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Abstract

The present article introduces a neuronal field model for both excitatory
and inhibitory connections. A single integro-differential equation with delay
is derived and studied at a critical point by stability analysis, which yields
conditions for static periodic patterns and wave instabilities. It turns out that
waves only occur below a certain threshold of the activity propagation velocity.
An additional brief study exhibits increasing phase velocities of waves with
decreasing slope subject to increasing activity propagation velocities, which
are in accordance to experimental results. Numerical studies near and far
from instability onset supplement the work.

1 Introduction

Measured brain activity by means of encephalography is supposed to originate from
collective neuronal behavior [1]. Current source density studies indicate that in
some cortical layers, neurons are oriented in a special way to generate a large net
activity measured as encephalograms (see [2] and references therein). Suitable basic
models for a coherent activity are networks of single coupled neurons on one side
and continuous neuronal fields in space on the other. Both approaches have been
studied in numerous works (see e.g. [3, 4, 5, 6] and references therein) with different
interests. A major aspect of modeling neuronal activity is the examined interaction
range of neural excitation and inhibition. It turns out that delay effects occur easily
in local interaction models, in contrast to long-range interactions. In recent years,
many works have examined delay effects in integrate-and-fire networks [7, 8, 9, 10],
spiking neuron networks [11] and pulse coupled networks [12, 13]. However, the
study of pattern formation being subject to delay in short-range continuous fields
are rare [14].

The present contribution is based on an existing neuronal field model for long-
range connections [15, 16, 17, 18]. However, in order to formulate a short-range,
i.e. intracortical, field equation, it must be extended in several ways. The model
of Jirsa and Haken is formulated as an integral equation with delay and considers
one type of neurons, which are connected with other neurons by either excitatory or
inhibitory synapses. Long-range connections between neurons are myelinated axonal
fibers, which terminate at excitatory synapses, while inhibitory connections are local.
This assumption leads to a neglection of effects like lateral inhibition, which are
supposed to be important in shaping response properties of cortical cells [19, 20].
As a consequence, the propagation delay along axons represents the only time scale.
Our model avoids this constraint and considers both excitatory and inhibitory short-
range connections along un-myelinated axonal fibers. From physiology it is known
that myelination of axons increases the velocity of propagating pulses. Therefore,
intracortical connections reveal lower propagation velocities and, hence, larger delay
times [1, 21].

Additionally, the model of Jirsa and Haken assumes no delay between the conversion
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of incoming pulses at target synapses to dendritic potentials and back-conversion to
outgoing pulses. Since it is known from physiological studies that synapses respond
to incoming pulses by convolution with an impulse function causing delay effects,
we extend the model equations by an additional dendritic delay.

A dendritic delay was already considered in previous work by Wright et al. [22, 23,
24, 25] for intercortical connections. There, the inhibitory connections are assumed
being local and only the excitatory connections render the system nonlocal in space.
This nonlocality is then approximated by a local model based on a wave equation.
In contrast, we shall examine the situation where both interactions can have a finite
range and include the full nonlocalities in space as well as in time in our model.

In addition, we would like to point to a fundamental difference between both model
approaches. Wright and colleagues distinguish excitatory and inhibitory pulse ac-
tivity, which sum up at synapses, while our model assumes summation of excitatory
and inhibitory postsynaptic potentials at the soma. Both assumptions yield differ-
ent field equations and corresponding mathematical treatments, but are on a par.
The paper is structured as follows: the next section presents the extended equations
and a reduction of the model to a single integro-differential equation with delay. In
the subsequent sections, a stability analysis of a one-dimensional spatially homo-
geneous stationary state exhibits conditions for Turing [26] and oscillatory or Hopf
instabilities [27]. To obtain a Hopf instability it turns out that the propagation
velocity has to be constrained to a certain finite interval, which depends on biolog-
ical parameters. A brief study of the phase velocity of occuring travelling waves is
supplemented. The last section presents numerical solutions for special parameter
values.

2 Derivation of field equation

Pyramidal neurons generate action potentials, if their somatic membrane potential
exceeds an intrinsic threshold. The generated pulses propagate on axonal fibres and
terminate at synapses of adjacent neurons. Chemical synapses respond to incoming
pulse activity by potential changes, which propagate on dendrites to the soma of
the neuron, where they sum up to an effective membrane potential. The time scale
of axonal pulses is ~ 1ms, while postsynaptic potentials on the dendrites are slower
by a rough factor of 10.

The description of dynamics in neural nets is rather superficial, as there are more
detailed and complex mechanisms in single neurons [28, 29, 30]. However, we do not
consider these aspects, as these mechanisms are observed mainly at the single-neuron
level. Since neurons are highly interconnected [31, 32| and show a lack of connection
specificity, the notion of a neural mass has been introduced |33, 34]. For sufficiently
dense synaptic interactions, neural masses exhibit cooperative dynamical behavior
and are rather independent from inner dynamics. Hence, corresponding neuronal
field theories comprise properties of neuronal ensembles at a specific hierarchical



level. In the following, we consider time course-grained activity of neural volume
elements and connections between them. Since thresholds of single neurons in a
neuronal ensemble obey a distribution, a mean threshold and corresponding variance
determine the new conversion relations of membrane potentials and pulse rates [35].
Measurements indicate that the conversion from mean membrane potentials V to
puls rates P obey a sigmoid function S [36]. In a continuous neuronal field, we
obtain

Smax
T 1lte Ve (1)

P(z,t) = SmaxS[V (2, 1)]

with the maximum pulse rate Spax and the values ¢ = 1.82 and V, = 3 taken from
the literature [22]. This formulation assumes identical neurons, which only differ by
their synaptic properties. Several works used this assumptions implicitly [1, 15, 17,
33, 34], while others distinguish between excitatory and inhibitory neurons [3, 23].
Corresponding to the single neuron-level, pulse activity propagates along axonal
fibres and terminate at synapses, which either excite (e) or inhibit (i) the target
neuron. The entering pulse rate in excitatory and inhibitory synapses reads in one
spatial dimension

|z — 2’|

Pe,i(ma t) = /I;dml/@e,ife,i(m; CEI)P(LU,,t - ) + :ue,'ipezt(:r’ t) . (2)

e,

Here, we introduce synaptic connection probability distributions f, ; and correspond-
ing weight factors (.;. The considered delay term originates from a finite pulse
propagation velocity v, ;. Additionally, an external pulse activity P*** is considered
with corresponding coupling constants p.;. The response of chemical synapses to
incoming pulse activity can be described by a convolution with the impulse response
function h, ;(t) for excitatory and inhibitory postsynaptic potentials

t _
Vei(z,t) = ge,i /_oo dthei(t — )P, i(z,T) , (3)

where g.; denote excitatory and inhibitory synaptic gain factors, respectively. These
potentials are transients of membrane potentials and sum up to an effective mem-
brane potential V =V, — V;. At last, we assume

e identical impulse response functions of excitatory and inhibitory synapses, i.e.
h. = h; = h , and identical wave-pulse conversion functions S, = S; = S for
all cells,

e only intracortical connections by un-myelinated axonal fibres and common
propagation velocity v = v; = v ,

e only excitatory input P*** = P, u; = 0 and
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e isotropic and homogeneous synaptic connections.

Combination of equations (1), (2) and (3) yields

' |z — 2’|

drh(t —T) {/r dz'a.f.(z,z)S[V (', T —

jz — ']

Veo,t) = |

—00

)+ ap(em)|

v

Vi(z,t) = /t dTh(t—T)/de'a,-f,-(:v,:c')S[V(m',T— )]

—00

v

with Qe,; = ge,iﬁe,ismaxa M = Gelle- We obtain

V(:c,t)z/toodT/r dz' h(t —7) (4)

2=y, uP(w,T)}

X {(aefe(w, z') —a;fi(z,2")S[V(z', T —
Studies of synaptic mechanisms indicate the impulse response function [21]

(058 %)

h(t) =

—ont] — exp[—ast]), az > 0,
al_az(exp[ a;t] — exp[—ast]) o1, 0

which can be interpreted as a Greens function for the second order linear differential
operator

b= (g +an)p +a),
obeying
L) = 8(0) (5)

with 6(¢) being the delta-function. In addition, we like to mention the case a; =
ae = a, which simplifies the impulse response function to ot exp(—at), then called
alpha-function.

For the specific synaptic connectivity functions we assume exponential decay in
space

1
n _
fe,z(xaz) - 2’]" .

e,i

exp|—|z — &'|/re ).



Applying L to (4) and using (5), we obtain after scaling t — t\/a1qa, & — &/Te,v —
v/(res/0102) the final field equation

. 0? 1,0
LV (z,t) = [@ + (o + a)a + 1| V(z,t)
=3 [ @' (a.expl [z~ #'| [ ’
=3/ x (a.exp|—|z — a;r exp[—|z — z'|r])
xSV (z',t — =~z |)] + uP(z,t) (6)

with @ = 4/a;1/ag and r = r./r;. The excitatory and inhibitory connection param-
eters r, and r; determine spatial scales, while a and v introduce different temporal
scales.

In case of a. > a;, the synaptic connectivity function looks like a mexican hat for
r < 1 and reversed for r > 1 (cf. figure 3). The latter case or, more generally
speaking, couplings of local-inhibition lateral-excitation type are common in many
cortical areas if the axonal and dendritic arborizations of neurons tangential to the
cortical surface are considered [37, 38, 39, 40]. Roughly speaking the dendritic ar-
borizations of excitatory and inhibitory cells are comparable extending more or less
homogeneously over an area with radius in the range of up to a few hundred mi-
crometers. Axonal fibres of inhibitory neurons roughly cover the same area. In
contrast, excitatory cells, and in particular large pyramidal neurons, reveal axonal
arborizations that can extend over up to a few millimeters, where the probability
of connections decays with distance from the cell. It is further commonly assumed
that local inhibition is stronger than local excitation (for instance, because phar-
macological disinhibition of the cortex easily leads to epileptic activity). Thus, the
lateral cortical connectivity in space seems to be basically of local-inhibition lateral-
excitation type. Although the excitatory long-range connections are known to be in
part ‘patchy’ — that is synaptic contacts are not formed homogeneously in space,
but cluster in many small areas of a few hundred micometers in diameter [41, 42] —
the inverse Mexican hat nonetheless seems to be a good first aproximation to study
activation patterns arising from such a connectivity scheme.

Lateral inhibition is a phenomenon similarly prominent in neural systems, although
in a somewhat different context. Neurons in sensory systems of many species are
‘tuned’ to certain stimulus features present on the sensory surface, e.g., to the lo-
cation of dots or the orientation of bars in the visual domain, to tones in auditory
areas, or to the location of touch in the somato-sensory system. It is known since
long (e.g., [43]) that simultaneously applied stimuli which slightly differ with respect
to the feature dimension under consideration, suppress activity in a recorded cell
as compared with the response to an optimal stimulus alone [39, 40]. This effect is
believed to arise from lateral inhibition and serves to sharpen tuning functions of
cortical neurons relative to the tuning of their afferent fibres. More recently it has
been proposed that in primary cortical areas, sharply tuned and strong excitatory



couplings play an additional role in the generation of sharp tuning curves [44, 45, 46|.
These theories emphasize Mexican hat type (local-excitation lateral-inhibition) cou-
pling schemes, however, observe that the couplings here are functional connectivities
in some feature domain, which does not necessarily map to physical space on the
cortical surface. Nonetheless, nearby neurons in many cortical areas often code for
similar stimulus features. Therefore, it seem reasonable to assume distance depen-
dent delays also in these functional models.

In the subsequent sections, we study the influence of parameters r,a and v on the
field stability and spatio-temporal pattern formation out of equilibrium described

by (6).

3 Stability of a homogeneous rest state

It is well known that self-organized, spatio-temporal pattern formation may occur
in systems out of equilibrium if a spatially and temporally homogeneous state looses
stability [47, 48]. This was also demonstrated in biological systems [19]. To examine
our model with respect to the emergence of such patterns, we apply a linear stability
analysis in this section. For a stationary, homogeneous external excitation

P(.’L‘,t):PO

and an infinitely extended or periodic spatial field, equation (6) has the constant
solution (rest state) V; determined by the transcendent equation

(@e —a;))S(Vo) = Vo+uPy =0, (7)

which can be solved numerically. The existence of a fixed point in the active part of
the sigmoid function yields the restriction a. > a; (figure 1). There are indications,
that inhibitory gain factors can exceed excitatory gain factors [31], which might
lead to a. < a;. However, we neglect this case in the present work and shall assume
a. > a; for the rest of the paper. Additionally, the condition

s 1

e <
dVv Vev, Qe @i

ensures stability of the rest state. In order to determine the influence of the various
parameters entering in equation (6), especially the one of the propagation velocity v
on the stability of the rest state 1}, we shall perform a linear stability analysis with
respect to spatially varying disturbances:

V(z,t) = Vo + / dk uete A ® ®)



By inserting equation (8) into equation (6), it turns out that the equations for
different wave vectors k decouple, leading to a characteristic polynomial of sixth
order for the growth rate A (for sake of simplicity we put a = 1, corresponding to
a1 = ay):

1+ /v . r+ v
B2+ (1+Xv)2° k24 (r+A/v)?

)\2+2)\+1—7l ra;| =0, (9)

where v denotes the derivative of S at the “operating point” which can be modified
by changing P, (figure 1):

_ds

YT v

V=W
Due to the unique dependence of v on P, we may also choose -y as control parameter
instead of the external stimulus F,.

According to the common classification of spatio-temporal instabilities in extended
systems (see e.g. [47, 48]), we may determine several important cases. The most
simplest one is that of a monotonic instability, which usually leads to stationary but
spatially inhomogeneous patterns. We shall discuss these patterns here briefly.

The monotonic instability of the homogeneous state is obtained by the condition
A=0.

From equation (9) the critical . where A changes its sign then reads

r?+ (1+7r?)k* + k*
(ae — a;)r? + (ae — a;r?)k?

(k) =
A homogeneous (k = 0) monotonic instability is obtained if

1

e — Q;

Ye >

which obviously contradicts the condition for the stability of the rest state. But
for the case of local excitation and lateral inhibition, i.e. r < 1 (cf. figure 3(a)),
equation (10) can have a minimum less than 1/(a.—a;) at a certain finite & (figure 2).
A more detailed investigation shows that such a minimum occurs for

a;
7"2 < —
Qe

at critical wave vectors that behave for small 7 like 4/r. This is nothing but the
Turing instability known from non-equilibrium activator-inhibitor systems [26]. Its
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occurrence in chemistry is linked to the condition that the inhibitor must propagate
much faster than the activator [49]. In the frame of our model, small » means r, < r;,
the range of excitatory interaction has to be smaller than that of inhibition.

A more complicated case is that of an oscillatory (Hopf) instability of the rest
state, where the non-linear solution is expected to be an intrinsic time and space
dependent function. Different to the Turing case, a local inhibition and lateral
excitation is necessary, i.e. 7 > 1 (cf. figure 3(b)). If it occurs first with & # 0,
this instability is sometimes called “wave instability”. Even in the weakly nonlinear
regime, complex structures of traveling or standing wave types are expected. In the
monotonic case, the delay time and therefore the propagation velocity v plays, at
least for the eventually reached steady states, no role. In the oscillatory case, v acts
as another important control parameter, what we shall show now.

Inserting
A=iw
into equation (9) gives the two conditions
(UG + b4w4 + bng + b() =0 (11)
b5w4 + b3w2 + b1 = 0, (12)

which holds on the critical line Re(A) = 0. The coefficients b; are algebraic expres-
sions of the wave vector and the parameters of equation (9):

bi = bi(kza Y, U, Qe, a"i)

Now we fix the values of v by an external stimulus and consider the ratio r of
excitatory and inhibitory ranges as control parameter. The second free parameter
is the propagation velocity v. For the sake of simplicity, we additionally fix a., and
a; to certain values and find from equation (12)

w = w(k? r,v)
which yields, inserted into (11), the stability lines
r=r(v,k?)

in the v—7r-plane. Here k. denotes the wave vector which belongs to the mode getting
unstable first. It turns out, that k. is always finite and the oscillatory instability has
also a typical length scale (wave instability). Figure 4 shows a part of the parameter
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plane together with the Turing region, which is independent from v. One recognizes
a threshold for v, beyond which no oscillations exist.

Figure 5 outlines the dependence of the real and imaginary parts of A = A + 4w on
the wave vector near the instability limit. The parameters are » = 10 and v = 1.2.
From these computations one may deduce the phase velocity of the traveling waves
at onset of instability, according to

w(ke)
ke

’Uph =

The result is shown for several values of the propagation velocity v in figure 6.
One recognizes, that for larger values of v the phase velocity differs more and more
from the propagation velocity and the phase velocity of traveling waves decreases
significantly. This can be understood on a qualitative level by the fact that the
dendritic delay represented by the form of h(t) in equation (3) slows down the
effective propagation velocity. This effect becomes more prominent for a higher
propagation velocity v, as for small v the delay of the activity due to transmission
from one part of the neuronal ensemble to another is much larger than the delay
coming from the dendritic dynamics. The obtained values of v,, correspond well to
measured intracortical wave propagation velocities in visual cortex [50].

We conclude this section by a brief discussion of the new features of our model
compared to others. Due to the inclusion of the synaptic delay, our model has two
characteristic time scales, namely the synaptic delay and the delay caused by activity
propagation. In contrast to the nonlocal equations studied by Jirsa et al. [15], where
the first effect was neglected and no time derivatives are included, the size of v may
change the behavior of the system qualitatively. It cannot be scaled away using a
different time scale and therefore plays the role of an additional control parameter.

On the other hand, it is obvious from our calculations, that if the propagation
delay due to propagation is neglected (v — o0), an oscillatory instability would not
longer be possible (cf. figure 4). Only the Turing patterns discussed above could be
obtained in that case.

4 Numerical results

4.1 The method

In this part we wish to present some direct numerical solutions of equation (6). To
this end we rewrite it into the form of two coupled first order differential equations
(a=1):

oV(z,t) = P(z,t) (13)
0,®(z,t) = —2®(z,t) — V(z,t) + J(z,t) + uP(z,t) (14)



where J(z,t) stands for the integral on the left hand side of equation (6) and includes
all non-linearities as well as all non-local effects. Further, we continue the integration
region L periodically. From equation (6) we see that J is composed of two integrals,
each having the form

z+L/2 Y
I(z,t) = /z—L/z dz' F(z',t — |2 . d |)exp[—77|a; — ']

- /OL du (F(z — u,t — u/v) + F(z + u,t — u/v)) exp[—mu]  (15)

To evaluate this expressions further numerically, we introduce a grid in real space
with N 4 1 mesh points having equal distances Au and L = NAu. Then (15) can
be written as the sum

L N-1 Un
I(z,t) = / du G(z, u,t) exp[—nu] = ) / " du G(z,u,t) exp[—nu] (16)
0 n=0 Y Un
over the small intervals Au. Here, we used the abbreviation
G(z,u,t) = [F(z —u,t —u/v) + F(z + u,t — u/v)]

and u, = nAu. For small enough Au, G may not vary much in each interval and
can be approximated by a linear function of u:

G(z,Uni1,t) — G(z, Un, t)
Au

Inserting this into (16) leads finally after integration to the formula

G(z,u,t) = G(z,un, t) +

(’LL - u'n) Un S u S Un+1

1 N-1
I(LU, t) ~ ’l’]ZA’U, Z() eXP[—UUnH][G(fEa Un+2, t) - 2G(CE, Un+1, t) + G(:Ea Un, t)]

+% [G(a:,o,t) n G(z, Au,t) — G(:E,O,t)] K

nAu

where K is a correction of O(exp[—nL])

K = %eXp[—nL] [G(m,L,t) + Glz, Au,t) - G, L, t)]

nAu

coming from the finite length L. Note that this scheme yields the exact result
I = G/n — K for the case of a constant G.

The time derivatives in (13), (14) can be approximated by first order differential
formulas, leading to an Euler-forward scheme in time.

4.2 Turing patterns

We begin the numerical studies computing a time series in the Turing regime. From
the linearized equations we expect a transient behavior to an eventually stationary,
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spatially periodic excitation pattern. For the parameters we used a. = 6, a; =
5, re = 0.bmm and r; = 1.0mm. The x-axis, having the total length L. = 5cm, was
divided into 400 mesh intervals. The time step for the Euler-forward integration was
fixed at At = 0.05. For the propagation velocity we tried several values in the range
between 0.0025[m/s| and 0.25[m/s]|. For rescaling the velocity to physical units, one
needs values for the frequencies o;. We took a; = ap = 400s ! from [23]. We found
that there is no influence of the velocity on pattern formation in the Turing regime.

Figure 7 shows the occurrence and stabilization of a periodic Turing structure. As
initial condition we chose a randomly distributed field. For the external stimulus
we used a constant value of uP = puPy = 2.5 (cf. figure 1). Note that the time
is given in dimensionless units. To obtain the real time, this has to be multiplied
by 1/,/oance = (1/400)s and the stabilization of the structure would take about
0.2 seconds. The typical length scale of the structure is in the range of some mm,
somewhat larger but comparable to the size of the connections . ;.

4.3 Waves

Next we turn to the oscillatory regime which is obtained for r, > r;. The generic
pattern consists of more or less regular traveling waves. We distinguish between
homogeneous and inhomogeneous external stimuli, as well as between parameters
close to and well above threshold. For all runs presented below we fixed r. = 1lmm
and v = 0.16m/s. The length of the layer is now L = 1.5cm.

4.3.1 Homogeneous external stimulation

Figure 8 shows the onset of traveling waves slightly above instability of the homoge-
neous state. Again we used the value uP = uPy = 2.5 for the external stimulation.
After a short transient phase of standing waves, traveling waves are obtained, which
propagate with the phase velocity close to the one found from the linear problem.
The amplitude saturates after ¢ = 200, corresponding to ¢t = 0.5s. For this run we
chose r = 2.8, close above the corresponding instability line in figure 4.

We note that non-periodic boundary conditions could change the behavior at least
near the boundaries and that an interplay between waves and reflected waves could
lead to more involved patterns. Studies of the system with different boundaries as
well as a two-dimensional extension is currently in progress.

Figure 9 shows a situation well above onset for r = 10 and larger a. ;. From pattern
formation in non-equilibrium systems like fluids or chemical reactions [48] it is well-
known that non-periodic solutions (defects, grain boundaries in higher dimensions)
may occurre well above threshold, whereas regular (periodic) structures are usually
close to the onset of instability. The same behavior can be observed here. The initial
transient phase is now completely different and consists of standing waves with an
irregular but quite large wave length. Then traveling waves invade the whole region,
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but localized defects remain. These defects move in the opposite direction of the
waves and with a much slower velocity. In that way the system is able to store
information and may act as a dynamic memory. In the next paragraph, we show
how this information can be erased by an external localized stimulus.

4.3.2 Inhomogeneous external stimulation

Next we allow for a strong but spatially localized external stimulus of the form

[ wPy+Q(t),  0A475L < z < 0.525L
uP(z,t) = { uby, else

where pPy = 2.5 and Q(t) can be switched on and off in time to a value of 20.

Figure 10 shows pattern formation close to threshold with a constant stimulus
switched on from the beginning, while all parameters are the same as in figure 8.
Due to the inhomogeneity, the patterns are now standing waves instead of traveling
waves. This is an evident example how a local stimulation may change the global
behavior of the structure. Switching off the stimulation would lead to a transient to
traveling waves.

In figure 9 we found the formation and storage of topological defects in a traveling
wave pattern well above threshold. Now we wish to study the influence of a localized
stimulus in space and time onto such a pattern. In figure 11 we used a three-defect
state and switched on a localized stimulus at ¢ = 45. The stimulus erases the defects
and after switching it off at ¢ = 130, a regular traveling wave pattern remains. We
also found solutions where a stimulus produces topological defects which remain in
the system after switching it off. A more detailed analysis of the stimulus shape and
time course on the creation and annihilation of defects is left for the future.

5 Conclusions

The present work proposes a field model for intracortical activity based on a previ-
ously developed model for long-range interactions. The derived single field equation
comprises both excitatory and inhibitory contributions. It considers two spatial
scales expressed by the ratio of excitatory and inhibitory connection ranges and two
time scales defined by synaptic response and axonal propagation delay. An analyt-
ical stability analysis for a stationary state homogeneous in space yields conditions
for different pattern instabilities. It is shown analytically for spatially constant ex-
ternal stimuli that near onset of instability local excitation and lateral inhibition
enables Turing patterns, while oscillatory instabilities can occur in the case of local
inhibition and lateral excitation. Numerical simulations confirm these findings. In
addition, it turns out, that oscillatory instabilities only occur beyond a certain delay
threshold. In contrast, Turing patterns are observed being independent from delay
effects. Inspection of the observed phase velocity of waves shows its increase with
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decreasing slope with increasing propagation velocity. Simulations exhibit phase
velocities similar to measured activity propagation velocities. Finally, numerical
simulations subject to non-constant external stimuli and far from equilibrium ex-
hibit more complex patterns as travelling defects and multi-frequency waves.

The proposed model exhibits self-organized pattern formation subject to an exter-
nal stimulus. Hence, it might represent a generic model for single neuronal entities,
which might be combined to model networks. However, future work is necessary,
concerning the influence of boundary conditions. A two-dimensional formulation
and 2D numerical solutions are desirable, as well as further studies on effects of
non-constant external stimuli. An important future aspect will be the comparison
to experimental data. This step is regarded crucial and might be attacked by studies
of frequency power spectra or electromagnetic forward solutions.
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Figure 1: Graphic solution of equation (7). The intersection of the dashed lines with
the sigmoid function yields the homogeneous solutions of the rest state.

Figure 2: Critical v, necessary for a Turing instability of the rest state for several
values of r = r./r;. At that threshold, the selected pattern has the wave vector that
corresponds to the minima of 7,. For » > 1 no such minimum exists.

Figure 3: Two cases of synaptic connections with K(|z — z'|) = a. exp[—|z — 2'|] —
a;rexp||z — z'|r] (a) r < 1: the neuronal field excites locally and inhibits laterally.
A Turing pattern is possible for the additional condition 72 < a;/a. (plot computed
for r = 0.25,a, = 6,a; = 5). (b) r> 1: the neuronal field shows local inhibition and
lateral excitation. An oscillation instability is possible for additional conditions (see
figure 4) (computed for r = 10, a, = 41, a; = 40).

Figure 4: Phase diagram of instabilities. An oscillatory instability is obtained for the
propagation velocity in a certain interval. The Turing instability does not depend
on v.

Figure 5: Growth rate (left) and frequency of the first critical mode with respect to
its wave vector. Close to onset, a small band of modes will grow exponentially until
nonlinear selection and saturation processes come into play.

Figure 6: Phase velocity v, of traveling waves versus propagation velocity v.

Figure 7: Occurrence of a Turing structure out of a random dot initial state. The
time proceeds vertically. The parameters are r; = 0.001lm, r. = 0.0005m, a; =
5, ae =6, v =0.08m/s.

Figure 8: An oscillatory state of traveling waves is found close to threshold for
r; = 0.00037m, 7, = 0.001m, a; = 40, a, = 41, v = 0.16m/s.

Figure 9: Well above threshold topological defects remain from the random initial
pattern and are stored. They move slowly in opposite direction to the traveling
waves. r; = 0.0001m, r, = 0.001m, a; = 100, a, = 101, v = 0.16m/s.

Figure 10: A localized external stimulus in the center of the region. For the same
parameters as in figure 8 standing waves are obtained.

Figure 11: Topological defects in a state obtained with the parameters of figure 9
can be removed by switching on an external stimulation.
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