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Abstract

This article proposes a new method of analysis of a partially linear model whose nonlinear

component is completely unknown. The target of analysis is identi�cation of the set of

regressors which enter in a nonlinear way in the model function, and the complete estimation

of the model including slope coe�cients of the linear component and the link function of

the nonlinear component. The procedure also allows for selecting the signi�cant regression

variables. As a by-product, we develop a test of linear hypothesis against a partially linear

alternative, or, more generally, a test that the nonlinear component is M -dimensional for

M = 0; 1; 2; : : : .

The approach proposed in this article is fully adaptive to the unknown model structure

and applies under mild conditions on the model. The only important assumption is that the

dimensionality of nonlinear component is relatively small. The theoretical results indicate

that the procedure provides a prescribed level of the identi�cation error and estimates the

linear component with the accuracy of order n�1=2 . A numerical study demonstrates a very

good performance of the method even for small or moderate sample sizes.

1 Introduction

We consider the model

y = f(x) + "; f(x) = �
>
x1 + G(x2); (1.1)

where x
>

= (x
>
1 ;x

>
2 ) , dim(x2) = M , dim(x1) = d � M , and M � d . Function

G(�) , vector of coe�cients � , and the distribution of the noise " are unknown. And most

importantly, we do not know with respect to which d1 = d�M variables x1 the model

is linear.

The model (1.1) naturally generalizes the linear model and are called a partially linear

model. Such models can be used in analysis of high dimensional data when the assumption

of linearity is too restrictive. They can also be used as a natural alternative to a linear

model in the problem of testing the linearity assumption. A general case with a high

dimensional nonlinear component makes the analysis complicated because of the �curse of

dimensionality� problem. In this paper we consider the situation in which the nonlinear

component is low dimensional, that is, M is relatively small.
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Hristache, Juditsky and Spokoiny (2001) and Hristache, Juditsky, Polzehl and Spokoiny

(2001) (referred to as HJS and HJPS, respectively, in the rest of the paper) proposed a

new method of exploring a high-dimensional regression model with the help of a general

structural adaptation approach. The aim of the present article is to apply this approach to

the estimation and inference in the partially linear model (1.1). The analysis includes, in

particular, estimation of the degree of nonlinearity M , identifying with respect to which

d�M variables x1 the model is linear or equivalently which M variables enter in f in

a nonlinear fashion, estimation of the vector � and of the nonlinear link function G .

It is important to note that the approach proposed here provides also a new method of

selecting signi�cant variables in nonparametric regression in case when the dimensionality

of the nonlinear component is relatively small. More speci�cally, after selecting M (sig-

ni�cant) nonlinear variables, one can further select variables among the linear ones using

standard methods of linear regression analysis or by testing signi�cance of linear variable

slopes as suggested in Section 4.3 below.

As a by-product of our analysis, we develop a test of the hypothesis of linearity against a

partially linear alternative, and, more generally, a test of the hypothesis that the dimen-

sionality of the nonlinear component does not exceed the prescribed value M .

Following the work of Engle, Granger, Rice and Weiss (1986), much attention has been

directed to estimating model (1.1). See, for example, Heckman (1986), Rice (1986), Chen

(1988), Robinson (1988), Speckman (1988), Gao (1995), Schick (1996a,b), Bhattacharya

and Zhao (1997), Mammen and Van der Geer (1997), Hamilton and Truong (1997), Eu-

bank, Kambour, Kim, Klipple, Reese and Schimek (1998), Schimek (2000), Golubev and

Härdle (2000, 2001). Further references and applications of partially linear models could

be found in the recent book by Härdle, Liang, and Gao (2000). This literature addressed

the problem of estimation of the parametric and nonparametric components of the model

(1.1) under the assumption that the �nonlinear� variables x2 are speci�ed and, in fact,

most papers assume that M = 1 . Various estimators have been proposed which achieve

root-n rate or are semiparametrically e�cient for estimating the parametric component �

as well as those which achieve the usual nonparametric rates for estimating G(x2).

To our knowledge, the only paper which addressed the problem of selecting which variables

x2 enter nonlinearly in the model (1.1) was Chen and Chen (1991). That paper proposed

a model-selection-type rule and showed that the probability of the correct identi�cation by

this method goes to one as the sample size goes to in�nity. Härdle and Korostelev (1996)

showed for the similar problem of selecting the signi�cant variables in an additive model

that the error of classi�cation can be made exponentially small. In this paper we consider
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another setup which seems to be more appealing for practical applications. Namely, we

develop a nonlinear component identi�cation method which guarantees a prescribed level

of model misspeci�cation uniformly over the class of models whose nonlinear component

is separated away from the linear one by the squared distance of order n�1 logn or larger.

Our results are essentially nonasymptotic and apply for a small or moderate sample size.

Härdle, Spokoiny and Sperlich (2001) considered a similar problem of identifying the linear

component for an additive model, using a wavelet (Haar) expansion of every additive

component. The advantage of the structure adaptive procedure proposed here is that the

additive structure is not required and is not used in the method.

There also exists a large literature on testing a parametric, in particular linear, regres-

sion model against nonparametric alternative. See, for example, Eubank and Spiegelman

(1990), Eubank and Hart (1992), Ledwina (1994), Härdle and Mammen (1993), Fan (1996),

Hart (1997), Stute (1997), Horowitz and Spokoiny (2001) and references therein. Our test-

ing results are stated in the spirit of Spokoiny (2001) focusing on the minimal separation

distance between the null and the alternative providing test consistency.

The paper is organized as follows. Section 2 contains the description of the structure adap-

tive estimation algorithm. Accuracy of estimation by the proposed method is described

in Section 3. Further problems of identi�cation of the nonlinear component and of esti-

mation of slope coe�cients of the linear component are discussed in Section 4. Section 5

presents results of a simulation study and an application to real data. Conclusion and

some extensions of the method are presented in Section 6. The proofs are collected in the

Appendix.

2 Structure adaptive procedure

This section explains the adaptive estimation procedure starting with a short heuristic

discussion.

2.1 Preliminaries

The idea of structural adaptation from HJPS can be summarized as follows.

(i) knowing the structural information helps better estimate the model function;

(ii) a good pilot estimator of the model function helps recover some structural information

about the model.
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These two observations lead to the following iterative procedure: we start with a purely

nonparametric estimator of the model function; then the above two steps (estimation of

the model and estimation of the structure) are iterated several times increasing the amount

of structural information and improving the quality of model estimation during iteration.

HJPS considered the problem of estimation for a multi-index model in which the regression

function is of the form f(x) = g(�
>
1 x; : : :�

>
Mx) , where �1; : : : ; �M are unknown index

vectors in IR
d . The partially linear model (1.1) can be regarded as a special case of the

multi-index model with M + 1 indices. Indeed, f(x) depends on x only through �
>
x1

and the coordinate vectors corresponding to the nonlinear component. So, one can formally

apply the procedure from HJPS in the considered case. However, the special structure of

the model (1.1) allows to considerably simplify the procedure and further analysis that

justi�es a separate treatment of the partially linear models.

Here the structure of the model (1.1) is described by the set J of indices corresponding to

the nonlinear component x2 . An alternative description can be done by using the average

gradient idea. Namely, if the function f(x) is linear with respect to the m th coordinate

function xm , then the partial derivative @f=@xm is a constant, and therefore, the variance

Vm of the m th partial derivative can be used to measure the degree of nonlinearity of the

m th coordinate. Suppose that some information about the set J or, equivalently, about

the values Vm is available. Now we explain how this information can be used for improving

the quality of estimation of the model function f . A local linear estimator of the function

f and its gradient rf at a point Xi is given by

 bf(Xi)crf (Xi)

!
=

8<:
nX
j=1

�
1

Xij

��
1

Xij

�>
K

� jXijj2

b2

�9=;
�1

nX
j=1

Yj

�
1

Xij

�
K

� jXij j2

b2

�

where Xij = Xj�Xi , b is a bandwidth and K(�) is a univariate kernel K on the positive

semiaxis. supported on [0; 1] . The bandwidth b should be selected in a way that the ball

with the radius b and the center the point of estimation Xi contains at least d+1 design

points which for large value of d leads to a the bandwidth b of order one and to a huge

estimation bias. This phenomenon is called the �curse of dimensionality�. Observe now

that the function f has anisotropic smoothness properties: smoothness of G in direction

of the nonlinear component, and in�nite smoothness (corresponding to a linear function)

in other directions. This suggests to apply an anisotropic bandwidth for estimating the

model function and its gradient. So, the `ideal' estimator which utilizes the knowledge of

the set J can be de�ned by using the di�erent bandwidths for di�erent components of

the vector x . Let b = diag(b1; : : : ; bd) be a diagonal matrix with the diagonal entries

4



b1; : : : ; bd . De�ne the local linear estimator with the anisotropic bandwidth b by

 bf(Xi)crf(Xi)

!
=

8<:
nX
j=1

�
1

Xij

��
1

Xij

�>
Kd(Xij; b)

9=;
�1

nX
j=1

Yj

�
1

Xij

�
Kd(Xij ; b) ; (2.1)

where Kd(x; b) = K(jb�1xj2) . Knowing that the value Vm is signi�cantly positive (that

is, m is presumably in J ) leads to the choice of smaller bandwidth values bm for such

m and possibly larger bandwidths for the other regressors. This would help to avoid the

�curse of dimensionality� problem if the dimension M of the nonlinear component is not

too large, cf. Carroll, Fan, Gijbels and Wand (1997) or HJPS.

Next we explain how the structural information can be extracted from the pilot estimator

(2.1) of the model function. De�ne for every coordinate xm of x 2 IRd a set of functions

 1m; : : : ;  Lm satisfying the conditions:

nX
i=1

 lm(Xi;m) = 0; n
�1

nX
i=1

 lm(Xi;m) l0m(Xi;m) = Æll0 :

In other words, f lm; l = 1; : : : ; Lg is a orthonormal set of functions with respect to the

design of m th coordinate. Each of  lm is also orthogonal to the constant function. The

latter property implies that if f is linear with respect to xm , then

�
�
lm = n

�1
nX
i=1

rfm(Xi) lm(Xi;m) � 0 (2.2)

for every l = 1; : : : ; L , where rfm(x) = @f=@xm(x) . Thus, the sum

v
�
m =

LX
l=1

(�
�
lm)

2

can be used as the measure of nonlinearity of f with respect to xm . Having estimated

the gradient of f for all Xi , we can also estimate the coe�cients �lm with

b�lm = n
�1

nX
i=1

crfm(Xi) lm(Xi;m) (2.3)

and use the sum bvm = b�21m+ : : :+ b�2Lm as the estimated degree of nonlinearity of f with

respect to the m th regression variable.

Next, the quantities bvm can be used to de�ne new anisotropic bandwidth b taking smaller

bandwidths for the regressors with large bvm .

Remark 2.1. Similarly to HJPS, we use here the estimation method based on the Fourier

expansion of the gradient rf(x) . Alternatively, one can estimate Vm directly using the
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average of jrfm(Xi)j2 . However, a detailed calculation (not given in the paper) shows that

the procedure based on such a direct estimation of the quadratic functionals Vm leads to

worse estimation results. At the same time, the loss of information from replacing Vm

with v
�
m as a measure of nonlinearity is not signi�cant if L is chosen su�ciently large, see

more on the choice of L in Section 6.

2.2 Iterative procedure

We now present the description of the method. The procedure involves input parameters

h1; ah , �1; �min; a� and � . The parameter of ellipticity � decreases geometrically from

�1 to �min by the factor a� < 1 while the bandwidth h increases geometrically from h1

by the factor ah > 1 during iterations. The value � can be interpreted as the �memory

parameter� of the procedure. The choice of these parameters, as well as of the set of basis

functions f lmg will be discussed in Section 2.3. The algorithm reads as follows:

1. Select h1 . Set bv(0)1 = : : := bv(0)d = 0 , and k = 1 . Compute for i = 1; : : : ; n

bV (0)
i =

nX
j=1

�
1

Xij

��
1

Xij

�>
; bS(0)

i =

nX
j=1

�
1

Xij

�
Yj ;

where Xij = Xj �Xi .

2. Compute

b
(k)
m = hk

�
1 + �

�2
k bv(k�1)m

��1=2
; m = 1; : : : ; d: (2.4)

De�ne b(k) = diag(b
(k)
1 ; : : : ; b

(k)
d ) .

3. For every Xi compute

V
(k)
i = �V

(k�1)
i + (1� �)

nX
j=1

�
1

Xij

��
1

Xij

�>
Kd

�
Xij ; b

(k)
�
; (2.5)

S
(k)
i = �S

(k�1)
i + (1� �)

nX
j=1

�
1

Xij

�
Yj Kd

�
Xij ; b

(k)
�
; (2.6)

and 0@ bf (k)(Xi)crf (k)(Xi)

1A =

�
V
(k)
i

��1
S
(k)
i : (2.7)

Compute b"(k)i = Yi � bf (k)(Xi) .

4. Compute for m = 1; : : : ; d and l = 1; : : : ; L

b�(k)lm = n
�1

nX
i=1

crf (k)m (Xi) lm(Xi;m); bv(k)m =

LX
l=1

���b�(k)lm

���2 : (2.8)
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If bv(k)m > 1 , then set bv(k)m = 1 .

5. Increase k by 1. Set �k+1 = a��k , hk+1 = ahhk . If �k+1 � �min , then set k = k + 1

and continue with Step 2; otherwise terminate.

Denote by kn the number of iterations and by b�lm = b�(kn)lm (resp. bvm = bv(kn)m ) the last

step estimators of ��m (resp. v
�
m ). Similarly, bf(Xi) denotes the last step estimator of

f(Xi) and b"i = b"(kn)i = Yi � bf(Xi) .

Remark 2.2. At every step k of the algorithm the bandwidth b
(k)
m for the m th regressor

is selected between hk and hk�k depending on the value bv(k�1)m . For the linear component,

the values bv(k�1)m should be small leading to a bandwidth about hk , while for the nonlinear

regressors with a large value v
�
m , the estimator bv(k�1)m will be also large leading to a

bandwidth about hk�k . During iteration the parameter h grows to h�nal � 1 while hk�k

decreases to �min leading to the adaptive anisotropic bandwidth at the last step.

Remark 2.3. We cut bv(k)m at one at step 4 in order to avoid too strong shrinkage in

direction of m th regressor which may occur for too large values of bv(k)m .

2.3 Choice of parameters

It is obvious that the quality of estimation by the proposed method strongly depends on

the rule for changing the parameters h and � , and, in particular, on their values at the

initial and �nal iteration. Some related discussion about this choice can be found in HJPS.

The general idea is to ensure that the parameter h grows to one and h� decreases under

the constraint that at every iteration k there exist enough design points in every or almost

every local ellipsoidal neighborhoods E(k)
(Xi) =

�
x :

���
b
(k)
��1

(x�Xi)

��2 � 1

	
.

Assuming that every b
(k)
m is close to the `ideal bandwidth' b

�(k)
m = hk(1 + �

�2
k v

�
m)

�1=2

we observe, that neighborhood E
(k)

(Xi) is stretched at each iteration step by factor ah

in all directions and is shrunk by a factor about a� in directions of the M -dimensional

nonlinear component J where ah and a� are parameters of the procedure. Therefore,

the Lebesgue measure of every such neighborhood is changed each time by a factor about

a
d
ha

M
� . This leads to the constraint a

d
ha

M
� � 1 , cf. Assumption 3 in Section 3 below.

Under the assumption of a random design with a positive density, this would result in an

increase of the mean number of design points inside each E
(k)

(Xi) . Our theoretical results

will be stated for the choice h1 � n
�1=maxf4;dg , hmax � 1 , �1 = 1 , �min �

�
n
�1

logn
�1=3

,

see Section 3 for more details. Similarly to HJPS, such a choice under the constraint

a
d
ha

M
� > 1 is possible only for M � 3 .

We recommend to de�ne for every m = 1; : : : ; d the set of functions  lm , l = 1; : : : ; L
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by orthogonalizing the set of polynomials xm; x
2
m; : : :x

L
m with respect to the design of the

m th regressor under the constraint
Pn

i=1  lm(Xi;m) = 0 . A model or variable dependent

choice of the basis f lmg is possible as well. The �memory parameter� � used in (2.5)

and (2.6) can be taken between 0:1 and 0:5 . The number L can be taken between 5 and

10, see Section 6 for more discussion.

Remark 2.4. Similarly to HJS and HJPS we apply in our numerical study a slightly

modi�ed procedure. The only di�erence is in the de�nition of the estimated vectors b�lm .

Namely we de�ne

b�(k)lm =

 
nX
i=1

w
(k)
i

!�1 nX
i=1

w
(k)
i
crf (k)m (Xi) lm(Xi;m);

where w
(k)
i is square root of the smallest eigenvalue of the matrix V

(k)
i , that is, w

(k)
i =

�
1=2
min(V

(k)
i ) . In addition, the basis functions  lm should be modi�ed as each step to satisfy

the condition
Pn

i=1 w
(k)
i  lm(Xi) = 0 .

2.4 Estimation of the noise variance

The variance �2 of the noise " does not enter in the description of the method. However, it

will be used for de�ning the stopping rule of the algorithm and the resampling procedure in

Section 4. Here we brie�y discuss how this variance can be estimated under the assumption

of the noise homogeneity at every step of the algorithm.

A natural variance estimator can be de�ned on the base of residuals squared after each

the step k :
��e�(k)��2 = n

�1Pn
i=1

��b"(k)i

��2 . This simple crude estimator can be re�ned, see

e.g. Gasser, Sroka and Jennen-Steinmetz (1986) or Spokoiny (2002) and reference therein.

Namely, the residuals b"(k)i can obviously be represented in the form b"(k)i =
Pn

j=1 c
(k)
ij Yj

where c
(k)
ij are known coe�cients. These coe�cients are random and dependent on the

Yi 's through the random bandwidths bb(k)m . However, our theoretical results indicate that

one can ignore this dependence and proceed as if the coe�cients c
(k)
ij were deterministic

and correspond to the �ideal� bandwidths b
�(k)
m .

Next, if the function f is su�ciently smooth, then the distribution of the residuals b"i
only weakly depends on this function f and can be e�ectively evaluated for f � 0 . In

the last case, E
��b"(k)i

��2 = �
2
Pn

j=1

��c(k)ij

��2 that leads to the estimator

��b�(k)��2 = 1

n

nX
i=1

0@ nX
j=1

��c(k)ij

��21A�1 ��b"(k)i

��2: (2.9)

The properties of this estimator are brie�y discussed in Section 3.4 below.
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3 Accuracy of estimation

In this section we present the results about the accuracy of estimation of the functionals

�
�
lm and v

�
m by the proposed iterative procedure.

3.1 Assumptions

As in HJPS, it is useful to proceed with the renormalized link function. In what follows

we consider the model

f(x) = x
>
1 � + g(R�

x2) (3.1)

where R� is the diagonal M �M matrix with diagonal entries
p
v�m , m 2 J and g is

a nonlinear link function.

Our main results will be stated under the following assumptions.

Assumption 1. (Kernel) The kernel K(�) is continuously di�erentiable decreasing

function on IR+ with K(0) = 1 and K(x) = 0 for all jxj � 1 .

Assumption 2. (Errors) The random variables "i in (1.1) are independent and normally

distributed with zero mean and variance �2 .

Assumption 3. (Range of parameters hk , �k ) The parameters of the procedure ful�ll

�1 = 1 , �min = (�
2
n
�1
L logn)

1=3 , h1 = C0n
� 1

4_d with a constant C0 � 1 , hmax � 1 and

a
d
ha

M
� � 1 .

Assumption 4. (Link function) The function g from (3.1) is twice di�erentiable with

a bounded second derivative, so that, for some constant Cg and for all u; v 2 IRM

jg(v)� g(u)� (v � u)rg(u)j � Cg ju� vj2;

Our last assumption concerns the design properties. In what follows we assume that

the design is deterministic. That is, X1; : : : ; Xn are non-random points in IR
d . Note,

however, that the case of a random design can be considered as well, supposing X1; : : : ; Xn

independent and identically distributed random points in IR
d with a design density p(x) .

Then all the results should be understood conditionally on the design.

In order for the procedure to work, we have to suppose that the design points (Xi) are

�well di�usedänd, as a consequence, at k th iteration of the algorithm, all local gradient es-

timators from (2.7) corresponding to the anisotropic bandwidth b(k) = diag(b
(k)
1 ; : : : ; b

(k)

d )

from (2.4) are well de�ned. The latter is equivalent to the condition that all the ma-

trices V
(k)
i from (2.5) are non-singular. We also de�ne for the k th iteration the �ideal
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anisotropic bandwidth� b
�(k) having the diagonal entries b

�(k)
m =

�
1 + �

�2
k v

�
m

��1=2
hk .

The closeness of b(k) to the �ideal bandwidth� b�(k) can be characterized by the values

U
(k)
m =

�
b
(k)
m =b

�(k)
m

�2
=

�
1 + �

�2
k v

�
m

�
=
�
1 + �

�2
k bv(k�1)m

�
, m = 1; : : : ; d . If bv(k�1)m = v

�
m , then

U
(k)
m = 1 . The condition we need means that at the step k of the algorithm, for every

anisotropic bandwidth b = diag(b1; : : : ; bd) close to b�(k) in the above sense, the design

is regular within the elliptic neighborhood with the center at each point Xi and with the

principal semiaxis bm , m = 1; : : : ; d .

De�ne Z
(k)
ij =

�
b
�(k)��1

(Xj � Xi) for i; j = 1; : : : ; n . These vectors describe locations

of the design points in the coordinate system shifted by Xi and rescaled by b
�(k) . For a

vector U = (U1; : : : ; Ud)
> 2 IRd with Um � 0 , de�ne DU = diag(U1; : : : ; Ud) . Then, for

b = D
�1=2
U b

�(k) , it holds Kd(Xij ; b) = K
��
Z
(k)
ij

�>
DUZ

(k)
ij

�
. Set

N
(k)
i (U) =

nX
j=1

K

��
Z
(k)
ij

�>
DUZ

(k)
ij

�
; i = 1; : : : ; n;

V(k)
i (U) =

nX
j=1

�
1

Z
(k)
ij

��
1

Z
(k)
ij

�>
K

��
Z
(k)
ij

�>
DUZ

(k)
ij

�
; i = 1; : : : ; n:

In what follows kAk stands for the matrix norm associated with the Euclidean vector

norm: kAk = sup� jA�j=j�j .

Assumption 5. (Design) There exist constants CV , CK , CK0 and some � 2 (0; 1=2) ,

such that for all vectors U 2 IRd satisfying jUm � 1j � � , m = 1; : : : ; d , and for k � kn

the inverse matrices V(k)
i (U)

�1 are well de�ned with

N
(k)
i (U)

V(k)
i (U)

�1
 � CV ; i = 1; : : : ; n;

Moreover, for i; j = 1; : : : ; n ,

nX
i=1

1

N
(k)
i (U)

K

��
Z
(k)
ij

�>
DUZ

(k)
ij

�
� CK ;

nX
i=1

1

N
(k)
i (U)

���K 0��
Z
(k)
ij

�>
DUZ

(k)
ij

���� � CK0 ;

nX
j=1

1

N
(k)
i (U)

���K 0��
Z
(k)
ij

�>
DUZ

(k)
ij

���� � CK0 :

where K0 means the derivative of K.

Remark 3.1. As already mentioned in HJS and HJPS, in the case of random design with

a continuous positive density one can �x some constants CV , CK and CK0 (which depend

on the dimension d and the design distribution) such that the bounds in Assumption 5

hold with probability which converges to 1 exponentially fast as n grows to in�nity.

10



3.2 The �rst step estimator

Our �rst result describes the quality of the estimators b�(1)lm obtained at the �rst step of the

algorithm. These estimators correspond to usual nonparametric local linear estimation of

the function f and its gradient. We also state the result about the accuracy of estimation

of the values v�m at the �rst step.

Let ��m denote an L-vector with the components ��lm, l = 1; : : : ; L .

Proposition 3.1. Let Assumptions 1 through 5 hold. For the �rst-iteration estimator b�(1)m

of the vector �
�
m, m = 1; : : : ; d, it holds:

b�(1)m � ��m = smh1 +
�m

h1

p
n
;

where deterministic L-vectors sm satisfy jsmj � CgC
1=2
V v

�
(1)

with v
�
(1)

= maxm=1;:::;d v
�
m,

and the �m 's are mean zero Gaussian random L-vectors with components �lm such that

Ej�lmj2 � 2�
2
C
2
VCK , l = 1; : : : ; L . Also, it holds

P

�
max

m=1;:::;d

���b�(1)m � ��m
��� > Æ1

�
�

1

n
; (3.2)

where

Æ1 = Cg C
1=2
V v

�
(1) h1 +

p
2L�CVC

1=2
K zn

h1

p
n

; (3.3)

and zn = (1 + 2 log(nd) + 2 log log(nd))
1=2

.

Moreover, for the �rst-iteration estimator bv(1)m , m = 1; : : : ; d , it holds:

P

����bv(1)m � v�m
��� � Æ

2
1 + 2Æ1�m;1; 8m = 1; : : : ; d

�
� 1�

1

n
; (3.4)

where �m;1 =
p
v�m(1 + v

�
m)

�1=2 � minf1;
p
v�mg.

3.3 The quality of the �nal estimators

Now we present the result which indicates how the accuracy of estimation can be improved

by the iterative algorithm. As in HJS and HJPS, the quality of the �nal estimators depends

on the `direction'. This quality is of order n�1=2 for the linear component and is worse

for the nonlinear component. This fact has a very simple explanation: estimation of a

nonlinear component is a harder task than that of a linear one; hence, the worse accuracy.

To express this fact, we introduce the scaling factor P�;m = (1 + �
�2
v
�
m)

�1=2 , where � is

a running parameter of the procedure. Note that P�;m = 1 for all linear regressors which

have v�m = 0 . If v�m is a positive constant, then P�;m � � . We will see that the estimation

11



error b�lm � �
�
lm , after being multiplied by P�;m , can be bounded uniformly over l;m at

every step of the algorithm. This implies, in particular, that the quality of estimation of

the nonlinear component is about P�1� � �
�1 times worse than the quality for the linear

one.

In the next theorem and in Theorem 4.1 below, � (resp. h ) denotes �kn (resp. hkn ) at

the last iteration. Recall that h; � satisfy conditions h � 1 and � =
�
�
2
n
�1
L logn

�1=3
.

Theorem 3.1. Let Assumptions 1 through 5 hold. Then there exist a random set A

with P (A) � 1 � 3kn=n and, for every m = 1; : : : ; d , a Gaussian zero mean random

vector �
�
m = (�

�
1m; : : : ; �

�
Lm)

> 2 IRL
de�ned as a linear combination of the errors "i with

deterministic coe�cients, which depend on the �ideal� bandwidth b
�
= b

�(kn) , the design

X1; : : : ; Xn , basis functions  lm(�), and the kernel K only, and such that

Ej��lmj
2 � 2�

2
C
2
VCK l = 1; : : : ; L; m = 1; : : : ; d;

and on A it holds

max
m=1;:::;d

���P�;m(b�m � ��m)� n
�1=2

�
�
m

��� � C
�
�
2
n
�1
L logn

�2=3
;

max
m=1;:::;d

���P�;m(b�m � ��m)��� � Æn ;

max
m=1;:::;d

jP 2
�;m(bvm � v�m)j � Æ

2
n + 2Æn�m ;

(3.5)

where C = C(d;M;Cg; CV ; CK; CK0;  ) ,  = maxi;l;m j lm(Xi)j ,

Æn =

q
2C2

VCK�
2n�1Lz2n + C

�
�
2
n
�1
L logn

�2=3
(3.6)

and �m = �
p
v�m
�
�
2
+ v

�
m

��1=2 � minf�;
p
v�mg . This implies that on A for every m =2 J ,

with !n = C
�
�
2
n
�1
L logn

�2=3
:

jb�m � n�1=2��mj � !n; jb�mj � Æn ;

���jb�mj2 � n
�1j��mj

2
��� � !

2
n + 2!nÆn : (3.7)

Remark 3.2. The meaning of the random set A appearing in Theorem 3.1 can be un-

derstood as follows. The result of every iteration of the algorithm is random. With some

probability it may happen that the estimation result at some step of the procedure does

not follow the model structure. For instance, with some probability, bvm can be large even

if v�m = 0 . Our results indicate that the overall probability of such events is rather small

and their complement is precisely the set A (of a dominating probability) on which the

procedure `works', that is, the iterative procedure leads to improvement of the quality of

estimation at every iteration. The other results of Theorem 3.1 claim that on the set A ,

the adaptive estimators b�lm behave essentially as the `ideal' estimators b��lm corresponding

to the `ideal' bandwidth b� . Since our further analysis is based on the �nal step estimatorsb�lm , all our results that follow will also be stated conditionally on this set A .

12



Remark 3.3. (Origin of the constraint M � 3 ) It follows from the proof of Theo-

rem 3.1 that the bias of the `ideal' estimators b��lm based on the local linear smoothing with

the `ideal' bandwidth b� = b
�(kn) is of the order (n

�1
logn)

�2=3 only if the dimensionality

M of the nonlinear component does not exceed 3 . For M � 4 , the model dependent bias

of estimation is of order n�1=2 or larger while the stochastic component (which is model

free) is of order n�1=2 . The same applies for the adaptive estimators b�lm . Therefore, the

leading term in the estimation loss is model free only for M � 3 , and the estimators b�lm
do not achieve asymptotic normality at root-n rate for M � 4 .

3.4 Variance estimation

The algorithm delivers an estimator b�2 , see (2.9), of the error variance �2 . This estimator

also utilizes the estimated structural information and improves upon the purely nonpara-

metric variance estimators. Spokoiny (2002) has shown that in a general high dimensional

regression model with d > 8 , a root-n consistent estimation of the variance �2 is impos-

sible. Here the use of the structural assumption allows to relax this condition and to get

a root-n accuracy for any d .

Theorem 3.2. Let Assumptions 1 through 5 hold. There exists a constant C� , which

depends on the constants entering in these assumptions only, such that

P

�p
n

��b�2 � �
2
�� > C��

2
�
�
� 2e

��2=4
+ 3kn=n:

4 Inference in a partially linear model

This section explains how the model (1.1) can be explored using our iterative procedure

and results of Section 3. First we state the important separation result that will be used

in the analysis below.

Let some integer M be �xed. We put the estimated values bvm in the decreasing orderbv(1) � bv(2) � bv(3) : : : and denote by bJM the index set corresponding to the M largest

values bvm . Theorem 3.1 implies the following separation result.

Theorem 4.1. Let un = Æn=� <
p
2� 1 with � = �kn and Æn from (3.6). Let r be some

number satisfying r � 1 . If v
�
m > (rsrÆn)

2
for all m 2 J where

sr =
1+

p
1 + (r2 + 1)(1� u2n � 2un)

1� u2n � 2un
;

then it holds on the random set A de�ned in Theorem 3.1 bvm > r
2
Æ
2
n for m 2 J andbvm � Æ

2
n for m =2 J and thus, J � bJM for all M�M .

13



Remark 4.1. The result of Theorem 4.1 applied with r = 1 yields the su�cient separation

condition: if v�m > (s1Æn)
2 , then, with a high probability, bvm > Æ

2
n for m 2 J andbvm � Æ

2
n for m =2 J , and therefore bJM = J . For application of this result to the

resampling scheme below in this section, we introduced the factor r � 1 , which ensures a

quali�ed separation between linear and nonlinear component.

The value un = Æn=� is small at least if n is su�ciently large. Hence, sr de�ned in

Theorem 4.1 is bounded by a constant depending on r only and therefore, the threshold

t
�
= (rsrÆn)

2 , providing with a high probability a correct separation between linear and

nonlinear components is of order Æ2n � (n
�1

logn) . It can be easily seen that the separation

with the prescribed level of the identi�cation error is impossible if the separation distance

square is smaller in order than n
�1 . Therefore, the procedure provides a near optimal

rate of separation within a log-factor.

4.1 Testing the hypothesis about M

Here we discuss the problem how the estimators bvm of v�m can be used for selecting

the nonlinear component and for testing the hypothesis that the dimensionality M of

the nonlinear component does not exceed the prescribed value M . As special cases,

for M = 0 we get the hypothesis that the original model is linear, and for M = 1 ,

the hypothesis that the nonlinear component is univariate. Then the e�ective nonlinear

dimension of the model can be estimated by the minimal M such that the hypothesis

M �M is not rejected.

The idea of the method is very simple: reject HM : M � M if the value bv(M+1) is

signi�cantly positive. To formalize the procedure, we have to specify, for a given � , the

critical value t� such that the test has the signi�cance level about �. Suppose that the

true model satis�es M � M and that the values v
�
m for all m 2 J exceed the value

t
�
= (rsrÆn)

2 for some r � 1 . Then Theorems 3.1 and 4.1 imply that

� under the null hypothesis M � M , the index (M + 1) corresponds with a high

probability to a linear component;

� for m =2 J , the distributions of the b�lm 's and of bvm only weakly depend on the

model function f , see Remark 3.2;

� for every m 2 J , if v�m is separated from zero by distance of order Æ2n , then the

same is true with a high probability for the estimator bvm .

These observations suggest to apply the resampling scheme that mimics only the distri-
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bution of the values bv(1); : : : ; bv(M+1) . More precisely, we construct an arti�cial regres-

sion function efM that has exactly M -dimensional nonlinear component corresponding to

m 2 bJM and such that all the functionals of type ��lm constructed for this function efM
coincide with the b�lm 's, that is,

1

n

nX
i=1

@ efM(Xi)

@xm
 lm(Xi;m) =

8<:b�lm if m 2 bJM;
0 otherwise,

l = 1; : : : ; L:

The function efM can be selected as a linear combination of the functions xlm=l for l =

2; : : : ; L+ 1 :

efM(x) =

X
m2 bJ

M

L+1X
l=2

clmx
l
m=l; (4.1)

where the coe�cients clm must ful�ll

	mcm = b�m ; m 2 bJM : (4.2)

Here cm (resp. b�m ) denotes the vector in IR
L with the elements clm (resp. b�lm ) and

	m is the L� L matrix whose elements are the sums

	m;l0l =
1

n

nX
i=1

X
l
i;m l0m(Xi;m); l; l

0
= 1; : : : ; L:

We resample from the model

eYi = efM(Xi) + b�ie"i;
where e"i are i.i.d. standard normal. The variances b�2i either ful�ll b�2i = b�2 for the

variance estimator b�2 from Section 2.4, or they simply are de�ned by b�2i = b"2i . The

�rst proposal suits well the case of a homogeneous noise, and the second one is similar

to the wild bootstrap idea and should be used if the assumption of noise homogeneity is

questionable.

The recommended estimator of the critical value can be computed by using the following

simulation procedure:

1. For each i = 1; : : : ; n , generate eYi = efM(Xi) + b�ie"i , where e"i is sampled randomly

from the standard normal law.

2. Use the data set feYi; Xi : i = 1; : : : ; ng to estimate gradient projections ��lm with

estimator (2.3) based on gradient estimator (2.1) with the last step bandwidth b =

b
(kn) . Denote the resulting estimator by e�lm . Compute evm =

PL
l=1 je�lmj2 for every

m = 1; : : : ; d and the statistic eTM , that is ev(M+1) .
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3. De�ne t� as the (1��) -quantile of the empirical distribution of eTM that is obtained

by repeating steps 1-2 many times.

Theorem 4.2. Let Assumptions 1�5 hold and minm2J v�m � (rsrÆn)
2

with r = s1 . If

M =M , then

P (HM is rejected) � �+ 3(kn + 1)=n:

4.2 Identi�cation of the nonlinear component

Here we describe how the e�ective nonlinear dimension M and the index set J corre-

sponding to the nonlinear component can be estimated using the above testing procedure.

Let some positive � < 1 be �xed. Starting with M = 0 , we consider the model with M -

dimensional nonlinear component due to (4.1) and (4.2) and test the hypothesis M �M

at the level � as described in Section 4.1. Terminate if the hypothesis M � M is not

rejected, otherwise increase M by one. Finally we set cM = �the �rst nonrejected M �

and bJ = bJ
cM .

Theorem 4.3. Let Assumptions 1 through 5 hold and minm2J v�m � (rsrÆn)
2 with r = s1 .

Then

P ( bJ 6= J ) � �+ 3(kn +M)=n:

Remark 4.2. It can be easily checked that the results of Theorems 4.2 and 4.3 continue

to hold even if the test level � depends on n and goes to zero as n grows. In particular,

one can take � = n
�a with a < 1=2 . With such a choice, our method leads to a consistent

estimation of the set J .

4.3 Estimation and inference for the linear component

The method described above allows to classify the regressors into linear and nonlinear.

Moreover, the result of classi�cation is correct with a dominating probability provided the

sample size is large enough. The impact of every linear regression variable in the model

function is characterized by the corresponding slope coe�cient �m from (1.1). Here we

discuss how these slope coe�cients can be estimated. We use again the observation that

@f=@xm � �m for every m =2 J . Therefore, the sum

b�m =
1

n

nX
i=1

crfm(Xi) (4.3)
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is a reasonable estimator of �m . Here crf (Xi) is the gradient estimator obtained at the

last step of the algorithm. Our next result claims that b�m from (4.3) estimates the true

value �m with the root-n accuracy and that it can be very well approximated by a Gaussian

random variable. This result can be viewed as an application of Theorem 3.1 for m =2 J

and  lm � 1 .

Theorem 4.4. Let Assumptions 1 through 5 hold. Then for every m =2 J , there exists a

Gaussian zero mean random variable 
�
m which is de�ned as a linear combination of the

errors "i with deterministic coe�cients, depending on the �ideal� bandwidth b
�
= b

�(kn) ,

the design X1; : : : ; Xn , the basis functions  lm(�) and the kernel K only, and such that

Ej�mj
2 � 2�

2
C
2
VCK ;

and on the random set A from Theorem 3.1 with P (A) � 1� 3kn=n , it holds

max
m=2J

���b�m � �m � n�1=2�m
��� � C1

�
�
2
n
�1
L logn

�2=3
;

where C1 = C1(d;M;Cg; CV ; CK; CK0;  ) .

Remark 4.3. The above estimator b�m can be slightly re�ned by explicitly using the esti-

mated structural information about the model. Namely, an application of the anisotropic

bandwidth bb = diag(bb1; : : : ;bbd) with bbm from the last iteration for m 2 bJ and bbm =1

for m =2 bJ leads under condition of the correct identi�cation to the classical partially

linear estimator for the case with known J , see e.g. Härdle, Liang and Gao (1999).

Remark 4.4. (Selecting signi�cant regressors) The procedure in Section 4.2 can

be also used for identifying the signi�cant components. All the regressors entering in

the nonlinear component are automatically signi�cant. The linear regressors can be fur-

ther analyzed for signi�cance. Theorem 4.4 claims that the normalized estimation error
p
n

�b�m � �m� is asymptotically normal. Moreover, the asymptotic variance of b�m can

be easily estimated. Indeed, b�m is a linear combination of the observations Yi with the

known coe�cients cim , that is, b�m =
P

i cimYm . Then b�2m = �
2
P

i c
2
im is an estimator

of Var(b�m) . The search of signi�cant regressors can be done by the rule
���b�m���2 � �

2b�2m for

some � > 0 , see illustration of this procedure in Section 5. We skip the further discussion

for the reasons of space.

5 Simulated and real data results

In this section we illustrate the performance of the proposed method on some simulated

examples and give a real data application. With the simulated examples we aim to illustrate
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how the performance of the proposed method depends on the sample size n , dimension d

of the model, the dimensionality of the nonlinear component M and the noise variance �2 .

We especially focus on the component classi�cation results: identi�cation of the nonlinear

variables and selection of the signi�cant variables. We also demonstrate how the quality

of estimation of the nonlinear components improves during iteration.

In our simulation study we apply the modi�ed procedure (see Remark 2.4) with the fol-

lowing parameter setting:

�1 = 1; �min = n
�1=3

; a� = e
�1=6

; � = 0:2; ah = a
�1=2
� :

The initial bandwidth h1 is selected from the condition #fi : Mh(Xi) � d+ 1g � n=2 ,

where Mh(x) stand for the number of the design points Xi in the ball of radius h

and center x . This condition ensures that for at least a half of the design points the

local gradient estimator is well de�ned. This setting leads to the number of iterations

k(n) � log(�1=�min)

loga�
� 2 logn .

The procedure utilizes the kernel K(jxj2) = (1 � jxj2)2+ . For every m � d , the basis

system f 1m(xm); : : : ;  Lm(xm)g is obtained using polynomials of xm of degree from

one to L satisfying the conditions
Pn

i=1 wi lm(Xi;m) l0m(Xi;m)
ÆPn

i=1wi = Æll0 andPn
i=1  lm(Xi;m)wi = 0 where wi = w

(k)
i = �

1=2
min(V

(k)
i ) for k th iteration with k � 1 .

We apply L = 6 .

In our simulation study we consider the model Yi = �
>
Xi + g(Xi;d�M+1; : : : ; Xi;d) + "i

for M between 1 and 3. The vector � is taken of the form � = (1; 2; 3; 4; 0; : : : ; 0)
> . The

link function g is g(u) = g1(u) = e
u
+ e

�u for M = 1 , g(u1; u2) = g1(u1)g1(u2) for

M = 2 and g(u1; u2; u3) = g1(u1)g1(u2)g1(u3) for M = 3 . The dimension d is taken

4 +M or larger. The errors "i are i.i.d. normal with parameters (0; �
2
) for �2 = 0:1 .

The design X1; : : : ; Xn is modelled randomly so that each Xi follows Norm(0:2; 0:8
2
) -

distribution, restricted to the [�1; 1]d-cube. The experiments were done for sample size n =

100; 200; 400 . The results displaying the quality of estimation by the iterative algorithm are

summarized in Tables 1 for M = 1 and in Table 2 for M = 2 . We display the mean losses

jbvmj for one linear regressor and jbv(k)m �v�mj for nonlinear regressors where v�m = j��mj2 and

�
�
m is the vector with the components ��lm =

Pn
i=1 w

(k)
i rfm(Xi;m) lm(Xi;m)

ÆPn
i=1 w

(k)
i .

It is interesting to observe that the quality of estimating the linear regressor x1 improves

with growing dimension d .

In Table 2 we demonstrate in addition how the error of estimation depends on the noise

variance �
2 . One can see that the estimation risk for the nonlinear components only
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Table 1: Case M = 1: mean loss
��bvm�v�

m

�� for the nonlinear regressor for the �rst, second, fourth,

and �nal iteration and �nal losses jbv1j for the �rst linear regressor. Results are obtained from

N = 250 simulations. The interquartile range of the losses is given in parentheses.

d n nonlinear regressor linear regressor x1

1st 4th �nal �nal

5 100 0:9580
(0:1865)

0:6656
(0:1546)

0:3069
(0:2400)

0:0139
(0:0113)

5 200 0:9395
(0:1378)

0:7711
(0:1300)

0:2424
(0:2024)

0:0072
(0:0057)

6 200 0:9432
(0:1231)

0:7207
(0:1067)

0:1641
(0:1766)

0:0018
(0:0016)

8 200 0:9362
(0:1253)

0:6703
(0:1003)

0:2232
(0:1797)

0:0006
(0:0005)

10 100 0:9574
(0:2064)

0:6743
(0:1526)

0:5822
(0:2756)

0:0005
(0:0004)

10 200 0:9406
(0:1522)

0:6777
(0:1202)

0:3690
(0:2213)

0:0002
(0:0002)

10 400 0:9348
(0:0925)

0:7217
(0:0838)

0:2316
(0:1399)

0:0001
(0:0001)

slightly increases with � while it is essentially proportional to � for the linear one. An

explanation might be that the estimation error for the nonlinear components is mostly

due to the nonparametric bias which disappears in the linear components during iteration

process by structural adaptation.

Table 2: Case M = 2: mean loss
��bvm � v�

m

�� for the nonlinear regressors for the �rst, second,

fourth, and �nal iteration and �nal losses jbv1j for the �rst linear regressor. Results are obtained

from N = 250 simulations. The interquartile range of the losses is given in parentheses.

d n �2 1st nonlinear regressor 2nd nonlinear regressor linear regressor x1

1st 4th �nal 1st 4th �nal �nal

6 200 0.1 4:6117
(0:6646)

3:7349
(0:5028)

0:4763
(0:5211)

4:6337
(0:6257)

3:7576
(0:5402)

0:4473
(0:4785)

0:0081
(0:0063)

8 200 0.1 4:6397
(0:6683)

3:4423
(0:5431)

0:4244
(0:4108)

4:5942
(0:6646)

3:4085
(0:4621)

0:4058
(0:4607)

0:0025
(0:0019)

10 100 0.1 4:6338
(0:8840)

3:1450
(0:7307)

0:7573
(0:5302)

4:6862
(1:0155)

3:1642
(0:7312)

0:7089
(0:4938)

0:0043
(0:0032)

10 200 0.1 4:5537
(0:7458)

3:2806
(0:5065)

0:5812
(0:3404)

4:5904
(0:7649)

3:2917
(0:5875)

0:5489
(0:4014)

0:0011
(0:0010)

10 400 0.1 4:5198
(0:4850)

3:5276
(0:3566)

0:4457
(0:3121)

4:5584
(0:4168)

3:5594
(0:3562)

0:4319
(0:3023)

0:0004
(0:0003)

10 400 0.2 4:5198
(0:4850)

3:5284
(0:3483)

0:4403
(0:3949)

4:5584
(0:4167)

3:5602
(0:3642)

0:4325
(0:3948)

0:0007
(0:0006)

10 400 0.4 4:5198
(0:4850)

3:5297
(0:3316)

0:4637
(0:4891)

4:5584
(0:4167)

3:5615
(0:3727)

0:4666
(0:5029)

0:0017
(0:0013)
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The next �gure illustrates the result of Theorem 4.1 about separation between linear and

nonlinear component. Let LN (�) denote the empirical distribution of the random variable

� based on its sample of size N . A good separation between linear and nonlinear compo-

nents means that the functions LN (bvm) for every m 2 J and 1 � LN (bvm) for m =2 J

have non-overlapping support.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3
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0.9

1
n=200

Figure 1: Case M = 2, d = 6 : LN (bv5) , LN (bv6) (dotted lines) and 1 � LN (maxm=1;:::;4 bvm)

(solid line) for n = 100; 200 from 250 realizations.

We observe a very good separability for n = 100 and a possibility of perfect separation

for n = 200 .

Next we illustrate how the quality of estimation of the linear component improves with the

sample size. Figure 2 shows box-plots of the estimation errors n1=2kb� � �
�k of the linear

component after the �nal iteration for d = 6 , M = 2 and di�erent sample sizes n .

Table 3 illustrates the performance of the test of the hypothesis M �M and the quality

of the classi�cation rule from Sections 4.2 and 4.3 for di�erent M , d and n . In this table

we present the fraction of wrong classi�cations for every of nonlinear regressors and for the

whole model.

One can observe once again that the results (the fraction of wrong classi�cations) improve

as the dimensionality d grows. This can be explained by the fact that the distribution of

the test statistic used for classi�cation will be more and more degenerated with growing

dimension d .

Another observation is that for M = 3 , the procedure requires some minimal sample size

to start selecting all the three nonlinear components. For n = 100 we obtain for almost

all the cases cM < M . For n = 200 and d = 7 we correctly classify in only about 30%

cases but for d = 10 the fraction of wrong classifying is already under control.

Figure 3 illustrates the quality of estimation of the noise variance �2 by b�2 for one example
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0.5

1

1.5

2

n=100                                                 n=200

d=6 M=2 

Figure 2: CaseM = 2 : box-plots of the estimation errors n1=2kb�� ��k of the linear com-

ponent after the �nal iteration for d = 6 . Results are obtained from N = 250 simulations.

Table 3: Fraction of wrong classi�cations for every nonlinear regressor and for the whole model.

Results are obtained from N = 250 simulations and 500 bootstrap replications.

M d n 1st n.c. 2nd n.c. 3rd n.c. f bJ 6= J g

100 0.152 � � 0.18

1 5 200 � �

400 0 � �

1 10 200 0 � � 0.

400 0 � � 0.00

1 20 400 0 � � 0.

100 0.268 0.308 � 0.38

2 6 200 0.056 0.048 � 0.1

400 0.004 0.004 � 0.024

2 10 200 0 0 � 0.008

400 0 0 � 0.0

2 20 400 0 0 � 0

100 0.976 0.96 0.964 0.992

3 7 200 0.62 0.656 0.656 0.748

400 0.076 0.06 0.072 0.1

3 10 200 0.004 0 0.004 0.004

400 0 0 0 0
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with d = 6 , M = 2 and di�erent sample size n . The results are in agreement with the

root-n consistency of the estimator b�2 .

−1

−0.5

0

0.5

1

1.5

  n=100                                  n=200                                   n=400     

n1/2(σ2−σ*2) for d=6 and M=2

Figure 3: Box-plots of the estimation errors n1=2kb�2���2k for d = 6,M = 2 and di�erent sample

size n.

5.1 A real data example

This section presents an application of the procedure to a real data set. We consider the

example from Sperlich (1998) and Härdle, Spokoiny and Sperlich (2001) where a subsample

of the Socio-Economic Panel of Germany from 1992 was studied. The target of analysis is

the weekly number of working hours, Yi, of 607 women with job and living together with a

partner. The following explanatory variables were used: the age of woman, between 25 and

60, X1; her earning per hour, X2; the prestige index of her kind of profession (Treiman

prestige index), X3; the monthly rent or redemption for their apartment or house, X4;

the monthly net income of their partner, X5; the number of years of education, X6; the

unemployment rate at the particular tract they live in, X7; and the number of children

younger than 16 years, X8.

The estimates bvm obtained by our estimation procedure are given in Table 4. We also got

the estimate b�2 = 0:736 for error variance �2 .

Table 4: Estimates bvm of v�m.

bv1 bv2 bv3 bv4 bv5 bv6 bv7 bv8

0.05259 0.00729 0.00441 0.00012 0.00060 0.00142 0.00015 0.00875

Next we identify the linear component starting with M = 0 as described in Section 4.2.
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Table 5 gives the p-values PVM for each testHM, which are obtained during the bootstrap

procedure, de�ned as:

PVM =
1

B

BX
b=1

1fev(b)
(M+1)

>bv(M+1)g

The �rst three hypotheses H0 , H1 and H2 are rejected at 10% level, and there is clearly

no rejection of H3 . So, for the considered model, the nonlinear dimension is estimated

as three and the nonlinear variables are X1, X2, and X3. Our linear/nonlinear variable

classi�cation results coincide with those from Härdle, Sperlich and Spokoiny (2001), but

with quite di�erent p-values: in our results X1 (age) is the most nonlinear and X2 (earning

per hour) is the least nonlinear variable among the three, while in Härdle, Sperlich and

Spokoiny (2001) the situation is reversed. Note that while their identi�cation was made

under the assumption of additive model structure, our results are obtained for a general

situation when such additive structure is not required.

Table 5: p-values for consecutive tests

M bv(M+1) p-values

0 bv1 0:003996

1 bv2 0:086913

2 bv3 0:01998

3 bv5 0:47153

6 Conclusion and outlook

The paper has introduced a new method of exploring a partially linear model based on

the idea of structural adaptation. The method applies under mild assumptions on the

underlying regression function and the regression design. The procedure is fully adaptive

and does not require any prior information. The results claim that the proposed proce-

dure with a high probability correctly identi�es the nonlinear component and estimates

the linear component with the optimal rate n
�1=2 provided that the dimension of the

nonlinear component is not larger than 3. The simulation results demonstrate an excellent

performance of the procedure for all considered situations. An important feature of the

method is that it is very stable with respect to high dimensionality and for a non-regular

design.

Non-Gaussian or heterogeneous noise. The method and results can be easily extended

to models with homogeneous non-Gaussian noise satisfying some exponential moment con-
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ditions. Another interesting issue is applicability of the method for a general heterogeneous

or dependent noise, in particular, to time series models and �nancial data. We leave these

extensions for further research.

The case with M � 4 . The method continues to apply even if M � 4 and itera-

tions would lead to improvement of the bias. However, the bound for the bias of order

(n
�1

logn)
2=3 can be achieved only for M � 3 . For larger M , the bias will be of order

n
�1=2 of bigger and the procedure does not provide root-n consistent estimation of the

functionals ��lm . So, if the hypothesis M � 3 is rejected, then we recommend to apply

for the choice of M some model selection criteria like cross-validation or Mallows Cp .

Data-driven choice of parameter L . The method depends upon the parameter L

describing the number of basis functions for every regressor. In the univariate case, either

an n -dependent or data-driven choice of such a parameter is usually applied, see Hart

(1997) or Spokoiny (2001) and references therein. An adaptive choice of L in the considered

problem is an interesting question for further research.

Semiparametrically e�cient estimation of the linear component. Due to the

result of Theorem 4.4, the proposed estimator of the parameter � is root-n consistent and

asymptotically normal. However, it is unlikely that this or the re�ned estimator of � from

Section 4.3 is semiparametrically e�cient in the sense of minimization of the asymptotic

variance, see e.g. Bickel et al. (1998). A modi�cation of the method leading to the

semiparametrically e�cient estimation of linear part will be discussed elsewhere.

Estimation of the nonlinear component. After the nonlinear component is identi�ed,

it can be estimated using the standard methods of nonparametric statistics. Actually, the

algorithm gives an estimator of the whole function f and of the linear component, so

that the nonlinear component can be extracted as well. This estimator corresponds to the

local linear smoothing of the nonparametric M -dimensional function with the bandwidth

about h� � �min , and may not achieve the best rate. To improve the quality of estimation,

one can apply the classical cross-validation technique for selecting the bandwidth in the

direction of the nonparametric component.

Discrete and categorical data. Note that the assumption of linearity is meaningful for

discrete or categorical variables as well. It means that the in�uence of the corresponding

regressor is independent of the other variables and therefore, at least in the binary case,

can be modelled linearly. Moreover, the procedure easily applies for the situation with

discrete data without any change.
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7 Appendix

Here we collect the proofs of the main results. For the ease of exposition, we consider only

the main procedure (without weights) and only the case of � = 0 . The general case can

be considered in the same way.

7.1 One-step improvement

Suppose that we are given some �xed numbers h and � (which mean the current values

hk and �k ) and a vector v = (v1; : : : ; vd)
> 2 IRd which can be viewed as an approximation

of v� = (v
�
1; : : : ; v

�
d)
> obtained at the previous step of the algorithm. Set also

bm = h
�
1 + �

�2
vm

��1=2
; m = 1; : : : ; d; (7.1)

and de�ne b = diag(b1; : : : ; bd) . De�ne also bf(Xi) , crf (Xi) and b�lm by (2.1) and (2.3) for

all l = 1; : : : ; L and m = 1; : : : ; d with the just de�ned bandwidth b . We aim to evaluate

the estimation errors b�lm���lm . To describe the results, we introduce the shrinking factors

P�;m =

�
1 + �

�2
v
�
m

��1=2
and de�ne

Um = P
2
�;m(1 + �

�2
vm) = (1 + �

�2
v
�
m)

�1
(1 + �

�2
vm)

and similarly U
�
m = P

2
�;m(1 + �

�2
v
�
m) = 1 . Clearly the vector U = (U1; : : : ; Ud)

> 2 IR
d

uniquely describes v , so that we consider later in this section v = v(U) and similarlyb�lm = b�lm(U) for the functionals b�lm in (2.3). Let � = (�1; : : : ; �d)
> be a vector in IR

d

with entries �m 2 (0; 1) . De�ne

U� = fU = (U1; : : : ; Ud)
> 2 IRd

: jUm � 1j � �m ; m = 1; : : : ; dg:

We also de�ne �� = maxm=1;:::;d �m .

Proposition 7.1. Let Assumptions 1 through 5 hold. Let �lm(U) = E
b�lm(U) . Then

sup

U2U�

dX
m=1

LX
l=1

jP�;mf�lm(U)� ��lmgj
2 �

 
Cg C

1=2

V

1� ��
�
2
h

!2

and, for every l = 1; : : : ; L and m = 1; : : : ; d , there exists a zero mean Gaussian random

variable �lm de�ned as a linear combination of the errors "i with deterministic coe�cients,

which depend on v
� , the design fXig , the basis functions  lm(�), and the kernel K only,

and such that

max
m;l

E�
2
lm � 2�

2
C
2
VCK (7.2)
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and

P

�
max
m;l

sup

U2U�

����P�;mfb�lm(U)� �lm(U)g �
�lm

h
p
n

���� > � C�;nj�j
h
p
n

�
�

2

n
;

where the maximum is taken over m = 1; : : : ; d and l = 1; : : : ; L,  = max
i;l;m

j lm(Xi)j and

C�;n =

 p
2CV CK0

(1� ��)3=2
+

2
3=2
C
2
V CK0 CK

(1� ��)5=2

!�
2 +

p
2 log(ndL) + d log(4n)

�
:

Let ��m denote, as in Proposition 3.1, an L-vector with the components ��lm and b�m =b�m(U) its estimator with the components b�lm(U).
Corollary 7.1. Let zn = (1 + 2 log(nd) + 2 log log(nd))

1=2
and

Æ =
Cg C

1=2
V

1� ��
h�

2
+

p
2L�CVC

1=2
K zn

h
p
n

+

p
L�  C�;nj�j

h
p
n

: (7.3)

Then under the conditions of Proposition 7.1 it holds

P

�
max

m=1;:::;d
sup

U2U�

���P�;m �b�m(U)� ��m���� > Æ

�
� 3=n:

The corollary helps bound the estimation error P 2
�;m (bvm(U)� v�m) .

Proposition 7.2. Under the conditions of Proposition 7.1,

P

�
sup

U2U�

��P 2
�;m (bvm(U)� v

�
m)

�� � Æ
2
+ 2Æ�m for all m = 1; : : : ; d

�
� 1� 3=n

where �m = �
p
v�m(�

2
+ v

�
m)

�1=2 � min f�;
p
v�mg .

7.2 Proof of Proposition 7.1

Denote by P� the diagonal d � d -matrix with the diagonal entries P�;m , that is, P� =

diagfP�;1; : : : ; P�;dg . Similarly, for U = (U1; : : : ; Ud)
> 2 IRd , de�ne DU = diagfU1; : : : ; Udg .

Next, for every i; j � n , de�ne Zij = h
�1
P
�1
� (Xj �Xi) , Kij(U) = K(Z

>
ij DUZij)

Vi(U) =

nX
j=1

�
1

Zij

��
1

Zij

�>
Kij(U);

bsi(U) = h
�1Vi(U)�1

nX
j=1

�
1

Zij

�
Yj Kij(U):

It is easy to check that for the (m+ 1)th component bsi;m(U) of bsi(U) it holds bsi;m(U) =
P�;m

crfm(Xi) and hence,

P�;m
b�lm(U) = n

�1
nX
i=1

bsi;m(U) lm(Xi;m):
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The model equation (1.1) implies bsi(U) = si(U) + �i(U) with

si(U) = h
�1 Vi(U)�1

nX
j=1

�
1

Zij

�
f(Xj)Kij(U);

�i(U) = h
�1 Vi(U)�1

nX
j=1

�
1

Zij

�
"j Kij(U):

This yields, for each coordinate m = 1; : : : ; d,

P�;mfEb�lm(U)� �
�
lmg =

1

n

nX
i=1

fsi;m(U)� P�;mrfm(Xi)g lm(Xi;m);

P�;mfb�lm(U)�E b�lmg = 1

n

nX
i=1

�i;m(U) lm(Xi;m):

Clearly �lm(U) := n
�1Pn

i=1 �i;m(U) lm(Xi;m) is for every U a linear combination of the

Gaussian errors "i and therefore it is also a Gaussian vector in IR
d .

De�ne Ed is the projection from IR
d+1 onto IRd dropping the zero coordinate: Ed(x0; : : : ; xd)> =

(x1; : : : ; xd)
> . It is easy to see that the following three statements imply the claimed result:

sup

U2U�
jEdsi(U)� P�rf(Xi)j �

Cg C
1=2
V

1� ��
h�

2
; i = 1; : : : ; n; (7.4)

P

�
max
l;m

sup

U2U�
j�lm(U)� �lm(U�

)j >
�C�;nj�j
h
p
n

�
� 2=n; (7.5)

max
l;m

Ej�lm(U�
)j2 �

2�
2
C
2
VCK

h2n
: (7.6)

where the maximum is taken over l = 1; : : : ; L and m = 1; : : : ; d . Indeed, the last two

statements of the proposition directly follows from (7.5) and (7.6) for �lm = h
p
n�lm(U

�
) .

Next, (7.4) implies

n
�1

nX
i=1

dX
m=1

jsi;m(U)� P�;mrfm(Xi)j2 �

 
Cg C

1=2

V

1� ��
h�

2

!2

:

Since the vectors  lm 2 IR
n are orthonormal for di�erent l , it follows for the Bessel

inequality for every m � d

1

n

nX
i=1

jsi;m(U)� P�;mrfm(Xi)j2 �
LX
l=1

����� 1n
nX
i=1

�
si;m(U)� P�;mrfm(Xi)

�
 lm(Xi;m)

�����
2

=

LX
l=1

P
2
�;m

�
E
b�lm(U)� �

�
lm

�2
and thus,

dX
m=1

LX
l=1

P
2
�;m

�
E
b�lm(U)� ��lm�2 �

 
Cg C

1=2
V

1� ��
h�

2

!2

:
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To check the statements (7.4)�(7.6), the following lemma will be useful.

Lemma 7.1. Let jUm�1j � �m < 1 for all m = 1; : : : ; d . Then for all i; j , the inequality

jZ>ij DUZij j � 1 implies jZij j2 � 1=(1� �
�
) and 1 + jZij j

2 � 2=(1� �
�
) .

Proof. Note that the inequalities Z>ij DU Zij � 1 and jUm � 1j � �m imply���Z>ij DUZij � jZij j2
��� = ���Z>ij (DU � I)Zij

��� � �
�jZij j2

and thus, jZijj2 � (1� ��)�1Z>ij DUZij .

Now we check (7.4). Since 
h
�1
f(Xi)

P�rf(Xi)

!
= Vi(U)�1

nX
j=1

�
1

Zij

��
1

Zij

�>  
h
�1
f(Xi)

P�rf(Xi)

!
Kij(U)

= h
�1 Vi(U)�1

nX
j=1

�
1

Zij

��
f(Xi) +X

>
ijrf(Xi)

	
Kij(U)

it follows

si(U)�

 
h
�1
f(Xi)

P�rf(Xi)

!
=

1

h
Vi(U)�1

nX
j=1

�
1

Zij

�n
f(Xj)� f(Xi)�X>

ij rf(Xi)

o
Kij(U)

=
1

h
Vi(U)�1

nX
j=1

�
1

Zij

�
rijKij(U)

where in view of (3.1)

rij = g(R�
Xj;2)� g(R�

Xi;2)� (R�
Xj;2 �R�

Xi;2)
>rg(R�

Xi;2)

with R� being the diagonal M �M matrix with diagonal entries
p
v�m , m 2 J . It is

clear that���pv�mXj;m �
p
v�mXi;m

���2 = h
2
v
�
m(1 + �

�2
v
�
m)

�1
Z
2
ij;m � h

2
�
2
Z
2
ij;m:

Therefore,

jR�
Xj;2 �R�

Xi;2j2 � h
2
�
2 jZij j2:

This yields by Lemma 7.1 and Assumption 4 for every pair (i; j) with Z
>
ij DUZij � 1 :

jrijj � Cg h
2
�
2
(1� ��)�1 :
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Using the Cauchy-Schwarz inequality and Assumptions 5 we bound

jEd si(U)� P�rf(Xi)j � h
�1

sup

�2IRd+1 : j�j=1

�������>Vi(U)�1
nX
j=1

�
1

Zij

�
rijKij(U)

������
� sup

j�j=1
h
�1

24 nX
j=1

�
>Vi(U)�1

�
1

Zij

��
1

Zij

�>
Kij(U)Vi(U)�1�

nX
j=1

r
2
ijKij(U)

351=2

�
Cg h �

2

1� ��
sup

j�j=1

0@�>Vi(U)�1� nX
j=1

Kij(U)

1A1=2

� (1� �
�
)
�1
Cg h �

2
Ni(U)Vi(U)�1

1=2 � (1� ��)�1 Cg C
1=2
V h �

2

and (7.4) follows.

By de�nition every �lm(U) is a linear combination of the "i 's, that is, there are coe�cients

ci;lm(U) such that

�lm(U) =

nX
i=1

ci;lm(U)"i:

The coe�cients ci;lm(U) depend on the design X1; : : : ; Xn , the basis function  lm , the

kernel K and the vector U . Moreover, these coe�cients satisfy the following conditions:

Lemma 7.2. For every l = 1; : : : ; L and m = 1; : : : ; d

(i)

nX
i=1

jci;lm(U�
)j2 �

2C
2
VCK

h2n
;

(ii) sup

U2U�

nX
i=1

jci;lm(U)j2 �
2C

2
VCK

(1� ��)h2n
;

(iii) sup

U2U�

����dci;lm(U)
dU

���� � ��

nh
; where

�� =

p
2(1� ��)�3=2CVCK0 + 2

3=2
(1� ��)�5=2C2

VCKCK0 :

Proof. De�ne for i; j = 1; : : : ; n

Ni(U) =

nX
j=1

Kij(U); vij(U) = Vi(U)�1
�

1

Zij

�
:

It follows from Lemma 7.1 and Assumption 5 that U 2 U� implies for every i; j with

Z
>
ij DU Zij � 1

jNi(U) vij(U)j � CV (1 + jZij j2)1=2 � CV

p
2(1� ��)�1=2: (7.7)
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Next, for a �xed m � d , denote by vij;m(U) the (m+ 1) th component of vij(U) . Then

�lm(U) =
1

nh

nX
i=1

 lm(Xi;m)

nX
j=1

vij;m(U)Kij(U) "j

=

nX
j=1

 
1

nh

nX
i=1

 lm(Xi;m)vij;m(U)Kij(U)

!
"j =

nX
j=1

cj;lm(U) "j:

Clearly Ej�lm(U)j2 = �
2
Pn

j=1 c
2
j;lm(U) . The Cauchy-Schwarz inequality, (7.7) and As-

sumption 5 imply

nX
j=1

c
2
j;lm(U) =

1

n2h2

nX
j=1

 
nX
i=1

 lm(Xi;m)vij;m(U)Kij(U)

!2

�
1

n2h2

nX
j=1

 
nX
i=1

 
2
lm(Xi;m)vij;m(U)Kij(U)

! 
nX
i=1

vij;m(U)Kij(U)

!

�
2C

2
V

(1� ��)n2h2

nX
j=1

 
nX
i=1

 
2
lm(Xi;m)

Kij(U)

Ni(U)

! 
nX
i=1

Kij(U)

Ni(U)

!

�
2C

2
VCK

(1� ��)n2h2

nX
j=1

nX
i=1

 
2
lm(Xi;m)

Kij(U)

Ni(U)

=
2C

2
VCK

(1� ��)n2h2

nX
i=1

 
2
lm(Xi;m) =

2C
2
VCK

(1� ��)nh2
:

As a particular case, with DU = DU� = I and �
�
= 0 , this yields

nX
j=1

c
2
j;lm(U

�
) �

2C
2
VCK

nh2

and the �rst two assertions of the lemma follows.

Now we bound the derivative of each coe�cient cjl;m(U) with respect to U . For every

pair i; j such that Z>ijDUZij � 1 , Lemma 7.1 implies���� ddUKij(U)

���� = ���K0
(Z

>
ij DU Zij)

��� jZij j2 � (1� ��)�1
���K0

(Z
>
ij DU Zij)

��� :
Let o1 and o2 be unit vectors in IR

d+1 . Then for every m = 1; : : : ; d

o
>
1 @Vi(U)�1o2

@Um
= �o>1 Vi(U)

�1
�

@

@Um
Vi(U)

�
Vi(U)�1o2

= �o>1 Vi(U)
�1

0@ nX
j=1

�
1

Zij

��
1

Zij

�>
K
0
(Z

>
ij DU Zij)Z

2
ij;m

1AVi(U)�1o2:
Lemma 7.1 and Assumption 5 yield����@o>1 Vi(U)�1o2@Um

���� �
2C

2
V

(1� ��)jNi(U)j2

nX
j=1

���K0
(Z

>
ij DU Zij)

���Z2
ij;m:
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Since vij;m(U) =

�
1 + jZij j2

�1=2
e
>
mVi(U)�1o2 where em denotes the m th coordinate

vector in IR
d+1 and o2 =

�
1 + jZij j2

��1=2� 1

Zij

�
, it follows for every pair i; j such that

Z
>
ijDUZij � 1 :

����dvij;m(U)dU

���� �
�
1 + jZij j2

�1=2 dX
m0=1

����@e>mVi(U)�1o2@Um0

����2
!1=2

�
2
3=2
C
2
V

(1� ��)3=2jNi(U)j2

24 dX
m0=1

0@ nX
j=1

jK 0
(Z

>
ij DU Zij)jZ2

ij;m0

1A2351=2

�
2
3=2
C
2
V

(1� ��)3=2jNi(U)j2

dX
m0=1

nX
j=1

jK0
(Z

>
ij DU Zij)jZ2

ij;m0

�
2
3=2
C
2
VCK0

(1� ��)3=2jNi(U)j2

nX
j=1

jK0
(Z

>
ij DU Zij)j jZijj2 �

2
3=2
C
2
VCK0

(1� ��)5=2Ni(U)
:

Since

dcj;lm(U)

dU
=

1

nh

nX
i=1

vij;m(U) lm(Xi;m)
dKij(U)

dU
+

1

nh

nX
i=1

dvij;m(U)

dU
Kij(U) lm(Xi;m):

the use of (7.7) and Assumption 5 yields����dcj;lm(U)dU

���� �
p
2CV lm

nh(1� ��)3=2

nX
i=1

jK 0
(Z

>
ij DU Zij)j
Ni(U)

+
2
3=2
C
2
VCK0 lm

nh(1� ��)5=2

nX
i=1

Kij(U)

Ni(U)

�
p
2CVCK0 lm

nh(1� ��)3=2
+

2
3=2
C
2
VCK0CK lm

nh(1� ��)5=2

and assertion (iii) of the lemma follows.

Since Ej�lm(U)j2 = �
2
Pn

j=1 c
2
j;lm(U) , condition (7.6) follows from Lemma 7.2, (i).

The following lemma is a minor modi�cation of Lemma 8 of HJS.

Lemma 7.3. Let r be a positive number and let � be a �nite set. Let functions ai;(u)

of u 2 IRd
obey the conditions

sup

2�
sup

ju�u�j�r

���� ddu ai;(u)
���� � �; i = 1; : : : ; n: (7.8)

If the "i 's are independent N (0; �
2
) -distributed random variables, then

P

 
sup

2�
sup

ju�u�j�r

1
p
n

�����
nX
i=1

fai;(u)� ai;(u�)g"i

����� > �� rt

!
�

2

n

where t = 2 +

p
2 log(nj� j) + d log(4n) and j� j denotes the number of elements in � .
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The claim (7.5) follows from Lemma 7.2, (ii) and (iii), by the preceding lemma applied

with ai;(u) =
p
ncj;lm(U), � =

��
h
p
n
, � = f(m; l) : m = 1; : : : ; d; l = 1; : : : ; L g , and

r = j�j. This completes the proof of the proposition.

Remark 7.1. In the proof of Proposition 7.1 we de�ned the random variables �lm as

�lm = �lm(U
�
) . One can easily check that the result of the proposition continues to hold

with �lm replaced by �lm(U) for any U 2 U� and with the right hand-side of (7.2)

and with the constant C�;n multiplied by (1 � �
�
)
�1 . This fact is used in the proof

Theorem 4.2.

7.3 Proof of Corollary 7.1

By Proposition 7.1

sup

U2U�
max

m=1;:::;d

���P�;m �E b�m(U)� ��m���� � Cg C
1=2
V

1� ��
�
2
h

and on a random set of probability as least 1� 2=n����P�;m �b�m(U)�E b�m(U)�� �m

h
p
n

���� �
p
L�  C�;n j�j

h
p
n

; 8m = 1; : : : ; d;

where �m 2 IRL , m = 1; : : : ; d, are Gaussian random vectors with components �l;m from

Proposition 7.1.

By Lemma 7 in HJS,

P

�
j�mj � zn

p
Ej�mj2

�
� 1=(nd):

In view of (7.2) Ej�mj2 � 2L�
2
C
2
VCK , and the corollary follows.

7.4 Proof of Proposition 7.2

The de�nition of �m implies

P
2
�;mv

�
m = (1 + �

�2
v
�
m)

�1
v
�
m = �

2
m � min

�
�
2
; v
�
m

	
: (7.9)

Lemma 7.4. If P�;mjb�m � �
�
mj < Æ, then P 2

�;mjbvm � v
�
mj < Æ

2
+ 2Æ �m.

Proof. De�ne the vector bum 2 IR
L (resp. u

�
m ) whose elements are P�;m

b�lm (resp.

P�;m�
�
lm ). Clearly P

2
�;mbvm(U) = jbum(U)j2 and by (7.9) P 2

�;mv
�
m = ju�mj

2 � �
2
m . It is

easy to check that��jbumj2 � ju�mj2�� � jbum � u
�
mj

2
+ 2jbum � u�mj � ju�j; (7.10)

and lemma follows.
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The proposition follows from Corollary 7.1 and Lemma 7.4.

7.5 Proof of Proposition 3.1

The proof of the �rst claim is a simpli�ed version of the proof of Proposition 7.1: just set

there P�;m = 1, drop supU , and repeat the proofs of (7.4) and (7.6). The factor v�
(1)

in Æ1

comes from R� in (3.1). Next, applying Lemma 7 of HJS one gets the claim (3.2). The

claim (3.4) follows from (3.2) and Lemma 7.4 applied with � = 1.

7.6 Proof of Theorem 3.1

Let the numbers hk and �k be as in the algorithm description, k = 1; : : : ; kn . De�ne

successively the values Æk and d-vectors �k with components �k;m as follows: �1 = 0 ,

Æ1 as in (3.3), and for k = 2; : : : ; kn

Æk =
Cg C

1=2
V

(1� ��k)
hk �

2
k +

p
2L�CV C

1=2
K zn

hk

p
n

+

p
L� C�k;n j�kj

hk

p
n

;

�k;m = �
�2
k

�
2Æk�1�k;m + Æ

2
k�1
�
; m = 1; : : : ; d (7.11)

with ��k = maxm=1;:::;m �k;m, �k;m = �k

p
v�m
�
�
2
k + v

�
m

��1=2 � minf�k;
p
v�mg, and with  

de�ned in Proposition 7.1 and zn in Corollary 7.1.

We will need the following two lemmas proofs of which require only minor modi�cations

in the proofs of Lemmas 4 and 5 from HJS.

Lemma 7.5. For n su�ciently large, the �k 's satisfy max
k�kn

�
�
k < 1=4 . In addition, for

the last iteration kn , it holds

�n :=
Cg C

1=2
V

(1� �
�
kn
)
hkn �

2
kn +

p
L� C�kn;n

j�kn j
hkn

p
n

� C
�
�
2
n
�1
L logn

�2=3
and Ækn � Æn, where Æn is de�ned in (3.6) and C means a generic constant depending on

d , M and the constants from Assumptions 1 through 5 only.

Proof. Note that �k;m � Æ
2
k�1=�

2
k for all m 62 J and �k;m � Æ

2
k�1=�

2
k + 2Æk�1=�k for

m 2 J . The �rst assertion of the lemma easily follows from the fact that hk�k decreases

during iteration, cf. Lemma 4 of HJS.

Since the dimensionality of the nonlinear component is bounded by M , it follows

j�kj2 � (d�M)Æ
4
k�1=�

4
k +M

�
Æ
2
k�1=�

2
k + 2Æk�1=�k

�2
:
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Further, the inequality j�kn�1j � C1 with some constant C1 depending on d and M

only implies in view of hkn�1 � 1=ah and 1 � �kn�1
�
�
2
n
�1
L logn

��1=3 � 1=a� that

Ækn�1 � C
�
�
2
n
�1
L logn

�1=2
; j�kn j � C

�
�
2
n
�1
L logn

�1=6
:

Substituting this bound in the formula for �n yields by hkn � 1 and �kn =

�
�
2
n
�1
L logn

�1=3
that �n � C

�
�
2
n
�1
L logn

�2=3
and therefore

Ækn �
p
2CV C

1=2

K

�
�
2
n
�1
Lz

2
n

�1=2
+ C

�
�
2
n
�1
L logn

�2=3
:

Lemma 7.6. Let n be su�ciently large. There exist random sets A1 � : : :� Akn�1 such

that P (Ak) � 1� 3k
n

and it holds on Ak

max
m=1;:::;d

��P�k+1;m�b�(k)m � �
�
m

��� � Æk ; k = 1; : : : ; kn � 1:

Proof. We proceed by induction in k . First by (3.2) there exists a random set A1 with

P (A1) � 1� 1=n such that maxm=1;:::;d jb�1 � �
�j � Æ1 on A1 . This obviously implies

max
m=1;:::;d

jP�2;m(b�1 � �
�
)j � Æ1:

Suppose now that there is Ak�1 such that P (Ak�1) � 1� 3(k�1)
n and it holds on Ak�1 :

max
m=1;:::;d

���P�k;m �b�(k�1)m � �
�
m

���� � Æk�1:

Then on Ak�1 by Lemma 7.4 P 2
�k;m

jbv(k�1)m �v�mj < Æ
2
k�1+2Æk�1�k;m simultaneously for all

m = 1; : : : ; d , and denoting U (k) a d-vector with components U
(k)
m = P

2
�k ;m

(1+�
�2
k bv(k�1)m ) ,

one gets U (k) 2 U�k .

By Corollary 7.1 there exists another random set Ak with P (Ak) � 1� 3=n such that on

Ak it holds for every U 2 U�k

max
m=1;:::;d

jP�k;m(b�m(U)� �
�
m)j � Æk;

so that, with Ak = Ak�1 \Ak , we obtain P (Ak) � 1� 3k=n and it holds on Ak

max
m=1;:::;d

jP�k;m(b�(k)m � ��m)j � Æk:

and, since for every m P�k+1;m � P�k;m , the assertion follows.

Let now Akn�1 be the random set with P (Akn�1) � 1� 3kn�3
n shown in Lemma 7.6 so

that on this set

max
m=1;:::;d

jP�kn ;m(
b�(kn�1)m � ��m)j � Ækn�1;
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and for the corresponding d-vector U (kn) with components U
(kn)
m = P

2
�kn ;m

(1+�
�2
kn
bv(kn�1)m ),

it holds U (kn) 2 U�kn
.

Let then �m be the Gaussian L-vector with the components �lm from Proposition 7.1

applied with h = hkn and � = �kn . Due to this proposition, there exists a random set

Akn with P (Akn) � 1� 2=n , so that on Akn it holds for all U 2 U�kn
:

max
m=1;:::;d

jP�kn ;m(
b�m(U)� ��m)� �m

h
p
n
j � �n;

where �n is de�ned in Lemma 7.5. This yields for the set Akn = Akn�1 \ An that

P (Akn) � 1� 3kn�1
n and the �nal estimator b�m = b�(kn)m satis�es on Akn :

max
m=1;:::;d

���P�kn (b�m � �
�
)� n

�1=2
�
�
m

��� � �n

where ��m = h
�1
�m . In view of h = hkn � 1

Ej��lmj
2
= h

�2
Ej�lmj2 � 2�

2
C
2
VCK

and the �rst two claims in (3.5) follow from Lemma 7.5. The last claim in (3.5) follow by

applying Lemma 7 of HJS and Lemma 7.4. The �rst two inequalities in (3.7) follow from

(3.5) by setting P�;m = 1 and �
�
m = 0 . The last one is proved similarly to Lemma 7.4.

7.7 Proof of Theorem 3.2

The proof can be done similarly to Spokoiny (2002) using the bound for the bias of esti-

mation from the proof of Proposition 7.1. We omit the details to save the space.

7.8 Proof of Theorem 4.1

In view of Theorem 3.1 on the set A , it holds bvm � Æ
2
n for all m 62 J . Therefore, it

su�ces to show that on A , it holds bvm > r
2
Æ
2
n for every m 2 J . Next, by Theorem 3.1

again, for m 2 J

bvm > v
�
m � P

�2
�

�
Æ
2
n + 2ÆnP�v

�
m

�
= v

�
m � Æ

2
n(1 + v

�
m�

�2
)� 2Æn(1 + v

�
m�

�2
)
1=2
v
�
m:

De�ne s2 = v
�
m=Æ

2
n and un = Æn=� . Then, on A ,

Æ
�2
n bvm > s

2 � 1� s2u2n � 2s(1 + s
2
u
2
n)

1=2 � s
2
(1� u2n � 2un)� 1� 2s:

It is straightforward to check that the right hand-side of this inequality as a function of s

is greater than r
2 for all s � sr . Therefore, on A , Æ�2n bvm > r

2 for m 2 J as required.
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7.9 Proof of Theorem 4.2

To simplify the exposition, we suppose that the resampling scheme of Section 4.1 utilizes

the true variance �
2 instead of the estimated variance b�2 . This assumption is easily

justi�ed by the result of Theorem 3.2 claiming root-n consistent estimation of �2 by b�2 .
The idea of the proof is to show that the variable bv(M+1) and the similarly de�ned variableev(M+1) for the resampling model have approximately the same distribution. Let A be the

random set from Theorem 3.1 with P (A) � 1� 3kn=n . It is obviously su�cient to show

that

P ( bJM 6= J j A) � �+ 3=n:

We therefore suppose that the event A holds true. Then, under the assumptions of the

theorem, the nonlinear component is correctly identi�ed and all the bounds of Theorem 3.1

hold. Moreover, for every m =2 J , the value nbvm can be approximated by j��mj2 , where

the distribution of the vector ��m depend on the `ideal' bandwidth b
�
= b

�(kn) , the kernel

K , basis functions  lm(�), and the design X1; : : : ; Xn only.

Next we consider the model we resample from. This arti�cial model has the same structure

(i.e. the same linear and nonlinear components) and di�ers from the original one only by the

parameters of the linear component (they are equal to zero in the resampling model) and

by the nonlinear link function. More speci�cally, the estimators bvm based on the original

model are the �true� values for the resampling model and the last step bandwidth b = b
(kn)

is the �ideal� bandwidth for the resampling model. Since the resampling model ful�lls all

the conditions that we impose on the original model, Theorem 3.1 (or Proposition 7.1

with � = 0 and b = b
(kn) ) continues to apply. This yields, in particular, that on a seteAM with P ( eAM) � 1 � 3=n , the nonlinear component of the resampling model will be

correctly identi�ed. Moreover, due to Remark 7.1, every variable nevm with m =2 J can be

approximated by the squared norm of a Gaussian random vector with the same distribution

as �
�
m . And thus, it is true for nev(M+1) . This yields, in particular, that the (1 � �) -

quantile evaluated from the distribution of nev(M+1) applies up to the approximation error

to nbv(M+1) . It follows from Theorem 3.1 that the error of approximation of nbvm by j��mj
2

can be bounded by n(!
2
n + !nÆn) � C

0
n
�1=6

(logn)
5=6 for some constant C0 . Therefore,

at least for su�ciently large n , the approximation error is small and the assertion of the

theorem follows.
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7.10 Proof of Theorem 4.3

Let A be the random set described in Theorem 3.1 with P (A) � 1� 3kn=n . In view of

Theorem 4.1, it is su�cient to prove that P (cM 6=M j A) � �+ 3M=n.

On A it holds bvm � Æ
2
n for all m =2 J and bvm > (rÆn)

2 for all m 2 J and r = s1 . Thusbv(M) > (s1Æn)
2 for all M�M and bv(M+1) � Æ

2
n . For every M < M , we resample from

the model having precisely M nonlinear regressors with bvm being the `true' measure of

nonlinearity for every m 2 bJM .

Application of Propositions 7.1 and 7.2 with � = 0 to this arti�cial models and again

Theorem 4.1 with r = 1 ensures that on a set eAM with P ( eAM) � 1�3=n , every evm for

m =2 JM ful�lls evm � Æ
2
n . Hence, ev(M+1) � Æ

2
n on eAM and the same holds for the 1��

quantile of ev(M+1) provided that � > 3=n . Therefore, for every M < M , the hypothesis

M �M will be rejected on the intersection A \ eAM . This yields

P

� cM < M j A
�
� 3(M � 1)=n: (7.12)

Next the de�nition of cM implies the inclusion

fcM > Mg � fbv(M+1) > t�(M)g;

where t�(M) is evaluated in the resampling procedure with M = M . Applying now

Theorem 4.2 we get, using also (7.12), the desired bound for P (cM 6=M), and the theorem

follows.
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