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Abstract. Numerical integration of stochastic di�erential equations together with the

Monte Carlo technique is used to evaluate conditional Wiener integrals of exponential-

type functionals. An explicit Runge-Kutta method of order four and implicit Runge-

Kutta methods of order two are constructed. The corresponding convergence theorems

are proved. To reduce the Monte Carlo error, a variance reduction technique is consid-

ered. Results of numerical experiments are presented.

1. Introduction

We consider Wiener integrals

(1.1) J =

Z
Cd
0;a;T;b

F (x(�)) d�T;b0;a(x)

of the exponential-type functionals

(1.2) F (x(�)) = exp

�Z T

0

f(t; x(t)) dt

�
:

Here �
T;b
0;a(x) is a conditional Wiener measure which corresponds to the Brownian paths

X
T;b
0;a (t) with �xed initial and �nal points, i.e., it corresponds to the d-dimensional Brow-

nian bridge from a at the time t = 0 into b at the time t = T: The integral (1.1) is

understood in the sense of Lebesgue integral with respect to the measure �
T;b
0;a(x) and is

taken over the set Cd
0;a;T;b of all d-dimensional continuous vector-functions x(t) satisfying

the conditions x(0) = a; x(T ) = b (see, e.g. [4]).

A relation of such integrals with quantum physics and some equations of mathematical

physics can be found, e.g., in [4, 3, 2, 13, 9]. In particular, the Feynman path integral of

the form

J =

Z
exp

�Z T

0

�
m _x2(t)

2
� V (x(t))

�
dt

�
Dx(t)

is another writing of the integral (1.1)-(1.2) with f = �V:
Numerical evaluation of Wiener integrals is an important and diÆcult task. Many ap-

proaches are proposed for solving this problem (see, e.g. [2, 15, 1] and references therein).

As a rule, the known numerical methods reduce a path integral to a high dimensional

integral which is then approximated using either classical or Monte Carlo methods. The

high order of these integrals makes calculation of the Wiener integrals extremely diÆcult.

In [5, 14, 10], the approach using numerical integration (in the weak sense) of stochas-

tic di�erential equations with application of the Monte Carlo technique is proposed for

computation of Wiener integrals of the form

(1.3) I =

Z
Cd
0;0

F (x(�)) d�0;0(x);

where �0;0(x) is a Wiener measure corresponding to Brownian paths with the �xed initial

point (0; 0) and F (x(�)) = '(x(T );
R T
0
f(t; x(t)) dt): The approach is based on the following
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probabilistic representation of the integral (1.3):

(1.4) I = E'(X0;0(T ); Z0;0;0(T ));

where X0;0(t); Z0;0;0(t); 0 � t � T; is the solution of the (d + 1)-dimensional system of

stochastic di�erential equations (SDEs)

dX = dw(t); X0;0(0) = 0;(1.5)

dZ = f(t; X1; : : : ; Xd)dt; Z0;0;0(0) = 0;

and w(t) = (w1(t); : : : ; wd(t))| is a d-dimensional standard Wiener process.

An eÆciency of this approach is due to the fact that the system (1.5) has the �xed di-

mension d and the corresponding accuracy is reached by means of a choice of a method

and a step of numerical integration and a number M of Monte Carlo simulations. Thus,

the problem of calculating the in�nite-dimensional Wiener integral I is reduced to the

Cauchy problem (1.5). This problem can naturally be regarded as one-dimensional since

it contains one independent variable only. We underline that in other methods the path

integral is reduced to a high dimensional Riemann integral and the accuracy is reached

on account of increasing its dimension. The approach based on the probabilistic represen-

tation (1.4)-(1.5) turned out to be especially e�ective in evaluating Wiener integrals (1.3)

of exponential-type functionals due to the obtained fourth-order Runge-Kutta methods

[5, 10].

Here the approach of [5, 14, 10] is developed for evaluating the conditional Wiener integral

(1.1)-(1.2). The corresponding probabilistic representation contains a more complicated

system than (1.5). The solution of this system gives a Markov representation of the Brow-

nian bridge. The system is singular and this circumstance stipulates a certain complexity

of theoretical proofs. Nevertheless the constructed fourth-order Runge-Kutta algorithms

are equally simple and e�ective as in the case of the Wiener integral (1.3). The e�ec-

tiveness of these algorithms allows us to evaluate integrals (1.1)-(1.2) for large dimension

d:

In this paper we restrict ourselves to conditional Wiener integrals of exponential-type

functionals although the approach can also be applied to conditional Wiener integrals of

functionals of an integral type (cf. [14]).

In Section 2, a fourth-order explicit Runge-Kutta method is constructed. The correspond-

ing convergence theorem is proved in Sections 3 and 4. Implicit methods of order 2 are

derived in Section 5. These methods have an implicitness with respect to the linear part

only which is easily analytically resolved. In our approach, there are two types of errors:

the error of numerical integration and the Monte Carlo error. To reduce the Monte Carlo

error, we consider the method of control variates in Section 6. Some results of numerical

tests are presented in Section 7.

2. Explicit Runge-Kutta method of order 4

As it is known [7, 8], the d-dimensional Brownian bridge X(t) = X0;a(t) = X
T;b
0;a (t);

0 � t � T; from a to b can be characterized as the pathwise unique solution of the system
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of SDEs

(2.1) dX =
b�X

T � t
dt+ dw(t); 0 � t < T; X(0) = a;

with

(2.2) X(T ) = b;

where w(t) = (w1(t); : : : ; wd(t))| is a d-dimensional standard Ft-Wiener process. The

system is considered on a probability space (
;F ; P ); and Ft; 0 � t � T; is a non-

decreasing family of �-algebras of F .
Let us also introduce the scalar equation

(2.3) dY = f(t; X(t))Y dt; 0 � t � T; Y (0) = 1;

where X(t) is de�ned by (2.1)-(2.2) and f(t; x) is the same as in (1.2). Then the Wiener

integral (1.1)-(1.2) is equal to

(2.4) J = EY (T ) :

Thus, evaluation of the Wiener integral (1.1)-(1.2) is reduced to the problem of numerical

integration of the system (2.1)-(2.3).

Introduce a discretization of the time interval [0; T ]; for de�niteness the equidistant one
with a time step h > 0 :

tk = kh; k = 0; : : : ; N; tN = T;

and let tk+1=2 := tk + h=2:

To get a higher order method for (2.1)-(2.3), we need to simulate the solution of (2.1)

exactly. The solution of (2.1) is

(2.5) X(t) = a
T � t

T
+ b

t

T
+ (T � t)

Z t

0

dw(s)

T � s
:

Hence

(2.6) X(t+ h) = X(t) + h
b�X(t)

T � t
+ (T � t� h)

Z t+h

t

dw(s)

T � s
:

We have

E

�
(T � t� h)

Z t+h

t

dw(s)

T � s

����X(t)

�
= 0;(2.7)

E

�
(T � t� h)

Z t+h

t

dw(s)

T � s

����X(t)

�2
=

�
1� h

T � t

�
h:

We can exactly simulate the solution of (2.1) by a simple recurrent procedure based on

the formula

(2.8) X(t+ h) = X(t) + h
b�X(t)

T � t
+ h1=2

r
T � t� h

T � t
�;

where � is a random vector which components are Gaussian random variables with zero

mean and unit variance and they are independent of X(t):
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Now let us formally apply a standard deterministic explicit fourth-order Runge-Kutta

method to the equation (2.3) assuming that X(t) is a known function. Then, taking into

account (2.8), we obtain the following algorithm for integrating the system (2.1)-(2.3):

X(0) = a ;(2.9)

X(tk+1=2) = X(tk) +
h

2

b�X(tk)

T � tk
+
h1=2p
2

s
T � tk+1=2

T � tk
�k+1=2 ;

k = 0; : : : ; N � 1 ;

X(tk+1) = X(tk+1=2) +
h

2

b�X(tk+1=2)

T � tk+1=2

+
h1=2p
2

s
T � tk+1

T � tk+1=2

�k+1 ;

k = 0; : : : ; N � 2 ; X(tN) = b ;

Y0 = 1 ;(2.10)

k1 = f(tk; X(tk))Yk; k2 = f(tk+1=2; X(tk+1=2)) [Yk + hk1=2] ;

k3 = f(tk+1=2; X(tk+1=2)) [Yk + hk2=2] ; k4 = f(tk+1; X(tk+1)) [Yk + hk3] ;

Yk+1 = Yk +
h

6
(k1 + 2k2 + 2k3 + k4) ; k = 0; : : : ; N � 1 ;

where �k+1=2; �k+1 are d-dimensional random vectors which components are mutually

independent random variables with standard normal distribution N (0; 1):

Since the function X(t) is non-smooth, the deterministic result on the accuracy order

of the involved Runge-Kutta method is not applicable here and a separate convergence

theorem is needed. In the next two sections the following theorem is proved under some

assumptions on the function f(t; x) (see them after (3.4)).

Theorem 2.1. The method (2:9)-(2:10) applied to evaluation of the Wiener integral (2:4)
is of fourth order of accuracy, i.e.,

(2.11) jJ � EYN j = jEY (T )� EYN j � Kh4;

where the constant K is independent of h:

3. Theorem on one-step error

In this section we consider a one-step error of the method (2.9)-(2.10). We use this analysis

in the next section to prove Theorem 2.1 on global error of the method (2.9)-(2.10).

We say that a function g(s; x); s 2 [0; T ]; x 2 Rd; belongs to the class F (with respect to

the variable x); written as g 2 F; if there are constants K > 0 and � > 0 such that for

all x 2 Rd the following inequality holds uniformly in s 2 [0; T ]:

(3.1) jg(s; x)j � K(1 + jxj�) :

4



Introduce the operator

(3.2) L =
@

@t
+

dX
i=1

bi � xi

T � t

@

@xi
+

1

2

dX
i=1

@2

(@xi)
2
; 0 � t < T :

We observe that this operator contains singularity since the denominator T � t tends to
zero as t goes to T:

Consider the function

(3.3) u(t; x) = EYt;x;1(T ) :

It satis�es the Cauchy problem

Lu + fu = 0 ; 0 � t < T ; x 2 Rd ;(3.4)

u(T; x) = 1 :

We assume that the function f(t; x) is suÆciently smooth, belongs to the class F together

with its partial derivatives of a suÆciently high order and is such that the problem (3.4)

has a unique solution which is suÆciently smooth and belongs to the class F together with

its partial derivatives of a suÆciently high order. In addition, we suppose that EY 2(t)
exists and bounded on [0; T ] and that for all suÆciently small h the second moments EY 2

k

are uniformly bounded with respect to h. For instance, the latter conditions are satis�ed

when the function f(t; x) is bounded. Therefore, theoretically, we can use Theorem 2.1,

approximating f(t; x) (if it is unbounded) by an appropriate bounded function.

Let g be a suÆciently smooth function belonging to the class F together with its partial

derivatives up to a suÆciently high order. Then the expectations for a nonnegative integer

m

ELlg(�;X(�)); l = 0; 1; :::; m+ 1;

E

�
@

@xi
Llg(�;X(�))

�2

; l = 0; 1; :::; m; i = 1; :::; d ;

exist and are continuous with respect to 0 � � < T: And the following formulas are also

valid for t � s � t + h < T :

E(g(t+ h;Xt;x(t+ h))jFs) = g(s;Xt;x(s))(3.5)

+(t+ h� s)Lg(s;Xt;x(s)) + � � �+ (t+ h� s)m

m!
Lmg(s;Xt;x(s))

+

Z t+h

s

(t + h� �)m

m!
E(Lm+1g(�;Xt;x(�))jFs)d� ;

Eg(t+ h;Xt;x(t + h)) = g(t; x) + hLg(t; x) + � � �+ hm

m!
Lmg(t; x)(3.6)

+

Z t+h

t

(t + h� �)m

m!
ELm+1g(�;Xt;x(�)) d� :
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The expansions (3.5) and (3.6) are analogous to an expansion of semigroups. Their proof

is available in [10, p. 137].

It is convenient to introduce the additional notation for the approximation de�ned by

(2.10): �Y0;a;1(tk) = Yk and also �Ys;x;y(t); t � s; by which we mean the approximation of

(2.3) started from y at t = s with X(s) = x:

It is not diÆcult to see that

Yt;x;y(t + t0) = yYt;x;1(t+ t0) ; �Ytk;x;y(tk+k0) = y �Ytk;x;1(tk+k0) ;(3.7)

EYt;x;y(T ) = yEYt;x;1(T ) = yu(t; x) ;

where u(t; x) is the solution of the problem (3.4).

Recall that t0 = 0; X0 = a; Y0 = 1: Using (3.3) and (3.7) and the fact that we simulate

Xk = X(tk) exactly, we can represent the global error of the method (2.9)-(2.10) (cf.

(2.11)) in the form ��EY0;a;1(T )� E �Y0;a;1(T )
�� = jEYt0;X0;Y0(T )� EYN j(3.8)

= ju(t0; X0)Y0 � Eu(tN ; XN)YN j

=

�����
N�1X
k=0

�
Eu(tk; X(tk))Yk � Eu(tk+1; X(tk+1)) �Ytk;Xk;Yk(tk+1)

������
=

�����
N�1X
k=0

EYk
�
u(tk; X(tk))� u(tk+1; X(tk+1)) �Ytk;Xk;1(tk+1)

������
�

N�1X
k=0

��EYk �u(tk; X(tk))� u(tk+1; Xtk;Xk
(tk+1)) �Ytk;Xk;1(tk+1)

��� :
We have

Rk :=
��EYk �u(tk; X(tk))� u(tk+1; Xtk;Xk

(tk+1)) �Ytk;Xk;1(tk+1)
���(3.9)

=
��EYkE �u(tk; Xk)� u(tk+1; Xtk;Xk

(tk+1)) �Ytk;Xk;1(tk+1)jFtk

��� :
First, we analyze Rk for k = 0; : : : ; N � 2: To this end, we consider the one-step error for

0 � t < T � h :

(3.10) r(t; x) := Eu(t+ h;Xt;x(t+ h)) �Yt;x;1(t+ h)� u(t; x) :

We rewrite (2.10) on a single step in the form:

�Yt;x;1(t+ h) = 1 +
h

6

�
f0 + 4f1=2 + f1

�
+
h2

6

�
f0f1=2 + f 21=2 + f1=2f1

�
(3.11)

+
h3

12

�
f0f

2
1=2 + f 21=2f1

�
+
h4

24
f0f

2
1=2f1;

where f0 := f(t; x); f1=2 := f(t+ h=2; Xt;x(t+ h=2)); and f1 := f(t+ h;Xt;x(t+ h)):

6



Using (3.6), we get

Eu(t+ h;Xt;x(t+ h)) = u(t; x) + hLu(t; x) +
h2

2
L2u(t; x) +

h3

6
L3u(t; x)(3.12)

+
h4

24
L4u(t; x) +

Z t+h

t

(t+ h� �)4

24
EL5u(�;Xt;x(�)) d� ;

Ef0u(t+ h;Xt;x(t + h)) = f0Eu(t+ h;Xt;x(t+ h))

= f0

�
u(t; x) + hLu(t; x) +

h2

2
L2u(t; x) +

h3

6
L3u(t; x)

+

Z t+h

t

(t+ h� �)3

6
EL4u(�;Xt;x(�)) d�

�
;

Ef1u(t+ h;Xt;x(t+ h)) = f0u(t; x) + hL (fu) (t; x) +
h2

2
L2 (fu) (t; x)

+
h3

6
L3 (fu) (t; x) +

Z t+h

t

(t + h� �)3

6
EL4 (fu) (�;Xt;x(�)) d�:

Further,

Ef1=2u(t+ h;Xt;x(t+ h)) = E
�
f1=2E

�
u(t+ h;Xt;x(t+ h))jFt+h=2

��
;

and by (3.5) we obtain

E
�
u(t+ h;Xt;x(t + h))jFt+h=2

�
= u(t+ h=2; Xt;x(t+ h=2)) +

h

2
Lu(t+ h=2; Xt;x(t + h=2))

+
h2

8
L2u(t+ h=2; Xt;x(t + h=2)) +

h3

48
L3u(t+ h=2; Xt;x(t+ h=2))

+

Z t+h

t+h=2

(t + h� �)3

6
E
�
L4u(�;Xt;x(�))jFt+h=2

�
d� ;

then

Ef1=2u(t+ h;Xt;x(t+ h)) = f0u(t; x) +
h

2
L (fu) (t; x) +

h2

8
L2 (fu) (t; x)(3.13)

+
h3

48
L3 (fu) (t; x) +

Z t+h=2

t

(t+ h=2� �)3

6
EL4 (fu) (�;Xt;x(�))d� +

h

2
f0Lu(t; x)

+
h2

4
L (fLu) (t; x) +

h3

16
L2 (fLu) (t; x) +

h

2

Z t+h=2

t

(t+ h=2� �)2

2
EL3 (fLu) (�;Xt;x(�))d�

+
h2

8
f0L

2u(t; x) +
h3

16
L
�
fL2u

�
(t; x) +

h2

8

Z t+h=2

t

(t+ h=2� �)EL2
�
fL2u

�
(�;Xt;x(�))d�

+
h3

48
f0L

3u(t; x) +
h3

48

Z t+h=2

t

EL
�
fL3u

�
(�;Xt;x(�))d�

+Ef1=2

Z t+h

t+h=2

(t+ h� �)3

6
L4u(�;Xt;x(�)) d� :

7



Analogously, we get

Ef0f1=2u(t+ h;Xt;x(t+ h)) = f 20u(t; x) +
h

2
f0L (fu) (t; x) +

h2

8
f0L

2 (fu) (t; x)(3.14)

+f0

Z t+h=2

t

(t + h=2� �)2

2
EL3 (fu) (�;Xt;x(�))d� +

h

2
f 20Lu(t; x) +

h2

4
f0L (fLu) (t; x)

+
h

2
f0

Z t+h=2

t

(t+ h=2� �)EL2 (fLu) (�;Xt;x(�))d� +
h2

8
f 20L

2u(t; x)

+
h2

8
f0

Z t+h=2

t

EL
�
fL2u

�
(�;Xt;x(�))d� + f0Ef1=2

Z t+h

t+h=2

(t + h� �)2

2
L3u(�;Xt;x(�)) d� ;

Ef 21=2u(t+ h;Xt;x(t+ h)) = f 20u(t; x) +
h

2
L
�
f 2u
�
(t; x) +

h2

8
L2
�
f 2u
�
(t; x)

+

Z t+h=2

t

(t + h=2� �)2

2
EL3

�
f 2u
�
(�;Xt;x(�))d� +

h

2
f 20Lu(t; x) +

h2

4
L
�
f 2Lu

�
(t; x)

+
h

2

Z t+h=2

t

(t+ h=2� �)EL2
�
f 2Lu

�
(�;Xt;x(�))d� +

h2

8
f 20L

2u(t; x)

+
h2

8

Z t+h=2

t

EL
�
f 2L2u

�
(�;Xt;x(�))d� + Ef 21=2

Z t+h

t+h=2

(t+ h� �)2

2
L3u(�;Xt;x(�)) d� ;

Ef1=2f1u(t+ h;Xt;x(t+ h)) = f 20u(t; x) +
h

2
L
�
f 2u
�
(t; x) +

h2

8
L2
�
f 2u
�
(t; x)

+

Z t+h=2

t

(t+ h=2� �)2

2
EL3

�
f 2u
�
(�;Xt;x(�))d� +

h

2
f0L (fu) (t; x) +

h2

4
L (fL (fu)) (t; x)

+
h

2

Z t+h=2

t

(t+ h=2� �)EL2 (fL (fu)) (�;Xt;x(�))d� +
h2

8
f0L

2 (fu) (t; x)

+
h2

8

Z t+h=2

t

EL
�
fL2 (fu)

�
(�;Xt;x(�))d� + Ef1=2

Z t+h

t+h=2

(t+ h� �)2

2
L3 (fu) (�;Xt;x(�)) d� ;

Ef0f
2
1=2u(t+ h;Xt;x(t+ h)) = f 30u(t; x) +

h

2
f0L

�
f 2u
�
(t; x)

+f0

Z t+h=2

t

(t+ h=2� �)EL2
�
f 2u
�
(�;Xt;x(�))d� +

h

2
f 30Lu(t; x)

+
h

2
f0

Z t+h=2

t

EL
�
f 2Lu

�
(�;Xt;x(�))d� + f0Ef

2
1=2

Z t+h

t+h=2

(t+ h� �)L2u(�;Xt;x(�)) d� ;

8



Ef 21=2f1u(t+ h;Xt;x(t+ h)) = f 30u(t; x) +
h

2
L
�
f 3u
�
(t; x)

+

Z t+h=2

t

(t+ h=2� �)EL2
�
f 3u
�
(�;Xt;x(�))d� +

h

2
f 20L(fu)(t; x)

+
h

2

Z t+h=2

t

EL
�
f 2L(fu)

�
(�;Xt;x(�))d� + Ef 21=2

Z t+h

t+h=2

(t+ h� �)L2 (fu) (�;Xt;x(�)) d� ;

Ef0f
2
1=2f1u(t+ h;Xt;x(t + h)) = f 40u(t; x) + f0

Z t+h=2

t

EL
�
f 3u
�
(�;Xt;x(�))d�

+ f0Ef
2
1=2

Z t+h

t+h=2

L (fu) (�;Xt;x(�)) d� :

Substituting (3.11)-(3.14) in (3.10), we obtain

r = h [Lu+ fu] +
h2

2

�
L2u+ L(fu) + fLu+ f 2u

�
+
h3

6

�
L3u+ L2(fu) + fL2u+ fL (fu) + L (fLu) + L

�
f 2u
�
+ f 2Lu+ f 3u

�
+
h4

24
[L4u+ L3(fu) + fL3u+ fL2(fu) + f 2L2u+ f 2L (fu) + f 3Lu+ f 4u

+ L2(fLu) + L2(f 2u) + fL(fLu) + fL(f 2u) + L(fL2u) + L(fL(fu))

+ L(f 2Lu) + L(f 3u)] + ~r;

where all the operators and functions are evaluated at the point (t; x) and

~r(t; x) =

Z t+h

t

(t + h� �)4

24
EL5u(�;Xt;x(�)) d�(3.15)

+
h

6

�
f0

Z t+h

t

(t+ h� �)3

6
EL4u(�;Xt;x(�)) d��

+4

Z t+h=2

t

(t+ h=2� �)3

6
EL4 (fu) (�;Xt;x(�))d

+2h

Z t+h=2

t

(t+ h=2� �)2

2
EL3 (fLu) (�;Xt;x(�))d�

+
h2

2

Z t+h=2

t

(t+ h=2� �)EL2
�
fL2u

�
(�;Xt;x(�))d� +

h3

12

Z t+h=2

t

EL
�
fL3u

�
(�;Xt;x(�))d�

+4Ef1=2

Z t+h

t+h=2

(t+ h� �)3

6
L4u(�;Xt;x(�)) d� +

Z t+h

t

(t + h� �)3

6
EL4 (fu) (�;Xt;x(�)) d�

�
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+
h2

6

"
f0

Z t+h=2

t

(t+ h=2� �)2

2
EL3 (fu) (�;Xt;x(�))d�

+
h

2
f0

Z t+h=2

t

(t+ h=2� �)EL2 (fLu) (�;Xt;x(�))d�

+
h2

8
f0

Z t+h=2

t

EL
�
fL2u

�
(�;Xt;x(�))d�

+ f0Ef1=2

Z t+h

t+h=2

(t+ h� �)2

2
L3u(�;Xt;x(�)) d�

+

Z t+h=2

t

(t+ h=2� �)2

2
EL3

�
f 2u
�
(�;Xt;x(�))d�

+
h

2

Z t+h=2

t

(t + h=2� �)EL2
�
f 2Lu

�
(�;Xt;x(�))d�

+
h2

8

Z t+h=2

t

EL
�
f 2L2u

�
(�;Xt;x(�))d�

+ Ef 21=2

Z t+h

t+h=2

(t+ h� �)2

2
L3u(�;Xt;x(�)) d�

+

Z t+h=2

t

(t + h=2� �)2

2
EL3

�
f 2u
�
(�;Xt;x(�))d�

+
h

2

Z t+h=2

t

(t + h=2� �)EL2 (fL (fu)) (�;Xt;x(�))d�

+
h2

8

Z t+h=2

t

EL
�
fL2 (fu)

�
(�;Xt;x(�))d�

+Ef1=2

Z t+h

t+h=2

(t+ h� �)2

2
L3 (fu) (�;Xt;x(�)) d�

�

+
h3

12

"
f0

Z t+h=2

t

(t + h=2� �)EL2
�
f 2u
�
(�;Xt;x(�))d�

+
h

2
f0

Z t+h=2

t

EL
�
f 2Lu

�
(�;Xt;x(�))d�

+f0Ef
2
1=2

Z t+h

t+h=2

(t+ h� �)L2u(�;Xt;x(�)) d�

+

Z t+h=2

t

(t + h=2� �)EL2
�
f 3u
�
(�;Xt;x(�))d�

10



+
h

2

Z t+h=2

t

EL
�
f 2L(fu)

�
(�;Xt;x(�))d� + Ef 21=2

Z t+h

t+h=2

(t+ h� �)L2 (fu) (�;Xt;x(�)) d�

#

+
h4

24

"
f0

Z t+h=2

t

EL
�
f 3u
�
(�;Xt;x(�))d� + f0Ef

2
1=2

Z t+h

t+h=2

L (fu) (�;Xt;x(�)) d�

#
:

Taking into account that u(t; x) satis�es the equation from (3.4), we get

(3.16) r(t; x) = ~r(t; x) :

If the terms in the one-step error r(t; x) of the method (2.9)-(2.10) (i.e., the terms in

(3.15)) were bounded by K(x)h5; K(x) 2 F; for all t � T � h; the relations (3.8)-

(3.10) would imply that
PN�2

k=0 Rk � Ch4; where C is independent of h: But we see

that the one-step error consists of integrals with integrands containing terms of the form

A(t; x) = Ln
�
q1L

lq2
�
(t; x); where q1(t; x) and q2(t; x) are some functions from the class

F: The functions A(t; x) belong to the class F for t 2 [0; T�]; where T� < T is a �xed

(independent of h) time moment. Then jr(t; x)j � K(x)h5; K(x) 2 F; t 2 [0; T�]; with

K(x) depending on T�: However, the functions A(t; x) do not belong to the class F for

t 2 [0; T ) due to the singularity in L (see (3.2)). Consequently, r(t; x) can not be bounded

by K(x)h5; K(x) 2 F; for all t < T; and a more detailed analysis of the one-step error

is required to prove the convergence theorem. In particular, we need to consider the

structure of the functions A(t; x) in detail. We always assume that L0 is an identity

operator.

Lemma 3.1. Let q1(t; x) and q2(t; x) be suÆciently smooth functions belonging to the class

F together with their partial derivatives of a suÆciently high order. Then for 0 � t < T :

Ln(q1L
lq2)(t; x) = g0(t; x) +

mX
j=1

X
�j

g�j (t; x) 
�j(t; x) ;(3.17)

l; n = 0; 1; : : : ; m = l + n;

where �j is a multiindex such that �j = (i1; : : : ; ij) and each ik is from f1; : : : ; dg, the
summation in (3:17) is over all possible values of �j; g0 and g�j are some functions from

the class F; and

 r =
br � xr

T � t
; r = 1; : : : ; d;(3.18)

 �j+1 =
bij+1 � xij+1

T � t
 �j +

@

@xr
 �j ; �j = (i1; : : : ; ij);

�j+1 = (i1; : : : ; ij; ij+1); j = 1; 2; : : : ;

and for all �j

(3.19) L �j = 0 :

11



Proof. We prove the lemma by induction and start with (3.19). For j = 1 the (3.19) is

easily veri�ed. Suppose (3.19) is true for all j and prove it for j + 1: We have

L �j+1 = L

�
bij+1 � xij+1

T � t
 �j +

@

@xr
 �j

�

=  �j L
bij+1 � xij+1

T � t
+
bij+1 � xij+1

T � t
L �j � 1

T � t

@

@xij+1
 �j

+
@

@xij+1
L �j +

1

T � t

@

@xij+1
 �j = 0 :

Now we prove (3.17). For m = 1 the relations (3.17) are evident. Assume they to hold

for all m = n+ l; we will prove them for m+ 1: If l � m; we have n � 0 and

Ln+1(q1L
lq2) = L

0
@g0 + mX

j=1

X
�j

g�j  
�j

1
A

= Lg0 +

mX
j=1

X
�j

 
 �j Lg�j +

dX
r=1

@g�j

@xr
@

@xr
 �j

!

= ~g0 +

mX
j=1

X
�j

~g�j 
�j +

mX
j=1

X
�j

dX
r=1

�
 �j

br � xr

T � t
+

@

@xr
 �j

�
@g�j
@xr

= ~g0 +

mX
j=1

X
�j

~g�j 
�j +

mX
j=1

X
�j+1

 �j+1�g�j+1
;

i.e., we get (3.17) with the new functions g0; g�j from the class F: If l = m + 1 then we

deal with q1L
m+1q2 which also has the form (3.17) due to the just proved result. �

Corollary 3.1. We have for t � � < T :

E �j (�;Xt;x(�)) =  �j (t; x) ;

i.e.,  �j (�;X0;a(�)) is a martingale.

Let us now consider some other properties of the functions  �j(t; x):We note that  �j (t; x)
does not depend on the order of i1; : : : ; ij in �j (to see this it is enough to show that

 (i1;:::;ij�2;l;r)(t; x) =  (i1;:::;ij�2;r;l)(t; x)): Introduce the function �(r; �j); �j = (i1; : : : ; ij);
which is equal to the number of appearances of r in the set fi1; : : : ; ijg: In what follows

we will sometimes denote by the same �j di�erent multiindices having the length j; and
therefore functions  �j may di�er although they have the same notation.

Lemma 3.2. We have for t < T :

(3.20)
@

@xr
 �j (t; x) = ��(r; �j)

T � t
 �j�1(t; x) ; j = 2; 3; : : : :
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Proof. Let j = 2 and �2 = (i1; i2): Then (see (3.18)):

@

@xr
 (i1;i2)(t; x) =

@

@xr

�
 (i2) (i1) +

@

@xi2
 (i1)

�
=

@

@xr

�
 (i2) (i1)

�

= � 1

T � t
(Ær;i2 

(i1) + Ær;i1 
(i2)) = ��(r; �2)

T � t
 �1 ;

where Ær;i is the Kronecker symbol. Thus, (3.20) holds for j = 2. Note that here �1 is

either (i1) or (i2):

Suppose that (3.20) is valid for all 2 � j � l: We have

@

@xr
 (i1;:::;il+1)(t; x) =

@

@xr

�
 (il+1) (i1;:::;il) +

@

@xil+1
 (i1;:::;il)

�

= �Ær;il+1

T � t
 �l � bil+1 � xil+1

T � t

�(r; �l)

T � t
 �l�1 � �(r; �l)

T � t

@

@xil+1
 �l�1

= �Ær;il+1

T � t
 �l � �(r; �l)

T � t
 �l = ��(r; �l+1)

T � t
 �l :

�

Corollary 3.2. We have for t < T :

(3.21)  �j+1(t; x) =
br � xr

T � t
 �j (t; x)� �(r; �j)

T � t
 �j�1(t; x) ; j > 1;

(3.22) (br � xr)  �j (t; x) = (T � t)  �j+1(t; x) + �(r; �j) 
�j�1(t; x) ; j > 1;�

bl � xl
�
(br � xr)  �j(t; x) = (T � t)

2
 �j+2(t; x) + �(l; �j+1) (T � t) �j(t; x)(3.23)

+�(r; �j) (T � t) �j (t; x) + �(r; �j)�(l; �j�1) 
�j�2(t; x); j > 2:

Note that  �j in (3.23) are, in general, di�erent. We do not distinguish them because in

the following analysis we will concern with the length of multiindices only.

Lemma 3.3. We have for � < T :

�
E
��
br1 �Xr1

0;a(�)
�� � � � � �brl �Xrl

0;a(�)
��  �j (�;X0;a(�))

�2n�1=(2n) � C � (T � �)
(l�j)=2

;

(3.24)

j = 1; 2; : : : ; l = 0; 1; : : : ; n = 1; 2; : : : ;

where the constant C > 0 is independent of � (of course, it depends on n):

Proof. Using (2.5), it is not diÆcult to show that

E(X i
0;a(�)� bi)2n � C � (T � �)

n
;

where the constant C is independent of �: Then, taking into account that Xri
0;a(�) and

X
rj
0;a(�) are independent for ri 6= rj; we get

(3.25) E
��
br1 �Xr1

0;a(�)
�� � � � � �brl �Xrl

0;a(�)
��2n � C � (T � �)

nl
;
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even if some of ri in (3.25) coincide.

We have

(3.26) E [ �1(�;X0;a(�))]
2n

=
E(bi �X i

0;a(�))
2n

(T � �)
2n

� C � (T � �)
�n

;

and it is also easy to verify that

(3.27) E [ �2(�;X0;a(�))]
2n � C � (T � �)

�2n
:

By (3.23), (3.26)-(3.27), and the Cauchy-Bunyakovskii inequality, we prove by induction

that

(3.28) E [ �j (�;X0;a(�))]
2n � C � (T � �)

�nj
:

Finally, applying the Cauchy-Bunyakovskii inequality to the left-hand side of (3.24) and

using (3.25) and (3.28), we obtain the estimate (3.24). �

Now we are in position to make a detailed analysis of the remainder r(t; x) = ~r(t; x)
from (3.15). Let us recall that the one-step error consists of integrals with integrands

containing terms of the form A(t; x) = Ln
�
q1L

lq2
�
(t; x); where q1(t; x) and q2(t; x) are

some functions from the class F: Since L5u = �L4(fu) (cf. (3.4)), the number m = l+ n

for all the terms A(t; x) participating in the remainder is less than or equal to 4: Using
Lemma 3.1, we can represent the term A = Ln(q1L

lq2)(�;Xt;x(�)) as

(3.29) A(�;Xt;x(�)) = g0(�;Xt;x(�)) +

mX
j=1

X
�j

g�j (�;Xt;x(�)) 
�j(�;Xt;x(�)) :

By Lemma 3.3 (see (3.28)), we get that

�
E [A(�;X0;a(�))]

2n
�1=(2n) � C

(T � �)m=2
;

where the constant C is independent of �:

Consequently (recall that m � 4); we obtain the following estimate

(3.30)
�
E [r(t; X0;a(t); h)]

2n
�1=2n � Ch5

(T � t� h)
2
:

Using this rough estimate, we can show (see further discussion in Remark 4.2) that the

method (2.9)-(2.10) is at least of order 3: To prove the fourth-order of its convergence, a

more sophisticated analysis based on extraction of singularity is needed.
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To clarify the matter, we consider, for example, the following integral from the remainder

r(t; x) (see (3.15)):

Z t+h

t

(t + h� �)4

24
EL5u(�;Xt;x(�)) d� = �

Z t+h

t

(t + h� �)4

24
EL4 (fu) (�;Xt;x(�)) d�

(3.31)

= �
Z t+h

t

(t+ h� �)4

24

2
4Eg0(�;Xt;x(�)) +

4X
j=1

X
�j

Eg�j(�;Xt;x(�)) 
�j (�;Xt;x(�))

3
5 d� :

We will demonstrate the extraction of singularity analyzing the term with the highest

singularity g�4(�;Xt;x(�)) 
�4(�;Xt;x(�)): The singularity of  �4(�;Xt;x(�)) is of order 2

(see (3.28)), i.e.,

�
E [ �4(�;X0;a(�))]

2
�1=2 � C

(T � �)
2
:

At the same time,  �4(�;X0;a(�)) is a martingale (see Corollary 3.1) andE �4(�;X0;a(�)) =
 �4(0; a); which is a constant independent of �: To exploit this property of  �4 in further

analysis, we expand g(�;Xt;x(�)) := g�4(�;Xt;x(�)) at (T; b) :

g(�;Xt;x(�)) = g(T; b) +
@g

@t
(T; b) (� � T ) +

dX
r=1

@g

@xr
(T; b)

�
Xr

t;x(�)� br
�

(3.32)

+
1

2

dX
r1;r2=1

@2g

@xr1@xr2
(T; b)

�
Xr1

t;x(�)� br1
� �
Xr2

t;x(�)� br2
�

+
1

2

@2g

@t2
(#;Xt;x(�)) (� � T )

2
+

dX
r=1

@2g

@t@xr
(T; �1) (� � T )

�
Xr

t;x(�)� br
�

+
1

6

dX
r1;r2;r3=1

@3g

@xr1@xr2@xr3
(T; �2)

�
Xr1

t;x(�)� br1
� �
Xr2

t;x(�)� br2
� �
Xr3

t;x(�)� br3
�
;

where # is a time between � and T and �1 and �2 are points between Xt;x(�) and b:

Then, using Corollaries 3.1 and 3.2, we obtain

Z t+h

t

(t + h� �)4

24
Eg�4(�;Xt;x(�)) 

�4(�;Xt;x(�)) d�(3.33)

=

Z t+h

t

�
(t+ h� �)4

24
g(T; b) �4(t; x) +

@g

@t
(T; b) (� � T ) �4(t; x)
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�
dX

r=1

@g

@xr
(T; b) f(T � �)  �5(t; x) + �(r; �4) 

�3(t; x)g

+
1

2

dX
r1;r2=1

@2g

@xr1@xr2
(T; b) f(T � �)

2
 �6(t; x) + �(r1; �5) (T � �) �4(t; x)

+ �(r2; �4) (T � �) �4(t; x) + �(r2; �4)�(r1; �3) 
�2(t; x)g

i
d� + E�0(t; x; h)

= h5S 0(t; x) + E�0(t; x; h) ;

where S 0(t; x) is a linear combination of the functions  �2(t; x);  �3(t; x);  �4(t; x); (T �
t) �4(t; x); h �4(t; x); (T � t) �5(t; x); h �5(t; x); (T � t)2 �6(t; x); (T � t)h �6(t; x);
h2 �6(t; x); coeÆcients in this linear combination are independent of t; x; and h;

E�0(t; x; h) = E

Z t+h

t

(t + h� �)4

24
 �4(�;Xt;x(�))�

�
1

2

@2g

@t2
(#;Xt;x(�)) (� � T )

2

+

dX
r=1

@2g

@t@xr
(T; �1) (� � T )

�
Xr

t;x(�)� br
�

+
1

6

dX
r1;r2;r3=1

@3g

@xr1@xr2@xr3
(T; �2)

�
Xr1

t;x(�)� br1
� �
Xr2

t;x(�)� br2
� �
Xr3

t;x(�)� br3
�#

d� :

Using the Cauchy-Bunyakovskii inequality and Lemma 3.3, we obtain that

(3.34)
�
E [�0(t; X0;a(t); h)]

2n
�1=2n

� Ch5p
T � t� h

:

Thus, we extract the singularity by presenting the integral (3.33) as the sum of the singular

part S 0(t; x) and the remainder. The singular part contains singularities of order from 1

to 4; while the remainder has non-singular terms and terms with singularity of order 1=2:

By further expansion of g(�;Xt;x(�)) (cf. (3.32)), we could also include the singularity of

order 1=2 in the singular part making the remainder singular-free. But for our purposes

(i.e., for proving Theorem 2.1) the obtained expression (3.33) is suÆcient.

We similarly analyze the other terms in the integral (3.31). Note that  �1 has singularity of

order 1=2 and we include it in the remainder. So, S 0 does not contain any  �1 : Analogously,
we consider all the integrals of (3.15). In the case of an integral from t + h=2 to t + h;
we �rst take the conditional expectation of the term like A with respect to Ft+h=2 in a

similar way as above and then we repeat the procedure once again taking the expectation

of the product of the conditional expectation and f1=2 (or f
2
1=2): As a result, we obtain an

expression like the right-hand side of (3.33). Thus, we have proved the following theorem

on one-step error.

Theorem 3.3. The one-step error of the method (2:9)-(2:10) can be written in the form

(3.35) r(t; x) = h5S(t; x) + E�(t; x; h) ;

where S(t; x) is a linear combination of the functions  �2(t; x);  �3(t; x);  �4(t; x); (T �
t) �4(t; x); h �4(t; x); (T � t) �5(t; x); h �5(t; x); (T � t)2 �6(t; x); (T � t)h �6(t; x);
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h2 �6(t; x); coeÆcients in this linear combination are independent of t; x; and h; �(t; x; h)
is such that �

E [�(t; X0;a(t); h)]
2n
�1=2n � Ch5p

T � t� h

with a constant C independent of t and h:

4. Proof of the convergence theorem

According to (3.9) and (3.10), we have

Rk = jEYkr(tk; Xk)j
with r(t; x) from (3.35).

Using the rough estimate (3.30) and the Cauchy-Bunyakovskii inequality, we get straight-

forward that (recall that we assume uniform boundedness of the moments EY 2
k ) :

(4.1) Rk �
Kh5

(T � tk+1)
2
; k = 0; 1; : : : ; N � 2 :

But to prove (2.11), a more accurate estimate of Rk is needed. We obtain such an estimate

using Theorem 3.3.

Lemma 4.1. We have

(4.2) Rk �
Kh5p
T � tk+1

; k = 0; : : : ; N � 2 ;

where K is independent of k and h:

Proof. Note that we use the same letters C and K for di�erent constants which are

independent of h and k:

By Theorem 3.3 and the Cauchy-Bunyakovskii inequality, we obtain

Rk = jEYkr(tk; Xk)j =
��EYk �h5Sk + �(tk; Xk; h)

���(4.3)

� h5 jEYkSkj+ Ch5p
T � tk+1

;

where Sk := S(tk; Xk); S(t; x) and �(t; x; h) are from (3.35). Recall that Sk has singularity
of order 2; more precisely �

E [Sk]
2
�1=2 � C

(T � tk)
2
:

Let Fi := F (ti�1; ti�1=2; ti; Xi�1; Xi�1=2; Xi) be the function de�ned by the method (2.10)

(see also (3.11)), i.e., the last line of (2.10) for k = i� 1 can be written as

Yi = Yi�1 + hFi :

Introduce Sk;i := E (SkjFti) ; i < k: Due to Theorem 3.3 and Corollary 3.1, Sk;i is a

linear combination of  �2(ti; Xi);  
�3(ti; Xi);  

�4(ti; Xi); (T � tk) �4(ti; Xi); h 
�4(ti; Xi);

(T � tk) 
�5(ti; Xi); h 

�5(ti; Xi); (T � tk)
2 �6(ti; Xi); (T � tk)h 

�6(ti; Xi); h
2 �6(ti; Xi);
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coeÆcients in this linear combination are independent of tk; ti; x; and h. Consequently

(cf. (3.28)) �
E [Sk;i]

2
�1=2 � C

(T � ti)
2
:

We see that though Sk;i has the same order of singularity as Sk; the singularity is shifted.

Roughly speaking, Sk;i is less singular than Sk;i+1: Also note that E
�
Sk;ijFti�1

�
= Sk;i�1

since  �j are martingales (see Corollary 3.1).

We �x k > 0 and consider Bi := jEYiSk;ij ; i = k; k � 1; : : : ; 1 :

(4.4) Bi = jEYiSk;ij = jEYi�1 [1 + hFi]Sk;ij � jEYi�1Sk;i�1j+ h jEYi�1Fi Sk;ij :
We expand the terms, which form Fi; at (T; b) up to terms of �rst order, i.e., we write

Fi as a constant plus a remainder consisting of products of f(t; x); some its derivatives

and Xr
j � br or tj � T with j = i; i� 1=2; or i� 1: Then, using the Cauchy-Bunyakovskii

inequality and Lemma 3.3, we get:

jEYi�1Fi Sk;ij � K jEYi�1Sk;ij+
C

(T � ti)
3=2

= K jEYi�1Sk;i�1j+
C

(T � ti)
3=2

:

Hence, due to (4.4), we obtain

(4.5) Bi � Bi�1 +KhBi�1 +
Ch

(T � ti)
3=2

; i = k; k � 1; : : : ; 1 ;

where B0 is evidently a constant.

Therefore

Bk � (1 +Kh)
k
B0 + (1 +Kh)

k�1 Ch

(T � t1)
3=2

(4.6)

+ (1 +Kh)
k�2 Ch

(T � t2)
3=2

+ � � �+ Ch

(T � tk)
3=2

� B0 e
KT + CeKTh

kX
i=1

1

(T � ti)
3=2

� Cp
T � tk+1

;

which together with (4.3) implies (4.2). �

Remark 4.1. It is possible to prove that Rk � Kh5; k = 0; : : : ; N�2 ; with the constant

K independent of h and k: But we restrict ourselves here to the estimate (4:2) since it is
suÆcient for proving Theorem 2:1 and is obtained by less e�orts than it would be needed

for a more accurate estimate.

Since the operator L is not de�ned at t = T; we need a separate analysis of the error on

the last step RN�1. We can prove that RN�1 � Kh5 but we will obtain just the estimate

RN�1 � Kh4 which is enough for our purposes.

Lemma 4.2. We have

(4.7) RN�1 � Kh4;

where K is independent of h:
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Proof. Since EYN�1u (tN�1; XN�1) = EYtN�1;XN�1;YN�1
(T ) and u(T;X(T )) = 1; we can

write the error on the last step as (cf. (3.9)):

(4.8) RN�1 =
��EYtN�1;XN�1;YN�1

(T )� E �YtN�1;XN�1;YN�1
(T )
�� :

Introduce " = h4 and write EYtN�1;XN�1;YN�1
(T ) as

EYtN�1;XN�1;YN�1
(T ) = EYN�1 + E

Z T

tN�1

f(�;XtN�1;XN�1
(�))YtN�1;XN�1;YN�1

(�) d�(4.9)

= EYN�1 + EYN�1

Z T�"

tN�1

E
�
f(�;XtN�1;XN�1

(�))YtN�1;XN�1;1(�)jFtN�1

�
d�

+

Z T

T�"

Ef(�;XtN�1;XN�1
(�))YtN�1;XN�1;YN�1

(�) d� :

The last term in the right-hand side of (4.9) is bounded by K" = Kh4: By (3.5), we

expand the second term in the right-hand side of (4.9):

EYN�1

Z T�"

tN�1

E
�
f(�;XtN�1;XN�1

(�))YtN�1;XN�1;1(�)jFtN�1

�
d�(4.10)

= EYN�1

"
1 + (h� ") f(tN�1; XN�1) +

(h� ")
2

2

�
Lf + f 2

�
(tN�1; XN�1)

+
(h� ")

3

6

�
L2f + Lf 2 + fLf + f 3

�
(tN�1; XN�1)

+
(h� ")

4

24

�
L3f + L2f 2 + LfLf + Lf 3L2f

+fLf 2 + f 2Lf + f 4 + Lf 3
�
(tN�1; XN�1)

i
+ EYN�1r1(XN�1) ;

where r1(x) consists of integrals from T � h to T � " which form the remainder of the

expansion.

Consider the integrals from r1. For de�niteness, we take the following one

(4.11)

Z T�"

tN�1

(T � "� �)
4

24
E
�
YtN�1;XN�1;1(�)

�
L4f

�
(�;XtN�1;XN�1

(�)) jFtN�1

�
d� :

Due to Lemma 3.1, we write�
L4f

�
(�;XtN�1;XN�1

(�)) = g0(�;XtN�1;XN�1
(�))(4.12)

+

4X
j=1

X
�j

g�j (�;XtN�1;XN�1
(�)) �j(�;XtN�1;XN�1

(�)) :
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Let us analyze the term with  �4 which singularity is of order 2: Expand g�4(�; XtN�1;XN�1
(�))

at (T; b) (cf. (3.32)):

g�4(�;XtN�1;XN�1
(�)) =: g(�;XtN�1;XN�1

(�))

= g(T; b) +

dX
r=1

@g

@xr
(T; b)

�
Xr

tN�1;XN�1
(�)� br

�
+
@g

@t
(#;XtN�1;XN�1

(�)) (� � T )

+
1

2

dX
r1;r2=1

@2g

@xr1@xr2
(T; �)

�
Xr1

tN�1;XN�1
(�)� br1

� �
Xr2

tN�1;XN�1
(�)� br2

�
;

where # is a time between � � tN�1 and T and � is a point between XtN�1;XN�1
(�) and b:

Further, we expand YtN�1;XN�1;1(�); tN�1 � � � T � " as

YtN�1;XN�1;1(�) = 1 + �Y (�)

with E (�Y (�))
2 � C � h2:

Using these expansions together with Corollaries 3.1 and 3.2 and analyzing the remainder

terms by the Cauchy-Bunyakovskii inequality and Lemma 3.3, we obtainZ T�"

tN�1

(T � "� �)
4

24
E
�
YtN�1;XN�1;1(�)g�4(�;XtN�1;XN�1

(�)) �4(�;XtN�1;XN�1
(�)) jFtN�1

�
= h5S 0(XN�1) + E

�
�0jFtN�1

�
;

where S 0(x) is a linear combination of  �3(T � h; x);  �4(T � h; x); h �5(T � h; x);
coeÆcients in this linear combination are independent of x and h; �0contains terms with

 �1 and  �2 and other terms with singularity of order less than or equal to one. Besides,

the remainder �0 has the terms "lh5�lS 0(XN�1) with 0 < l � 5 which expectations are

bounded by Ch4 due to the choice of ": The terms with  �1 and  �2 are estimated in the

following way by the Cauchy-Bunyakovskii inequality and Lemma 3.3:

E

�Z T�"

T�h

(T � "� �)4

4!
g�2(�;X(�)) �2(�;X(�))d�

�2

� Ch

Z T�"

T�h

(T � "� �)8E [g�2(�;X(�)) �2(�;X(�))]
2
d�

� Ch

Z T�"

T�h

(T � "� �)8
q
E [g�2(�;X(�))]

4

q
E [ �2(�;X(�))]

4
d�

� Kh

Z T�"

T�h

(T � "� �)8

(T � �)2
d� � Kh

Z T�"

T�h

(T � �)6d� � Kh8 :

As a result, we obtain �
E [�0]

2
�1=2

� Ch4 :

Analyzing analogously the other terms of the integral (4.11) and also in a similar way all

the integrals from r1; we get

(4.13) r1(XN�1) = h5S(XN�1) + E
�
�jFtN�1

�
;
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where S(x) is a linear combination of  �3(T � h; x);  �4(T � h; x); h �5(T � h; x); and
� is such that

(4.14)
�
E�2

�1=2 � Ch4 :

Consider EYN�1r1(XN�1): By (4.13)-(4.14), we obtain (cf. (4.3)):

jEYN�1r1(XN�1)j =
��EYN�1

�
h5SN�1 + �

���(4.15)

� h5 jEYN�1SN�1j+ Ch4;

where SN�1 := S(XN�1). Using arguments similar to those used in the proof of Lemma 4.1,

we get that jEYN�1SN�1j is bounded by C=
p
h (cf. (4.5)-(4.6)). Hence we obtain

jEYN�1r1(XN�1)j � Ch4:

Further, we write h instead of h� "; h2 instead of (h� ")
2
; etc. in (4.10). Due to (4.10),

(4.15), and the choice of " = h4; we arrive at

EYtN�1;XN�1;YN�1
(T ) = EYN�1

�
1 + hf(tN�1; XN�1) +

h2

2

�
Lf + f 2

�
(tN�1; XN�1)

(4.16)

+
h3

6

�
L2f + Lf 2 + fLf + f 3

�
(tN�1; XN�1)

+
h4

24

�
L3f + L2f 2 + LfLf + Lf 3L2f + fLf 2 + f 2Lf + f 4 + Lf 3

�
(tN�1; XN�1)

�
+ Er̂ ;

with jEr̂j bounded by Ch4:

Now consider the approximation on the last step (cf. (3.11)):

E �YtN�1;XN�1;YN�1
(T ) = EYN�1E

�
�YtN�1;XN�1;1(T )jFtN�1

�
= EYN�1E

�
1 +

h

6

�
f0 + 4f1=2 + f1

�
+
h2

6

�
f0f1=2 + f 21=2 + f1=2f1

�
+
h3

12

�
f0f

2
1=2 + f 21=2f1

�
+
h4

24
f0 f

2
1=2 f1

����FtN�1

�
;

where f0 := f(tN�1; XN�1); f1=2 := f(tN�1=2; XN�1=2); and f1 := f(T; b):

Since we cannot expand f1 using (3.5) directly, we represent it as

(4.17) f1 � f(T; b) = f(T � "2; X0;a(T � "2)) +
�
f(T; b)� f(T � "2; X0;a(T � "2))

�
:

Due to E(b�X0;a(T � "2))2 � C"; the last term in (4.17) is estimated as

E
�
f(T; b)� f(T � "2; X0;a(T � "2))

�2 � C":
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The expectation of the �rst term in (4.17) can already be expanded by (3.5). Using

arguments similar to those used in the proof of Theorem 3.3, we get

E �YtN�1;XN�1;YN�1
(T ) = EYN�1

�
1 + hf(tN�1; XN�1) +

h2

2

�
Lf + f 2

�
(tN�1; XN�1)

(4.18)

+
h3

6

�
L2f + Lf 2 + fLf + f 3

�
(tN�1; XN�1)

+
h4

24

�
L3f + L2f 2 + LfLf + Lf 3L2f + fLf 2 + f 2Lf + f 4 + Lf 3

�
(tN�1; XN�1)

�
+EYN�1r2(XN�1) ;

where

r2(XN�1) = h5 ~S(XN�1) + E
�
~�jFtN�1

�
:

Here ~S(x) is a linear combination of the same functions as in the case of S(x) and ~� obeys
the inequality of the form (4.14). Then, by arguments similar to those used in the proof

of Lemma 4.1 and in estimating jEYN�1r1(XN�1)j above, we get that jEYN�1r2(XN�1)j
is bounded by Ch4:

Finally, substituting (4.16) and (4.18) in (4.8), we arrive at (4.7). �

Now we are in position to prove the convergence theorem.

Proof of Theorem 2.1. Lemmas 4.1 and 4.2 and the relations (3.8)-(3.9) imply

��EY0;a;1(T )� E �Y0;a;1(T )
�� � N�2X

k=0

Kh5p
T � tk+1

+Kh4:

Since
PN�2

k=0

hp
T � tk+1

� C, we get

��EY0;a;1(T )� E �Y0;a;1(T )
�� � Kh4;

i.e., we have proved that the method (2.9)-(2.10) is of order 4: �

Remark 4.2. A rough estimation of the remainders r1 and r2 arising in the proof of

Lemma 4:2 gives us that

(4.19)
�
Er2i

�1=2 � Ch3 ; i = 1; 2:

Indeed, consider, for instance, the integral (4:11) from r1: The expectation in this integral

is estimated by the Cauchy-Bunyakovskii inequality and Lemma 3:3 (see (3:28)) as C=(T�
�)2 (recall that the term L4f has singularity of order 2): Then the integral (4:11) is

estimated as Ch3: Note that to get (4:19) for i = 1 we do not need the expansion (4:12)

and the detailed analysis after it. To get (4:19) for i = 2 is also simple.

Using (4:19); we clearly arrive at

RN�1 � Kh3:
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This and the estimate (4:1) imply that the global error of the method (2:9)-(2:10) is

bounded as ��EY0;a;1(T )� E �Y0;a;1(T )
�� � Ch5

N�2X
k=0

1

(T � tk)
2
+ Ch3 :

Since the sum

N�1X
k=0

h2

(T � tk)
2
� C; we get that the method (2:9)-(2:10) is at least of order

3: To obtain this result, we do not need, for instance, Lemmas 3:2 and 4:1 and we prove

analogues of Theorem 3:3 and Lemma 4:2 much simpler. A signi�cant part of the previous

and current sections dealt with the extraction of singularities that was needed in order to

get the fourth order of convergence.

5. Implicit Runge-Kutta methods

From the point of view of possible applications, the most interesting case is when the

function f is bounded from above, for example, when f is negative. In this case the

explicit Runge-Kutta method from Section 2 may cause some computational problems

since, for instance, Yk+1 in (2.10) can become a large negative number while the exact

Y (t) is always positive. Apparently, this may occasionally lead to some instabilities and

require a very small time step to achieve a reasonable accuracy. In such a situation an

implicit method can behave better.

Let us formally apply the deterministic midpoint method to (2.3) provided X(t) is a

known function. As a result, we obtain

X(h=2) = a +
h

2

b� a

T
+

r
h

2

r
T � h=2

T
�1=2 ;(5.1)

X(tk+1=2) = X(tk�1=2) + h
b�X(tk�1=2)

T � tk�1=2

+
p
h

s
T � tk+1=2

T � tk�1=2

�k+1=2 ;

k = 1; : : : ; N � 1 ;

Y0 = 1 ;(5.2)

Yk+1 = Yk + hf(tk+1=2; X(tk+1=2))
Yk + Yk+1

2
; k = 0; : : : ; N � 1 ;

where �k+1=2; k = 0; : : : ; N � 1; are d-dimensional random vectors which components

are mutually independent random variables with standard normal distribution N (0; 1):

Resolving the implicitness in (5.2), we get

(5.3) Yk+1 = Yk

1 +
h

2
f(tk+1=2; X(tk+1=2))

1� h

2
f(tk+1=2; X(tk+1=2))

:
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To ensure that the denominator in (5.3) does not vanish for all suÆciently small h; we
should require that the function f(t; x) is bounded from above, i.e., that f(t; x) � c for

all (t; x); c is a constant. In this case for all suÆciently small h the denominator in (5.3)

is positive. If f(t; x) � 0; then �1 � Yk � 1 for all k:

We prove the convergence theorem for the method (5.1)-(5.2) under the same assumptions

as in Section 3 (see p. 5). Note that in the case of f(t; x) � 0; the condition EY 2
k � C is

satis�ed due to the uniform boundedness of the random variables Yk:

Theorem 5.1. The method (5:1)-(5:2) applied to evaluation of the Wiener integral (2:4)

is of second accuracy order, i.e.,

(5.4) jJ � EYN j = jEY (T )� EYN j � Kh2;

where the constant K is independent of h:

Proof. In the method (5.1)-(5.2), the approximation �Y (t) is evaluated at t = tk; k =

1; : : : ; N; while X(t) is simulated at t = tk+1=2 and X(tk) is not used in the algorithm.

Due to this reason, we cannot directly make use of relations like (3.8)-(3.9) to prove

convergence of the method (5.1)-(5.2). To overcome this diÆculty, we consider the other

algorithm:

X(tk+1=2) = X(tk) +
h

2

b�X(tk)

T � tk
+

r
h

2

s
T � tk+1=2

T � tk
�k+1=2 ; k = 0; : : : ; N � 1 ;(5.5)

X(tk+1) = X(tk+1=2) +
h

2

b�X(tk+1=2)

T � tk+1=2

+

r
h

2

s
T � tk+1

T � tk+1=2

�k+1 ;

k = 0; : : : ; N � 2 ; X(tN) = b ;

and Yk; k = 0; : : : ; N � 1 ; are simulated by the same formulas as in (5.2) (or, what is the

same, (5.3)). In (5.5), �k+1=2 and �k+1 are d-dimensional random vectors which com-

ponents are mutually independent random variables with standard normal distribution

N (0; 1):

Since X(t) is simulated exactly both in (5.1) and (5.5) and, in particular, X(tk+1=2) from

(5.1) have the same distributions as their counterparts in (5.5), it is clear that the estimate

(5.4) for the algorithm (5.5), (5.2) implies this estimate for (5.1)-(5.2). At the same time,

due to the presence of X(tk+1) in (5.5), we can make use of relations like (3.8)-(3.9) to

estimate the error of the algorithm (5.5), (5.2). In what follows, we prove (5.4) for (5.5),

(5.2).

We write the global error of (5.5), (5.2) in the form (3.8)-(3.9) and introduce the one-step

error of (5.5), (5.2) as in (3.10):

(5.6) r(t; x) := Eu(t+ h;Xt;x(t+ h)) �Yt;x;1(t+ h)� u(t; x) :

We rewrite (5.3) on a single step and expand it as

(5.7) �Yt;x;1(t+ h) = 1 + hf1=2 +
h2

2
f 21=2 + �;
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where f1=2 := f(t+ h=2; Xt;x(t+ h=2)) and the random variable � is such that

(5.8)
�
E�2

�1=2 � Ch3 :

We substitute (5.7) in (5.6) and then expand the terms in the obtained relation using

(3.5), (3.6) as we did in the proof of Theorem 3.3 (see pp. 6-9). In fact, the expansions

are simpler here since we are proving the second order of convergence only. We have (cf.

(3.12)-(3.14)):

Eu(t+ h;Xt;x(t+ h)) = u(t; x) + hLu(t; x) +
h2

2
L2u(t; x)(5.9)

+

Z t+h

t

(t+ h� �)2

2
EL3u(�;Xt;x(�)) d� ;

Ef1=2u(t+ h;Xt;x(t+ h)) = f(t; x)u(t; x) +
h

2
L (fu) (t; x)(5.10)

+

Z t+h=2

t

(t+ h=2� �)EL2 (fu) (�;Xt;x(�))d� +
h

2
f(t; x)Lu(t; x)

+
h

2

Z t+h=2

t

EL (fLu) (�;Xt;x(�))d� + Ef1=2

Z t+h

t+h=2

(t+ h� �)L2u(�;Xt;x(�)) d� ;

Ef 21=2u(t+ h;Xt;x(t + h)) = f 2(t; x)u(t; x) +

Z t+h=2

t

EL
�
f 2u
�
(�;Xt;x(�))d�(5.11)

+Ef 21=2

Z t+h

t+h=2

Lu(�;Xt;x(�)) d� :

Substituting (5.7), (5.9)-(5.11) in (5.6) and taking into account that u(t; x) is a solution

of (3.4), we arrive at

r(t; x) = �
Z t+h

t

(t+ h� �)2

2
EL2(fu)(�;Xt;x(�)) d�(5.12)

+ h

Z t+h=2

t

(t+ h=2� �)EL2 (fu) (�;Xt;x(�))d�

+ hEf1=2

Z t+h

t+h=2

(t+ h� �)L2u(�;Xt;x(�)) d�

+
h2

2
Ef 21=2

Z t+h

t+h=2

Lu(�;Xt;x(�)) d� + Eu(t+ h;Xt;x(t + h)) � :

Then, using Lemmas 3.1 and 3.3 (cf. the proof of Theorem 3.3), we obtain that the

one-step error of the method (5.1)-(5.2) can be written in the form

(5.13) r(t; x) = h3S(t; x) + E~�(t; x; h) ;
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where S(t; x) is a linear combination of the functions  �2(t; x); coeÆcients in this linear

combination are independent of t; x; and h; ~�(t; x; h) is such that

�
E [~�(t; X0;a(t); h)]

2n
�1=2n � Ch3p

T � t� h

with a constant C independent of t and h:We see that S(t; x) in (5.13) and, consequently,
the one-step error r(t; x); has singularity of order one.

Further, using arguments similar to those in the proofs of Lemmas 4.1 and 4.2 (in fact, due

to the lower order of convergence and lower order of singularity, much simpler calculations

are needed here), we obtain (5.4). �

If we formally apply the deterministic Gauss method of order 4 (see, e.g., [6, p. 71]) to

(2.3), assuming that X(t) is a known function, we obtain

X(h) = a+ h
b� a

T
+
p
h

r
T � h

T
� ;(5.14)

X((1� )h) = X(h) + (1� 2)h
b�X(h)

T � h
+
p
(1� 2)h

s
T � (1� )h

T � h
�1� ;

X(tk + h) = X(tk�1 + (1� )h) + 2h
b�X(tk�1 + (1� )h)

T � tk + h

+
p
2h

s
T � tk � h

T � tk + h
�k+ ;

X(tk + (1� )h) = X(tk + h) + (1� 2)h
b�X(tk + h)

T � tk � h

+
p
(1� 2)h

s
T � tk+1 + h

T � tk � h
�k+1� ; k = 1; : : : ; N � 1 ;

Y0 = 1 ;(5.15)

k1 = f(tk + h;X(tk + h))

"
Yk +

h

4
k1 +

 
1

4
�
p
3

6

!
hk2

#
;

k2 = f(tk + (1� )h;X(tk + (1� )h))

"
Yk +

 
1

4
+

p
3

6

!
hk1 +

h

4
k2

#
;

Yk+1 = Yk +
h

2
(k1 + k2) ; k = 0; : : : ; N � 1 ;

where  =
1

2
�
p
3

6
and �k+; �k+1�; k = 0; : : : ; N � 1; are d-dimensional random

vectors which components are mutually independent random variables with standard

normal distribution N (0; 1):
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Resolving (5.15) with respect to k1 and k2, we get

(5.16) Yk+1 = Yk

1 +
h

4
(f1 + f2) +

h2

12
f1f2

1� h

4
(f1 + f2) +

h2

12
f1f2

;

where f1 := f(tk + h;X(tk + h)) and f2 := f(tk + (1� )h;X(tk + (1� )h)) :

The denominator in (5.16) does not vanish for all suÆciently small h for functions f(t; x)
being bounded from above. And if f(t; x) � 0; then �1 � Yk � 1 for all k:

The intuition built on the previous analysis of the methods (2.9)-(2.10) and (5.1)-(5.2)

tells us that the method (5.14)-(5.15) should be of order 4: But this assertion turned out

to be wrong, the method is of order 2 only just as the method (5.1)-(5.2). Analogously

to Theorems 2.1 and 5.1, we prove the convergence theorem.

Theorem 5.2. The method (5:14)-(5:15) applied to evaluation of the Wiener integral

(2:4) is of second order of accuracy, i.e.,

(5.17) jJ � EYN j = jEY (T )� EYN j � Kh2;

where the constant K is independent of h:

Although the methods (5.1)-(5.2) and (5.14)-(5.15) are of the same order of convergence,

in our numerical tests (see Section 7) the method (5.14)-(5.15) gives more accurate results.

Apparently, this is due to the fact that the constant K in (5.17) is, in general, less than

its counterpart in (5.4).

6. Variance reduction

To evaluate E �Y (T ) in practice, we need to apply the Monte Carlo technique. As a result,

in addition to the error of numerical integration considered in the previous sections, there

is also the Monte Carlo error:

(6.1) E �Y (T ) =
1

M

MX
m=1

�Y (m)(T )�Rmc;

where M is the number of independent realizations �Y (m)(T ) of �Y (T ): The Monte Carlo

error Rmc is estimated as

(6.2) Rmc =
cp
M

q
V ar �Y (T )

:
=

cp
M

p
V ar Y (T )

with, for example, the �ducial probability 0:997 for c = 3 and 0:95 for c = 2:

Thus, if the variance V ar Y (T ) is big, a large number of trajectoriesM has to be simulated

in order to reach a satisfactory accuracy. To reduce the Monte Carlo error, a variance

reduction technique can be used. The basic idea of variance reduction techniques (see

[5, 10, 12, 11]) is to substitute Y (T ) by another random variable which has the same

expectation as Y (T ) but a smaller variance. Two variance reduction methods are known:

the method of important sampling [5, 10, 11] and the method of control variates [12, 11].

27



A combining method is given in [11]. The method of important sampling is based on

Girsanov's transformation. In our case its application changes the linear system (2.1) for

X to a system with, in general, a nonlinear drift. As a result, we lose the advantage of

simulating X(t) exactly and of approximating the conditional Wiener integral by higher-

order numerical integrators from Sections 2 and 5. This shortcoming does not arise in

the case of the method of control variates. That is why, we restrict ourselves here to this

method only.

In connection with the evaluation of the Wiener integral (1.1)-(1.2) consider the following

system of Ito SDEs (cf. (2.1)-(2.3)):

dX =
b�X

T � t
dt+ dw(t); X(s) = x;(6.3)

dY = f(t; X(t))Y dt; Y (s) = y;(6.4)

dZ = G>(t; X)Y dw(t); Z(s) = z :(6.5)

Here Z is scalar and G(t; x) is a column-vector of dimension d with good analytical

properties, the other notation is the same as before.

It is clear that

u(s; x) = EYs;x;1(T ) = E [Ys;x;1(T ) + Zs;x;1;0(T )] :

As it is known [11]

(6.6) V ar [Ys;x;1(T ) + Zs;x;1;0(T )] = E

Z T

s

Y 2
s;x;1(t)

dX
i=1

�
@u

@xi
+Gi

�2

dt ;

where u(t; x) is the solution of (3.4). Then by choosing G(t; x) as

(6.7) Gi = � @u

@xi
; j = 1; : : : ; d ;

we obtain that the variance of Ys;x;1(T ) + Zs;x;1;0(T ) is equal to zero.

Applying a numerical method to (6.3)-(6.5), we get the approximate �Ys;x;1(T ) and �Zs;x;1;0(T ):

The variance V ar
�
�Ys;x;1(T ) + �Zs;x;1;0(T )

�
is close to V ar [Ys;x;1(T ) + Zs;x;1;0(T )] ; i.e., it is

small in the case of G from (6.7), and, consequently, less number of independent realiza-

tions M is needed to have a satisfactory accuracy.

Of course, in practice the solution u(t; x) is not known. However, an approximate solution

~u to the problem (3.4) can be known. In this case we can take G(t; x) in the form of (6.7)

with ~u instead of u and we may expect a variance reduction. This is demonstrated in

numerical examples (see the next section).

7. Numerical tests

1. We take f(t; x) in the form

(7.1) f(t; x) = (A(t) x; x) + (a1(t); x) + a0(t) ;
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where A(t) is a d � d symmetric matrix, a1(t) is a d-dimensional vector, and a0(t) is a
scalar function.

Let u(t; x) be the solution of (3.4) with f from (7.1). Introduce the function P (t; x) :

(7.2) u(t; x) = exp(P (t; x)) :

This function satis�es the problem

LP + (A(t) x; x) + (a1(t); x) + a0(t) +
1

2

dX
i=1

�
@P

@xi

�2

= 0 ; x 2 Rd; t < T;(7.3)

P (T; x) = 0 :

We look for a solution of (7.3) in the form

(7.4) P (t; x) =
1

2
(P (t)x; x) + (p(t); x) + q(t) ;

where P (t) is a d�d symmetric matrix, p(t) is a d-dimensional vector, and q(t) is a scalar
function.

Substituting (7.4) in (7.3) and collecting terms (� x; x); (� ; x) and terms independent of x

separately, we arrive at the system for P (t); p(t); and q(t) :

P 0(t)� 2

T � t
P + 2A(t) + P 2(t) = 0 ; P (T ) = 0 ;(7.5)

p0(t)� 1

T � t
p +

1

T � t
P (t)b+ P (t)p+ a1(t) = 0; p(T ) = 0 ;(7.6)

q0(t) +
1

T � t
(p(t); b) +

1

2
tr P (t) +

1

2
(p(t); p(t)) + a0(t) = 0; q(T ) = 0 :(7.7)

Note that if a1(t) � 0 and b = 0; then p(t) � 0: And if in addition a0(t) � 0; then

q(t) =
1

2

Z T

t

trP (s) ds :

The solution of (7.5) can be expanded in (positive) powers of T � t: If A(t) is a constant

matrix A; then this formal expansion starts with the terms:

P (t) =
2

3
A � (T � t) +

4

45
A2 � (T � t)

3
+ � � � :

For test purposes, it is convenient to have an exact solution of (7.5)-(7.7) in a closed

analytical form. To this end, we choose a variable matrix A(t) such that

(7.8) A(t) = A� 2

9
A2 � (T � t)2;

where A is a constant symmetric matrix. Then the exact solution of the system (7.5)-(7.7)

with b = 0; a0(t) � 0; and a1(t) � 0 has the form

(7.9) P (t) =
2

3
(T � t)A; p(t) = 0; q(t) =

(T � t)2

6
trA :
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Table 1. The results of simulaton of the conditional Wiener integral (1.1)-

(1.2) for f from (7.1) with a0 = 0, a1 = 0, A(t) from (7.8), (7.11) and for

a = b = 0, T = 1 by the explicit Runge-Kutta method (2.9)-(2.10) and the

implicit Runge-Kutta methods (5.1), (5.3) and (5.14), (5.16). The exact

soultion is 1.

h M (2.9)-(2.10) (5.1), (5.3) (5.14), (5.16)

0:2 106 0:9994� 0:0013 1:0176� 0:0044 1:0040� 0:0013

0:1 108 1:00002� 0:00013 1:00361� 0:00015 1:00093� 0:00013

0:05 108 0:99996� 0:00013 1:00089� 0:00013 1:00019� 0:00013

Consequently, the solution of (7.4) is

(7.10) P (t; x) =
T � t

3
(Ax; x) +

(T � t)2

6
trA :

Then the conditional Wiener integral (1.1){(1.2) for f from (7.1) with a0 = 0; a1 = 0;
A(t) from (7.8) and for a = b = 0 is equal to

J = u(0; 0) = exp

�
T 2

6
trA

�
:

In our experiments we take the dimension d = 4 and the following matrix A :

(7.11) A =

2
664

�1 �0:5 0 0

�0:5 2 �0:5 0

0 �0:5 �2 �0:5
0 0 �0:5 1

3
775 ;

for which trA = 0:

In Table 1 we give results of simulation of the conditional Wiener integral (1.1)-(1.2) for

f from (7.1) with a0 = 0; a1 = 0; A(t) from (7.8), (7.11) and for a = b = 0; T = 1 by the

explicit Runge-Kutta method (2.9)-(2.10) and the implicit Runge-Kutta methods (5.1),

(5.3) and (5.14), (5.16). As it was mentioned in Section 6, we have two types of errors in

numerical simulations here: the error of a method used and the Monte Carlo error. The

results in the table are approximations of E �Y (1) calculated as in (6.1)-(6.2) with c = 2:
Note that the \� \ reects the Monte Carlo error only and it does not reect the error of

a method. The results obtained are in agreement with the proved convergence theorems

(see also Table 2). Recall that the implicit methods (5.1)-(5.2) and (5.14)-(5.15) are both

of order two. In our tests the method (5.14)-(5.15) performs better. Apparently, this is

due to the fact that the constant K in (5.17) is, in general, less than its counterpart in

(5.4).

2. To reduce the Monte Carlo error in simulation of the above test problem, we can use

the variance reduction technique from Section 6. For f from (7.1) with a0 = 0; a1 = 0;
A(t) from (7.8), (7.11) and for b = 0; the solution u(t; x) of (3.4) has the form (7.2),
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Table 2. The results of simulaton of the conditional Wiener integral (1.1)-

(1.2) for f from (7.1) with a0 = 0, a1 = 0, A(t) from (7.8), (7.11) and for

a = b = 0, T = 1 by the explicit Runge-Kutta method (2.9)-(2.10) and

the implicit Runge-Kutta methods (5.1), (5.3) and (5.14), (5.16) using the

variance reduction technique. The exact soultion is 1.

h M (2.9)-(2.10) (5.1), (5.3) (5.14), (5.16)

0:1 107 0:99977� 0:00024 1:00396� 0:00050 1:00103� 0:00023

0:05 107 0:99992� 0:00017 1:00098� 0:00017 1:00023� 0:00016

0:05 108 0:99999� 0:00005 1:00088� 0:00005 1:00027� 0:00005

0:01 107 1:00003� 0:00007 1:00001� 0:00007 1:00003� 0:00007

(7.10). Therefore, in this case the vector function G de�ned in (6.7) is equal to

(7.12) Gi(t; x) = �2

3
(T � t) exp(P (t; x))

dX
j=1

Aijxj ; i = 1; : : : ; d;

where P (t; x) is from (7.10) and A is from (7.11).

Applying the Euler method to the equation (6.5), we get

Z0 = 0;(7.13)

Zk+1 = Zk +G>(tk; X)Yk�wk; k = 1; : : : ; N � 1:

If we approximate (6.3)-(6.4) using the explicit fourth-order Runge-Kutta method (2.9)-

(2.10), then Yk in (7.13) is from (2.10) and the Wiener increment is

�wk := w(tk+1)� w(tk) =
h1=2p
2

�
�k+1=2 + �k+1

�
;

where �k+1=2 and �k+1 are the same as in (2.9)-(2.10).

It is clear that EZk+1 = 0: This implies that the method (2.9)-(2.10), (7.13) applying

to (6.3)-(6.5) to approximate the Wiener integral J = EY (T ) is of order four, i.e., the
above realization of the variance reduction technique does not a�ect the accuracy of

the numerical method. The variance V ar Y (T ) is approximated with accuracy O(h):
Consequently, for a �xed number of realizations M the Monte Carlo error in simulations

using the variance reduction technique is � 1=
p
h times less than in simulations without

variance reduction. In other words, in the case of variance reduction the Monte Carlo

error is proportional to
p
h=
p
M: This is illustrated in Table 2. In particular, we see

for h = 0:05 that to produce results of the same quality we need M = 108 independent

trajectories without variance reduction and M = 107 independent realizations in the

variance reduction case (compare Tables 1 and 2).

Remark 7.1. Recall that the implicit methods (5:1), (5:3) and (5:14), (5:16) do not

contain simulation of X(tk+1); and the random variables involved in these methods are

not enough to evaluate the Wiener increments �wk on the intervals [tk; tk+1]: At the same

time, these Wiener increments are needed to realize (7:13). Thus, to use the variance

reduction technique in connection with the implicit methods (5:1), (5:3) and (5:14), (5:16);
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we introduce additional random variables and simulation of X(tk+1) in the corresponding

algorithms (see (5:5) in the case of the method (5:1); (5:3)).

3. Now we illustrate the assertion made at the end of Section 6. To this end we take

the function f(t; x) in the form (7.1) with the constant matrix A(t) � A from (7.11) and

a0 = 0; a1 = 0:We also put b = 0: In this case we do not know the exact solution u(t; x) of
(3.4). But for the variance reduction we can use an approximation ~u(t; x) of the solution
based on the formal expansion (7.9):

(7.14) ~u(t; x) = exp

�
1

2

�
~P (t)x; x

��
;

where

~P (t) =
2

3
A � (T � t) :

Deriving (7.14), we take into account that tr ~P (t) = 0 because of the speci�c choice of the

matrix A which is from (7.11).

Then we take the function G in (7.13) of the form

Gi(t; x) = � @~u

@xi
; j = 1; : : : ; d :

Putting a = 0 and T = 1; we evaluate the corresponding conditional Wiener integral

(1.1)-(1.2) by the fourth-order explicit Runge-Kutta method (2.9)-(2.10) with time step

h = 0:01 and we simulateM = 105 independent realizations. Without variance reduction,

we get: J :
= 1:1536� 0:0093; while applying the variance reduction technique (i.e., using

the method (2.9)-(2.10), (7.13) for (6.3)-(6.5)) we obtain J :
= 1:1482 � 0:0018: We see

that the Monte Carlo error is 5 times less when we use the variance reduction technique.
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