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Abstract

We study scalar singularly perturbed non-autonomous ordinary differential equa-
tions whose associated equations feature the property of exchange of stabilities, i.e.,
the set of their equilibria consists of at least two intersecting curves. By means of the
method of asymptotic lower and upper solutions we derive conditions guaranteeing
that the solution of initial value problems exhibit the phenomenon of immediate ex-
change of stabilities as well as the phenomenon of delayed exchange of stabilities.
We use this result to prove the existence of forced canard solutions.

1 Introduction

Consider the dynamical autonomous system

dx

dτ
= f (x, λ) (1.1)

depending on the parameterλ. The study of the influence ofλ on the long-term behavior
of system (1.1) represents an essential part of the bifurcation theory. The parameter value
λ∗ is called a bifurcation point for (1.1) with respect to the regionG in the phase space of
(1.1) if in any neighborhoodN of λ∗ in the parameter space there exist two pointsλ1 and
λ2 such that the phase portrait of (1.1) inG is not topologically equivalent forλ1 andλ2

(see, e.g. [17, 25, 26]).
If we assume thatλ changes slowly in time, then we arrive at the so-called dynamic bifur-
cation theory [1]. In what follows we consider the simplest case thatx andλ are scalars
and thatλ increases slowly witht . For simplicity we set

λ = ετ,

whereε is a small positive parameter. Introducing the slow timet by t = ετ , the differ-
ential equation (1.1) takes the form (x(τ ) = x(t/ε) =: u(t))

ε
du

dt
= f (u, t), (1.2)

that is, (1.2) is a singularly perturbed non-autonomous differential equation.
If we supposef (0, λ) ≡ 0 for all λ and thatλ∗ = 0 is a bifurcation point of (1.1), where
x = 0 is stable (unstable) forλ < 0 (λ > 0), then the solution setf −1(0) of the degenerate
equation of (1.2)

0 = f (u, t) (1.3)

generically consists in thet-u–plane of two curves intersecting fort = 0, as depicted in
Fig. 1.1 and Fig. 1.2.
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Fig. 1.1. Transcritical bifurcation
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Fig. 1.2. Pitchfork bifurcation

All points of f −1(0) are equilibria of the associated equation to (1.2)

du

dσ
= f (u, t), (1.4)

wheret has to be considered as a parameter. The curveu = 0 is an invariant manifold
of (1.4) which is attracting fort < 0 and repelling fort > 0. We call this situation as
exchange of stabilities (according to Lebovitz and Schaar [16]), where Fig. 1.1 represents
the case of transcritical bifurcation and Fig. 1.2 the case of pitchfork bifurcation.

If we consider for equation (1.2) the initial value problem

u(t0) = u0, t0 < t ≤ t0 + T , t0 < 0, (1.5)

and if we assume thatu0 belongs to the region of attraction of the invariant manifoldu = 0,
then it follows from the standard theory of singularly perturbed systems (see, e.g., [30])
that the solutionu(t, ε) of the initial value problem (1.2),(1.5) exists at least fort0 < t < 0.
For t > 0 there are the following possibilities for the behavior of the solutionu(t, ε) :

(i). u(t, ε) follows immediately the new stable branch emerging att = 0.

(ii). u(t, ε) follows for some O(1)-time interval (not depending onε) the repelling part
of the invariant manifoldu = 0 and then jumps to the stable branch.

(iii). u(t, ε) follows for some O(1)-time interval the repelling part of the invariant mani-
fold u = 0 and then jumps away from this manifold (possibly blowing up).

The case (i) is denoted as immediate exchange of stabilities, case (ii) is called delayed ex-
change of stabilities, and case (iii) is referred to as delayed loss of stability. In the cases
(ii) and (iii) the corresponding solutions are said to be canard solutions.
The case of exchange of stabilities for singularly perturbed ordinary differential equations
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has been treated by several authors using different methods (see, e.g., [1, 3-10, 12-23 ,25,
26]). The case of immediate exchange of stabilities [4, 21] and the case of delayed ex-
change of stabilities [4, 20] has been treated by the authors applying the method of lower
and upper solutions.

In the following, we derive by the same method conditions on the functionf to ensure that
the solutions to the initial value problems (1.2),(1.5) exhibit the phenomenon of immediate
exchange of stabilities as well as the phenomenon of delayed exchange of stabilities. We
emphasize that the results of [20] and [21] concerning the delayed and immediate exchange
of stabilities respectively can not be applied to our problem because the conidtions at the
points of exchange of stabilities assumed in [20] and [21] are not satisfied. Hence, we have
to look for an appropriate modification of the construction of lower and upper solutions.

The paper is organized as follows. Section 2 contains the formulation of the initial value
problem. We also collect in this section our assumptions. Section 3 presents our main
results for the immediate and delayed exchange of stabilities. In Section 4 we use the re-
sults of Section 3 to prove the existence of periodic forced canards and to investigate their
asymptotic stability and local uniqueness.

2 Notation. Assumptions

We consider the scalar singularly perturbed non-autonomous differential equation

ε
du

dt
= g(u, t, ε), t ∈ IT := {t ∈ R : t0 < t ≤ t0 + T }, (2.1)

whereε is a small positive parameter, and study the initial value problem

u(t0, ε) = u0. (2.2)

Let Iε0 be the intervalIε0 := {ε ∈ R : 0 < ε < ε0}, where 0< ε0 
 1. Our goal is
to derive conditions ong ensuring the existence of a unique solutionu(t, ε) to the initial
value problem (2.1), (2.2) for sufficiently smallε and to find an asymptotic representation
of u(t, ε). Our tool for establishing such a result is based on the method of lower and upper
solutions. Let us recall the definition of lower and upper solutions for (2.1), (2.2).

Definition 2.1 The continuous functions U and U mapping I T × I ε0 into R and which
are piecewise continuously differentiable with respect to t are called ordered lower and
upper solutions of the initial value problem (2.1), (2.2)for ε ∈ Iε0 provided they satisfy
the following conditions for t ∈ IT , ε ∈ Iε0

(i) U (t, ε) ≤ U (t, ε).

(i i) Lε(U ) := ε
dU (t,ε)

dt − g(U(t, ε), t, ε) ≤ 0 ≤ Lε(U ).

(i i i) U (0, ε) ≤ u0 ≤ U (0, ε).
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It is known that the existence of ordered lower and upper solutions to the initial value prob-
lem (2.1), (2.2) implies the existence of a unique solution located in between the lower and
upper solution (see, e.g. [10]).

Let Iu be an open bounded interval containing the origin, letD := Iu × IT × Iε0.Concern-
ing the smoothness of the functiong and the structure of the solution set of the degenerate
equation we assume

(A0). g ∈ C2(D, R).

(A1). The solution set of the degenerate equation

g(u, t, 0) = 0

consists in I u × I T of the curves u ≡ 0 and u = ϕ(t), where ϕ(t) is twice contin-
uously differentiable on I T . These curves intersect transversally in [t0, T ] exactly
twice, namely for t = t1

c and for t = t2
c , where t0 < t1

c < t2
c < t0 + T . For

definiteness, we suppose (see Fig. 2.1)

ϕ(t) > 0 for t0 ≤ t < t1
c and for t2

c < t ≤ t0 + T ,

ϕ(t) < 0 for t1
c < t < t2

c .

t

ϕ

2

(t)

T t0

u

t tcc
1

Fig. 2.1. Intersection of the curvesu ≡ 0 andu = ϕ(t)

Assumption(A1) implies

dϕ

dt
(t1

c ) < 0. (2.3)

u = 0 andu = ϕ(t) are equilibria of the associated equation

du

dσ
= g(u, t, 0), (2.4)

wheret on the right hand side has to be considered as a parameter. The following assump-
tion determines the stability of these equilibria.
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(A2).

gu(0, t, 0) < 0, gu(ϕ(t), t, 0) > 0 for t1
c < t < t2

c ,

gu(0, t, 0) > 0, gu(ϕ(t), t, 0) < 0 for t0 ≤ t < t1
c , t2

c < t ≤ t0 + T .

Assumption(A2) means that the rootsu = 0 andu = ϕ(t) exchange their stabilities at
t = t1

c andt = t2
c (see Fig. 2.1).

Now we introduce the function̂u(t), which is called the composed stable solution, by

û(t) :=



ϕ(t) for t0 ≤ t ≤ t1

c ,

0 for t1
c ≤ t ≤ t2

c ,

ϕ(t) for t2
c ≤ t ≤ t0 + T .

(2.5)

From assumption(A2) and (2.5) we get

gu(û(t), t, 0) ≤ 0. (2.6)

The following assumption is not generic, but quite natural when we are looking for positive
solutions of (2.1), (2.2).

(A3). g(0, t, ε) ≡ 0 for (t, ε) ∈ I T × I ε0.

Assumption(A3) implies thatu ≡ 0 is a solution of equation (2.1) inI T for all ε ∈ I ε0.
Consequently, a solution of the initial value problem (2.1), (2.2) withu 0 > 0 (u0 < 0) is
positive (negative) for allt ≥ t0. Another property of the solutionu ≡ 0 is its attractivity
for t1

c < t < t2
c , and its repulsivity fort < t 1

c andt > t2
c . In the sequel the function

G(t) :=
∫ t

t1
c

gu(0, s, 0) ds

plays a crucial role. From hypothesis(A2) it follows that G(t) has at most one root in
(t0, t0 + T ). We assume

(A4). The equation G(t) = 0 has a root t ∗ ∈ (t0, t0 + T ) (see Fig. 2.2and Fig. 2.3).

Concerning the functiong we assume

(A5). There is a positive number c0 ∈ Iu such that

g(u, t, ε) ≤ gu(0, t, ε)u for t1
c ≤ t ≤ t∗, ε ∈ I ε0, 0 ≤ u ≤ c0.

Assumption(A5) is fulfilled if the second derivative ofg with respect tou at u = 0 is
negative fort ∈ [t1

c , t∗), ε ∈ Iε.
Finally we suppose

(A6).

ĝuu(t) = guu(û(t), t, 0) < 0 for t = t1
c .
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Fig. 2.2. Intersection of the curvesu ≡ 0 andu = gu(0, t, 0)

3 Immediate and delayed exchange of stabilities

From the assumptions(A0) − (A3) it follows that there is an exchange of stabilities for
t = t1

c andt = t2
c . The following theorem states that at the timet = t 1

c there arises an
immediate exchange of stabilities, while fort = t 2

c there occurs a delayed exchange of
stabilities. Sinceu ≡ 0 is a solution of (2.1) for allε, it is easy to see that att = t 1

c there
is an immediate exchange of stabilities. Thus, the main result consists in establishing the
phenomenon of delayed exchange of stabilities fort > t 2

c and in estimating the delay time
by constructing a non-trivial lower solution.

Theorem 3.1 Assume the hypotheses (A0)− (A6) to be valid. Then, for sufficiently small
ε, there exists a unique solution u(t, ε) to the initial value problem (2.1),(2.2)with u 0 > 0
and u0 ∈ Iu, where u(t, ε) is positive and satisfies

lim
ε→0

u(t, ε) = ϕ(t) for t ∈ (t0, t1
c ) and t ∈ ( t∗, t0 + T ] , (3.1)

lim
ε→0

u(t, ε) = 0 for t ∈ (t1
c , t∗). (3.2)

Proof. The proof of this theorem is based on the technique of lower and upper solutions.
As we already mentioned, assumption(A3) implies that the solution of the initial value
problem (2.1), (2.2) is positive providedu0 is positive. From that assumption it also fol-
lows thatu ≡ 0 is a trivial lower solution for (2.1), (2.2) withu0 > 0.
The proof of Theorem 3.1 proceeds in three steps. In the first step we consider the initial
value problem (2.1), (2.2) in the interval [t0, t1

c −ν], whereν is any sufficiently small pos-
itive number independent ofε. Under our hypotheses, to that interval the standard theory
of singularly perturbed initial value problems can be applied (see, e.g., [30]). The corre-
sponding asymptotic relation in (3.1) follows immediately from Tikhonov’s theorem (see
[29]).
For the interval [t0 + δ, t1

c − ν], whereδ is any sufficiently small number independent of
ε, we get from [30] a more precise asymptotic representation of the solution of (2.1), (2.2)

u(t, ε) = ϕ(t)+ ε u1(t)+ O(ε2), (3.3)
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where the first order regular termu1 is defined by

u1(t) :=
dϕ(t)

dt − gε(ϕ(t), t, 0)

gu(ϕ(t), t, 0)
. (3.4)

The sign of the functionu1 neart1
c which we need for the construction of an lower solution

can be determined as follows. By hypothesis(A2) we havegu(ϕ(t), t, 0) < 0 for t0+ δ ≤
t ≤ t1

c −ν. From assumption(A3) it follows the relationgε(0, t1
c , 0) = 0. Hence, by (2.3)

there exist sufficiently small positive numbersν andκ such that

dϕ

dt
(t)− gε(ϕ(t), t, 0) ≤ −κ < 0 for t ∈ [t1

c − ν, t1
c ]. (3.5)

Therefore, we have

u1(t
1
c − ν) > 0. (3.6)

Let us introduce the notation

u1 := u(t1
c − ν, ε). (3.7)

Now we construct a nontrivial lower solutionU 1(t, ε) to the initial value problem (2.1),
(2.2) for t ∈ [t1

c − ν, t1
c ] in the form

U 1(t, ε) = ϕ(t)+ ηε2, (3.8)

whereη is a positive number independent ofε which will be chosen appropriately later.
We have

Lε(U1) ≡ ε
dU 1

dt
− g(U 1, t, ε) = ε

dϕ

dt
(t)− g(ϕ(t), t, 0)− εgε(ϕ(t), t, 0)+ O(ε2).

Taking into accountg(ϕ(t), t, 0) ≡ 0 and the relation (3.5) we obtain for sufficiently small
ε

Lε(U1) = ε

(
dϕ

dt
(t)− gε(ϕ(t), t, 0)

)
+O(ε2) ≤ −κε+O(ε2) < 0 for t ∈ [t1

c −ν, t1
c ].

From (3.3), and (3.6)-(3.8) it follows for sufficiently smallε

u(t1
c − ν, ε)− U1(t

1
c − ν, ε) = u1(t

1
c − ν)ε + O(ε2) > 0.

Consequently,U 1(t, ε) is a lower solution of (2.1), (2.2) on [t 1
c − ν, t1

c ].
Now we construct an upper solution of (2.1), (2.2) for the interval [t 1

c − ν, t1
c + ν] in the

form

U1(t, ε) = û(t)+ γ
√
ε, (3.9)

whereû(t) is the stable composed solution introduced in (2.5), andγ is a positive constant
independent ofε which will chosen later. We have

Lε(U1) ≡ ε
dU 1

dt
−g(U 1, t, ε) = ε

dû

dt
−

[
ĝ(t)+ γ

√
ε ĝu(t)+ ε

2
ĝuu(t)γ

2 + ε ĝε(t)+ o(ε)
]
,
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whereĝ(t) := g(û(t), t, 0), and analogouslŷgu(t) := gu(û(t), t, 0), ...
By hypothesis(A1) it holds ĝ(t) ≡ 0. By (2.6) we have−ĝu(t) ≥ 0. According to as-
sumption(A6)we can chooseν sufficiently small such that there is a small positive number
σ satisfying

ĝuu(t) ≤ −σ < 0 for t ∈ [t1
c − ν, t1

c + ν].

Thus, we have

Lε(U1) ≥ ε

(
σγ 2

2
+ dû

dt
− ĝε(t)

)
+ o(ε).

Consequently, for sufficiently smallε and sufficiently largeγ it holds

Lε(U 1) ≥ 0 for t ∈ [t1
c − ν, t1

c + ν].

If we compare the expressionsU 1(t1
c − ν, ε) = ϕ(t1

c − ν)+γ√
ε andu1 = u(t1

c − ν, ε) =
ϕ(t1

c − ν)+ O(ε), then we obtain for sufficiently smallε

U 1(t
1
c − ν, ε) ≥ u1.

Thus,U 1(t, ε) is an upper solution of (2.1), (2.2) for the interval [t 1
c − ν, t1

c + ν].
From our investigations above we get that the initial value problem (2.1), (2.2) has a so-
lution u(t, ε) in the interval [t0, t1

c + ν] satisfying fort = t1
c

U 1(t
1
c , ε) = ϕ(t1

c )+ ηε2 = ηε2 ≤ u(t1
c , ε) ≤ γ

√
ε = U 1(t

1
c , ε). (3.10)

To prepare the construction of upper and lower solutions for the next interval we notice
that from assumption(A4) it follows that to any given sufficiently small positiveν there
are positive constantsδa(ν) > 0 andω(ν) such that the functiona(t, ν) defined by

a(t, ν) := gu(0, t, 0)+ δa(ν) (3.11)

satisfies
a(t1

c + ν, ν) < 0

and
∫ t∗−ω(ν)

t1
c +ν

a(t, ν)dt = 0. (3.12)

We note thatω(ν) tends to 0 asν → 0. For the following we assume thatν is so small
thatt∗ − 2ω(ν) > t1

c + ν. Thus, we have

a(t, ν) > 0 for t∗ − ω(ν) ≤ t ≤ t0 + T . (3.13)

In order to prove the relation (3.2) we construct an upper solutionU 2(t, ε) to (2.1), (2.2)
for t ∈ [t1

c + ν, t∗ − 2ω(ν)] in the form

U2(t, ε) = γ
√
ε exp

{1

ε

∫ t

t1
c +ν

a(s, ν)ds
}
, (3.14)
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whereγ is the same constant as in (3.9). By (3.9) and (2.5) we have

u(t1
c + ν, ε) ≤ γ

√
ε = U 2(t

1
c + ν, ε).

From (3.11), hypothesis(A2) and (3.12) it follows

∫ t

t1
c +ν

a(s, ν)ds < 0 for t ∈
[
t1
c + ν, t∗ − 2ω(ν)

]
.

Therefore, we have

lim
ε→0

U 2(t, ε) = 0 for t ∈
[
t1
c + ν, t∗ − 2ω(ν)

]
.

Next we verify thatU 2(t, ε) satisfies the differential inequality for an upper solution.
It is easy to check thatU 2(t, ε) obeys

ε
dU 2

dt
= a(t, ν)U 2. (3.15)

From (3.15) we get

Lε(U2) := ε
dU 2

dt
−g(U2, t, ε) = gu(0, t, ε)U 2−g(U2, t, ε)+(a(t, ν)−gu(0, t, ε))U 2.

By assumption(A5) and by (3.14) we have fort ∈ [t1
c +ν, t∗−2ω(ν)] and for sufficiently

smallε
gu(0, t, ε)U 2 − g(U 2, t, ε) ≥ 0.

From (3.11) we obtain for sufficiently smallε

a(t, ν)− gu(0, t, ε) = δa(ν)+ gu(0, t, 0)− gu(0, t, ε) ≥ 0.

Thus,
Lε(U 2) ≥ 0,

i.e.,U 2 is an upper solution fort ∈ [t 2
c + ν, t∗ − 2ω(ν)].

It is easy to verify thatϕ(t)+ βε, whereβ does not depend onε, is an upper solution on
[t∗ − ν, T ], if we chooseβ sufficiently large.
By assumption(A3), Ũ ≡ 0 is a trivial lower solution for this interval. Hence, the initial
value problem (2.1), (2.2) has a solutionu(t, ε) in the interval [t0, t0 + T ] satisfying

lim
ε→0

u(t, ε) = 0 for t ∈ [t1
c + ν, t∗ − 2ω(ν)]. (3.16)

Sinceν is any small positive number, the relation (3.16) is valid fort ∈ (t 1
c , t∗). Thus, the

validity of relation (3.2) has been proven.
We note that the following relations hold

U 2(t
1
c + ν, ε) = U2(t

∗ − ω(ν), ε) = γ
√
ε.
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By (3.13) the functiona(t, ν) is positive fort ≥ t ∗ − ω(ν). Hence, to given sufficiently
smallν andε, and to givenγ andγ101kler satisfying 0< γ1 ≤ c0, wherec0 is the same
constant as in hypothesis(A5), and whereγ1 is independent ofε, there is a positive con-
stantλa(ν, ε) such that

∫ t∗−ω(ν)+λa(ν,ε)

t1
c +ν

a(s, ν)ds =
∫ λa(ν,ε)

0
a(t1

c + ν + s, ν)ds = ε

(
ln
γ1

γ
− ln

√
ε

)
,(3.17)

whereλa(ν, ε) tends to zero asε tends to zero. From (3.14) and (3.17) we get

U 2(t
∗ − ω(ν)+ λa(ν, ε), ε) = γ1. (3.18)

We will exploit this relation in the next section.
In order to prove (3.1) we construct a nontrivial lower solution of (2.1), (2.2) on the interval
[t1

c , t∗ + ν + λb(ν, ε)], where the positive numberλb(ν, ε) will be defined later.
By hypothesis(A4) there is to any smallν > 0 a constantδb(ν) > 0 such that the function
b(t, ν) defined by

b(t, ν) := gu(0, t, 0)− δb(ν) (3.19)

satisfies ∫ t∗+ν

t1
c

b(s, ν)ds = 0.

Now we construct a lower solution in the form

U 2(t, ε) = ηε2 exp
{1

ε

∫ t

t1
c

b(s, ν)ds
}
, (3.20)

whereη is the same constant as in (3.8). For the sequel we assume

0< η < η0 = min(γ1, ϕ(t
∗)). (3.21)

From (3.8) and (3.20) we get

U 1(t
1
c , ε) = U 2(t

1
c , ε) = ηε2,

that is, the inequality for the initial condition is fulfilled.
In a similar way as we established the constantλa(ν, ε) we can conclude from (3.20) that
there is a positive constantλb(ν, ε) such that

U 2(t
∗ + ν + λb(ν, ε)) = η (3.22)

andλb(ν, ε) → 0 asε → 0.
It is obvious thatU 2(t, ε) satisfies the differential equation

ε
dU 2

dt
= b(t, ν)U 2.

10



Using this equation we have

ε
dU 2

dt
− g(U2, t, ε) = (b(t, ν)− gu(0, t, ε))U2 + gu(0, t, ε)U 2 − g(U 2, t, ε). (3.23)

From (3.19) it follows that for sufficiently smallε

b(t, ν)− gu(0, t, ε) ≤ −δb(ν)

2
. (3.24)

By the hypotheses(A3) and(A0) there is a constantκ > 0 such that for(u, t, ε) ∈ D

gu(0, t, ε)u − gu(u, t, ε) = gu(0, t, ε)u − (g(u, t, ε)− g(0, t, ε))

= (gu(0, t, ε)− gu(u∗, t, ε))u ≤ κu2,
(3.25)

where 0< u∗ < u. Thus, it follows from (3.23) – (3.25)

ε
dU 2

dt
− g(U2, t, ε) ≤ U 2

(
−δb(ν)

2
+ κU 2

)
. (3.26)

If we chooseη such that
η ≤ min(η0, δb(ν)/(2κ)),

then we get from (3.26)

ε
dU 2

dt
− g(U 2, t, ε) ≤ 0.

ThereforeU2(t, ε) is a nontrivial lower solution of (2.1), (2.2) fort ∈ [t 1
c , t∗+ν+λb(ν, ε)].

By (3.22) we can conclude

u(t∗ + ν + λb(ν, ε), ε) = ũ ≥ η, (3.27)

whereη does not depend onε. If we consider the initial value problem (2.1),u(t ∗ + ν +
λb(ν, ε) = ũ, where we emphasize thatũ does not depend onε and belongs to the basin of
attraction of the asymptotically stable equilibriumϕ(t ∗ + ν + λb(ν, ε)) of the associated
equation (2.4), then we can apply the standard theory of singularly perturbed initial value
problems and get the relation

lim
ε→0

u(t, ε) = ϕ(t) for t ∈ ( t∗ + ν, t0 + T ] . (3.28)

As ν does not depend onε and can be chosen arbitrary small, the proof of relation (3.1),
and consequently of Theorem 3.1 is complete.
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4 Periodic forced canards

4.1 Formulation of the Problem. Assumptions

In this section we consider the singularly perturbed scalar differential equation

ε
du

dt
= g(u, t, ε), t ∈ R (4.1)

in the case of exchange of stabilities under the additional assumption that the functiong is
T -periodic int . Our goal is to study the existence of harmonic solutions of (4.1), i.e. we
are looking for solutions satisfying

u(t, ε) = u(t + T , ε) ∀ t ∈ R (4.2)

and which exhibit the phenomenon of delayed exchange of stabilities. Such solutions are
referred to as periodic forced canards.

Our approach to prove the existence of periodic forced canards is based on the method of
lower and upper solutions.

Definition 4.1 Let the functions U (t, ε) and U (t, ε) be mappings of the domain D :=
Iε∗ × [t1

c − ν, t1
c − ν + T ] into R. The functions U (t, ε) and U (t, ε) are called ordered

lower and upper solutions of the boundary value problem (4.1), (4.2)on the interval [t 1
c −

ν, t1
c − ν + ω] for ε ∈ Iε∗ , if they are piecewise continuous and piecewise continuously

differentiable with respect to t on D and if they satisfy for (t, ε) ∈ D the following relations

(i)
U(t, ε) ≤ U (t, ε) (4.3)

in all points of continuity,

(i i)

U (t̂ + 0, ε) ≤ U(t̂ − 0, ε), U (t̂ + 0, ε) ≥ U (t̂ − 0, ε) (4.4)

in any point t = t̂ of discontinuity,

(i i i)

ε
dU

dt
− g(U , t, ε) ≤ 0, (4.5)

ε
dU

dt
− g(U , t, ε) ≥ 0, (4.6)

where in all points, where dU
dt and dU

dt have a jump, the derivatives have to be un-
derstood in the sense of right and left derivatives.
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(iv)

U (t1
c − ν, ε) ≤ U(t1

c − ν + ω, ε), U (t1
c − ν, ε) ≥ U(t1

c − ν + ω, ε). (4.7)

In the sequel, we need the same assumptions as introduced in section 1, additionally we
suppose thatg is T -periodic int .

(P1). There exists a number t0 ∈ R such that the assumptions (A1)− (A6) of section 1 are
satisfied.

(P2). g is T -periodic in t , i.e.

g(u, t, ε) = g(u, t + T , ε) ∀t ∈ R, ∀u ∈ Iu, ∀ε ∈ Iε0. (4.8)

4.2 Existence and stability of periodic forced canards

Our first result states the existence of periodic forced canards.

Theorem 4.2 Assume the hypotheses (P1) and (P2) to be valid. Then, for sufficiently small
ε, there exists a positive T -periodic solution u p(t, ε) of (4.1)satisfying for n = 0,±1, . . .

lim
ε→0

u p(t, ε) = 0 for t ∈ (t1
c ± nT , t∗ ± nT ), (4.9)

lim
ε→0

u p(t, ε) = ϕ(t) for t ∈ (t∗ ± nT , t1
c + (1 ± n)T ). (4.10)

Remark 4.1 The periodic solutionu p(t, ε) represents a relaxation oscillation. Since it
stays for the intervals(t2

c ±nT , t∗ ±nT ) near the repelling part of the solution rootu = 0,
it is referred to as periodic forced canard.

Remark 4.2If we consider limε→0 u p(t, ε) for t ∈ [t0, t0 + T ] except for t = t∗, then we
obtain a discontinuous function u0(t) defined by

u0(t) :=


ϕ(t) f or t0 ≤ t ≤ t1

c ,

0 f or t1
c ≤ t < t∗

ϕ(t) f or t∗ < t < t0 + T
(4.11)

Proof of Theorem 4.2.Under the periodicity condition (4.8), the phase space of the dif-
ferential equation (2.1) can be considered as the partST × Iu of the cylinderZ := ST × R.
To eachε ∈ Iε∗ , whereε∗ is a sufficiently small positive number, we construct two curves
Uε andUε which starts at some straight linet = t̂ on the cylinderZ, where their initial
points Pε and Pε bound some intervalI εP . They surround the cylinderZ without inter-
secting each other and arrive at the same straight line, where their endpointsE ε and Eε
bound an intervalI εE which is a a subinterval ofI εP . We denote byGε the region on the
cylinderZ bounded by the curvesU ε andU ε and byI εP and I εE . The curvesUε andUε
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have the important property that a solution of (4.1) starting onI εP will never leave the re-
gionGε. Hence, the intervalI εP will be mapped into itself by the solutions of (4.1) starting
on I εP . Consequently, by applying Schauder’s fixed point theorem, we get the existence of
at least one periodic solution of (4.1) located inGε.
The curvesUε andUε are determined by the construction of upper and lower solutions for
the boundary value problem (4.1), (4.2). For this purpose we use the results of section 3.
We start fromt = t1

c − ν.
As we mentioned in section 3, the solution of the initial value problem (2.1), (2.2) takes
for t = t1

c − ν the valueu1 which can be estimated from above byU 1(t1
c − ν, ε), where

the function

U 1(t, ε) = û(t)+ γ
√
ε (4.12)

is an upper solution of (2.1) on the interval [t 1
c −ν, t1

c +ν]. We also recall that the function

U2(t, ε) = γ
√
ε exp

{1

ε

∫ t

t1
c +ν

a(ρ, ν)dρ
}

is an upper solution of (2.1) on the interval [t 1
c + ν, t1], wheret1 := t∗ −ω(ν)+ λa(ν, ε),

satisfying

U 2(t1, ε) = γ1, (4.13)

whereγ1 does not depend onε (see (3.18)).

A lower solution of (2.1) for the interval [t 1
c − ν, t1

c ] is given by

U 1(t, ε) = ϕ(t)+ ηε2, (4.14)

and for the interval [t1
c , t2], wheret2 := t∗ + ν + λb(ν, ε), by

U2(t, ε) = ηε2 exp
{1

ε

∫ t

t1
c

b(ρ, ν)dρ
}
,

satisfying

U 2(t2, ε) = η, (4.15)

whereη does not depend onε (see (3.19), (3.20)). Fig. 4.1 contains a schematic represen-
tation of the constructed lower and upper solutions.
In the next step we construct an upper solution for the interval [t1, t1

c −ν+T ], and a lower
solution for the interval [t2, t1

c − ν + T ].
The idea to do this is as follows. First we note that in the intervals under consideration
there is no exchange of stabilities. Next we observe that fort = t1 the upper solution
takes the valueγ1 which is independent ofε, and that fort = t2 the lower solution takes
the valueη which is also independent ofε. Both pointsγ1 andη are located in the region
of attraction of the equilibriau = ϕ(t1) and ofu = ϕ(t2), respectively of the associated
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equation (2.4).
Taking into account this observations we construct lower and upper solutions in the form

U3(t, ε) = ϕ(t)+ ε(u1(t)+ α)+�1
0(τ1)+ ε�̃1

1(τ1),

U3(t, ε) = ϕ(t)+ ε(u1(t)− α)+�2
0(τ2)+ ε�̃2

1(τ2). (4.16)

Here,u1(t) is the first order term in the regular expansion of the solutionu(t, ε) of the
differential equation (4.1) which is defined by (3.4),τ1 = (t − t1)/ε, andτ2 = (t − t2)/ε,
α is some appropriate positive constant to be chosen later. The zeroth order boundary layer
functions�1

0 and�2
0 are defined by the following initial value problems (see, e.g. [30])

d�1
0

dτ1
= g(ϕ(t1)+�1

0, t1, 0), τ1 > 0, �1
0(0) = γ1 − ϕ(t1) (4.17)

and

d�2
0

dτ2
= g(ϕ(t2)+�2

0, t2, 0), τ2 > 0, �2
0(0) = η − ϕ(t2). (4.18)

The first order boundary layer function�1
1 is defined by the following initial value problem

(see [30])

d�1
1

dτ1
= gu(ϕ(t1)+�1

0(τ1), t1, 0)�
1
1 + g1(τ1), τ1 > 0, �1

1(0) = −u1(t1), (4.19)

whereg1(τ1) is defined by

g1(τ1) := (gu(ϕ(t1)+�1
0(τ1), t1, 0)− gu(ϕ(t1), t1, 0))ϕ

′(t1)τ1 (4.20)

+(gt (ϕ(t1)+�1
0(τ1), t1, 0)− gt (ϕ(t1), t1, 0))τ1

+gε(ϕ(t1)+�1
0(τ1), t1, 0)− gε(ϕ(t1), t1, 0)

+(gu(ϕ(t1)+�1
0(τ1), t1, 0)− gu(ϕ(t1), t1, 0))u1(t1).

�2
1 is the solution of the initial value problem

d�2
1

dτ2
= gu(ϕ(t2)+�2

0(τ2), t2, 0)�
2
1 + g2(τ2), τ2 > 0, �2

1(0) = −u1(t2), (4.21)

whereg2(τ2) is defined analogously to (4.20).

The boundary layer corrections̃�1
1(τ1) and�̃2

1(τ2) are slight modifications of the first or-
der boundary layer functions�1

1(τ1) and�2
1(τ2), respectively, and are defined by

d�̃1
1

dτ1
= gu(ϕ(t1)+�1

0(τ1), t1, 0)�̃
1
1 + g1(τ1)

+(gu(ϕ(t1)+�0(τ1), t1, 0)− gu(ϕ(t1), t1, 0))α, (4.22)

τ1 > 0, �̃1
1(0) = −u1(t1),
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and

d�̃2
1

dτ2
= gu(ϕ(t2)+�2

0(τ2), t2, 0)�̃
2
1 + g2(τ2)

+(gu(ϕ(t2)+�2
0(τ2), t2, 0)− gu(ϕ(t2), t2, 0))α, (4.23)

τ2 > 0, �̃2
1(0) = −u1(t2).

It is known that the solutions of the problems (4.17) – (4.19) and (4.21) –(4.23) exist and
exponentially decay to zero (see [30]).
From our construction it follows thatU 3(t, ε) andU 3(t, ε) defined in (4.16) are formal
asymptotic solutions of (4.1) (see also [18]) and satisfy

ε
dU 3

dt
− g(U 3, t, ε) = εαgu(ϕ(t), t, 0)+ o(ε),

ε
dU 3

dt
− g(U 3, t, ε) = −εαgu(ϕ(t), t, 0)+ o(ε).

By assumption(A2) we havegu(ϕ(t), t, 0) < 0 for t > t2
c . Therefore, conditions (4.5)

and (4.6) in the definition of lower and upper solutions are fulfilled. Since the boundary
layer corrections are exponentially decaying functions and the estimate (3.21) is valid, the
condition (4.3) can be satisfied for any positiveα and sufficiently smallε.
If we construct lower and upper solutionsU(t, ε) andU (t, ε) for the boundary value prob-
lem (4.1), (4.2) by composing the functionsU i andU i , i = 1, 2, 3, then the functionsU
andU have a discontinuity fort = t1 andt = t2, respectively. Now we will check that the
conditions (4.4) are fulfilled at these points. From (4.16),(4.17),(4.19), and (4.13) we get

U3(t1, ε) = ϕ(t1)+ ε(u1(t1)+ α)+ γ1 − ϕ(t1)− εu1(t1)+ o(ε) =
γ1 + εα + o(ε) > γ1 = U 2(t1, ε) > η.

Analogously we obtain from (4.16),(4.18), (4.23), and (4.15)

U 3(t2, ε) = ϕ(t2)+ ε(u1(t2)− α)+ η − ϕ(t2)− εu1(t2)+ o(ε) =
η − εα + o(ε) < η = U 2(t2, ε) < γ1.

Therefore, we can conclude thatU (t, ε) andU(t, ε) are upper and lower solutions of (4.1),
(4.2).

Finally we have to ensure that the relations

U 3(t
1
c − ν + T , ε) > U 1(t

1
c − ν), U 3(t

1
c − ν + T , ε) < U 1(t

1
c − ν)

hold. By (4.16) we have

U3(t
1
c − ν + T , ε) = ϕ(t1

c − ν + T )+ ε(u1(t
1
c − ν + T )− α)+ o(ε)

= ϕ(t1
c − ν)+ ε(u1(t

1
c − ν)− α)+ o(ε).
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By (3.6),u1(t1 − ν) is positive. If we requireα < u1(t1
c − ν), then we get by (4.14)

U 3(t
1
c − ν + T , ε > ϕ(t1

c − ν)+ ηε2 = U 1(t
1
c − ν)

for sufficiently smallε. By (4.16) and (4.12) we have

U 3(t
1
c − ν + T , ε) = ϕ(t1

c − ν + T )+ ε(u1(t
1
c − ν + T )+ α)+ o(ε)

= ϕ(t1
c − ν)+ ε(u1(t

1
c − ν)+ α)+ o(ε) < ϕ(t1

c − ν)+ γ
√
ε

= U1(t
1
c − ν).

This condition holds for sufficiently smallε. Therefore, we can conclude that the boundary
value problem (4.1), (4.2) has at least one solution, q.e.d.

Fig. 4.1. Schematic representation of constructed lower and upper solutions.

u

tt1
c − ν t1

c t1
c + ν t1 t2 t1

c − ν + T

U 2

Pε

Pε

U 1

U 1

U2

γ1

U 3

η

U 3

Eε

Eε

Pε

Pε

We denote byGε the bounded region on the cylinderZ bounded by the upper and lower
solutionU(t, ε) andU(t, ε).

Theorem 4.3 Assume the assumptions of Theorem 4.2 hold. Then there is a sufficiently
small positive ε1, ε1 < ε0 such that any T -periodic solution of (4.1)located in G ε satisfies

∫ t0+T

t0
gu(u p(t, ε), t, ε)dt < 0.

Proof. We consider the integral
∫ t0+T

t0
gu(u0(t), t, 0)dt,
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where the functionu0 has been introduced in (4.11) as the pointwise limit of anyT -periodic
solution of (4.1) located inGε asε tends to zero. We have

∫ t0+T

t0
gu(u0(t), t, 0)dt =

∫ t1
c

t0
gu(ϕ(t), t, 0)dt+

∫ t∗

t1
c

gu(0, t, 0)dt+
∫ t0+T

t∗
gu(ϕ(t), t, 0)dt.

By assumption(A2) there are positive constantsα1 andα2 such that

∫ t1
c

t0
gu(ϕ(t), t, 0)dt = −α1 < 0,

∫ t0+T

t∗
gu(ϕ(t), t, 0)dt = −α2 < 0,

by hypothesis(A4) we have ∫ t∗

t1
c

gu(0, t, 0)dt = 0.

Hence it holds ∫ t0+T

t0
gu(u0(t), t, 0)dt = −α1 − α2 < 0.

From our smoothness assumption(A0) we get thatu p(t, ε) andgu(u p(t, ε), t, ε) depend
continuously onε. Hence, we can conclude that there is a sufficiently small positiveε1,
ε1 < ε0, such that for 0< ε ≤ ε1 anyT -periodic solutionu p(t, ε) of (2.1) located inGε

fulfills ∫ t0+T

t0
gu(u p(t, ε), t, ε)dt < 0.

Theorem 4.4 Assume the hypotheses (P1) and (P2) to be valid. Then, for sufficiently small
ε system (4.1)has a unique asymptotically stable periodic solution in G ε.

Proof. It is well-known that aT -periodic solutionu p(t, ε) of theT -periodic scalar differ-
ential equation (4.1) is asymptotically stable if

∫ t0+T

t0
gu(u p(t, ε), t, ε)dt < 0.

By Theorem 4.2 this relation is satisfied for anyT -periodic solutionu p(t, ε) of (4.1) lo-
cated inGε for 0 < ε ≤ ε1. That means, any such solution is asymptotically stable.
Therefore, (4.1) has exactly oneT -periodic solution inGε.
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