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Abstract

We �rst introduce some coupling of a �nite number of Probabilistic Cel-

lular Automata dynamics (PCA), preserving the stochastic ordering. Using

this tool, and under some assumption (A) we establish ergodicity for general

attractive probabilistic cellular automata on SZ
d
, where S is �nite: this means

the convergence towards equilibrium of these Markovian parallel dynamics, in

the uniform norm, exponentially fast. For a class of reversible PCA dynamics

on f�1;+1gZ
d
, with a naturally associated Gibbsian potential ', we prove that

a Weak Mixing condition for ' implies the validity of the assumption (A); thus

the `exponential ergodicity' of the dynamics towards the unique Gibbs mea-

sure associated to ' holds. On some particular examples of this PCA class,

we verify that our assumption (A) is weaker than the Dobrushin-Vasershtein

ergodicity condition. For some precise PCA, the `exponential ergodicity' holds

as soon as there is no phase transition.
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1 Introduction

The main feature of Probabilistic Cellular Automata dynamics (usually abbreviated

in PCA) is the parallel, or synchronous, evolution of all the coordinates or inter-

acting elementary components. They are precisely discrete-time Markov chains on

a product space S� (con�guration space) whose transition probability is a product

measure. In this paper, S is assumed to be a �nite set (so called spin space), and �

(set of sites) a subset, �nite or in�nite, of Zd. The fact that the transition probability

kernel P (d�j�0) (�; �0 2 S
�), is a product measure means that all spins f�k : k 2 �g

are simultaneously and independently updated (parallel updating). This transition

mechanism di�ers from the one in the most common Gibbs samplers, where only

one site is updated at each time step (sequential updating). In opposition to these

dynamics with sequential updating, it is simple to de�ne PCA's on the in�nite set

S
Z
d

without passing to continuous time.

Probabilistic Cellular Automata were �rst studied as Markov chains in the 70's under

the name locally interacting Markov systems or discrete local Markov systems. Most

of these results may be found in [30]. They were also called synchronous dynamics

by D. Dawson (see [4]). The terminology used here arose with [11]. We refer to

[23] for detailed historical informations and list of possible applications of Cellular

Automata dynamics.

In this article we will focus on local PCA i.e. each site interacts at each time only

with a �nite number of neighbouring sites and non degenerate PCA, whose local

behaviour is never deterministic. Let us however �rst mention some recent works

on other probabilistic cellular automata classes. In [7], the non-Gibbsian nature of

equilibrium state of a degenerate PCA is established. In [25] numerical simulations'

investigation for this model is done. In [10, 14], some non-local PCA are studied and

applied to mathematical �nance, following the idea introduced by Föllmer in [8, 9],

to use PCA as random media for �nancial stochastic models. For PCA dynamics

considered in this paper, an application to credit risk modelling is in preparation.

The main purpose of this article is to study the convergence towards an equilibrium

state of PCA dynamics on SZ
d

where S is a �nite totally ordered set. The expression

`equilibrium state' designs a stationary probability measure � on S
Z
d

characterised

by the relation �P = � with the notations de�ned below. As usual, the Markov

process P is said ergodic if it exists a unique stationary measure � such that for all

initial measure � on S
Z
d

: limn!1 �P
(n) = �, for the weak convergence topology. A

slightly stronger de�nition of ergodicity, which will be satis�ed here, is: it exists a

unique stationary measure � such that for all local function f ,

lim
n!1

sup
�

��� Z f(!(n)) P ( d!(n) j !(0) = �)�

Z
f d�

��� = 0;

or equivalently:

lim
n!1

sup
�;�

D
�
P

�
!(n) 2 :

��
!(0) = �

�
; P

�
!(n) 2 :

��
!(0) = �

��
= 0;
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where D is a distance on the probability measures set compatible with the weak

convergence topology.

Let us emphasise that the non-degeneracy hypothesis implies that the asymptotical

behaviour of PCA dynamics on S
� where � b Z

d (called �nite volume PCA dy-

namics) is perfectly known. It is a classical result for �nite state space aperiodic

irreducible Markov Chains. Such discrete time processes admits a unique stationary

probability measure, and are ergodic. However, if the PCA dynamics is considered

on S
Zd (in�nite volume dynamics), some non-ergodic behaviour may arise (see for

instance example 2 section III in [16]). The most famous condition which insures

ergodicity of the PCA dynamics on S
Z
d

is due to Dobrushin and Vasershtein's work

(see [5, 31]), and applies in the high-temperature regime. Others conditions of er-

godicity for general PCA can be found in the following works: [28, 18, 15, 26, 24].

See for instance Sections 6.1.2 and 6.1.3 in [23] for details. They all are e�ective

when some high-temperature condition holds or in some perturbative cases.

We will here adopt another approach, partially inspired by Martinelli and Olivieri's

work for a class of continuous time Interacting Particle Systems called Glauber

dynamics (see [27]), and based on a famous statement of Holley about rate of con-

vergence ([13]).

In section 2, we develop some coupling of a �nite number of Probabilistic Cellular

Automata dynamics, preserving the stochastic ordering (Theorem 2.3). In section 3,

we then establish four equivalent conditions, su�cient to insure ergodicity for at-

tractive probabilistic cellular automata (�rst part of Theorem 3.4). Moreover, under

the assumption (A), we establish our main result (second part of Theorem 3.4): con-

vergence towards equilibrium in the uniform norm, with an exponential rate. It will

then be illustrated in section 4, on a class of reversible PCA dynamics on f�1;+1gZ
d

,

associated in a natural way to a Gibbsian potential '. We prove that Weak Mixing

condition for ' implies the validity of this assumption (A), thus the `exponential

ergodicity' of the dynamics towards the unique Gibbs measure associated to ' holds

(Theorem 4.3). For some precise PCA of this class, we verify that our assump-

tion (A) is weaker than the Dobrushin-Vasershtein ergodicity condition and note

that the exponential ergodicity holds as soon as there is no phase transition.

2 Stochastic order preserving coupling of PCA

2.1 De�nitions and general assumptions

Let the spin space S be a �nite set, with total order denoted by 6. Let P denotes a

PCA dynamics on the product space SZ
d

, which means a time-homogeneous Markov

Chain on S
Zd whose transition probability kernel P veri�es, for all con�guration

3



� 2 S
Z
d

, � = (�k)k2Zd 2 S
Z
d

,

P ( d� j � ) = 

k2Zd

pk( d�k j � );

where for all site k 2 Z
d, for all �, pk( : j�) is a probability measure on S, called

updating rule. In other words, given the previous time step (n � 1), all the spin

values (!k(n))k2Zd at time n are simultaneously and independently updated, each one

according to the probabilistic rule pk( : j (!k(n � 1))k2Zd). For any subset � of

Z
d, and for all con�gurations � and � of SZ

d

, the con�guration ����c is de�ned by

�k if k 2 �, else �k. Let the notation �� design (�k)k2� too. Let � be a �nite

subset of Zd, which is denoted by � b Z
d. We call �nite volume PCA dynamics

with boundary condition � (� 2 S
Zd or � 2 S

�c), the Markov Chain on S
� whose

transition probability P �
� is de�ned by:

P
�
�(d�� j �� ) = 


k2�
pk( d�k j ����c ):

It may be identi�ed with the following in�nite volume PCA dynamics on S
Z
d

:

P
�
�(d� j �� ) = 


k2�
pk( d�k j ����c )
 Æ��c (d��c) (2.1)

where the spins of � evolve according to P
�
�, and those of �c are almost surely

`freezed' on the value � .

Let us then recall some usual notations. For � probability measure on SZ
d

(equipped

with the Borel �-�eld associated to the product topology), �P refers to the law

at time 1 of the PCA dynamics with law � at time 0, in other words �P (d�) =R
P (d�j�)�(d�). Recursively �P (n) = (�P (n�1))P is the law at time n of the system

evolving according to the PCA dynamics P and initial law � at time 0. For each

function f on S
Z
d

, P (f) denotes the function de�ned by P (f)(�) =
R
f(�)P (d�j�).

In the sections 3 and 4, PCA dynamics studied are non degenerate ones. It means

the following condition holds:

8k 2 Zd
; 8� 2 S

Z
d

; 8s 2 S; pk( s j � ) > 0 : (2.2)

PCA dynamics are said to be local if

8k 2 Zd
; 9 Vk b Z

d
; pk( : j�) = pk( : j�Vk);

that is the probabilistic evolution rule pk depends only of the spin values of the �nite

number of the `neighbouring sites' in Vk. PCA considered in sections 3 and 4 will

be assumed to be local.

4



A PCA dynamics P on the in�nite volume space SZ
d

is said to be translation in-

variant (or space homogeneous) if the following condition holds:

8k 2 Zd
; 8s 2 S; 8� 2 S

Zd

; pk( s j � ) = p0( s j ��k� ) ;

where �k0(�) de�nes the translation of a con�guration � of SZ
d

with �k0(�) =

(�k�k0)k2Zd. PCA dynamics will in sections 3 and 4 be assumed to be translation

invariant too.

Let us now de�ned some notions of stochastic ordering 4. Two con�gurations �

and � of S� (with � � Z
d) are said to satisfy the stochastic ordering � 4 � if

8k 2 �; �k 6 �k. A real function f on S
� will then be said to be increasing if

� 4 � implies f(�) 6 f(�). Thus two probability measures �1 and �2 satisfy the

stochastic ordering �1 4 �2 if, for all increasing functions f on S
�, �1(f) 6 �2(f),

with the notation �i(f) =
R
f(�)�i(d�). As Markov chain, a PCA dynamics P on

S
� (� � Z

d) is said to be attractive if for all increasing function f , P (f) is still

increasing. Let us de�ne too, for s 2 S; � 2 S
�, the function Gk(s; �) by:

Gk(s; �) =
P
s0>s

pk(s
0j�); (2.3)

and note that Gk(s; �) is always a decreasing function in s since

Gk(s; �) =
R
11fs0:s0>sg(s

0) pk(ds
0j�) = 1� Fk(s; �); where Fk(s; �) is the repartition

function of pk(:j�). Then we state the following proposition which announce some

equivalent de�nitions of attractivity:

Proposition 2.1 Let P be a PCA dynamics on S
�
(where � � Z

d
). The attractivity

of the dynamics P is equivalent to each one of the following assumptions:

(i) for all probability measures �1 and �2: �1 4 �2 ) �1P 4 �2P ;

(ii) for all (�; �) con�gurations of S�
, � 4 � implies P ( : j � ) 4 P ( : j � ) ;

(iii) for all (�; �) such that � 4 �, 8k 2 �, pk( : j � ) 4 pk( : j � ) ;

(iv) for all k in �, and all value s 2 S, the quantity Gk(s; �) de�ned by (2.3) is

increasing in �.

Proof is a straightforward generalisation of Proposition 2.3.4 in [23] where the case

S = f�1;+1g was treated.

Note that the last two characterisations use the product form of the transition

probability kernel of a PCA. Moreover, when S = f�1;+1g, the last condition is

equivalent to:

8k 2 �; 8�; � 2 S
Zd such that � 4 �; pk(+1j�) 6 pk(+1j�):

Remark the obvious but important fact, that when P is attractive then,

�1 4 �2 ) �1P
(n)
4 �2P

(n)
; 8n 2 N� :
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2.2 Increasing synchronous coupling of PCA

Coupling techniques for stochastic processes are now established powerful tools for

the analyse of the time asymptotic behaviour of Interacting Particle Systems (see

for instance [19]). It means the construction of a probability space on which several

dynamics may evolve at the same time. The original idea for general coupling

techniques and their applications comes from the pioneer work of Doeblin ([6]). See

the references [21, 20] for more detailed informations. Here we construct in a new

way a coupling of a �nite number of (possible di�erent) PCA dynamics which will

be a PCA dynamics too and which has the property to preserve stochastic ordering.

As far as we know, this kind of coupling was only mentioned in the following works:

Steif (see [29]) de�nes such a coupling but just for two PCA and S restricted to

f�1;+1g; and Lopez and Sanz (see [22]) proposed a general-but not easy to use-

approach. In both of those works, none of the properties we need were studied.

Moreover we give in this section a simple way to construct such a coupling which is

e�cient for numerical simulations' algorithm.

By coupling of two time homogeneous Markovian dynamics P and P
0 de�ned on a

state space E we mean a Markov Chain Q on E � E, such that marginal dynamics

coincide respectively with P and P 0. Generalisation to coupling of a �nite number of
Markovian dynamics follows easily. A particular important case for coupling PCA

dynamics is when Q has a PCA form too. Let P 1
; P

2
; : : : ; P

N be N probabilistic

cellular automata dynamics, each P
i being de�ned on S

Zd thanks to its updating

rule (pik)k2Zd. We call synchronous coupling of the PCA dynamics P 1
; P

2
; : : : ; P

N

a Markovian dynamics Q on (SZ
d

)N , coupling of the (P i)16i6N , which is a PCA

dynamics too. It means that Q's updating rules (qk)k2Zd are such that:

8i 2 f1; : : : ; Ng; 8si 2 S; 8� i 2 S
Zd

;

p
i
k(s

i j � i) =
X

sj2S;j 6=i
qk

�
(s1; : : : ; sN)

�� (�1; : : : ; �N)�:
For instance, the trivial independent product case:

8(s1; s2; : : : ; sN) 2 S
N
; qk

�
(s1; : : : ; sN)

�� (�1; : : : ; �N)� = i=NY
i=1

p
i
k(s

i j � i);

de�nes a PCA dynamics Q which preserves the independence of each dynamics P i

on each component. However, this kind of synchronous coupling is not rich enough

for our purpose. To study ergodicity, a coupling which has the coalescence property

is indeed more convenient. It means, if it exists a time n0 and a realization !,

such that two components i and j (i < j) coincide (!i(n0) = !
j(n0)), then, for all

successive time n > n0, these components will almost surely remain equal, and more

exactly:

8n > n0; 8l; i 6 l 6 j; !
i(n) = !

l(n) = !
j(n):

It is easy to see that a preserving stochastic ordering coupling will have this prop-

erty, emphasing the fact that with this coupling dynamics the evolutions on each

components are strongly correlated.
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Before establishing the main result of this section, we introduce a notion of order

between N PCA dynamics on S
Z
d

.

De�nition 2.2 Let (P 1
; P

2
; : : : ; P

N) be a N-uple of PCA dynamics where N > 2

and P
i = (pik)k2Zd (1 6 i 6 N). It is said increasing if:

8k 2 Zd
; 8(�1; �2; : : : ; �N) 2 (SZ

d

)N tel que �
1
4 �

2
4 : : : 4 �

N
; 8s 2 S

G
1
k(s j �

1) 6 G
2
k(s j �

2) 6 : : : 6 G
N
k (s j �

N);

where, according to (2.3), G
i
k(s; �) =

P
s0>s

p
i
k(s

0j�).

A fundamental example of an increasing N -uple of PCA dynamics is: if P is an

attractive PCA dynamics then for all N > 2, the N -uple (P; P; : : : ; P ) is increasing.

Here is now the statement:

Theorem 2.3 Let (P i)16i6N be N probabilistic cellular automata dynamics on S
�
.

It exists a synchronous coupling written P
1
~ P

2
~ : : :~ P

N
which preserves the

stochastic order as soon as (P 1
; P

2
; : : : ; P

N) is an increasing N-uple; that is to say:

for all initial con�guration (�1; : : : ; �N) such that �
1
4 �

2
4 : : : 4 �

N
and for all

time n > 1,

P
1
~ : : :~P

N
�
!
1(n) 4 : : : 4 !

N(n)
�� (!1

; : : : ; !
N)(0) = (�1; : : : ; �N)

�
= 1: (2.4)

Such a coupling P
1
~ P

2
~ : : :~ P

N
will be called increasing synchronous coupling

of (P 1
; P

2
; : : : ; P

N).

Proof: We explain here the way to construct explicitly the coupling P 1
~P

2
~ : : :~

P
N , the fact that it preserves stochastic ordering is then easy to check. Because S

is a totally ordered set, let us enumerate the spin set elements with:

S = f�; : : : ; s; s+ 1; : : : ;+g;

where + (resp. �) denotes-symbolically-the maximal (resp. minimal) of S, and 's+1'

denotes the successive element of s according to the increasing (6) enumeration.

Let n be a �xed step time. We now explain how to construct the con�guration

(!1
; : : : ; !

N)(n + 1), knowing the con�guration (!1
; : : : ; !

N)(n). Let (Uk)k2� be a

family of independent identically distributed uniform laws on [0; 1]. Since we are

constructing a synchronous coupling, it is enough to precise the rule for a �xed

site k 2 �. Let call r a realization of the random variable Uk. Use the following

algorithmic rule to choose the value !ik(n + 1) for any i (1 6 i 6 N):

if Gi
k(s+ 1; !i(n)) 6 r < G

i
k(s; !

i(n)) then assign !
i
k(n+ 1) = s : (2.5)

Note that Gi
k(+; !

i(n)) = p
i
k(+j!

i(n)) and G
i
k(�; !

i(n)) = 1.

7



Remark that the stochastic dependence between the components i comes from the

fact that we use the same realization`r of Uk for all the components. �

It is clear that if all the PCA dynamics (P i)16i6N are moreover local then the

coupling P
1
~ P

2
~ : : : ~ P

N is local too. And if each P
i is translation invariant,

so is the coupling. Note however, that even if the P
i are non degenerate PCA

dynamics, in general the coupling is far from being non degenerate, because of the

strong correlation between the components.

Pay attention to the following compatibility property, easy to check (see Proposi-

tion 5.3.1 in [23]), that the introduced coupling presents. Let N and N
0 be two

integers such that 1 6 N < N
0. Let (P 1

; : : : ; P
N 0

) be N 0 PCA dynamics. The pro-

jection of the coupling P 1
~ P

2
: : :~ P

N 0

on any N components coincides with the

direct coupling of these N dynamics. In particular, when theses dynamics are iden-

tical (let us say, to P ), the marginal of P~N
0

on N components chosen in f1; ::; N 0g
is the same as the coupling P

~N . Using this property, from now on, the notation

IP will denote the coupling P ~P ~ : : :~P of N times the same PCA dynamics P ,

where N will be a �nite large enough number. It means:

IP = P
~N

: (2.6)

Moreover, if P is attractive, then, using Theorem 2.3, we known that the coupling

IP will preserve stochastic ordering.

2.3 Comparison of �nite & in�nite volume PCA

In order to study, in section 3, the behaviour of a PCA dynamics P on S
Z
d

using

�nite volume associated dynamics P �
� on S� with � b Z

d, we need some preliminary

remarks and establish three lemma.

Remark �rst the following property, which is characteristics of discrete time Inter-

acting Particle Systems. Let de�ne � = [k2�Vk = �
(1)
; and:

�
(2)

= [k2�Vk = �
(1)

(1)

; : : : �
(n)

= [
k2�(n�1)Vk :

So �
(n)

is the set of sites of Zd which at time n0 may in�uence the spin values of

sites in � at time n0+n. Note that if at time 0, two di�erent con�gurations coincide

on �
(n)

then, almost surely, they will coincide at time n on the sites of �. This is

the purpose of the following statement: for n �xed, for all �nite subset � of Zd, for

all con�gurations (�; �) 2 (SZ
d

)2 such that �
�
(n) � �

�
(n) we have:

IP

�
!
1
�(n) � !

2
�(n)

���(!1
; !

2)(0) = (�; �)
�
= 1: (2.7)

We now establish the following useful lemma. For any time n 2 N , let us de�ne the
quantity, which will be used in section 3 in order to control the ergodicity:

�(n) = IP

�
!
1
0(n) 6= !

2
0(n)

���(!1
; !

2)(0) = (���;+++)
�
; (2.8)

8



where+++ (resp. ���) denotes the con�guration of SZ
d

equal, in all sites, to + (resp. �).

Lemma 2.4 Let P be an attractive PCA dynamics, and IP denotes its coupling

introduced in (2.6). Let �; � 2 S
Zd

be such that � 4 �. The following inequality

holds:

IP

�
!
1
0(n) 6= !

2
0(n)

���(!1
; !

2)(0) = (�; �)
�
6 �(n) :

Proof: First remark, using the compatibility property (stated at the end of Sub-

section 2.2):

IP

�
!
1
0(n) 6= !

2
0(n)

���(!1
; !

2)(0) = (�; �)
�

= IP

�
!
2
0(n) 6= !

3
0(n)

���(!1
; !

2
; !

3
; !

4)(0) = (���; �; �;+++)
�
:

Since ��� 4 � 6 � 4 +++, and IP's property (2.4), for all n,

under IP
�
(!1

; !
2
; !

3
; !

4) 2 :

���(!1
; !

2
; !

3
; !

4)(0) = (���; �; �;+++)
�
, we have:

!
1(n) 4 !

2(n) 4 !
3(n) 4 !

4(n); thus:

!
1
0(n) 6 !

2
0(n) 6 !

3
0(n) 6 !

4
0(n) IP

�
:

���(!1
; !

2
; !

3
; !

4)(0) = (���; �; �;+++)
�
� a:s:

Then the conclusion follows, using !
2
0(n) < !

3
0(n) ) !

1
0(n) < !

4
0(n), and the com-

patibility property:

IP

�
!
2
0(n) 6= !

3
0(n)

���(!1
; !

2
; !

3
; !

4)(0) = (���; �; �;+++)
�

6 IP

�
!
1
0(n) 6= !

4
0(n)

���(!1
; !

2
; !

3
; !

4)(0) = (���; �; �;+++)
�

= IP

�
!
1
0(n) 6= !

2
0(n)

���(!1
; !

2)(0) = (���;+++)
�
:

�

From now on, let � be a �nite subset of Zd. Let P+++
� (resp. P���

� ) be the dynamics on S�

de�ned in (2.1) with the maximal (resp. minimal) boundary condition +++ (resp. ���).
If the PCA dynamics P is attractive, it is easy to check that, (P���

� ; P; : : : ; P; P
+++
� )

is increasing, and thus the coupling P
���
� ~ P ~ : : : ~ P ~ P

+++
� has the property of

preserving stochastic order.

Lemma 2.5 Let P be an attractive PCA dynamics and � b Z
d
. Then, for each

initial condition � on S
Zd

and for any time n, we have:

P
���
�

�
!(n) 2 :

��
!(0) = ��(���)�c

�
(2.9)

4 P

�
!(n) 2 :

��
!(0) = �

�
4 P

+++
�

�
!(n) 2 :

��
!(0) = ��(+++)�c

�
Proof: For any initial condition � in S

Zd, note: ��(���)�c 4 � 4 ��(+++)�c. Since P is

attractive, the coupling P�
� ~ P ~ P

+
� preserves stochastic ordering, and then:

P
���
� ~ P ~ P

+++
�

�
!
1(n) 4 !

2(n) 4 !
3(n)

��(!1
; !

2
; !

3)(0) = (��(���)�c; �; ��(+++)�c)
�
= 1

Using the de�nition of the coupling, we then prove the statement. �
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Lemma 2.6 Let P be an attractive PCA dynamics, and consider (�(n))n2N� de�ned
by (2.8); then the following inequality holds:

�(n) 6 P
���
� ~ P

+++
� (!1

0(n) 6= !
2
0(n) j(!

1
; !

2)(0) = (���;+++)):

Proof: Using ��� 4 ��� 4 +++ 4 +++, and the preserving order coupling, we obtain an

almost surely inequality, which applied at the site origin, gives:

P
���
� ~ P ~ P ~ P

+++
�

�
:

��(!1
; !

2
; !

3
; !

4)(0) = (���;���;+++;+++)
�
a:s:;

!
1
0(n) 6 !

2
0(n) 6 !

3
0(n) 6 !

4
0(n):

Then:

P
���
� ~ P ~ P ~ P

���
�

�
!
2
0(n) 6= !

3
0(n)

�� (!1
; !

2
; !

3
; !

4)(0) = (���;���;+++;+++)
�

6 P
���
� ~ P ~ P ~ P

+++
�

�
!
1
0(n) 6= !

4
0(n)

�� (!1
; !

2
; !

3
; !

4)(0) = (���;���;+++;+++)
�
;

and the conclusion holds, using the compatibility property of the coupling: P���
� ~

P ~ P ~ P
+++
� projected on components 1 and 4 is equal to P���

� ~ P
+++
� , and projected

on components 2 and 3 is equal to P ~ P . �

3 Ergodicity for attractive PCA dynamics

Let us �rst emphasise the fact that all the measures considered here are probability

measures. From now on, PCA dynamics considered will always be local, translation

invariant, non degenerate and attractive.

3.1 Stationary measures

Before stating the main result in the next section, we prove two results, using dy-

namics' attractivity. The �rst one (Proposition 3.1) establishes that the unique �nite

volume stationary measure ��� associated to �nite volume dynamics P �
� increases (in

the sense of stochastic order) when the boundary condition � increases. It is a usual

result for Glauber dynamics, but note that in our context, neither the explicit form

of these measures is known, nor any (ferromagnetic) Gibbsian nature. This property

will be fundamental for the development of our argumentation, and is essentially a

consequence of the existence of the preserving order coupling.

The second result (Proposition 3.3) identi�es extremal measures�with respect to the

stochastic order�of the set of in�nite volume stationary measures. They coincide

with spatial limit of �nite volume stationary measures with extremal boundary

conditions, and with in�nite volume temporal asymptotics of deterministic initial

conditions +++ and ���.

10



Proposition 3.1 Let � be a �nite subset of Z
d
. For all attractive PCA dynam-

ics, stationary measures of �nite volume associated dynamics P
�
� have the following

monotonicity property: � 4 �
0 ) �

�
� 4 �

� 0

� . In particular, the measures �
���
� et �

+++
� are

the extremal measures of the set f��� : � 2 S
�cg.

Proof: Let � et � 0 be two boundary conditions such that � 4 �
0 and let f be an

increasing function on SZ
d

. It is easy to check that (P �
�; P

� 0

� ) is an increasing couple,

thus P
�
� ~ P

� 0

� preserves stochastic order. Let � 2 S
Z
d

be an initial condition.

Because, ����c 4 ���
0
�c, at time n inequality is preserved, and using monotonicity

of f , we have:

P
�
� ~ P

� 0

�

�
f(!2(n))� f(!1(n))j (!1

; !
2)(0) = (�; �)

�
> 0 :

Thus

P
�
�(f(!(n)) j !(0) = �) 6 P

� 0

� (f(!(n)) j !(0) = �):

Conclusion follows letting n going to in�nity, and using �nite volume ergodicity. �

For L integer, let us now denote by B(L) the ball B(0; L):

B(L) = fk 2 Zd : kkk
1
6 Lg ; (3.1)

where kkk
1
=
Pd

i=1 jkij with k = (k1; k2; : : : ; kd) 2 Z
d.

Lemma 3.2 Let P be an attractive PCA dynamics. Let �
�
B(L) be the stationary

measure of the �nite volume dynamics P
�
B(L) associated to P . For all P -stationary

measure �, and for all integer L, the following relation holds :

�
���
B(L) 
 Æ(���)B(L)c 4 � 4 �

+++
B(L) 
 Æ(+++)B(L)c

: (3.2)

Proof: The triple (P�
B(L); P; P

+
B(L)) is increasing, so P

�
B(L) ~ P ~ P

+
B(L) preserves

stochastic order. Then, for any con�guration � 2 S
Z
d

, ��� 4 � 4 +++ implies

P
���
B(L)

�
!(n) 2 :

���!B(L)(0) =���� 4 P

�
!(n) 2 :

���!(0) = �

�
4 P

+++
B(L)

�
!(n) 2 :

���!B(L)(0) = +++
�
:

Let � be a P -stationary measure. Integrating � with respect to � in the precedent

relation, and using stationarity, we then have:

P
���
B(L)

�
!(n) 2 :

���!B(L)(0) = ���� 4 �( : ) 4 P
+++
B(L)

�
!(n) 2 :

���!B(L)(0) = +++
�

Finite volume ergodicity states now, for sss = +++ and sss =���:

lim
n!1

P
sss
B(L)

�
!(n) 2 :

���!B(L)(0) = sss

�
= �

sss
B(L)( : )
 Æ(sss)B(L)c

:

We conclude letting L go to in�nity. �
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Proposition 3.3 Let P be an attractive PCA dynamics and �
�
B(L) be the stationary

measure of the �nite volume associated dynamics P
�
B(L). Then, the volume limits

limL!1 �
���
B(L) 
 Æ(���)B(L)c and limL!1 �

+++
B(L) 
 Æ(+++)B(L)c

exist, respectively coincide with

the temporal limits: limn!1 Æ���P
(n)

and

limn!1 Æ+++P
(n)
. Furthermore they are extremal elements (eventually equal) of the

set S of stationary measures for P . This means: all P -stationary measure � veri-

�es:

�
���
4 � 4 �

+++ (3.3)

where:

�
+++ = lim

n!1
Æ+++P

(n) = lim
L!1

�
+++
B(L) 
 Æ(+++)B(L)c

and

�
��� = lim

n!1
Æ���P

(n) = lim
L!1

�
���
B(L) 
 Æ(���)B(L)c :

In particular, P admits a unique stationary measure � if and only if �
��� = �

+++
.

Proof: Note that the limits limL!1(����B(L) 
 Æ(���)B(L)c ) and limL!1(�
+++
B(L) 
 Æ(+++)�c )

exist due to monotonicity of the following sequences: (��B(L) 
 Æ(�1)B(L)c )L and

(�+B(L) 
 Æ(+1)B(L)c
)L. This comes from the fact that }� �

+++
�0 4 �

+++
� where � and �0

are two �nite subsets of Zd such that � b �0, and }� denotes the projection on

�. This last relation is easily checked using the increasing coupling (P+++
�0 ; P

+++
� ) and

similar argumentation as in Lemma 3.2's proof. Since �sssL is P sss
�-stationary, the limits

limL!1(�
���
B(L) 
 Æ(���)B(L)c ) and limL!1(�

+++
B(L) 
 Æ(+++)B(L)c

) are P -stationary.

Using inequalities (3.2), we have, for all P -stationary measure �:

lim
L!1

�
���
B(L) 
 Æ(���)B(L)c 4 � 4 lim

L!1
�
+++
B(L) 
 Æ(+++)B(L)c

: (3.4)

On the other hand, it is easy to check Æ+++P 4 Æ+++, so using P 's attractivity, (Æ+++P
(n))n2N

is decreasing. Analogously, (Æ���P
(n))n2N is increasing. Thus, the limits limn!1 Æ���P

(n)

and limn!1 Æ+++P
(n) exist, and then are obviously P -stationary measures.

Let � be a P -stationary measure. Because P is attractive, and Æ��� 4 � 4 Æ+++, we

have:

lim
n!1

Æ���P
(n)
4 � 4 lim

n!1
Æ+++P

(n)
: (3.5)

Using the fact that all measures limL!1(�
���
B(L) 
 Æ(���)B(L)c ), limL!1(�

+++
B(L) 
 Æ(+++)�c )

limn!1 Æ���P
(n) and limn!1 Æ+++P

(n) are P -stationary, we apply to them inequali-

ties (3.4) and (3.5). Recall that if two probability measures �1 and �2 are such that

�1 4 �2 and �2 4 �1, then (see p. 135 in [19]) �1 = �2. Conclusions follow. �

Pay attention to the immediate corollary of the Proposition 3.3: Because Æ��� and

Æ+++ are translation invariant, so are limn!1 Æ���P
(n) = �

��� and limn!1 Æ+++P
(n) = �

+++.
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And then, S = f�g () Ss = f�g, where Ss denotes the subset of S which are

translation invariant.

Finally, thanks to Proposition 3.1, note that ����B(L) 4 �
+++
B(L) so:Z

�0 d�
+++
B(L) �

Z
�0 d�

���
B(L) > 0 ; (3.6)

and remark that, if a PCA dynamics P admits a unique stationary measure � then:

lim
L!1

� Z
�0 d�

+++
B(L) �

Z
�0 d�

���
B(L)

�
= 0: (3.7)

3.2 Main result

In Theorem 3.4 we present equivalent conditions for the ergodicity of an attractive

PCA dynamics; in particular assertion (3.7) is a su�cient condition for ergodicity.

Moreover, if we prove that this quantity decreases to 0 with an exponential rate,

then the ergodicity happens with an exponential rate too.

Let f be a real valued function on S
Z
d

. It is said local if it depends only on a �nite

number of sites, that is:

9�f b Z
d
; 8� 2 S

Zd

; f(�) = f(��f ):

We de�ne, for each f continuous function on the compact SZ
d

and for all k in Zd,

�f (k) = sup
n���f(�)� f(�)

��� : (�; �) 2 (SZ
d

)2; �fkgc � �fkgc
o
;

and the semi-norm jk f jk=
P

k2Zd�f (k). Recall that the set of continuous function

such that
P

k2Zd�f(k) < +1 is a dense set in the set of continuous function on

S
Zd(see for instance p. 21 in [19]).

Theorem 3.4 Let S be a totally ordered �nite set with maximal (resp. minimal)

element denoted by +(resp. �). Let P be an attractive, translation invariant, non

degenerate, local PCA dynamics on S
Zd

. The following statements are then equiva-

lent:

(i) the PCA dynamics P is ergodic;

(ii) it exists only one stationary measure �;

(iii) it exists only one translation invariant stationary measure �;

(iv) limL!1
� R

�0 d�
+++
B(L) �

R
�0 d�

���
B(L)
�
= 0 ;
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where �
+
B(L) (resp. �

�
B(L)) is the stationary measure of P

+
B(L) (resp. P

�
B(L)). Moreover,

if the following (assumption (A)) holds:
9C > 0; 9M > 0; 8L 2 N� ;

lim
L!1

�Z
�0 d�

+++
B(L) �

Z
�0 d�

���
B(L)

�
6 Ce

�ML
; (3.8)

then the dynamics P is ergodic and converges towards the unique equilibrium state

� with exponential rate: 9� > 0, 9n1, 8n > n1, 8f local function on S
Zd :

sup
�

���Æ�P (n)(f)� �(f)

��� 6 2jk f jk e��n: (3.9)

3.3 Proof of the main result

In this section, we state several results used to prove the previous main result. In

all this subsection P denotes a PCA dynamics as stated in Theorem 3.4. Here is

the strategy:

First we prove equivalence between conditions (i) : : : (iv). Implications (i)) (ii))
(iii) ) (iv) are trivial. Proof of the implication (iv) ) (i) is a consequence of

Lemma 3.7 and Lemma 3.6.

The more delicate part of the proof of Theorem 3.4 is then to establish the ex-

ponential rate of convergence towards equilibrium. The main framework is partly

analogous to Martinelli and Olivieri proof of exponential ergodicity for continuous

time Glauber dynamics on f�1;+1gZ
d

(see [27]). If we assume the exponential

bound (3.8), then thanks to Lemma 3.7, we know limn!1 �(n) = 0. Reporting

then assumption (A) in the inequality (3.16), we can use Lemma 3.9 to deduce

that (�(n))n2N� converge to 0 faster than 1
nd
. Finally, using inequality (3.15) and

Lemma 3.10, we conclude that �(n) converges to 0 exponentially fast; thus, thanks

to inequality (3.11), the conclusion holds.

Let us now prove these mentioned lemma.

Lemma 3.5 Let (
;A;P) be a probability space, and Z a random variable with

values in a �nite set fz1 < : : : < zmg of R
+
, such that P(Z > 0) = 1. Then, it

exists a real positive constant � such that: P(Z 6= 0) 6 �

R
ZdP.

Proof: Let us denote by � the following positive real number:

� = (minfzi > 0; 1 6 i 6 mg)�1. Conclusion is straightforward:

P(Z 6= 0) = P(Z > 0) =
P
z>0

P(Z = z) 6 �

P
z>0

z P(Z = z) = �

Z
ZdP:

�

Note the important fact that the constante � is universal: it does not depend on the

law of Z under P.
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Lemma 3.6 Let �(n) be the quantity de�ned in (2.8). The sequence (�(n))n2N� is

decreasing, and for all local functions f , and for all con�gurations � and �:���P (f(!(n)j!(0) = �))� P (f(!(n)j!(0) = �))

��� 6 2 jk f jk �(n) : (3.10)

Thus, if limn!1 �(n) = 0, the dynamics P is ergodic, and:

sup
�

���P (f(!(n)j!(0) = �))� �(f)

��� 6 2 jk f jk �(n) ; (3.11)

where � denotes the unique stationary measure.

Proof: The monotonicity of the sequence (�(n))n2N� comes from the coalescence

property of the increasing coupling IP. For any �; � con�gurations in S
Zd, let us

write: ���P (f(!(n)j!(0) = �))� P (f(!(n)j!(0) = �))

���
6

���P (f(!(n)j!(0) =���))� P (f(!(n)j!(0) = �))

���
+

���P (f(!(n)j!(0) =���))� P (f(!(n)j!(0) = �))

���
=

���IP�f(!1(n))� f(!2(n))

���(!1
; !

2)(0) = (���; �)
���� (3.12)

+

���IP�f(!1(n))� f(!2(n))

���(!1
; !

2)(0) = (���; �)
����:

On the other hand, because f is local, for all �1; �2,
���f(�1)� f(�2)

��� depends only
on �

1
�f

and �
2
�f
. Using interpolating con�gurations between �

1
�f

and �
2
�f

we write:

jf(�1)� f(�2)j 6
P

k2�f �f(k)11�k 6=�k , and so:

���IP�f(!1(n))� f(!2(n))
�� (!1

; !
2)(0) = (���; �)

����
6

X
k2�f

krk(f)k1IP
�
!
1
k(n) 6= !

2
k(n)

���(!1
; !

2)(0) = (���; �)
�
:

Because P is translation invariant, so is IP, and then:���IP�f(!1(n))� f(!2(n))
�� (!1

; !
2)(0) = (���; �)

����
6

X
k2�f

krk(f)k1IP
�
!
1
0(n) 6= !

2
0(n)

���(!1
; !

2)(0) = (���; ��k�)
�

6 jk f jk �(n);

where the last inequality comes from Lemma 2.4. Equation (3.12) then gives:���P (f(!(n)j!(0) = �))� P (f(!(n)j!(0) = �))

��� 6 2 jk f jk �(n) :
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If we then assume limn!1 �(n) = 0, this implies the ergodicity of the dynamics, and

then integrating with respect to the unique stationary measure �, and taking the

supremum in the other con�guration, inequality (3.11) holds. �

Note that due to the monotonicity of �(:), we can restrict ourselves to the case

�(:) > 0.

Lemma 3.7 It exists � such that, for each � subset of Z
d
, the following inequality

holds:

lim
n!1

�(n) 6 �

� Z
�0 d�

+++
� �

Z
�0 d�

���
�

�
: (3.13)

Proof: Let � be a subset of Zd. Since the coupling preserves the order:

P
���
� ~ P

+++
�

�
!
1
0(n) 6 !

2
0(n))

��� (!1(0); !2(0)) = (���;+++)
�
= 1:

So, thanks to Lemma 3.5, applied with

P = P
�
� ~ P

+
� ( : j(!1(0); !2(0)) = (���;+++)) and Z = !

2
0(n)� !

1
0(n) we have:

P
�
� ~ P

+
�

�
!
1
0(n) 6= !

2
0(n)

���(!1(0); !2(0)) = (���;+++)
�

(3.14)

6 �

�
P
+++
� (!0(n)j!(0) = +++)� P

���
� (!0(n)j!(0) =���)

�
;

where � = (minfs � s
0 : s > s

0
; s 2 S; s

0 2 Sg)�1. By Lemma 2.6, �(n) is bounded

from above by the l.h.s of equation (3.14). Taking the limit in n, and using the �nite

volume ergodicity, the r.h.s of equation (3.14) converges to (
R
�0d�

+++
� �

R
�0d�

���
�

�
,

which concludes the proof. �

Let us denote by R = supk2Zdmaxk02Vk kk
0 � kk

1
the �nite range of the local PCA

dynamics P .

Lemma 3.8 The following two inequalities hold:

8n 2 N� ; �(2n) 6 (2nR + 1)d�2(n) ; (3.15)

8n; 8L 2 N� ; �(2n) 6 2(2L+ 1)d�2(n) + 2�
�Z

�0 d�
+++
B(L) �

Z
�0 d�

���
B(L)

�
; (3.16)

where � is de�ned in Lemma 3.5.

Proof: Let n be a �xed integer.

Proof of inequality (3.15) Let ����;+++n denote the distribution on S
Z
d

� S
Z
d

:

�
���;+++
n ( : ) = IP

�
(!1

; !
2)(n) 2 :

���(!1
; !

2)(0) = (���;+++)
�
:
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Using Markov property of IP:

�(2n) =

Z
IP

�
!
1
0(2n) 6= !

2
0(2n)

���(!1
; !

2)(n) = (����; �+++)
�
�
���;+++
n (d����; d�+++) :

Note that ����;+++n almost surely, ���� 4 �
+++, thus IP( : j (!1

; !
2)(n) = (����; �+++)) preserves

stochastic order. Let A be the subset of SZ
d

� S
Zd de�ned by

A = f(����; �+++) : 9k 2 Zd
; kkk

1
6 nR; �

���
k 6= �

+++
k g :

So: Ac = f(����; �+++) : 8k 2 B(nR); ����k = �
+++
k g. We decompose the integral represen-

tation of �(2n) into two parts, respectively on A and A
c. Thanks to (2.7), observe

that the exact control of information's propagation for PCA implies that the integral

on A
c vanishes because B(nR) � f0g

(n)
so ����B(nR) � �

+++
B(nR). Then:

�(2n) =

Z
A

IP

�
!
1
0(n) 6= !

2
0(n)

���(!1
; !

2)(0) = (����; �+++)
�
�
���;+++
n (d����; d�+++) :

Using Lemma 2.4, we �nd �(2n) 6 �(n) ����;+++n (A). Writing

A = [fk2Zd : kkk
1
6nRgf(�

���
; �

+++) : �
���
k 6= �

+++
k g we deduce:

�
���;+++
n (A) 6

X
k2Zd;kkk

1
6nR

IP

�
!
1
k(n) 6= !

2
k(n)

���(!1
; !

2)(0) = (���;+++)
�
:

Since P is translation invariant, the conclusion follows from:

�
���;+++
n (A) 6 �(n) #B(nR)

6 �(n)#B(nR) = �(n)(2nR + 1)d ;

where kkk
max

= max16i6d jkij, with k = (k1; k2; : : : ; kd) 2 Z
d, and #B(nR) denotes

the cardinality of B(nR).

Proof of inequality (3.16) Let us �rst write:

�(2n) =

Z
IP

�
!
1
0(2n) 6= !

3
0(2n)

���(!1
; !

2
; !

3)(0) = (���; �;+++)
�
�(d�)

where � denotes a P -stationary measures. Note that !1
0(n) 6 !

2
0(n) 6 !

3
0(n),

IP

�
(!1

; !
2
; !

3) 2 :

��� (!1
; !

2
; !

3)(0) = (���; �;+++)
�
almost surely, so that

f!1
0(n) 6= !

3
0(n)g = f!1

0(n) 6= !
2
0(n)g [ f!2

0(n) 6= !
3
0(n)g;

where the union is non necessarily disjoint (unless cardinality of S is 2). Thus,

following decomposition holds:

�(2n) 6

Z
IP

�
!
1
0(2n) 6= !

2
0(2n)

���(!1
; !

2)(0) = (���; �)
�
�(d�)

+

Z
IP

�
!
1
0(2n) 6= !

2
0(2n)

���(!1
; !

2)(0) = (�;+++)
�
�(d�) : (3.17)

17



It is then enough to prove that each of these quantities are bounded from above by

half the quantity wanted.

Consider �rst the second term in the r.h.s. Let ��;+++n be the law on S
Z
d

� S
Z
d

:

�
�;+++
n = IP

�
(!1

; !
2)(n) = :

��� (!1
; !

2)(0) = (�;+++)
�
:

Z
IP

�
!
1
0(2n) 6= !

2
0(2n)

���(!1
; !

2)(0) = (�;+++)
�
�(d�)

=

ZZ
IP

�
!
1
0(n) 6= !

2
0(n)

���(!1
; !

2)(0) = (�1; �2)
�
�
�;+++
n (d�1; d�2) �(d�) :

Let L 2 N� and AL = f(�1; �2) 2 (SZ
d

)2 : (�1)B(L) � (�2)B(L)g. Let decompose the

integration with respect to (�1; �2) into an integration on ALc (part (I)) and an

integration on AL (part (II)). We will prove that:

(I) =

ZZ
Ac
L

IP

�
!
1
0(n) 6= !

2
0(n)

���(!1
; !

2)(0) = (�1; �2)
�
�
�;+++
n (d�1; d�2) �(d�)

6 (2L+ 1)d�2(n) (3.18)

and

(II) =

ZZ
AL

IP

�
!
1
0(n) 6= !

2
0(n)

���(!1
; !

2)(0) = (�1; �2)
�
�
�;+++
n (d�1; d�2) �(d�)

6 �

� Z
�0 d�

+++
B(L) �

Z
�0 d�

���
B(L)

�
: (3.19)

Let us consider part (I). Thanks to �
�;+++
n (�1 4 �

2) = 1, and using Lemma 2.4, we

have (I) 6 �(n)
R
�
�;+++
n (Ac

L) �(d�). Note that A
c
L may also be written

[k2B(L)f(�
1
; �

2) : (�1)k 6= (�1)kg. Thus we have:

�
�;+++
n (Ac

L) 6
X

k2B(L)
�
�;+++
n f(�1; �2) : (�1)k 6= (�2)kg :

At this point, using translation invariance of the coupling, and Lemma 2.4, it comes:

�
�;+++
n f(�1; �2) : (�1)k 6= (�2)kg = IP

�
!
1
k(n) 6= !

2
k(n)

���(!1
; !

2)(0) = (�;+++)
�

6 IP

�
!
1
k(n) 6= !

2
k(n)

���(!1
; !

2)(0) = (���;+++)
�

6 �(n) :

So ��;+n (Ac
L) 6 �(n) (#B(L)), and then (3.18) follows.

Part (II): let � 2 S
B(L) be �xed, and de�ne sets AL;� by:

AL;� = f(�1; �2) : (�1)B(L) � (�2)B(L) � �g :

18



So AL =
F

�2SB(L)
AL;� , and following decomposition holds:

(II) =

Z X
�2SB(L)

Z
IP

�
!
1
0(n) 6= !

2
0(n)

���(!1
; !

2)(0) = (�1; �2)
�

11AL;�
(�1; �2)

�
�;+++
n (d�1; d�2) �(d�) :

Let us now use the �nite volume dynamics. �
�;+++
n almost surely, we have �

1
4 �

2,

(�1)B(L) = (�2)B(L) = � and also:

�
2 = �(�2)B(L)c 4 �(+++)B(L)c and �(���)B(L)c 4 �

1 = �(�1)B(L)c :

Then:

P
���
B(L) ~ P ~ P ~ P

+++
B(L)

�
!
1
4 !

2
4 !

3
4 !

4
������(!1

B(L); !
2
; !

3
; !

4
B(L))(0) = (�; �(�1)B(L)c; �(�

2)B(L)c; �)
�
= 1;

which implies:

IP

�
!
1
0(n) 6= !

2
0(n)

���(!1
; !

2)(0) = (��1B(L)c; ��
2
B(L)c)

�
6 P

���
B(L) ~ P

+++
B(L)
�
!
1
0(n) 6= !

2
0(n) j (!

1
; !

2)(0) = (�; �)
�
:

We can now write:

(II) 6

Z X
�2SB(L)

P
���
B(L)~P

+++
B(L)

�
!
1
0(n) 6= !

2
0(n)

��� (!1
; !

2)(0) = (�; �)
�
�
�;+++
n (AL;� ) �(d�) :

(3.20)

Use now the following inequality:

�
�;+++
n (AL;� ) = IP

�
!
1(n)B(L) � !

2
B(L)(n) � �

���(!1
; !

2)(0) = (�;+++)
�

6 �
�;+++
n

�
f(�1; �2) : (�1)B(L) � �g

�
= P (!B(L)(n) = � j !B(L)(0) = �) :

On the other hand, P���
B(L) ~ P

+++
B(L)

�
:

��� (!1
; !

2)(0) = (�; �)
�
almost surely, we have

!
1
0(n) 6 !

2
0(n); so, using Lemma 3.5, we can write

P
���
B(L) ~ P

+++
B(L)

�
!
1
0(n) 6= !

2
0(n)

��� (!1
; !

2)(0) = (�; �)
�

6 �

�
P
+++
B(L)(!0(n) j !B(L)(0) = �)� P

���
B(L)(!0(n) j !B(L)(0) = �)

�
:

Reporting the two last estimates in the equation (3.20) we �nd

(II) 6 �

Z X
�2SB(L)

�
P
+++
B(L)(!0(n) j !B(L)(0) = �)� P

���
B(L)(!0(n) j !B(L)(0) = �)

�
P (!B(L)(n) = � j !B(L)(0) = �) �(d�) :
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Let us now denote with (a) and (b) the quantities:

(a) =

Z X
�2SB(L)

P
+++
B(L)(!0(n) j !B(L)(0) = �) P (!B(L)(n) = � j !B(L)(0) = �) �(d�)

and

(b) =

Z X
�2SB(L)

P
���
B(L)(!0(n) j !B(L)(0) = �) P (!B(L)(n) = � j !B(L)(0) = �) �(d�) ;

so (II) 6 �

�
(a)� (b)

�
. Let us write (a) =

R
P

�
fn;+++(!B(L)(n))

��� !B(L)(0) = �

�
�(d�)

with fn;+++(�) = P
+++
B(L)(!0(n) j !B(L)(0) = �). Using the fact that the function fn;+++(:)

is increasing, and Lemma 2.5, we state:

(a) 6

Z X
�2SB(L)

P
+++
B(L)(!0(n) j !B(L)(0) = �) P+++

B(L)(!B(L)(n) = � j !B(L)(0) = �B(L)) �(d�) :

Using Markov property for the P+++
B(L) �nite volume dynamics, we �nd: (a) 6 �(f2n;+++).

The function f2n;+++ is increasing; thanks to inequality (3.2) of Lemma 3.2, we thus

have (a) 6 �
+++
B(L)(f2n;+++). We can now write:

(a) 6

Z
P
+++
B(L)(!0(2n)j!B(L)(0) = �B(L)) �

+++
B(L)(d�B(L))

=

Z
�0

�
�
+++
B(L)P

+++
B(L)

(2n)
�
(d�) =

Z
�0 d�

+++
B(L);

where the last equality comes from the fact that �+++B(L) is stationary for the P
+++
B(L)

dynamics.

Analogously we prove (b) >
R
�0 d�

���
B(L) using inequality (2.8) of Lemma 2.5, the fact

that fn;���(�) = P
���
B(L)

�
!0(n)

��� !(0) = �

�
is increasing, and inequality (3.2).

Thus, the following inequality holds:

(II) 6 �

�
(a)� (b)

�
6 �

�Z
�0 d�

+++
B(L) �

Z
�0 d�

���
B(L)

�
;

which gives the estimate of the second term in inequality (3.17). The �rst term is

treated in the same way. So the recursive inequality (3.16) is established. �

Lemma 3.9 If limn!1 �(n) = 0 and if:

9 ( ~C;M) 2 (R+
� )

2
; 8(n; L) 2 (N�)2; �(2n) 6 2(2L+ 1)d�(n)2 + 2 ~Ce�ML

then limn!1 n
d
�(n) = 0.
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Proof: Let n be �xed. Let L be de�ned according to n: L(n) = [[� 2
M

log �(n)]] 2 N
where [[x]] denotes the integer part of the real x. Thanks to the recursive inequality,

one easily checks:

�(2n) 6 2

"�
�

4

M

log �(n) + 1

�d

+ ~
Ce

M

#
�(n)2 :

Since �
�

4

M

log �(n) + 1

�d

+ Ce
M = O

 
1p
�(n)

!
;

and limn!1 �(n) = 0, we deduce that for n big enough,�
�

4

M

log �(n) + 1

�d

+ ~
Ce

M
6

1p
�(n)

;

and so:

9n0; 8n > n0; �(2n) 6 �(n)
3
2 : (3.21)

(�(n))n2N� is then a decreasing sequence of real positive numbers, with limit 0 and

verifying the above recursive inequality. It is then quite easy to deduce that nd�(n)

tends to 0 (see for more details Lemma 6.4.9 in [23]). �

Note that inequality (3.15) may also by written:

8n 2 N� ; �(2n) 6 Ĉn
d
�
2(n) ;

where we use (2nR + 1)d 6 (3R)dnd and state Ĉ = (3R)d.

Lemma 3.10 If limn!1 n
d
�(n) = 0, and if inequality (3.15) holds then, for all n1

such that (2dĈ) nd1�(n1) < 1, we have:

8n > n1; �(n) 6 e
��n

where � = � 1
2n1

log(2dĈnd1�(n1)) > 0.

Proof: Let (u(n)n2N) be a sequence or real positive numbers de�ned by u(n) = n
d
�(n).

Thanks to inequality (3.15), we have u(2n) 6 (2dĈ) u2(n). Because limn!1 n
d
�(n) = 0,

it exists n1 2 N
� such that 8n > n1; (2

d
Ĉ) nd1�(n1) < 1. Let the sequence (am)m2N

be de�ned by am = u(2mn1). Then, one easily checks that am+1 6 (2dĈ) a2m, thus

recursively,

8m 2 N ; am 6

�
(2dĈ) u(n1)

�2m
2dĈ

:

So:

8m > 1; �(2mn1) 6
e
2m ln((2dĈ) nd1�(n1))

(2(m+1)d
Ĉ) nd1

:

Using Ĉ > 1, we conclude:

8m > 1; �(2mn1) 6 e
�2m+1n1�

;

which is immediately extended to the whole sequence (�(n))n since �(:) is decreasing.

�
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4 Reversible PCA dynamics on f�1;+1gZ
d

In order to better interpret the meaning of condition (3.8), and the relevance of

Theorem 3.4, let we now apply it to a wide class of reversible PCA dynamics on

f�1;+1gZ
d

. This class is de�ned in subsection 4.1, the main result is stated in

subsection 4.2 and comments are to be found in subsection 4.3.

First, let us recall some known facts about reversible PCA dynamics (that is to say

PCA dynamics whose set of reversible measures is not empty). The study of the

qualitative nature of their equilibrium states, as Gibbs measures, was initiated by

Kozlov and Vasilyev (see [16, 32]). Gibbs measures, with respect to some dynamics'

naturally associated potential, are indeed natural candidates as stationary states.

See also [17] for more general `Gibbsian' dynamics. In [3, 23], precise relations

were established between the sets of stationary measures, reversible measures and

some Gibbs measures (see Proposition 3.3 in [3]). Moreover, unlike what is done

(or expected to hold) for continuous time Interacting Particle Systems like Glauber

dynamics, or gradient di�usions, it is shown that Gibbs measures may be non sta-

tionary for PCA's dynamics, which is a characteristic manifestation of the discrete

time case. Finally, let us recall that a characterisation of the laws of stationary PCA

as space-time Gibbs measure on SZ
d�Zwas also previously established in [11, 18] for

non degenerate PCA.

4.1 Class C0 of PCA dynamics on f�1;+1gZ
d

From now on, assume S = f�1;+1g. We call class C0 the family of PCA dynamics

on f�1;+1gZ
d

whose updating rule (pk)k2Zd is given for all site k of Zd, for all

con�guration � 2 S
Zd, and for all s 2 S, by:

pk(s j �) =
1

2

�
1 + s tanh(�

X
k02Zd

K(k0 � k)�k0)
�
; (4.1)

where K(:) is an interaction function between sites K : Zd ! R which is symmetric

and has �nite range R > 0 (i.e. for all k of Zd such that kkk
1
> R then K(k) = 0),

and where � is a positive real parameter. Remark that � = 0 is the independent

case (sites don't interact), and that when � increases, the dynamics becomes less

and less random. So � may be thought as a kind of inverse temperature parameter.

See subsection 4.1.1 in [23] for the generality of the class C0 among reversible PCA

dynamics on f�1;+1gZ
d

. Due to their de�nition, PCA dynamics in C0 are local,

translation invariant, non degenerate. It is known (see [16, 1] and [3]) that any PCA

dynamics P in C0 admits at least one reversible measure which is a Gibbs measure

associated to the following translation invariant potential ':

'Uk(�Uk) = � log cosh
�
�

P
j K(k � j)�j

�
'�(��) = 0 otherwise;

(4.2)
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where Uk = fj : K(k � j) 6= 0g is �nite by assumption, and coincide in fact with

the set Vk previously associated to PCA dynamics. Moreover Proposition 3.3 in [3]

stated the precise relations (see also [2]):

R = S \ G(') and Rs = Ss; (4.3)

where S (resp. R) denotes the set of P -stationary (resp. P -reversible) measures, Ss
and Rs their respective space-translation invariant measures' parts, and G(') the
set of Gibbs measures on S

Z
d

associated to the potential '.

One also checks that such a PCA dynamics P is attractive, if and only if function

K(:) is non-negative (see Property 4.1.2 in [23]). From now on, let us assume that

K is non negative.

4.2 Ergodicity under Weak Mixing condition

Mixing conditions de�ne di�erent regions in the domain of absence of phase transi-

tion. Strong Mixing Conditions are usually related to the Dobrushin's uniqueness

domain, and Weak Mixing conditions are expected to be valid in the main part

of the uniqueness domain. See [27] for detailed information. Here, we call Weak

Mixing condition for the potential ', the condition:

9C > 0; 9M > 0; 8L > 2;�Z
�0 �(d�B(L)j�B(L)c = +1)�

Z
�0 �(d�B(L)j�B(L)c = �1)

�
6 Ce

�ML
; (4.4)

where � is the unique Gibbs measure associated to '. For ferromagnetic potentials,

it is equivalent to usual Weak Mixing condition.

For general PCA in �nite volume, reversible measures are not explicitely known out;

for the class C0 here considered, explicit form was computed: the unique reversible

measure for the PCA dynamics P �
� is de�ned by

�
�
�(�) =

1

W�
�

Y
k2�

cosh

0
@
�

X
j2Zd

K(k � j)~�j

1
A
e
��k
P

j2�c K(k�j)�j
; (4.5)

where ~� = ����c, and W
�
� is the normalisation factor (see Proposition 3.1 in [3]).

Such measure does not coincide with the �nite volume Gibbs measures contrary

to what happens for Glauber dynamics when detailed balance holds. Nevertheless,

they are related as relation (4.6) attempts.

We will not write down all technical computations which prove relations (4.6), (4.8),

(4.9), and (4.10). Interested reader may refer respectively to Proposition 4.1.8,

Proposition 4.1.9, and Property 4.1.12 in [23].

Let �;�0 two �nite subsets of Zd such that � � �0 and @i� \ @i�
0 = ?, where

@i� , fk 2 � : Vk \ �c 6= ?g. Let � be a boundary condition of �0. The notation
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�
�
�0 denotes the �nite volume Gibbs distribution associated to the potential ' on

the volume �0 with boundary condition � . We then state:

�
�
�0(d��j��0n�) = �

d��0n���0c

� (��) : (4.6)

In particular, for � = fkg � �0 such that k =2 @i�
0,we get, for all �k 2 S:

�
�
�0(d�kj��0nk) = �

��0nk��0c

fkg (d�k) : (4.7)

Pay attention that the potential ' is not really a ferromagnetic potential in the

usual sense. However we can check that associated �nite volume Gibbs measures

verify a kind of monotone behaviour:

�1 4 �2 ) �

�1
� 4 �

�2
� : (4.8)

In particular, Gibbs measures on S
Zd obtained as the in�nite volume limit with +1

boundary condition (resp. �1), and, denoted with �+ (resp. ��), are extremal states

in the sense of stochastic ordering, of the set G('). Finally, let us state the following
lemma:

Lemma 4.1 If the Weak Mixing Condition (4.4) holds for the potential ' associated

to the PCA dynamics P , then assumption (A) holds for P .

Proof: It is enough to show the following inequality:

�Z
�0 d�

+
B(L) �

Z
�0 d�

�
B(L)

�
6

� Z
�0 d�

+
B(L) �

Z
�0 d�

�
B(L)

�
:

Let us �rst check
R
�0 d�

+
B(L) 6

R
�0 d�

+
B(L) . Let f0 be the increasing function de-

�ned on SZ
d

by f0(�) = �0. According to the �nite range R, let L be big enough such

that 0 =2 @iB(L). Note
R
�0 d�

+
B(L) = �

+
B(L)( �

+
B(L)( f0 j�B(L)n0)). Using relation (4.7),

we then have

�
+
B(L)(f0) = �

+
B(L)(�

�B(L)n0(+1)B(L)c

f0g (f0)):

On the other hand, using the monotonicity in the boundary condition of the �nite

volume Gibbs measures, we �nd:

�

�B(L)n0(+1)B(L)c

f0g (f0) 6 �

(+1)0c

f0g (f0) = �
+
B(L)(f0) :

So desired inequality holds, and �
�
B(L)(f0) > �

�
B(L)(f0) is analogously checked. �

Lemma 4.2 For a PCA dynamics P of class C0 with K(:) non negative, the extremal

stationary measures �
���
; �

+++
coincide respectively with extremal Gibbs measure �

�
; �

+

of G('), that is �+ = �
+++
and �

� = �
���
(eventually these two relations coincide)
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Proof: Let �; �0 be two �nite subsets of Zd such that � � �0. Then, for all con-
�gurations ��0n� 2 S

�0n�, �nite volume reversible measures with extremal boundary

condition are such that:

�
+
�0

�
(:)�j��0n�

�
4 �

+
� (:) ; (4.9)

�
�
�0

�
(:)�j��0n�

�
< �

�
� (:) : (4.10)

Using relation (4.6), we can deduce from the previous result the following inequal-

ities between �nite volume Gibbs measure and reversible measure, with extremal

boundary condition: �+� 4 �
+
� and �

�
� 4 �

�
� . Taking now the limit in volume, we

�nd: �+ 4 �
+ and �

�
4 �

�.

On the other hand, �+� is P+
� reversible, so taking the limit, �+ is P -reversible.

Analogously, �� is P -reversible. From (4.3) we conclude �
� and �

+ are Gibbs

measures, so thanks to the fact that �� and �
+ are stochastic ordering extremal

states for Gibbs measures, we deduce: �+ 4 �
+ and �

�
4 �

�. Conclusion follows.

�

Theorem 4.3 Let P be an attractive PCA dynamics on f�1;+1gZ
d

of the class C0
de�ned by (4.1), let ' denote the potential canonically associated de�ned in (4.2),

and G(') the set of Gibbs measures w.r.t ':

� if there is phase transition (i.e. #G(') > 1) then the extremal Gibbs states �
�

and �
+
are di�erent, and the dynamics P is non ergodic;

� otherwise, when there is no phase transition (i.e. G(') = f�g and � = �
� =

�
+ = �

� = �
+
), the dynamics P is ergodic towards the unique Gibbs measure

�.

Moreover if we assume the Weak Mixing condition (4.4), then the convergence

towards � happens with exponential rate.

Proof: When there is phase transition, thanks to the fact that �� and �
+ are

stochastic order extremal states for G('), we have that �
� 6= �

+. So, using

Lemma 4.2, the two reversible (so stationary) measures �� and �
+ are di�erent.

Then, dynamics P can not be ergodic.

When there is no phase transition, then G(') = f�g where � = �
� = �

+ is the

unique Gibbs state. Thanks to Lemma 4.2, �� = �
� = �

+ = �
+, and using (3.3)

uniqueness of P -stationary measure holds. Thanks to Theorem 3.4, it implies er-

godicity of the PCA dynamics P .

Finally, if Weak Mixing condition (4.4) is assumed, then Lemma 4.1 implies that the

exponential bound (3.8) holds (assumption (A)). We conclude using Theorem 3.4.

�
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Note ' is a multi-body potential. In [3], we established that, for nearest neighbour

interaction function K, phase transition holds for � large. For instance, when d = 2,

let P0 be the PCA dynamics of the class C0 obtained taking:

K(�e1) = K(�e2) = K > 0; K(k) = 0 otherwise, (4.11)

where (e1; e2) is a basis of R2 and K a positive constant. The canonically associ-

ated (4.2) potential '0 is the following four body potential:

'0;Vk(�Vk) = � log cosh(�K
X
j2Vk

�j); '�(��) = 0 otherwise;

where Vk = fk � e1; k + e1; k � e2; k + e2g. We conclude that for � large, the PCA

P0 is non ergodic since it has at least two di�erent stationary states �� and �
+.

Thanks to Proposition 3.3, we also know that Æ+++P
(n) (resp. Æ���P

(n)) converges weakly,

as n goes to +1, towards the stationary measure �+ (resp. ��).

4.3 Comments

One conjectures Weak Mixing condition for Gibbs measure is valid up to the critical

temperature, that is, as soon as there is no phase transition. In that sense, our main

result would give ergodicity with exponential rate on a much larger region as the

region where the Dobrushin-Vasershtein criterion holds. In fact, let us mention the

reference [12], where, using percolation techniques, it is proved that in dimension

d = 2, for a ferromagnetic nearest neighbour Ising model without extremal magnetic

�eld, the associated Gibbs measure is weak mixing as soon as it is unique (i.e.

8�; � < �c). In order to precise the previous assertion, let us consider P0 given

by (4.11).

In that case, a tricky argumentation relates the potential '0, associated to the

P0 dynamics, with the usual Ising ferromagnetic potential (see [32]). So, Higuchi's

result applies, and we know that the Gibbs state associated to this potential '0 is

weak mixing as soon as there is no phase transition, which happens for � lower than

a critical �c, which coincide with the Ising critical temperature �c =
log(1+

p
2)

2K
. In

other words, we know that the PCA dynamics P0 is ergodic with exponential rate

for � < �c and non ergodic for � > �c. Taking K = 1, �c ' 0:441; Dobrushin-

Vasershtein criteria applies only for

 =
1

2

X
j2V0

sup
�2SV0

��� tanh(� X
k02V0

K(k0) �jk0) � tanh(�
X
k02V0

K(k0) �k0)
��� < 1;

where �

j
k = �k if k 6= j and �

j
j = ��j, which means � <

1
2
Argth(1

2
) ' 0:275 (cf.

part 6.1.2 in [23]).

For another PCA dynamics P1 de�ned by

K(�e1) = K(�e2) = K(0) = +1; K(k) = 0 otherwise,
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Dobrushin-Vasershtein criteria applies for  = 5 tanh� < 1, i.e. � <' 0:203.

Numerical simulations (see Matlab c code in chapter 7 in [23]) for this P1 PCA

dynamics give an approximation of a critical parameter �c ' 0:3.

We conclude that for PCA dynamics P0, our result states ergodicity on a region

which is strictly larger than the one of Dobrushin-Vasershtein condition, and which

is moreover optimal. Numerical simulations con�rm this fact for the P1 dynamics

too.
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