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Abstract

We consider the problem of thermal explosion of a gas mixture in the case

of an autocatalytic combustion reaction in a homogeneous medium. We de-

termine the maximal temperature on the trajectories located in the transition

region between the slow combustion regime and the explosive one.

1 Introduction

We consider the problem of thermal explosion of a gas mixture in case of an auto-

catalytic combustion reaction in a homogeneous medium. As a mathematical model

we use the following di�erential system proposed in [1, 2]

"
d�

dt
= �(1� �)e� � ��;

d�

dt
= �(1� �)e�:

(1.1)

Here, � denotes the temperature, � is the depth of conversion of the gas mixture,

��� describes the volumetric heat loss, and " is a positive parameter which is small

in case of a highly exothermic reaction.

The chemically relevant phase space P of system (1.1) is de�ned by P := f(�; �) 2
R

2 : � � 0; 0 � � � 1g. As " is small, (1.1) represents a singularly perturbed system

of autonomous di�erential equations. A qualitative investigation of this system can

be found in [1, 2, 3, 4]. In what follows we recall the main results of these studies.

Proposition 1.1 Consider system (1.1) in P for � � 0; " > 0. Then

(i) The region � := f(�; �) 2 R2 : 0 � � � 1; 0 � � � �="g is positively invariant.

(ii) � contains exactly two equilibria: the point P = (0; 1) is a stable node, the

origin O is a saddle, where one separatrix tanges the �-axis at the origin, while

the other one tanges the straight line � = (� + ")�.

(iii) A trajectory of (1.1) starting at any point in � di�erent from the origin tends

for increasing t to the equilibrium P .
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The degenerate equation to (1.1) reads

0 = �(1� �)� ��e
��
: (1.2)

Its solution set is called the slow manifold S� of (1.1). It consists of equilibria of the

associated di�erential equation

d�

d�
= �(1� �)� ��e

��
: (1.3)

The following �gures represent S� for di�erent values of �.
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Figure 1: � > e=4 Figure 2: � = e=4 Figure 3: � < e=4

Figure 1 shows S� for some � > e=4 in P . In that case, S� consists exactly of

two di�erent curves Ss� and Su� which represent asymptotically stable and unstable

equilibria of the associated equation, respectively. For " suÆciently small, system

(1.1) has an attracting invariant manifold S
s
�;" near Ss� and a repelling invariant

manifold Su�;" near S
u
�, respectively.

To study the behavior of (1.1) for small ", we consider to (1.1) the initial value

problem

�(0; ") = 0; �(0; ") = �0; 0 < �0 < 1=2: (1.4)

Since the initial point (0; �0) belongs to the basin of attraction of the set Ss�, after

some short transition period, the solution of (1.1), (1.4) follows the attracting slow

invariant manifold Ss�;" and tends to the equilibrium P = (0; 1) as t!1. We call

this behavior the slow combustion regime.

Figure 3 shows S� for some � < e=4 in P. As in the case � > e=4, S� consists

exactly of two di�erent curves S1
� and S2

�. But di�erent from the case considered

before, each of these curves contains stable equilibria of the associated equation

(1.3) (namely, for � < 1, denoted by Ss;1� and Ss;2� ) and unstable equilibria of (1.3)
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(for � > 1, denoted by Su;1� and Su;2� ). For � < e=4 and " suÆciently small, system

(1.1) has local attracting invariant manifolds Ss;1�;" near S
s;1
� and Ss;2�;" near S

s;2
� and

repelling local invariant manifolds Su;1�;" near S
u;1
� and Su;2�;" near S

u;2
� , respectively. In

that case, we have the following behavior of the solution of the initial value problem

(1.1), (1.4): after some short transition period, the solution follows the component of

S
s;1
�;" until it reaches the value � = 1. After this moment, �(t) will increase very fast,

but the solution remains inside � and ultimately tends to the stable equilibrium P .

This behavior characterizes the explosive regime.

Figure 2 depictures the special case � = e=4. Here, the slow manifold S� can be

considered to consist of four branches S
u;i
e=4; S

s;i
e=4; i = 1; 2: The branch S

s;1
e=4 has the

representation

S
s;1
e=4 := f(�; �) 2 P : � = �

s
1(�) := 0:5(1�

q
1� �e1��); 0 � � � 1g: (1.5)

If we denote by  s1(�) the inverse function of �
s
1(�); then S

s;1
e=4 can be represented also

in the form

S
s;1
e=4 := f(�; �) 2 P : � =  

s
1(�); 0 � � � 0:5g: (1.6)

Analogously, the branch S
u;2
e=4 can be represented as

S
u;2
e=4 := f(�; �) 2 P : � = �

u
2 (�) := 0:5(1 +

q
1� �e1��); � � 1g =

= f(�; �) 2 P : � =  
u
2 (�);

1

2
� � < 1g; (1.7)

where  u2 (�) is the inverse function of �u2 (�).

For � = e=4 and " suÆciently small, system (1.1) possesses the local attracting

invariant manifolds Ss;1�;" and S
s;2
�;" near S

s;1
� and S

s;2
� respectively and the repelling

local invariant manifolds Su;1�;" and S
u;2
�;" near S

u;1
� and Su;2� , respectively.

If we study the initial value problem (1.1), (1.4), then to given small " and for �

exponentially near e=4 but less than e=4 we can observe the existence of canard

solutions which describe the transition between the slow combustion regime and

the explosive regime and which exhibits the phenomenon of delayed exchange of

stabilities. That means, to given small ", there is an exponentially small �-interval

(�e("); �c(")) containing �
�("), where

�
�(") = �0 + �1"+ �2"

2 +O("3); �0 = e=4; �1 = �e=
p
2; �2 = 49e=36; (1.8)

such that for � > �c(") (� < �e(")) the solution of (1.4) belongs to the slow regime

(explosive regime). The interval (�e("); �c(")) characterizes the critical regime, that

is, for � 2 (�e("); �c(")), after some short transition time, the solution of (1.1),

(1.4) follows the attracting invariant manifold Ss;1�;" until it reaches the value � = 1.

After this moment, it stays near the unstable component Su;2�;" which is located in

the region � > 1
2
, up to some point J from which the solution "jumps" towards the

attracting manifold S
s;2
�;" and follows this manifold approaching P as t ! 1 (see

Figure 4).
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Figure 4: Canard trajectories of system (1.1) for " = 0:05, �0 = 0:659941603;

�
00 = 0:659941646; �000 = 0:659952218

In the sequel, we are interested in the determination of the jump-o� point J , and

therefore the maximal temperature on a canard trajectory as a function of the initial

point (0; �0). For this purpose, in the following section we present an estimate of

the delay of exchange of stabilities in scalar singularly perturbed equations [6].

2 Delayed exchange of stabilities in scalar

non-autonomous di�erential equations

We consider the scalar singularly perturbed di�erential equation

"
du

d�
= g(u; �; ") (2.1)

and study the initial value problem

u(�0; ") = u0; � 2 I� := f� 2 R : �0 < � < �1g (2.2)

for suÆciently small ".

If we set " = 0 in (2.1) we get the degenerate equation

g(u; �; 0) = 0: (2.3)

If this equation has a simple isolated root u =  (�) which is a stable equilibrium of

the associated equation to (2.1)

du

d�
= g(u; �; 0); (2.4)
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and if u0 belongs to region of attraction of  (�0), then the asymptotic behavior

of the solution of the initial value problem (2.1), (2.2) is uniquely determined by

the standard theory of singularly perturbed systems (see, e.g., [7]). In what follows

we consider this initial value problem in case of exchange of stabilities, that is, we

assume that the degenerate equation has two intersecting solutions. Here, we have

to distinguish two di�erent situations: immediate exchange of stabilities ([5]) and

delayed exchange of stabilities ([6]). The last case is related to the existence of

a canard trajectory. We recall now a result concerning the delayed exchange of

stabilities in case of transversal bifurcation.

Let U be an open bounded interval containing the origin, I"0 is the open interval

de�ned by I"0 := f" 2 R : 0 < " < "0g, "0 > 0:

We consider the initial value problem (2.1), (2.2) under the following assumptions:

(A1): g : U � I� � I"0 ! R is continuous and twice continuously di�erentiable with

respect to u and ".

(A2): g(0; �; ") � 0 for (�; ") 2 I� � I"0 (
�I means the closure of I).

From (A1) and (A2) it follows that a solution of (2.1) starting at u = u0 remains

positive (negative) if u0 is positive (negative). In the sequel we restrict ourselves to

the case u0 < 0. We denote by U� the set de�ned by U� := fu 2 U : u � 0g.

(A3): The solution set of the degenerate equation g(u; �; 0) = 0 in U� � I� con-

sists of the two curves u � 0 and u =  �(�) where  � belongs to the class

C
1([�c; �1]; R

�) and satis�es  �(�c) = 0;  �(�) < 0 for � 2 (�c; �1] (see Figure

5).

η1 ηη0 ηc

u

u = 0

u = ψ−(η)

Figure 5: Solution set of g(u; �; 0) = 0

(A4):

gu(0; �; 0)

(
< 0 for � 2 [�0; �c);

> 0 for � 2 (�c; �1]:
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Assumption (A4) implies that u = 0 is an equilibrium point of the associated equa-

tion (2.4) which is exponentially stable for � 2 [�0; �c) and unstable for � 2 (�c; �1]:

Let

G(�; �0; ") :=

Z �

�0

gu(0; s; ")ds: (2.5)

From assumption (A4) we get that G(�; �0; 0) = 0 has at most one root � = �
� in

(�0; �1). Therefore, we assume

(A5): G(�; �0; 0) = 0 has a root �� in (�0; �1).

It is easy to see that �� is such that it holds

�
�
> �c; G

0(��; �0; 0) > 0: (2.6)

The following assumption on the function g is ful�lled if the second derivative of g

with respect to u at u = 0 is positive for all (�; ") under consideration.

(A6): There are suÆciently small positive numbers c0 and "0, such that [�c0; c0] 2 U
and

g(u; �; ") � gu(0; �; ")u for �0 � � � �
�
; " 2 I"0; �c0 � u � 0:

The following result about the delayed exchange of stabilities has been proved in

[6].

Theorem 2.1 Assume the hypotheses (A1) - (A6) to be valid. Then for suÆciently

small " and u0 < 0 there exists a unique solution of (2.1), (2.2) satisfying

lim
"!0

u(�; ") =

(
0 for � 2 [�0; �

�);

 �(�) for � 2 (��; �1]:

3 Maximal temperature of combustion

We return to the combustion model

"
d�

dt
= �(1� �)e� � ��;

d�

dt
= �(1� �)e�:

(3.1)

As we mentioned in the introduction, for small ", the transition from a slow combus-

tion regime to an explosive regime takes place when � is exponentially near ��(")

but less than e=4. It is characterized by the existence of a canard trajectory C�;".
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From the second equation of (3.1) it follows that we can represent any solution of

system (3.1) located in the region 0 < � < 1 in the form � = ~'(�; "), where ~'(�; ")

satis�es the di�erential equation

"
d�

d�
=
�(1� �)e� � ��

�(1� �)e�
: (3.2)

Our goal is for � = �
�(") and suÆciently small " to estimate the maximal temper-

ature �"max on the canard trajectory C" := f(�; �) 2 R
2 : � = '(�; �0; ")g of system

(3.2), which starts at the given initial point (� = �0; � = �0 = 0).

It follows from (3.2) that for 0 < � < 1 all extrema of any solution � = ~'(�; ") of this

di�erential equation are located on the curve S� de�ned in (1.2). By (1.8) it holds

�
�(") < e=4 for suÆciently small ". Since any canard solution of (3.2) is bounded,

we can conclude that the maximal temperature is determined by the intersection of

the canard solution with the curve S
u;2
��(") which is located in the region � > 0:5. At

the same time we get from (3.2) that any canard solution has only one maximum

in that region. This follows from the fact that if we calculate d2 ~'
d�2

on S��(") we get

d
2 ~'

d�2
=

(1� 2�)e ~'

"�(1� �)e ~'
:

Hence, in the region � > 0:5 this derivative has negative sign, and we have always a

maximum. Therefore, we can conclude that the jumping point J is located on the

curve S
u;2
��("), and that �"max uniquely determines its position on that curve.

Our idea to estimate the maximal temperature on the canard trajectory C" of the
di�erential equation

"
d�

d�
=
�(1� �)e� � �

�(")�

�(1� �)e�
(3.3)

for suÆciently small " is to apply Theorem 2.1. To do this we use the coordinate

transformation

� = �'(�; ") + u; (3.4)

where �'(�; ") is the canard trajectory �" of (3.3) satisfying

lim
�!0

�'(�; ") = 0:

Since the origin is a saddle point of system (3.1) we can conclude that the canard

trajectory describes the separatrix �" of system (3.1) entering the positive orthant

for increasing t.

If " tends to zero, then the canard trajectory �" tends to a discontinuous curve �0

consisting of S
s;1
e=4, of the part of S

u;2
e=4 bounded by the jump{o� point J(� = �

�
; � = �

�)
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and the point (� = 1; � = 1
2
) and of the part of S

s;2
e=4 located in the region �

�
< � � 1)

(see Fig. 4). In what follows we restrict our investigation on the region 0 < � < �
�,

where �0 has the representation

�0 =

(
� =  

s
1(�) for 0 < � � 0:5;

� =  
u
2 (�) for 0:5 � � < �

�
:

(3.5)

Applying the coordinate transformation (3.4) we get from (3.3) the di�erential equa-

tion

"
du

d�
=

�
�(")

�(1� �)e �'(�;")

 
�'(�; ")(eu � 1)� u

eu

!
� g(u; �; "): (3.6)

Now, we want to verify that g(u; �; ") satis�es all assumptions of Theorem 2.1 for

u � 0; 0 < � � �
�
; " suÆciently small.

It is easy to see that g is smooth in the region u 2 R; 0 � � < �
�
; 0 � " � "0

and obeys g(0; �; ") � 0 for all � and " under consideration. Thus, g satis�es the

conditions (A1), (A2) of Theorem 2.1 for " > 0.

To check hypothesis (A3) we note that the degenerate equation g(u; �; 0) = 0 is

equivalent to

�'(�; 0)((eu � 1)� u) = 0: (3.7)

If we represent the solutions of the degenerate equation (1.2) in the form

� = '1(�); � = '2(�)

and if we set �'(�; 0) = '1(�), then it can be veri�ed that u = '2(�) � '1(�) is a

solution of (3.7) intersecting in (� = 1; � = 0:5).

O

C

θ

0

J

1

S e/4

S e/4S e/4
s,1

u,2

u,1

S e/4
s,2η

Figure 6: Limit position C0 of the canard trajectory C"
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Next we determine the stability of the branch u = 0 of the solution set of g(u; �; 0) =

0.

From (1.2), (1.5){(1.7) and (3.6) we obtain

@g

@u ju=0;"=0
�

e( s1(�)� 1)

4�(1� �)e 
s

1
(�)

= 1� ( s1)
�1

(�) < 0 for 0 < � < 0:5;

@g

@u ju=0;"=0
�

e( u2 (�)� 1)

4�(1� �)e 
u

2
(�)

= 1� ( u2 )
�1

(�) > 0 for 0:5 < � < �
�
:

(3.8)

That means, assumption (A4) is satis�ed.

In order to verify the assumption (A5) we consider the function

G(�; �0; 0) :=

Z �

�0

gu(0; s; 0)ds:

From (3.8) we get

G(�; �0; 0) =

Z 0:5

�0

�
1� ( s1)

�1
(s)
�
ds+

Z �

0:5

�
1� ( u2 )

�1
(s)
�
ds:

We have by (1.5){(1.7)

G(�; �0; 0) =

Z 1

�0

(1� �
�1)(�s1)

0(�)d� +

Z �

1
(1� �

�1)(�u2 )
0(�)d� := ~G(�; �0; 0); (3.9)

where �0 is the root of the equation

�0(1� �0)e
�0 �

e

4
�0 = 0:

Since

(1� �
�1)(�s1)

0(�) = �
(1� �)2e�1

4
p
1� �e1��

< 0 for 0 < � < 1

and

(1� �
�1)(�s1)

0(�) =
(1� �)2e�1

4
p
1� �e1��

> 0 for � > 1;

there is a number �0, 0 < �0 < 1 such that to �0 2 [�0; 1] there is a � = �
�(�0) such

that ~G(��; �0; 0) = 0. Thus, hypothesis (A5) is valid.

Assumption (A6) is ful�lled if guu(0; �; ") is positive for �0 � � � �
� and for suÆ-

ciently small ". From (3.6) we get

guu(0; �; ") =
�
�(")

�(1� �)e �'(�;")
(2� �'(�; "));

that is hypothesis (A6) is ful�lled as long as �'(�; ") < 2.
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From (3.9) we get

~G(�; �0; 0) =
1

2

�
1�

1

�

�
(1 +

q
1� �e1��)�

1

2

�
1�

1

�0

�
(1�

q
1� �0e

1��0)�

�
1

2

"Z 1

�0

1�
p
1� �e1��

�2
d� +

Z �

1

1 +
p
1� �e1��

�2
d�

#
= 0:

Thus, the equation

1

2

�
1�

1

�

�
(1 +

q
1� �e1��)�

�
1�

1

�0

�
�0 +

1

2

�
1

�
�

1

�0

�
+

+
1

2

Z 1

�0

p
1� �e1��

�2
d� �

1

2

Z �

1

p
1� �e1��

�2
d� = 0

determines the point (��; ��) characterizing the jumping from the slow manifold,

where

�
� =

1

2
+ (1 +

q
1� ��e1��

�

):

Theorem 3.1 Consider system (1.1) for � = �
�(") and " suÆciently small. Then

the maximal temperature �"max on the canard trajectory C" starting at the point (� =

�0; � = 0) with 0 < �0 < 0:5 satis�es

lim
"!0

�
"
max = �

�(�0):
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