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Abstract

We study scalar singularly perturbed non-autonomous ordinary differential equa-
tions whose associated equations feature the property of exchange of stabilities, i.e.,
the set of their equilibria consists of at least two intersecting curves. By means of the
method of asymptotic lower and upper solutions we derive conditions guaranteeing
that the solution of initial value problems exhibit the phenomenon of immediate ex-
change of stabilities as well as the phenomenon of delayed exchange of stabilities.
We use this result to prove the existence of forced canard solutions.

1 Introduction

Consider the dynamical autonomous system

dx = f(x,2) (1.1)

dr
depending on the parameter The study of the influence afon the long-term behavior
of system (1.1) represents an essential part of the bifurcation theory. The parameter value
A* is called a bifurcation point for (1.1) with respect to the regipbim the phase space of
(1.1) if in any neighborhood/ of A* in the parameter space there exist two pointand
A2 such that the phase portrait of (1.1)gns not topologically equivalent faxr1 and i,
(see, e.g. [17, 25, 26]).
If we assume that changes slowly in time, then we arrive at the so-called dynamic bifur-
cation theory [1]. In what follows we consider the simplest casexreatd ) are scalars
and thati increases slowly with. For simplicity we set

A= €T,

wheree is a small positive parameter. Introducing the slow tintgy t = e7, the differ-
ential equation (1.1) takes the form(¢) = x(t/e) =: u(t))

du
e f(u,t), 1.2
thatis, (1.2) is a singularly perturbed non-autonomous differential equation.
If we supposef (0, A) = 0 for all A and that\* = 0 is a bifurcation point of (1.1), where
x = Ois stable (unstable) for < 0 (A > 0), then the solution sett ~1(0) of the degenerate
equation of (1.2)
0= f(u,t) (1.3)

generically consists in theu—plane of two curves intersecting for= 0, as depicted in

Fig. 1.1 and Fig. 1.2. L
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Fig. 1.1. Transcritical bifurcation Fig. 1.2. Pitchfork bifurcation

All points of f ~1(0) are equilibria of the associated equation to (1.2)

d_u = f(u,t), (1.4)

do
wheret has to be considered as a parameter. The aurge 0 is an invariant manifold
of (1.4) which is attracting fot < 0 and repelling fot > 0. We call this situation as
exchange of stabilities (according to Lebovitz and Schaar [16]), where Fig. 1.1 represents
the case of transcritical bifurcation and Fig. 1.2 the case of pitchfork bifurcation.

If we consider for equation (1.2) the initial value problem
U(tg) =ug, to<t<tog+T, tg <O, (1.5)

and if we assume that belongs to the region of attraction of the invariant manifold 0,

then it follows from the standard theory of singularly perturbed systems (see, e.g., [30])
that the solutiomi(t, ¢) of the initial value problem (1.2),(1.5) exists at leasttipkx t < 0.

Fort > 0 there are the following possibilities for the behavior of the soluti@ine) :

(). u(t, &) follows immediately the new stable branch emerging&t0.

(ii). u(t, ) follows for some O(1)-time interval (not depending Orthe repelling part
of the invariant manifoldi = 0 and then jumps to the stable branch.

(iii). u(t, e) follows for some O(1)-time interval the repelling part of the invariant mani-
fold u = 0 and then jumps away from this manifold (possibly blowing up).

The case (i) is denoted as immediate exchange of stabilities, case (ii) is called delayed ex-
change of stabilities, and case (iii) is referred to as delayed loss of stability. In the cases
(if) and (iii) the corresponding solutions are said to be canard solutions.

The case of exchange of stabilities for singularly perturbed ordinary differential equations
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has been treated by several authors using different methods (see, e.g., [1, 3-10, 12-23 ,25,
26]). The case of immediate exchange of stabilities [4, 21] and the case of delayed ex-
change of stabilities [4, 20] has been treated by the authors applying the method of lower
and upper solutions.

In the following, we derive by the same method conditions on the fundtitmensure that

the solutions to the initial value problems (1.2),(1.5) exhibit the phenomenon of immediate
exchange of stabilities as well as the phenomenon of delayed exchange of stabilities. We
emphasize that the results of [20] and [21] concerning the delayed and immediate exchange
of stabilities respectively can not be applied to our problem because the conidtions at the
points of exchange of stabilities assumed in [20] and [21] are not satisfied. Hence, we have
to look for an appropriate modification of the construction of lower and upper solutions.

The paper is organized as follows. Section 2 contains the formulation of the initial value
problem. We also collect in this section our assumptions. Section 3 presents our main
results for the immediate and delayed exchange of stabilities. In Section 4 we use the re-
sults of Section 3 to prove the existence of periodic forced canards and to investigate their
asymptotic stability and local uniqueness.

2 Notation. Assumptions
We consider the scalar singularly perturbed non-autonomous differential equation

du
eqr=9Ute, telri={teRito<t=to+T), (2.1)

wheree is a small positive parameter, and study the initial value problem
u(to, &) = uC. (2.2)

Let I, be the interval,, := {¢ € R: 0 < ¢ < &g}, where O< ¢g <« 1. Our goal is

to derive conditions o ensuring the existence of a unique solutigh ¢) to the initial

value problem (2.1), (2.2) for sufficiently smallind to find an asymptotic representation

of u(t, ). Ourtool for establishing such a result is based on the method of lower and upper
solutions. Let us recall the definition of lower and upper solutions for (2.1), (2.2).

Definition 2.1 The continuous functions U and U mapping I+ x 1, into R and which
are piecewise continuously differentiable with respect to t are called ordered lower and
upper solutions of the initial value problem (2.1), (2.2)for ¢ € 1., provided they satisfy
the following conditionsfort € |1, ¢ € I,

(i) U, e <U(e.

(i) LU :=eBED _gUte).te) <0< L. ).

(iii) U@, &) <u®<U(O,z¢).



Itis known that the existence of ordered lower and upper solutions to the initial value prob-
lem (2.1), (2.2) implies the existence of a unique solution located in between the lower and
upper solution (see, e.g. [10]).

Let I, be an open bounded interval containing the originDet= 1, x I x I¢,. Concern-
ing the smoothness of the functigrand the structure of the solution set of the degenerate
equation we assume

(Ag). g € C3(D, R).
(A1). The solution set of the degenerate equation
g(u,t,00=0

consistsin Iy x It of thecurvesu = 0 and u = ¢(t), where ¢(t) istwice contin-
uously differentiable on 1 1. These curves intersect transversally in [to, T] exactly
twice, namely for t = tl and for t = t2, wherety < t} < t2 < to+ T. For
definiteness, we suppose (see Fig. 2.1)

pt)>0 for to<t<tl andfor t2<t<to+T,

o) <0 for tl<t<t2

tO t:(l': \\ J t(z: T t

Fig. 2.1. Intersection of the curveis= 0 andu = ¢(t)

Assumption(Az) implies

de

aﬁb<& (2.3)
u = 0 andu = ¢(t) are equilibria of the associated equation

d

M _gwt,0), 2.4)

do

wheret on the right hand side has to be considered as a parameter. The following assump-
tion determines the stability of these equilibria.
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(A2).
0u(0,1,0) < 0, gu(p(t),t,0) >0 for tl<t<t2

9u(0,t,0) > 0, gu(p(1),t,0) <0 for to<t<tl t2<t<to+T.

Assumption(A2) means that the roots = 0 andu = ¢(t) exchange their stabilities at
t = tlandt = t2 (see Fig. 2.1).
Now we introduce the functiof(t), which is called the composed stable solution, by

pt) for to<t <t
at)y:={ 0  for tl<t<t (2.5)
pt) for t2<t<ty+T.

From assumptioAy) and (2.5) we get
gu(O(t),t,0) < 0. (2.6)

The following assumption is not generic, but quite natural when we are looking for positive
solutions of (2.1), (2.2).

(A3). g(0,t,e) =0 for(t,e) € I x lg.
Assumption(Agz) implies thatu = 0 is a solution of equation (2.1) iy for all e € T,,.
Consequently, a solution of the initial value problem (2.1), (2.2) wigh> 0 (up < 0) is

positive (negative) for all > tg. Another property of the solutiom = 0 is its attractivity
fortl <t <t2, andits repulsivity fot <t andt > t2. In the sequel the function

t
G(t) ::/ 0u(0,s,0)ds
t

plays a crucial role. From hypothesis,) it follows that G(t) has at most one root in
(to, to + T). We assume

(A4). Theequation G(t) = Ohasaroott* € (tg,to+ T) (seeFig. 2.2and Fig. 2.3).
Concerning the functiog we assume

(As). Thereisa positive number ¢cg € Iy such that
g(u,t,e) < gu(0,t,e)u for tl<t<t* eel,, 0<u<co
Assumption(As) is fulfilled if the second derivative af with respect tau atu = 0 is

negative fott € [t} t*), ¢ € I..
Finally we suppose

(Ae)-
Guu(®) = guu(0(1),1,0) < 0 fort =td.
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g, (0.4,0)

Ry s
O

Fig. 2.2. Intersection of the curves= 0 andu = g, (0, t, 0)
3 Immediate and delayed exchange of stabilities

From the assumption®\g) — (Agz) it follows that there is an exchange of stabilities for

t =t} andt = t2. The following theorem states that at the titne- t} there arises an
immediate exchange of stabilities, while for= tg there occurs a delayed exchange of
stabilities. Sinceu = 0 is a solution of (2.1) for alt, it is easy to see that &t= tc1 there

is an immediate exchange of stabilities. Thus, the main result consists in establishing the
phenomenon of delayed exchange of stabilities fert? and in estimating the delay time

by constructing a non-trivial lower solution.

Theorem 3.1 Assume the hypotheses (Ap) — (Ag) to bevalid. Then, for sufficiently small
¢, thereexistsa unique solution u(t, ¢) to theinitial value problem(2.1),(2.2withug > 0
and ug € Iy, where u(t, ¢) is positive and satisfies

lim u(t, &) = p(t) for te(totdh and te(t to+T], (3.1)

lim u(t, &) =0 for t el t%). (3.2)
£—

Proof. The proof of this theorem is based on the technique of lower and upper solutions.
As we already mentioned, assumptiofg) implies that the solution of the initial value
problem (2.1), (2.2) is positive provided is positive. From that assumption it also fol-
lows thatu = 0 is a trivial lower solution for (2.1), (2.2) withg > 0.

The proof of Theorem 3.1 proceeds in three steps. In the first step we consider the initial
value problem (2.1), (2.2) in the intervap[t — v], wherev is any sufficiently small pos-

itive number independent ef Under our hypotheses, to that interval the standard theory
of singularly perturbed initial value problems can be applied (see, e.g., [30]). The corre-
sponding asymptotic relation in (3.1) follows immediately from Tikhonov's theorem (see
[29]).

For the interval {p + 8, t1 — v], wheres is any sufficiently small number independent of

¢, we get from [30] a more precise asymptotic representation of the solution of (2.1), (2.2)

uct, &) = @(t) + e ur(t) + O(&?), (3.3)
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where the first order regular term is defined by

) 4O _ g.(p(1),1,0)
1 = .
Ju(e(1),1,0)
The sign of the function; neart! which we need for the construction of an lower solution

can be determined as follows. By hypothg#s) we haveg,(¢(t),t,0) < Ofortp+45 <
t < tc1 —v. From assumptioAs) it follows the relationg, (0, tcl, 0) = 0. Hence, by (2.3)
there exist sufficiently small positive numberandx such that

(3.4)

?j—(f(t) —ge(p(1),1,0) < —k <0 for teltl—v td. (3.5)
Therefore, we have
up(tl —v) > 0. (3.6)
Let us introduce the notation
ul:=ul—v,e). (3.7)

Now we construct a nontrivial lower solutidh, (t, ¢) to the initial value problem (2.1),
(2.2) fort € [t} — v, t}] in the form

U,(t, &) = (t) + ne?, (3.8)

wheren is a positive number independentgvhich will be chosen appropriately later.
We have

du d
L. Uy =e d—_tl -9l te) = d—f(t) — g(p(t).t,0) — g (p(t). t, 0) + O(?).

Taking into accoungi(¢(t), t, 0) = 0 and the relation (3.5) we obtain for sufficiently small
&

L.U,) =¢ (i—f(t) — g.(p(t), t, 0))+0(82) < —ke+0(@%) <0 fort e [tl—v, 1.

From (3.3), and (3.6)-(3.8) it follows for sufficiently small
Uty — v, &) — Uyt — v, &) = Uty — v)e + O(e?) > 0.

Consequently) ;(t, &) is a lower solution of (2.1), (2.2) onJ — v, t1].
Now we construct an upper solution of (2.1), (2.2) for the interyaH v, t2 + v] in the
form

Ui(t, &) = G(t) + y Ve, (3.9)

wherel(t) is the stable composed solution introduced in (2.5) jarsda positive constant
independent of which will chosen later. We have

A

_ du _ da r. ) g . .
L:(U1) =¢ Tl—g(U 1,t,e)=¢ a—[g(t) + y/€ Qu(t) + > Quu)y? + & Ge(t) + 0(8)] ,
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whered(t) := g(Q(t), t, 0), and analogouslg, (t) := gy (Q(t), t, 0), ...
By hypothesiq A;) it holds§(t) = 0. By (2.6) we have-§,(t) > 0. According to as-
sumption(Ag) we can choose sufficiently small such that there is a small positive number
o satisfying
Ou®) < —0 <0 for te[tl—v tl+].
Thus, we have
oy? di

N y ”
L:(U1) = ¢ (T ta T gs(t)> + 0(e).

Consequently, for sufficiently smalland sufficiently large’ it holds

L.(Uy) >0 for teltl—v tl4+].

If we compare the expressiobg (1 — v, &) = ot —v) +y /e andul = utl —v, ) =
<p(tc1 —v) 4+ O(e), then we obtain for sufficiently smadl

Ul(tg —v,€) > ul.

Thus,U(t, &) is an upper solution of (2.1), (2.2) for the interved |- v, t2 + v].
From our investigations above we get that the initial value problem (2.1), (2.2) has a so-
lution u(t, &) in the interval fo, tX + v] satisfying fort = t}

gl(tg, g) = go(tg) +ne? = ne? < u(tcl, ) < yve =U1(tl, ). (3.10)

To prepare the construction of upper and lower solutions for the next interval we notice
that from assumptionAy) it follows that to any given sufficiently small positivethere
are positive constanss (v) > 0 andw (v) such that the functioa(t, v) defined by

a(t,v) :=gu(0,t,0) + 85(v) (3.11)
satisfies
a(tc1 +v,v) <0
and
t*—w(v)
/ a(t,v)dt =0. (3.12)
tcl—l—v

We note that»(v) tends to 0 as — 0. For the following we assume thatis so small
thatt* — 2w(v) > t1 + v. Thus, we have

at,v) >0 for t*—wl) <t<tg+T. (3.13)

In order to prove the relation (3.2) we construct an upper solidigft, ¢) to (2.1), (2.2)
fort e [t} + v, t* — 2w(v)] in the form

t

Us(t, ) = )/«/Eexp{:—gL a(s, v)ds}, (3.14)

ti4v
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wherey is the same constant as in (3.9). By (3.9) and (2.5) we have
utd +v,e) < ye =Ual +v, ).
From (3.11), hypothesicA,) and (3.12) it follows
t
/ a(s,v)ds <0 fort e [té + v, t*F — Za)(v)] .
tl+v

Therefore, we have

lim Uz(t,e) =0 fort e [tcl Foutf— Zw(v)] .

Next we verify that) 2(t, ¢) satisfies the differential inequality for an upper solution.
It is easy to check that »(t, ) obeys

e % =a(t,v)Us. (3.15)
dt
From (3.15) we get

_ du _ _ _ _
L8(U2) =¢ d—tz_g(UZ’ t’ 8) = gu(O, ta S)UZ_g(UZ’ t’ 8)+(a(t7 U)_gu(O, ta 8))U2

By assumptioriAs) and by (3.14) we have fdre [tc1 +v, t*— 2w (v)] and for sufficiently
smalle B B
u(0,t,e)Uz2 —g(U2, t, &) > 0.

From (3.11) we obtain for sufficiently smail
a(ta V) - gU(O’ t’ 8) = Sa(V) + gU(O’ t’ O) - gU(O’ t’ 8) Z 0~

Thus,
LS(UZ) 2 Oa

i.e.,U is an upper solution far e [tg + v, t* = 20 (v)].

It is easy to verify thap(t) + B, wherep does not depend an is an upper solution on
[t* — v, T], if we chooses sufficiently large.

By assumptior{Az), U = 0 is a trivial lower solution for this interval. Hence, the initial
value problem (2.1), (2.2) has a solutiot, ¢) in the interval {o, to + T] satisfying

lim u(t,e) =0 fort e [t v, t* — 20 (). (3.16)
£—>

Sincev is any small positive number, the relation (3.16) is validtfer (tcl, t*). Thus, the
validity of relation (3.2) has been proven.
We note that the following relations hold

Ua(ty +v,8) = Ua(t* —w(v), &) = yv/e.
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By (3.13) the functiora(t, v) is positive fort > t* — w(v). Hence, to given sufficiently
smallv ande, and to givery andy101kler satisfying O< y1 < cp, Wherecy is the same
constant as in hypothesigs), and where is independent of, there is a positive con-
stantiz(v, ¢) such that

t*—w()+ra(v,e) ra(v,e) "
/ a(s,v)ds = / a(t(} +v+sv)ds=¢ (In ——In \/E> ,(3.17)
td+v 0 14
wherela(v, €) tends to zero astends to zero. From (3.14) and (3.17) we get

Uo(t* — w(v) + Aa(v, €), &) = y1. (3.18)

We will exploit this relation in the next section.

In order to prove (3.1) we construct a nontrivial lower solution of (2.1), (2.2) on the interval
[t(}, t* + v + Ap(v, &)], where the positive numbes, (v, ) will be defined later.

By hypothesig A4) there is to any small > 0 a constani,(v) > 0 such that the function
b(t, v) defined by

b(t, v) := gu(0,t,0) — Sp(v) (3.19)

t*+v
/ b(s, v)ds = 0.
t

1
C

satisfies

Now we construct a lower solution in the form
1 t

U,(t, &) = ne? exp{—/ b, v)ds}, (3.20)
£ tcl

wheren is the same constant as in (3.8). For the sequel we assume
0 < n < no=min(yL, p(t*)). (3.21)

From (3.8) and (3.20) we get

Ut &) = U,td, &) = ne?,

that is, the inequality for the initial condition is fulfilled.
In a similar way as we established the cons#aiv, ¢) we can conclude from (3.20) that
there is a positive constahg(v, ) such that

U,(t* + v+ Ap(v,8)) =1 (3.22)

andip(v, ) — 0 ase — 0.
Itis obvious that) ,(t, ¢) satisfies the differential equation

du
€ stz = b(t, v)U,.

10



Using this equation we have

& — dt g(U25 t 8) (b(t7 U) - gU(O’ ta 8))g2 + gu(o, ta S)QZ - g(QZ’ t’ 8)' (323)

From (3.19) it follows that for sufficiently smadl
b(t, v) — gu(0, t, &) < —T”. (3.24)

By the hypothesegA3) and(Ap) there is a constanrt > 0 such that fou, t,e) € D

gU(Oa ta 8)u - gU(u’ ta 8) = gU(O’ t’ S)U - (g(u» ta 8) - g(o’ t» 8))

3.25
(Qu(0, t, &) — Qu(Us, t, £))U < KU, (3.29)

where O< u, < u. Thus, it follows from (3.23) — (3.25)
8%—9(U2,t,8)<u (—%Jr U ) (3.26)

If we choose; such that
n < min(no, dp(v)/(2)),

then we get from (3.26)

du,
ET—g(Uz,t,8)<o

TherefordJ ,(t, ¢) is a nontrivial lower solution of (2.1), (2.2) fore [t1, t*+v+Ap(v, &)].
By (3.22) we can conclude

ut* + v+ Ap(v,8),e) =0 > n, (3.27)

wheren does not depend an If we consider the initial value problem (2. 2i¢t* + v +

Ap(v, ) = U, where we emphasize thatloes not depend anand belongs to the basin of
attraction of the asymptotically stable equilibriynt* + v + Ap(v, ¢)) of the associated
equation (2.4), then we can apply the standard theory of singularly perturbed initial value
problems and get the relation

Iimou(t, e)=o¢t) forte (t*+v,tg+T]. (3.28)
e—

As v does not depend anand can be chosen arbitrary small, the proof of relation (3.1),
and consequently of Theorem 3.1 is complete.
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4 Periodic forced canards

4.1 Formulation of the Problem. Assumptions

In this section we consider the singularly perturbed scalar differential equation

€ 3—? =g, t,e), teR (4.2)

in the case of exchange of stabilities under the additional assumption that the fiugistion
T-periodic int. Our goal is to study the existence of harmonic solutions of (4.1), i.e. we
are looking for solutions satisfying

uit,e)=ut+T,e) VteR (4.2)
and which exhibit the phenomenon of delayed exchange of stabilities. Such solutions are

referred to as periodic forced canards.

Our approach to prove the existence of periodic forced canards is based on the method of
lower and upper solutions.

Definition 4.1 Let the functions U (t, &) and U (t, &) be mappings of the domain D :=
[+ X [tc1 — v, t(} — v 4+ T]into R. ThefunctionsU (t, ¢) and U (t, ¢) are called ordered
lower and upper solutions of the boundary value problem (4.1), (4.2)on theinterval [tc1 —
v, tc1 — v+ w] for ¢ € |, if they are piecewise continuous and piecewise continuously
differentiablewith respecttot on D andif they satisfyfor (t, ¢) € D thefollowingrelations

" U(t,e) <U(t, ¢) (4.3)
in all points of continuity,
(i)
U+0,6) <UE—-0,¢), UE+0,6) >U(f-0,¢) (4.4)

inany point t = f of discontinuity,

Gii)

¢ _gute <0, (4.5)
dt
R (4.6)

where in all points, where %—% and % have a jump, the derivatives have to be un-
derstood in the sense of right and left derivatives.
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(iv)

g(téL —v,¢8) < Q(téL —Vv+w,e), U(tc1 —v,8) > U(tc1 —Vv+w,e). 4.7)

In the sequel, we need the same assumptions as introduced in section 1, additionally we
suppose thag is T -periodic int.

(P1). Thereexistsa number tg € R such that the assumptions (A1) — (Ag) of section 1 are
satisfied.

(P2). gisT-periodicint,i.e.

gu,t,e) = gU,t+T, &) Vte R Vuely, Ve e lg,. (4.8)

4.2 Existence and stability of periodic forced canards

Our first result states the existence of periodic forced canards.

Theorem 4.2 Assumethe hypotheses (P;) and (P,) tobevalid. Then, for sufficiently small
e, there existsa positive T -periodic solution u p(t, &) of (4.1) satisfyingfor n = 0, +1, ...

lim up(t,e) =0 fort e (t £ nT, t* £nT), (4.9)
e—

lim up(t. &) = () forte " £nT, tl+@£mT). (4.10)

Remark 4.1 The periodic solutionup(t, ) represents a relaxation oscillation. Since it
stays for the intervalag +nT, t*4+nT) near the repelling part of the solution raot= 0,
it is referred to as periodic forced canard.

Remark 4.21f we consider lim,_.qgup(t, &) for t € [to, to + T] except for t = t*, then we
obtain a discontinuous function ug(t) defined by

et) for to<t<tl
up(t):=1 0 for tl<t<t* (4.11)
pt) for t*<t<tg+T

Proof of Theorem 4.2.Under the periodicity condition (4.8), the phase space of the dif-
ferential equation (2.1) can be considered as theQlaxt I, of the cylinderZ := ST x R.

To eacle € |+, wheres* is a sufficiently small positive number, we construct two curves
U, andl; which starts at some straight line= f on the cylinderZ, where their initial
points P, and P, bound some intervals. They surround the cylindeZ without inter-
secting each other and arrive at the same straight line, where their endppiatsl E,
bound an interval £ which is a a subinterval of;. We denote byG, the region on the
cylinder Z bounded by the curvdg, and/, and bylg andIg. The curveds, andU.
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have the important property that a solution of (4.1) starting ©mill never leave the re-
gionG,. Hence, the intervdl; will be mapped into itself by the solutions of (4.1) starting
onlj. Consequently, by applying Schauder’s fixed point theorem, we get the existence of
at least one periodic solution of (4.1) located3g.

The curves/, andl{, are determined by the construction of upper and lower solutions for
the boundary value problem (4.1), (4.2). For this purpose we use the results of section 3.
We start fromt =t} —v.

As we mentioned in section 3, the solution of the initial value problem (2.1), (2.2) takes
fort =t — v the valueu! which can be estimated from above By (t! — v, ¢), where

the function

Uq(t,e) = Q(t) + y+/e (4.12)

is an upper solution of (2.1) on the intervegt - v, t1 4 v]. We also recall that the function

t

_ 1
Ua(t, ) = yﬁexp{g a(p. v)dp}

tcl—l—v

is an upper solution of (2.1) on the interng: B v, t1], wheret; :=t* — o (v) + Aa(v, &),
satisfying

Ua(ty, &) = y1, (4.13)

wherey; does not depend an(see (3.18)).
A lower solution of (2.1) for the intervat§ — v, t1] is given by

Ui(t, &) = p(t) + ne?, (4.14)

and for the intervaItE, to], wherety :=t* + v + Ap(v, ), by

1 t
U,(t, &) = ne? eXp{g /1 b(p, V)dp},
tC

satisfying
Uo(ty, &) =, (4.15)

wheren does not depend an(see (3.19), (3.20)). Fig. 4.1 contains a schematic represen-
tation of the constructed lower and upper solutions.

In the next step we construct an upper solution for the intetyald — v+ T], and a lower
solution for the intervaltp, t* — v + T1.

The idea to do this is as follows. First we note that in the intervals under consideration
there is no exchange of stabilities. Next we observe that fer t; the upper solution
takes the valugr; which is independent of, and that foit = t, the lower solution takes

the valuen which is also independent ef Both pointsy; andn are located in the region

of attraction of the equilibriai = ¢(t1) and ofu = ¢(t), respectively of the associated

14



equation (2.4).
Taking into account this observations we construct lower and upper solutions in the form

Us(t,e) = @)+ e(ui(t) +a) + I5(11) + el1i(70),

Us(t,e) = @)+ e(ur(t) — @) + [5(12) + el15(2). (4.16)
Here,u1(t) is the first order term in the regular expansion of the solutiine) of the
differential equation (4.1) which is defined by (3.4),= (t —t1)/e, andty = (t — t2) /e,

« is some appropriate positive constant to be chosen later. The zeroth order boundary layer
functionsl‘[cl) andl‘l(z) are defined by the following initial value problems (see, e.g. [30])

dl‘Ié 1 1

Fo g(p(ty) + g, tg, 0), 71 > 0, M5(0) = y1 — p(ta) (4.17)
and

dn(z) 2 2

The first order boundary layer functidfy is defined by the following initial value problem
(see [30])

1

ar; _ (p(t1) + M3(t1), tr, OTIE + ga(t1), 71 > O, MH(0) = —us(ty), (4.19)
drl—guﬁﬂl o(t1), 1, 1+ 01(71), 71 , 117(0) = —u1(ly), .

wheregi(t1) is defined by

g1(r1) = (Qulp(ty) + TT§(t1), t1, 0) — Gu(e(t), tz, 0)¢'(t1) 71 (4.20)
(Gt (p(ty) + TT5(71), ta, 0) — Ge (@ (tn), tr, 0)) 71
+0e (p(t1) + T§(r1), t1, 0) — Qe (@(t1), ta, 0)
+(gule(t) + TT5(71), t1, 0) — Gu(@(tr), ta, 0))us(ty).
117 is the solution of the initial value problem
d—ni— (p(tp) + TI3(12), to, OTIZ + Qo(12), T2 > 0, T13(0) = —us(tp), (4.21)
drz—guwz ol12), 1o, 11+ 02(72), 72 , 17 = 1(12), .
wherego(t2) is defined analogously to (4.20).

The boundary layer correctior]fs%(rl) andf[i(rz) are slight modifications of the first or-
der boundary layer functiorﬁ}(u) and Hi(rz), respectively, and are defined by

1l
dri

i = Qu(p(ty) + TI5(t1), tr, O)TT + g1(z1)

+(Qu(p(t) + Mo(r1), tz, 0) — Gule(ty), tz, 0)a, (4.22)
7 > 0, T1H0) = —uy(ty),
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and

dﬁ% 2 2

s = Qu(e(to) + IT5(12), tz2, O)T1T + go(72)
+(Qu(e(tp) + T5(12), t2, 0) — Gu(p(t2), tz, 0))a, (4.23)
72> 0, T1(0) = —us ().

It is known that the solutions of the problems (4.17) — (4.19) and (4.21) —(4.23) exist and
exponentially decay to zero (see [30]).

From our construction it follows thad 5(t, ¢) andU3(t, ¢) defined in (4.16) are formal
asymptotic solutions of (4.1) (see also [18]) and satisfy

du
e —2 = 9WUs 1, &) = eaGu(p(), 1, 0) + 0(e),

du _
& TZB - g(U3, t, 8) = —80lgu((p(t)’ t, 0) + 0(8).

By assumptior(Az) we haveg,(¢(t),t,0) < Ofort > tg. Therefore, conditions (4.5)

and (4.6) in the definition of lower and upper solutions are fulfilled. Since the boundary
layer corrections are exponentially decaying functions and the estimate (3.21) is valid, the
condition (4.3) can be satisfied for any positivand sufficiently smalt.

If we construct lower and upper solutiodst, ) andU (t, ¢) for the boundary value prob-

lem (4.1), (4.2) by composing the functiods andU;, i = 1, 2, 3, then the functiong)

andU have a discontinuity for = t; andt = t,, respectively. Now we will check that the
conditions (4.4) are fulfilled at these points. From (4.16),(4.17),(4.19), and (4.13) we get

Us(ty, &) = ¢(t1) + e(Ui(ty) + @) + y1 — @(t1) — eur(ty) + 0(e) =
Y1+ ea +0(e) > y1 = Uop(ty, &) > 1.

Analogously we obtain from (4.16),(4.18), (4.23), and (4.15)

Uj(t2, &) = ¢(t2) + e(Ur(t2) — o) + 1 — ¢(t2) — eur(t2) + 0(e) =
n—ea+0(e) <n=U,t2 ¢ <.

Therefore, we can conclude thétt, £) andU (t, &) are upper and lower solutions of (4.1),
(4.2).

Finally we have to ensure that the relations
Qg(tcl —v+T,8) > Ql(tcl — V), Ug(tcl —v+T,8) < Ul(t(::L — V)
hold. By (4.16) we have

Ustl—v4T,8) = ol —v+T)+eutt—v+T)—a)+o0@)
= ol —v)+euitd —v) —a) + o).
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By (3.6),us(ty — v) is positive. If we require: < uy(t} — v), then we get by (4.14)
Q3(tg —v+T,e > go(tg —v)+ n82 = Ql(tg —V)
for sufficiently smalls. By (4.16) and (4.12) we have

Ustl—v4+T.e) = otl—v4+T)+eurl—v+T)+a)+o0()
= @t —v) + e(Uiltg — v) + @) +0(e) < p(ts —v) + y /e
= Ul —w).
This condition holds for sufficiently small Therefore, we can conclude that the boundary
value problem (4.1), (4.2) has at least one solution, g.e.d.

k

u ~
K4 N
K4 N\
/ N
/ /"\ N
! f \\ \
— ! / \ \»\
U3 l/'l ,I AN .\\
! 1 \\ \
! 1 \ \
/ I \ \
NP
\\ 7 Eg
L Es
L BS
| | ||
!I. 1| ' 1
tt—v ot tt+v th t tt—v+T t

Fig. 4.1. Schematic representation of constructed lower and upper solutions.

We denote byG, the bounded region on the cylind&rbounded by the upper and lower
solutionU (t, ) andU (t, ¢).

Theorem 4.3 Assume the assumptions of Theorem 4.2 hold. Then there is a sufficiently
small positivees, €1 < gg suchthat any T -periodic solution of (4.1)located in G, satisfies

to+T
/ u(up(t, &), t,e)dt < 0.
t

0

Proof. We consider the integral

to+T
/ Gu(Uo(D), £, O)dt,
t

0
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where the functionig has been introducedin (4.11) as the pointwise limit of @Ryeriodic
solution of (4.1) located i, ase tends to zero. We have

t*

to+T td
/ gu(uo(t), t, O)dt = Oue(t), t, O)dt+ .
t t

0 to

to+T

C t*

By assumptior{Ay) there are positive constants anda, such that

5
Ju(p(t), t,0)dt = —a1 <0,

to

to+T
f gu(gﬂ(t), ta O)dt = —0U2 < O,
t

*

by hypothesigA4) we have
t*
gu(0,t, 0)dt = 0.
@

Hence it holds

to+T

to

From our smoothness assumptigky) we get thaup(t, ¢) andgy(up(t, €), t, ) depend
continuously ore. Hence, we can conclude that there is a sufficiently small positive
£1 < &0, such that for O< ¢ < ¢; anyT-periodic solutiorup(t, ) of (2.1) located irG,
fulfills

to+T
/ Qu(up(t, e),t, e)dt <O.
t

0

Theorem 4.4 Assumethehypotheses (P1) and (P») tobevalid. Then, for sufficiently small
¢ system (4.1) has a unique asymptotically stable periodic solutionin G,.

Proof. Itis well-known that ar -periodic solutiorup(t, ) of the T -periodic scalar differ-
ential equation (4.1) is asymptotically stable if

to+T
/ Qu(up(t, e),t, e)dt <O.
t

0

By Theorem 4.2 this relation is satisfied for afiyperiodic solutiorup(t, ¢) of (4.1) lo-
cated inG, for 0 < ¢ < e1. That means, any such solution is asymptotically stable.
Therefore, (4.1) has exactly offeperiodic solution inG,.

18



References

[1] E. BENOIT (Ed.), Dynamic bifurcation, Lecture Notes in Mathematic$493
Springer-Verlag, New York, 1991.

[2] V.F. BuTuzov AND N.N. NEFeDoOV, Sngularly perturbed boundary value prob-
lem for a second order equation in case of exchange of stability, Math. Notes63,
311-318 (1998), (translation from Mat. Zame®id 354—362 (1998)).

[3] V.F. Butuzov, N.N. NEFEDOV AND K.R. SCHNEIDER, Sngularly perturbed
boundary value problemsin case of exchange of stabilities, J. Math. Anal. Appl229,
543-562 (1999).

[4] V.F. BuTtuzov, N.N. NEFEDOV AND K.R. SCHNEIDER, Differential Equations.
Sngular Perturbation, Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i
Ee Prilozheniya. Tematicheskie Obzory, vol 109, 2003.

[5] V.F. Butuzov, N.N. NEFEDOV AND K.R. SCHNEIDER, Sngularly perturbed
reaction-diffusion systems in cases of exchange of stabilities, Nat. Resour. Model.
13, 247-269 (2000).

[6] V.F. BuTuzov, N.N. NEFEDOV AND K.R. SCHNEIDER, Sngularly perturbed -
liptic problems in the case of exchange of stabilities, J. Differ. Equationd.69, 373—
395 (2001).

[7] V.F. BuTuzov, N.N. NEFEDOV ANDK.R. SCHNEIDER, Onasingularly perturbed
systemof parabolic equationsin the case of i nter secting roots of the degener ate equa-
tion, Computational Mathematics and Mathematical Phy4i;476—-187 (2002).

[8] V.F. Butuzov, N.N. NEFEDOV AND K.R. SCHNEIDER, Sngularly perturbed
partly dissipative reaction-diffusion systems in case of exchange of stabilities, J.
Math. Anal. Appl.273 217-235 (2002).

[9] V.F. BuTuzov AND |. SMUROV, Initial boundary value problem for a singularly
perturbed parabolic equation in case of exchange of stability, J. Math. Anal. Appl.
234, 183-192 (1999).

[10] S.A. CHAPLYGIN, A New Method for the Integration of Differential equations, (in
Russian), GITL, Moscow-Leningrad 1950.

[11] F. DUMORTIER AND B. SMITS, Transition time analysis in singularly perturbed
boundary value problems, Trans. Am. Math. So@847, 4129-4145 (1995).

[12] F. DUMORTIER AND R. ROUSSARIE Canard cycles and center manifolds, Mem.
Am. Math. Soc577, AMS, Providence, 1996.

[13] T. ERNEUX AND P. MANDEL, Imperfect bifurcation with a slowly-varying control
parameter, SIAM J. Appl. Math.46, 1-15 (1986).

19



[14] A.YU. KOLESOV AND N.KH. Rozov, “Chase on ducks’ in the investigation of
singularity perturbed boundary value problems, Differ. EqQus.35, 1374-1383 (1999),
(translation from Differ. Uravn35, 1356-1365 (1999)).

[15] M. KRUPA AND P. ZMOLYAN, Extending geometric singular perturbation theory
to non-hyperbolic points—fold and canard pointsin two dimensions, SIAM J. Math.
Anal. 33, 286-314 (2001).

[16] N.R. LEBOVITZ AND R.J. HAAR, Exchange of stabilitiesin autonomous systems,
Stud. Appl. Math54, 229-260 (1975).

[17] J. E. MARSDEN, Qualitative methods in bifurcation theory, Bull. Am. Math. Soc.
84, 1125-1148 (1978).

[18] N.N. NeErFeDovV, Method of differential inequalities for some singularly perturbed
partial derivative problems, Differ. Equations31, No.4, 668-671 (1995).

[19] N.N. NEFeDOV AND K.R. SCHNEIDER, Delayed exchange of stabilitiesin a class
of singularly perturbed parabolic problems, Weierstral3—Institutifr Angewandte
Analysis und Stochastik Berlin, Preprint No. 778, Berlin, 2002.

[20] N.N. Nerebpov AND K.R. SCHNEIDER, Delayed exchange of stabilities in
singularly perturbed systems, Weierstral3—Institutifr Angewandte Analysis und
Stochastik Berlin, Preprint No. 270, Berlin, 1996.

[21] N.N. NEFEDOV AND K.R. SCHNEIDER, Immediate exchange of stabilitiesin sin-
gularly perturbed systems, Diff. Int. Equs.12, 583-599 (1999).

[22] A.l. NEISHTADT, On delayed stability loss under dynamic bifurcations|, (in Rus-
sian), Differ. Uravn23, 2060-2067 (1987).

[23] A.l. NEISHTADT, On delayed stability loss under dynamic bifurcationsll, (in Rus-
sian), Differ. Uravn24, 226—-233 (1988).

[24] C.V. Pao, Nonlinear parabolic and elliptic equations, Plenum Press, New York and
London, 1992.

[25] D. RUELLE, Elements of differentiable dynamics and bifurcation theory, Academic
Press, Inc. Bosten, MA 1989.

[26] L.P. SHILNIKOV, A.L. SHILNIKOV, D.V. TURAEYV, L.O. CHUA, Methods of Qual-
itative Theory in Nonlinear Dynamics, Part 11, World Scientific, Singapore, 2001.

[27] M.A. SHISHKOVA, Study of a system of differential equations with a small param-
eter at the highest derivatives, (in Russian), Dokl. Akad. Nauk SSSR)9 576-579
(1973).

[28] E.A. SHCHEPAKINA AND V.A. SOBOLEV, Integral manifolds, canards and black
swans, Nonlin. Analysis, Theory, Methods, Applicatiodd, 897-908 (2001).

20



[29] A.N. TiIkKHONOV, Systems of differential equationscontaining small parameters, (in
Russian), Mat. SbZ3, 575-586 (1952).

[30] A.B. VASIL’EVA, V.F. BuTuzOvVv AND L.V. KALACHEV, The boundary function
method for singular perturbation problems, SIAM Studies in Applied Mathematics,
Philadelphia 1995.

21



