
Weierstraÿ-Institut

für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 � 8633

Direct simulation of the uniformly heated granular

Boltzmann equation

Irene M. Gamba1, Sergej Rjasanow2 and Wolfgang Wagner3

submitted: 28th March 2003

1 Department of Mathematics

The University of Texas at Austin

78712 Austin TX,

USA

E-Mail: gamba@mail.ma.utexas.edu

2 Fachrichtung 6.1 � Mathematik

Universität des Saarlandes

Postfach 15 11 50

66041 Saarbrücken, Germany

E-Mail: rjasanow@num.uni-sb.de

3 Weierstrass Institute for

Applied Analysis and Stochastics

Mohrenstrasse 39

10117 Berlin, Germany

E-Mail: wagner@wias-berlin.de

No. 834

Berlin 2003

1991 Mathematics Subject Classi�cation. 82C40, 82C80, 65R20.

Key words and phrases. inelastic Boltzmann equation, granular �ow, Monte Carlo algorithm.



Edited by

Weierstraÿ-Institut für Angewandte Analysis und Stochastik (WIAS)

Mohrenstraÿe 39

D � 10117 Berlin

Germany

Fax: + 49 30 2044975

E-Mail: preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/



Abstract

In the present paper we give an overview of the analytical properties of the steady

state solution of the spatially homogeneous uniformly heated granular Boltzmann

equation. The asymptotic properties of this distribution (so called tails) are formu-

lated for di�erent models of interaction. A new stochastic numerical algorithm for

this problem is presented and tested using analytical relaxation of the temperature.

The �tails� of the steady state distribution are computed using this algorithm and

the results are compared with the available analytical information.
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1 Introduction

In recent years a signi�cant interest has been focused on the study of kinetic models for

rapid granular �ows [17],[10],[15]. Depending on the external conditions (geometry, grav-

ity, interactions with surface of a vessel) granular systems may be in a variety of regimes,

displaying typical features of solids, liquids or gases and also producing novel statistical

e�ects [28]. In the case of rapid, dilute �ows, the binary collisions between particles may

be considered the main mechanism of inter-particle interactions in the system. In such

cases methods of the kinetic theory of rare�ed gases, based on the Boltzmann-Enskog

equation have been applied [18],[17],[16]. Experimental and numerical data from Molecu-

lar Dynamics simulations (MD) [3],[23] indicate that particle distribution functions are far

from Maxwellian distributions when particles collide inelastically. Thus MD simulations

of uniformly heated homogeneous granular �ow show a clear deviation from Maxwellian

state.

Physically realistic regimes include excitation from the moving boundary, through-�ow

of air, �uidised beds, gravity, and other special conditions.

We take a simple model for a driving mechanism, called thermal bath, in which parti-

cles are assumed to be �uniformly heated� by uncorrelated random accelerations between

the collisions. Such a model has been initially studied in [31] in the one-dimensional case,

and in [29] in general dimension.

The �rst reference to non Maxwellian steady state solution was published in [29],

by Van Noije and Ernst, where by means of formal expansions in Sonine polynomials

and ad-hoc closures, the authors conjectured the existence of steady state solution with

overpopulated �tails�, i.e. slow decay rate of the distribution function for large velocities.

Steady state solutions were also studied by formal expansion methods for the Maxwell

pseudo-molecules model in [9],[4],[5],[19],[20]. These methods are based on small energy

dissipation expansions and Fourier transforms.

Existence, uniqueness and regularity of the time dependent and steady state solutions

for the uniformly heated inelastic Boltzmann equation can be found in [5]. In addition,

in [12], the authors proved rigorously the existence of radially symmetric steady state

solutions for the Maxwell pseudo-molecules model.

Rigorous mathematical properties of corresponding stationary solutions for the uni-

formly heated inelastic Boltzmann equation for the hard spheres model have been recently

discussed in [14].

We consider the spatially homogeneous uniformly heated Boltzmann equation for gran-

ular media

ft � �� f = 
 Q�(f; f) (1)

which describes the time evolution of the particle density f(t; v)

f : R+�R
3
! R+:

The right-hand side of the equations (1), known as the collision integral or the collision

term, can be written in the weak formZ
R3

Q�(f; f)(v)'(v) dv = (2)
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=
1

2

Z
R3

Z
R3

Z
S2

B(juj; �)f(v)f(w)
�
'(v0) + '(w0)� '(v)� '(w)

�
de dw dv ;

where ' : R3
! R is a test function. In (1), � and 
 are some constants. The following

notations have been used in (2): v;w 2 R
3 are velocities, u = v�w is the relative velocity

and v0; w0 2 R3 are the post-collisional velocities de�ned by

v0 =
1

2
(v + w) +

1 � �

4
u+

1 + �

4
juj e ;

(3)

w0 =
1

2
(v + w)�

1� �

4
u�

1 + �

4
juj e ;

where e 2 S2
� R

3 is a unit vector, The quantity � is

� =
(u; e)

juj
:

The parameter 0 < � � 1 is called restitution coe�cient. For � = 1 the collisions are

elastic and Q1(f; f) coincides with the classical Boltzmann collision operator for a simple,

dilute gas of particles [11]. Some special models for the (isotropic) kernel B are as follows:

1. The hard spheres model is described by the kernel

B(juj; �) =
d2

4
juj ; (4)

where d denotes the diameter of the particles.

2. The Maxwell pseudo-molecules are given by

B(juj; �) =
1

4�
:

The collision kernel B(juj; �) here does not depend on the relative speed juj.

3. The Variable Hard Spheres model (cf. [2]) (VHS) has an isotropic kernel

B(juj; �) = C�juj
� ; 0 � � � 1: (5)

The model includes, as particular cases, the hard spheres model for � = 1 and a

case of the Maxwell pseudo�molecules with � = 0.

The equation (1) is subjected to the initial condition

f(0; v) = f0(v) :

All relevant physical values of the gas �ow are computed as the �rst 13 moments of the

distribution function or their combinations. These moments are:

the density

%(t) =

Z
R3

f(t; v) dv ; (6)
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the momentum

m(t) =

Z
R3

v f(t; v) dv ; (7)

the momentum �ow

M(t) =

Z
R3

vvT f(t; v) dv ; (8)

and the energy �ow

r(t) =
1

2

Z
R3

vjvj2 f(t; v) dv : (9)

Note that the matrixM(t) is symmetric and therefore de�ned by its upper triangle. Using

these moments we de�ne the bulk velocity

V (t) =
m

%
; (10)

the internal energy and the temperature

e(t) =
1

2 %

�
trM � %jV j2

�
; T (t) =

2

3
e ; (11)

the pressure

p(t) = %T ;

the stress tensor

P (t) = M � % V V T

and the heat �ux vector

q(t) = r �

�
M +

�
1

2
trM � %jV j2

�
I

�
V :

Note that in the spatially homogeneous case we consider the following important conser-

vation properties hold. The density

%(t) =

Z
R3

f(t; v) dv =

Z
R3

f0(v) dv = %0 (12)

and the momentum

m(t) =

Z
R3

v f(t; v) dv =

Z
R3

v f0(v) dv = m0
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remain constant during the relaxation. Thus, corresponding to (10) also the bulk velocity

V (t) = V0 =
m0

%0

is conserved quantity. Without loss of generality we assume %0 = 1 and V0 = 0 for further

discussions.

In contrast to the classical Boltzmann equation for elastic collisions, inelastic collisions

(0 < � < 1) dissipate energy. Thus the temperature (cf. (11))

T (t) =
1

3

Z
R3

jvj2f(t; v) dv :

is a function of time. Taking '(v) = jvj2 in (2) we obtain (cf. [14])

jv0j2 + jw0j2 � jvj2 � jwj2 = �

1� �2

4
(1 � �) juj2 :

The second Green's formula leads toZ
R3

�f(t; v) jvj2dv =

Z
R3

f(t; v)�jvj2dv = 6

Z
R3

f(t; v) dv = 6%0 = 6 :

Thus the following relation for time evolution of the temperature can be written

dT

dt
= 2� � 


1 � �2

24

Z
R3

Z
R3

B1(juj)juj
2f(v)f(w) dw dv ;

where

B1(juj) =

Z
S2

(1� �)B(juj; �) de :

In the special case of Maxwell pseudo-molecules (� = 0 in (5)) we obtain

B1(juj) = 4� C0

and the following ordinary di�erential equation for the temperature (cf. (2))

dT

dt
= 2� � 
 � C0 (1 � �2)T

Thus the time relaxation of the temperature is

T (t) = T0 e
�
 � C0 (1 � �2)t + T1

�
1� e�
 � C0 (1 � �2)t

�
; (13)

where

T0 =
1

3

Z
R3

jvj2f0(v) dv ; T1 =
2�


 � C0 (1� �2)
: (14)
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The paper is organised as follows. In Section 2 we give an overview on the asymptotic

properties of the steady state solution of the equation (1). In Section 3 we describe a new

stochastic numerical algorithm for the uniformly heated inelastic Boltzmann equation.

In the fourth and �nal Section we present the results of some numerical tests. Here we

use the analytically known time relaxation of the temperature (13),(14) for the Maxwell

pseudo-molecules model for a careful check of the accuracy. Finally, the �tails� of the

steady state distribution are computed using this algorithm for di�erent � in (5) and the

results are compared with the available analytical information.

2 Asymptotic properties of the steady state solution

Asymptotic properties of stationary solutions for the uniformly heated inelastic Boltzmann

equation (1) have been recently discussed in many publications [29],[8],[12],[9],[14].

One of the most interesting related questions is the asymptotic behaviour of the steady

state distribution function f1

f1(v) = lim
t!1

f(t; v)

for large jvj (high energy tails). It is worth to note that there are no such solution for

the uniformly heated elastic Boltzmann equation, since the kinetic energy will increase

linearly in time.

It has been recently shown in [29],[13],[14] that a typical tail for the inelastic variable

hard spheres model (5) is expected to be given by a formula

f1(v) � exp(�ajvjb) ; jvj ! 1 ; (15)

where a depends on the quotient of the energy dissipation rate and the heat bath tem-

perature and b depends on the balance between the forced di�use forcing term and the

loss term of the collisional integral in the Boltzmann equation (1). For instance, for the

inelastic hard spheres (4), the exponent, or tail order is b = 3=2. This fact was notice �rst
in [29] by searching for the radially symmetric steady state solution of a pointwise partial

di�erential equation which was obtained using high velocities estimates to the loss term

of the collision integral neglecting the gain term. Some arguments which justify this fact

at a physical level of rigour and using an a priori assumption (15) were presented in a

recent paper by Ernst and Brito [13]. However, a rigorous pointwise lower estimate was

obtained in [14] by means of strong comparison principle arguments, borrowing classical

non-linear PDE techniques to obtain pointwise bounds for regular solutions.

Indeed, for the inelastic hard spheres model, the authors have proved in [14] the

existence, uniqueness and regularity of the time dependent and steady state solutions for

the uniformly heated inelastic Boltzmann equation (1). In particular they showed the

existence of the steady state solution for the hard spheres model in the Schwartz space of

rapidly decaying smooth functions, with a lower pointwise bound

f(v) � A exp(�ajvj3=2) ; jvj � R :

It is clear, however, that while Maxwell pseudo-molecules model is good for an approx-

imate description of integral quantities (see, for example, [7] for a comparison of the
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Maxwell pseudo-molecules and hard spheres models in a shear �ow problem), they lead

to di�erent behaviour of the tails compared to the hard spheres model, which can be

observed when looking for approximate high-energy solutions of the inelastic Boltzmann-

Fokker-Planck model when neglecting the gain part of the collision integral.

We emphasise that the appearance of the �3/2� exponent is a speci�c feature of the

the uniformly heated inelastic Boltzmann equation for the hard spheres model which can

also be predicted by dimensional arguments (cf. [29]).

On the other hand, the uniformly heated inelastic Boltzmann equation for the Maxwell

pseudo-molecules model results in a high-velocity tail with asymptotic behaviour

f1(v) � exp(�ajvj) ; jvj ! 1 ;

(see [5]). As a general rule, the exponents in the tails are expected to depend on the

driving and collision mechanisms [1],[13],[6]. In fact, deviations of the steady states of

granular systems from Maxwellian equilibria (�thickening of tails�) is one of the character-

istic features of dynamics of granular systems, and has been an object of intensive study

in the recent years [22],[21],[27],[23].

However, when di�erent exponent � 6= 0; 1 in the VHS model (5) is considered as usu-

ally done for classical (elastic) Boltzmann equation, there is no rigorous proof of existence

of steady state solutions.

We expect that a technical and tedious extension of the analytical methods developed

in [14] for existence, regularity and pointwise lower estimates; and in [6] for the L1�

weighted tail control indicates that uniformly heated inelastic Boltzmann equation for

the VHS model (5) results in a high-velocity tail with asymptotic behaviour

f1(v) � exp(�ajvj1+�=2) ; jvj ! 1 : (16)

Our numerical results presented in Section 4 indicate that is the case.

3 Direct stochastic simulation

The main idea of all particle methods for the Boltzmann equation (1) is an approximation

of the time dependent family of measures

f(t; v)dv ; t 2 R+ ;

by a family of point measures

�(t; dv) =
1

n

nX
j=1

Æ(vj(t))
(dv)

de�ned by the system of particles�
v1t); : : : ; vn(t)

�
: (17)

Thus the weights of the particles are 1=n and vj(t) 2 R
3 denote their velocities. The

behaviour of the system (17) can be brie�y described as follows. The �rst step is an

approximation of the initial measure

f0(v) dv
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by a system of particles (17) for t = 0. Then particles are continuously subjected to a

Gaussian white noise forcing and obtain the kinetic energy executing individual Brownian

motion between the collisions. The velocity of a single particle after the time �t of

Brownian motion is given by

vj(t+�t) = vj(t) +
p

2��t � ; (18)

where � 2 R
3 is a random variable distributed according to the normalised Gaussian.

The inelastic collisions take place in randomly distributed discrete time points dissipating

the kinetic energy of the particles. The �collision step� is the most crucial part of the

whole procedure. The behaviour of the collision process is as follows: The waiting time �

between the collisions can be de�ned either as a random variable with the distribution

Prob f� � tg = exp(��̂ t) ;

where

�̂ =
1

2n

X
1�i6=j�n

Bmax(i; j)

and Z
S2

B(jvi � vjj; �) de � Bmax(i; j) ; (19)

or as a deterministic object by

� = �̂�1 :

The majorant (19) can be obtained for the VHS-model (5) using the a-priori known

maximal relative speed of particles Umax



R
S2

B(jvi � vjj; �) de = 4� 
 C� jvi(t)� vj(t)j
�
� 4� 
 C� (Umax)

�
:

Thus we get a constant majorant

Bmax(i; j) = Bmax = 4� 
 C� (Umax)
�

and

�̂ = 2� 
 C� (n � 1) (Umax)
�
:

Then the collision partners (i.e. the indices i and j) must be chosen. Since the majorant

Bmax(i; j) = Bmax in (19) is a constant, the parameter i is to be chosen according to the

probability 1=n, i.e. uniformly from the set f1; : : : ; ng. Given i ; the parameter j is chosen

according to the probability 1=(n� 1), i.e. uniformly from the set f1; : : : ; ng n fig.

Given i and j ; the collision is �ctitious with probability

1�

�
jvi � vjj

Umax

��

; (20)
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otherwise the vector e is uniformly distributed on the surface of the unit sphere S2 and

the post-collisional velocities v0i and v0j can be computed corresponding to the collision

transformation (3). Note that the velocities vi and vj of the collision partners have to

be updated corresponding to (18) before computing the probability of �ctitious collision

according to (20). The majorant Umax for the maximal relative velocity of the particle

system can be obtained using the numerical bulk velocity

V =
1

n

nX
j=1

vj (21)

as follows

max
i;j

jvi � vjj � max
i;j

�
jvi � V j+ jV � vjj

�
= 2max

i
jvi � V j = Umax :

Thus we are now able to formulate the whole stochastic algorithm for the numerical

solution of the equation (1) on the time interval [0; tmax].

Algorithm

1. initial distribution

1.1 set time to zero t = 0;

1.2 for j = 1; : : : ; n generate the particles (vj; tj) with

1.2.1 vj distributed according to f0(v),

1.2.2 tj = 0;

1.3 compute the bulk velocity V corresponding to

V =
1

n

nX
j=1

vj ;

1.4 compute the majorant Umax corresponding to

Umax = 2max
i
jvi � V j

2. repeat until t � tmax

2.1 compute the time counter �

� =
1

2� 
 C� (n� 1) (Umax)
�
ln(�r1) ;

2.2 update the time of the system

t := t+ � ;

2.3 define the index i

i = [r2 � n] + 1;
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2.4 define the index j repeating

j = [r3 � n] + 1

until j 6= i;

2.5 update the velocities vi and vj corresponding to (18)

vi := vi +
p

2� (t� ti) �1 ; vj := vj +
p

2� (t� tj) �2 ;

2.6 update the times of the particles i and j

ti = t ; tj = t ;

2.7 update the majorant Umax

Umax = max
n
Umax ; jvi � V j ; jvj � V j

o
;

2.8 decide whether the collision is fictitious. If

r4 � 1 �

�
jvi � vjj

Umax

��

then continue with Step 2.1, else

2.9 compute the post-collisional velocities

vi :=
1

2
(vi + vj) +

1� �

4
(vi � vj) +

1 + �

4
jvi � vjj e ;

vj :=
1

2
(vi + vj)�

1� �

4
(vi � vj)�

1 + �

4
jvi � vjj e :

2.10 update the majorant Umax

Umax = max
n
Umax ; jvi � V j ; jvj � V j

o
and continue with Step 2.1.

3. final step

3.1 update the velocities of all particles

vi := vi +
p

2� (tmax � ti) �i ; i = 1; : : : ; n ;

3.2 compute the numerical moments of the distribution

m'(tmax) =
1

n

nX
j=1

'(vj) ; '(v) = 1 ; v ; vvT ; vjvj2 :

In the above algorithm, the random numbers r1; r2; r3 and r4 are uniformly distributed

on the interval (0; 1) while the three-dimensional vectors �i are distributed according to

the normalised Gaussian. The vector e used in Step 2.9 is uniformly distributed on the

unit sphere S2
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Remark 1 The above algorithm is not completely conservative, i.e. the bulk velocity will

change during the time. However our numerical tests show only very small deviation of

the bulk velocity from its initial value de�ned in (21).

Remark 2 If the moments of the distribution function are to be computed in some dis-

crete points tm = m�t ;m = 1; : : : M ;�t = tmax=M then it is necessary to stop the

process at time t � tm, to update all velocities as in Step 3.1 of the algorithm and then to

compute (Step 3.2) and to store the moments for further use.

Concerning the convergence of the stochastic particle methods for the classical, elastic

Boltzmann equation we refer to [30]. In [25] more general Boltzmann like equations are

considered. However the additional uniform heating of the particle system we consider

here is not automatically covered and we let this important theoretical aspect for the

future work.

4 Numerical examples and tests

4.1 Statistical notions

First we introduce some de�nitions and notations that are helpful for the understanding

of stochastic numerical procedures. Functionals of the form (cf. (6)-(9))

F (t) =

Z
R3

'(v) f(t; v) dv : (22)

are approximated by the random variable

�(n)(t) =
1

n

nX
i=1

'(vi(t)) ; (23)

here (v1(t); : : : ; vn(t)) are the velocities of the particle system. In order to estimate and

to reduce the random �uctuations of the estimator (23), a number N of independent

ensembles of particles is generated. The corresponding values of the random variable are

denoted by

�
(n)

1 (t); : : : ; �
(n)

N
(t) :

The empirical mean value of the random variable (23)

�
(n;N)

1 (t) =
1

N

NX
j=1

�
(n)

j (t) (24)

is then used as an approximation to the functional (22). The error of this approximation

is

e(n;N)(t) = j�
(n;N)

1 (t)� F (t)j

11



and consists of the following two components.

The systematic error is the di�erence between the mathematical expectation of the

random variable (23) and the exact value of the functional, i.e.

e(n)sys(t) = E�(n)(t)� F (t) :

The statistical error is the di�erence between the empiricalmean value and the expected

value of the random variable, i.e.

e
(n;N)

stat (t) = �
(n;N)

1 (t)�E�(n)(t) :

A con�dence interval for the expectation of the random variable �(n)(t) is obtained as

Ip =

"
�
(n;N)

1 (t)� �p

r
Var �(n)(t)

N
; �

(n;N)

1 (t) + �p

r
Var �(n)(t)

N

#
; (25)

where

Var �(n)(t) := E
�
�(n)(t)� E�(n)(t)

�2
= E

�
�(n)(t)

�2
�

�
E�(n)(t)

�2
(26)

is the variance of the random variable (23), and p 2 (0; 1) is the con�dence level. This

means that

Prob
�
E�(n)(t) =2 Ip

	
= Prob

(
je
(n;N)
stat (t)j � �p

r
Var �(n)(t)

N

)
� p :

Thus, the value

c(n;N)(t) = �p

r
Var �(n)(t)

N

is a probabilistic upper bound for the statistical error.

In the calculations we use a con�dence level of p = 0:999 and �p = 3:2 : The variance

is approximated by the corresponding empirical value (cf. (26)), i.e.

Var �(n)(t) � �
(n;N)

2 (t)�
h
�
(n;N)

1 (t)
i2
;

where

�
(n;N)

2 (t) =
1

N

NX
j=1

h
�
(n)

j (t)
i2

is the empirical second moment of the random variable (23).

4.2 Relaxation of the temperature

In this subsection we begin to test the Algorithm using an analytically known relaxation

of the temperature (cf. (13),(14)) in case of Maxwell pseudo-molecules.
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Example 3 We use the following Maxwell distribution

f0(v) =
1

(2�)3=2
e�

jvj2

2 (27)

as the initial condition and the following set of parameters in (1)

� =
1

2
; � = 1 ; 
 = 4 ; C0 =

1

4�
:

Thus we obtain

T0 = 1 ; T1 =
8

3

and

T (t) = e�
3

4
t +

8

3

�
1� e�

3

4
t
�

(28)

Thus the temperature increases monotonically in time.

2 3 4 5 6 7 8

2.4

2.5

2.6

2.7

2.8

2.9

2 3 4 5 6 7 8

2.4

2.5

2.6

2.7

Figure 1. Analytical and numerical solutions for n = 64 and n = 256.

2 3 4 5 6 7 8

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2 3 4 5 6 7 8

2.35

2.4

2.45

2.5

2.55

2.6

2.65

Figure 2. Analytical and numerical solutions for n = 1024 and n = 4096.

In Figures 1 and 2, the thick dashed line represent the course of the analytical solution

(28) on the time interval [2:0; 8:0] while the pairs of thin solid lines represent the con�dence
intervals (25) obtained using 10 000 independent ensembles generated by the stochastic

Algorithm formulated in Section 3. It is almost impossible to see any di�erence between

the numerical and the analytical solution in a �gure for n = 16 384, so we present the

corresponding results in a form of table.
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n Emax CF kV k1

64 0.895E-01 - 0.672E-02

256 0.235E-01 3.81 0.516E-02

1 024 0.571E-02 4.11 0.211E-02

4 096 0.150E-02 3.81 0.141E-02

16 384 0.305E-03 4.92 0.355E-03

Table 1. Numerical convergence, Example 3.

The second column of Table 1 shows the maximal error of the temperature on the whole

time interval computed as

Emax = max
0�m�M

����T (tm)� Tm

T (tm)

���� ; (29)

where T (tm) are the exact values of the temperature at time point tm and Tm is the

computed temperature. The third column of Table 1 shows the �convergence factor�, i.e.

the quotient between the errors in two consecutive lines. This column clearly indicates

the linear convergence of the error, i.e. Emax = O(n�1). The maximum of the norm of

the bulk velocity

kV k1 = max
0�m�M

jV (tm)j

is presented in the fourth column of Table 1. Thus this error is well controlled.

Example 4 We use the Maxwell distribution (27) as the initial condition and the follow-

ing set of parameters in (1)

� =
1

2
; � =

1

8
; 
 = 4 ; C0 =

1

4�
:

Thus we obtain

T0 = 1 ; T1 =
1

3

and

T (t) = e�
3

4
t +

1

3

�
1� e�

3

4
t
�

(30)

Thus the temperature decreases now monotonically in time.

2 3 4 5 6 7 8

0.35

0.375

0.4

0.425

0.45

0.475

2 3 4 5 6 7 8

0.34

0.36

0.38

0.4

0.42

0.44

0.46

Figure 3. Analytical and numerical solutions for n = 64 and n = 256.
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Figure 4. Analytical and numerical solutions for n = 1024 and n = 4096.

The curves in Figures 3 and 4 have the same meaning as in Figures 1 and 2. The

relative error of the temperature (30) computed corresponding to (29) is presented in

Table 2.

n Emax CF kV k1

64 0.130E-00 - 0.306E-02

256 0.336E-01 3.87 0.188E-02

1 024 0.823E-02 4.08 0.874E-02

4 096 0.211E-02 3.90 0.581E-02

16 384 0.455E-03 4.64 0.148E-02

Table 2. Numerical convergence, Example 4.

Example 5 This example illustrates the time relaxation of the temperature for the hard

spheres model (4). We use again the Maxwell distribution (27) as the initial condition

and the following set of parameters in (1)

� =
1

2
; � = 0:125 ; 
 = 4 ; C1 =

1

4�
:

We solve the equation (1) using the Algorithm 3 on the time interval [0:0; 2:0]

0 1 2 3 4

0.4

0.6

0.8

1

Figure 5. Courses of the numerical solutions for n = 64; 256; 1024 and n = 4096 (from above).
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In Figure 5, the time relaxation of the empirical mean values (cf. (24)) for the tempera-

ture obtained for di�erent number n of particles using N = 1000 independent ensembles

are presented. It can be clearly seen that the curves converges by increasing the number

of particles to some �nal curve of the temperature also for the hard spheres model.

4.3 Asymptotic tails

In this subsection we will show the asymptotic behaviour of the steady state distribution

function

f1(v) = lim
t!1

f(t; v) ; jvj ! 1

for di�erent values of parameter � in the VHS-model (5). We assume that the function

f1 is radially symmetric

f1(v) = f1(r) ; r = jvj

and compute its histogram using uniform discretisation with respect to parameter r, i.e.

discretisation of the whole velocity space in a system of concentric shells with increasing

radius

rk = k hr ; k = 1; : : : ;K ; hr =
R

K
: (31)

In (31), R > 0 and K 2 N are some additional parameters of the simulation. The

histogram of the numerical steady state solution is then obtained counting the weight of

the particles in the corresponding shells

f1 = g#
n
vj : jvjj < r1

o
;

fk = g#
n
vj : rk�1 � jvjj < rk

o
; k = 2; : : : ;K ; (32)

fK+1 = g#
n
vj : R � jvjj

o
: (33)

Example 6 We use the Maxwell pseudo-molecules model (� = 0 in (5)) and Maxwell

distribution (27) as the initial condition and the following set of parameters in (1)

� =
1

10
; � = 30 ; 
 = 16 ; C0 =

1

4�

and

R = 40 ; K = 128

in (31).

We use n = 107 particles and compute N = 100 independent ensembles on the time

interval [0:0; 2:5]. The histograms for the initial Maxwell distribution (thick solid line)

and for the �nal numerical distribution (thin solid line) are shown in Figure 6.
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Figure 6. Initial and �nal histograms, Example 6

The left plot in Figure 6 shows the histograms for r 2 [0; 10] while the right plot shows

the �overpopulated tail� of the steady state distribution function for r 2 [2; 10]. In order

to obtain the exponent in (15) numerically we assume

fk = c exp
�
� a (rk � rk0)

b

�
; k � k0

and plot the pairs (xk; yk)

xk = ln(rk � rk0) ; yk = ln(ln fk0 � ln fk) ; k = k0 + 1; : : : ;K :

Thus we expect with yk = ln a+b xk almost linear plot which slope will show the exponent

b in (34). The numerical results are shown in Figure 7.

1 2 3 4

-1

0

1

2

3

4

5

Figure 7. Logarithmic plot of the histogram, Example 6

In Figure 7, the thick solid line shows the course of the values yk computed for k0 = 1

while the thin straight lines y = x � 2 ; y = 1:25x � 2 ; y = 1:5x � 2 are drawn for
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comparison of the slopes. Thus the asymptotic

f1(v) � exp(�ajvj) ; jvj ! 1

is clearly indicated. The unstable behaviour of the numerical curve for �large� r is due to

usual di�culties by computing the �tails� of the distribution function using particles with

constant weights.

Example 7 We consider the hard spheres model (� = 1 in (5)), Maxwell distribution

(27) as the initial condition and the following set of parameters in (1)

� =
1

10
; � = 30 ; 
 = 16 ; C0 =

1

4�

and

R = 16 ; K = 128

in (31).

We use again n = 107 particles and compute N = 100 independent ensembles on the time

interval [0:0; 0:25]. The numerical results are shown in Figure 8.

1 2 3 4

-2

-1

0

1

2

3

4

Figure 8. Logarithmic plot of the histogram, Example 7

In Figure 8, the thick solid line shows the course of the values yk computed for k0 = 1
while the thin straight lines y = x � 3 ; y = 1:25x � 3 ; y = 1:5x � 3 are drawn for

comparison of the slopes. Thus the asymptotics

f1(v) � exp(�ajvj
3

2 ) ; jvj ! 1

is clearly indicated.
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Example 8 We consider now the variable hard spheres model with � = 0:5 in (5), the

same Maxwell distribution (27) as the initial condition and the following set of parameters

in (1)

� =
1

10
; � = 30 ; 
 = 16 ; C0 =

1

4�

and

R = 24 ; K = 128

in (31).

We use again n = 107 particles and compute N = 100 independent ensembles on the time

interval [0:0; 0:5]. The numerical results are shown in Figure 9.

1 2 3 4

-1

0

1

2

3

4

5

Figure 9. Logarithmic plot of the histogram, Example 8

Figure 9 shows the course of the values yk computed for k0 = 1 and the thin straight

lines y = x � 2 ; y = 1:25x � 2 ; y = 1:5x � 2 for comparison of the slopes. Thus the

asymptotics

f1(v) � exp(�ajvj1+
�

2 ) ; jvj ! 1

(cf. (16)) is clearly indicated.

Conclusions

In the present paper we develop a new stochastic numerical method for the uniformly

heated inelastic Boltzmann equation. This method is a particle method where particles
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are continuously subjected to a Gaussian white noise forcing and obtain the kinetic energy

executing individual Brownian motion between the inelastic collisions which dissipate the

kinetic energy. The numerical results obtained for spatially homogeneous problems are

carefully tested using known analytical curves for the time relaxation of the temperature

for the Maxwell pseudo-molecules. Furthermore, we investigate the �tails� of steady state

distribution functions computed for di�erent values of parameter � in the VHS model

(5). The asymptotic behaviour of the tails can be seen clearly. However the investigation

of the �tails� leads to the modelling of very rare events and probably weighted particles

schemes, like SWPM proposed in [24],[25],[26] for the classical, elastic Boltzmann equation

are more e�cient for such calculations.
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