

��

+ Ŝ"
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(x);

where Ŝ"
r;t;�

(x) is an error term satisfying a statement as in (46).
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Proof In order to establish the desired representation, we �rst write

R
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�
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s
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�
:

Applying the previous lemma, we get
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+ 00Ŝ"
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where 00Ŝ"
r;t;�

(x) is an error term satisfying a statement as in (46). Now to

each of the integrals we can apply the arguments used to establish Lemma 14

(note that [thi ; thi+1 ] � [thj ; r1�"] and [0; th1 ] � [0; thj ] for each j � i � n�1,

so we can deduce the desired estimates for the counterparts of integrals
1I(x); ; : : : ;6 I(x) from Lemma 14) and obtain [recall (90)]
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�
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��
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where, to �t the form (94), at the last step we included the integral

Z
t
h1+"

th1

N�

r�ds

1

s

Z
Rd

dy 	
�
F

(n�1)
s;t;�

�
ah(s; t); y

��

into Ŝ"
r;t;�

(x). This �nishes the proof.

Combining Lemmas 20 and 22 proves Proposition 19.

3.5 Completion of the proof of Theorem 4

We prove Theorem 4 by induction. For this reason the following statement

is important.

Proposition 23 (Convergence of F (k) in L1(dx)) For k = 1; : : : ; n;

there exists a positive �0 = �0('; h1; h2; :::; hk) such that

lim
t"1

sup
r2[thk+";t]

Z
Rd

dx

���F (k)
r;t;�

�
ah(r; t); x

�
� F

(k)
�

�
ah(r; t); x

���� = 0 (111)

for 0 < " � 1� hk and 0 � � � �0 :
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Proof For k = 1 this is just Proposition 16. Assume that the desired

statement is proven for some k � n�1:Replacing n by k+1 in representation

(94), making the same trick with (88), taking the di�erence of the obtained

relations and integrating it with respect to dx; it is not diÆcult to establish

(111) using induction hypothesis and applying the arguments similar to

those exploited to prove Proposition 16.

Having Proposition 23, it is a straightforward procedure to prove the

following statement using the arguments applied to verify Theorem 6.

Theorem 24 (Re�ned asymptotics for Q(n)) Assume d = �=�: Then,

for �xed x and 0 � h1 < h2 < ::: < hn < 1;

(t log t)1=� Q
(n)
t
('h;t)(t

1=�x) �!
t"1

p1(x) v
(n)

�
1� h; h`;'i

�
= F

(n)
1 (1� h; x)

with the macroscopic log-Laplace function v(n) from (86), and branching

rate  as in (10).

Theorem 24 then implies the convergence of �nite-dimensional distribu-

tions as claimed in Theorem 4.

3.6 To the proofs of Theorems 7 and 8

Instead of a detailed proof, here we only indicate some key steps. In the

special case if G is the exponential distribution, renewal equation (30) reads

as follows:

Qt' (x) = Ex

�
1� e�'(�t)

�
�

1

�

Z
t

0

ds Ex	
�
Qs' (�t�s)

�
:

Comparing with log-Laplace equation (15) and using uniqueness of its so-

lutions gives

u
�
t; x; 1� e�'

�
= Qt'(x):

For 0 < " � 1 there is a b0 = b0(") such that

1� e�b � b � 1� e�(1+")b; 0 � b � b0 :

By the monotonicity of u in the initial data, this will enable us to transfer

the re�ned asymptotics of Theorem 6 into the one in Theorem 8. In fact,

for suÆciently large t;

Qt('0;t)(t
1=�x) � u

�
t; t1=�; (log t)�1=�'

�
� Qt

�
(1 + ")'0;t

�
(t1=�x);

since '0;t = (log t)�1=�': Therefore Theorem 7 implies (18) in the case

h = 0: To pass to arbitrary h < 1; we use the following scaling identity:

u (t; x;') = b1=� u
�
bt; b1=�x; b�1=�'(b�1=��)

�
; b; t > 0; x 2 Rd;
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and specialize to b = th; �1 < h < 1:

To come to Theorem 7(b), exploit the identity

� log E i0 (log t)1=�` exp


Xh

t ;�'
�

= i0 (log t)
1=�



`; u(t; � ;'h;t)

�

and dominated convergence.

The case of �nite dimensional distributions is treated in the same way

by applying Theorem 24.
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