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Abstract

We prove a priori estimates in L2(0; T ;W 1;2(
)) and L1(Q
T
), existence

and uniqueness of solutions to Cauchy�Neumann problems for parabolic equa-

tions
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(t; x) 2 Q
T
= (0; T ) � 
 � Rn+1

, where �(u) =
@�(u)
@u

> 0 and the function v

is de�ned by the nonlocal expression

v(t; x) = �

Z



K(x; y)
�
�(u(t; y))� f(t; y)

�
dy; (0.2)

instead of solving an elliptic boundary problem as in the corresponding local

case. Such problems arise as mathematical models of various di�usion-drift

processes driven by gradients of local particle concentrations and nonlocal

interaction potentials. An example is the transport of electrons in semicon-

ductors, where u has to be interpreted as chemical and v as electro�statical

potential.

1 Introduction

We prove a priori estimates, existence and uniqueness of weak solutions to initial�

boundary value problems of the form

@�(u)

@t
�

nX
i=1

@

@x
i

n
�(u) b

i

�
t; x;

@(u� v)

@x

�o
+ a

�
t; x; v; u

�
= 0; (t; x) 2 Q

T
; (1.1)

v(t; x) = �

Z



K(x; y)
�
�(u(t; y))� f(t; y)

�
dy; (t; x) 2 Q

T
; (1.2)

�(u)
nX
i=1

b
i

�
t; x;

@(u� v)

@x

�
cos(�; x

i
) = 0; (t; x) 2 � = (0; T )� @
; (1.3)

u(0; x) = h(x); x 2 
; (1.4)

where �(u) =
R
u

0
�(s) ds; � > 0; 
 is a bounded open set in Rn and Q

T
= (0; T )�
,

T > 0. In the case of smooth boundary @
 of the set 
, � is the outer unit normal

on @
 and (�; x
i
) is the angle between � and the x

i
�axis.
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In the physical motivation and derivation (cf. [1, 6]) of systems like (1.1) � (1.3) the

'free energy'

F (c) =

Z



�
�(��1(c)) + c

Z



K(x; y)[
c(t; y)

2
� f(t; y)]dy

	
dx; �(u) =

Z
u

0

s�(s)ds

plays an important role. Here c = �(u) can be seen as particle concentration and the
respective terms model local and nonlocal particle interaction. Then, provided the

reaction term a vanishes, the system (1.1) � (1.4) describes the mass conservating

evolution of c from the initial value c0 = �(h) towards critical points or even mini-

mizers of F under di�usion and drift forces, caused by the local and the global term

in F , respectively. Moreover, the functional F will be also the key for our mathe-

matical analysis of the system (cf. Theorem 1). In particular, in the case that: the

kernel K is symmetrical, the vector �eld fb
i
(t; x; �)g 2 (Rn ! R

n) is monotone and

b
i
(t; x; 0) = a = 0, we �nd for solutions u; v of (1.1) � (1.3)

dF (c)

dt
=

Z



@�(u)

@t
(u� v) dx = �

Z



�(u)
nX
i=1

b
i
(t; x;

@(u� v)

@x
)
@(u� v)

@x
i

dx � 0;

that means, F is Lyapunov functional in that case.

Problems of the form (1.1) � (1.4) arise as nonlocal mathematical models of vari-

ous applied problems, for instance reaction�drift�di�usion processes of electrically

charged species, phase transition processes and transport processes in porous me-

dia. The investigation of nonlinear nonlocal problems has received much attention

in last years. In the papers [6, 7, 11, 12] nonlocal models of phase separation were

formulated and studied.

Corresponding local problems were studied by many authors (cf. [4, 5]). See also

the papers [2], [3, 16], where degenerate parabolic equations were studied. Most

strong results for local drift�di�usion type problems have been recently proved in

[10]. Such local problems result from (1.1) � (1.4) by replacing the integral equation

(1.2) by an elliptic di�erential equation like

�

nX
i=1

@

@x
i

h
�(x)

@v

@x
i

i
+ �(u) = f(t; x); (t; x) 2 Q

T
; (1.5)

completed by some boundary condition for the function v.

We consider problem (1.1) � (1.4) under standard conditions for the functions b
i
and

some conditions for the function a to be formulated in Section 2. Our main speci�c

assumption concerning the equation (1.1) reads:

�1) � 2 (R1
! R

1) with �(u) > 0; u 2 R
1 ; is continuous and has a piecewise

continuous derivative �0 such that
�
0(u)

�(u)
is nonincreasing on R1 .

This condition seems natural in view of properties of probability particle distribution

functions arising in mathematical physics. So in the semiconductor theory [1, 4]
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relevant examples for functions � satisfying condition �1) are given by � = F
+1,

� = �0 = F

, where F


denotes the Fermi integral

F

(u) =

1

�( + 1)

Z
1

0

s ds

1 + exp(s� u)
 > �1 : (1.6)

Another example comes from phase separation problems [6, 7], where the Fermi

function

�(u) =
1

1 + exp(�u)
; �(u) = �0(u) =

1

(1 + eu)(1 + e�u)
; (1.7)

plays a role corresponding to that of F
+1.

Our main assumption on the kernel K(x; y) is:

K1) the function K(x; y) is de�ned for x; y 2 
; K(x; y) = K(y; x) and K(�; y) 2
W 1;1(
) for almost every y 2 
 such that

ess sup
x2


Z



n
jK(x; y)j+

���@K(x; y)

@x

���o dy + ess sup
y2


Z



���@K(x; y)

@x

��� dx � { : (1.8)

Remark that condition K1) implies (cf. Lemma 1 below) properties as assumed in

[6, 7] for integral operators generated by kernels K(x; y) = K(jx� yj).
Remark also that kernels jx � yj2�n; log 1

jx�yj
, corresponding to Newton potentials

and fundamental solutions of equation (1.5) with bounded measurable function �

satisfy condition K1) [14]. The Green function for equation (1.5) satis�es condition

K1) in the cases of Dirichlet or Neumann boundary conditions for su�cient smooth

@
 and �. Conditions on � guarantying condition K1) for the Green function can

be formulated also in terms of smallness of the number

ess sup
x2


�(x) [ess inf
x2


�(x)]�1 � 1 :

We formulate our assumptions and main results in Section 2. First a priori estimates

for the solution (u; v) are given in Section 3. In that Section we prove also regularity
properties of the function v, important for further considerations. An estimate of u

in L1(Q
T
) is given in Section 4. Sections 5 and 6 are devoted to proofs of existence

and uniqueness of solutions to problem (1.1) � (1.4) respectively.

We are planning in forthcoming papers to apply our approach to systems of equations

describing reaction�drift�di�usion processes in isothermal and non�isothermal cases.

2 Formulation of assumptions and main results

Let 
 be a bounded open set in Rn and Q
T
= (0; T )� 
; T > 0. We assume that

n > 2. For n � 2 it is necessary to make simple changes in our conditions that are

connected with Sobolev's embedding theorem.

We assume following condition on the set 
:
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@) 
 is such that the embeddings W 1;1(
) � L
n

n�1 (
); W 1;p(
) � L1(
) hold
for p > n.

In view of the proof of a priori estimates for solutions of problem (1.1) � (1.4) we

need restrictions on growth and on degeneration of the function � as u ! �1.

From condition �1) the existence of

�� = lim
u!�1

�(u) (2.1)

follows. For nonconstant functions �(u) at least one of the limits ��; �+ is zero

[8]. Studying the problem (1.1) � (1.4) we have to distinguish the cases of zero or

non�zero values of ��. Therefore we shall consider two cases:

�1) �� = 0; �+ 6= 0 ; �2) �� = �+ = 0 :

Note that examples for �1) and �2) are given by (1.6) and (1.7), respectively. Our

additional restrictions on the function � are following:

�2) if condition �1) holds, then a positive constant �1 exists such that

��11 (u + 1) � �(u) � �1(u
 + 1); u > 0; 0 �  �

2

n� 1
; (2.2)

�3) there exists a positive constant �2 such that

j�0(u)j � �2 �(u) (2.3)

for u < 0 in the case of condition �1) and 8u 2 R
1 if condition �2) holds.

Let the coe�cients a ; b
i
from (1.1) satisfy the assumptions:

i) a(t; x; v; u); b
i
(t; x; �); i = 1; : : : ; n; are measurable with respect to t; x for

every u; v 2 R1 , � 2 Rn and continuous with respect to u; v 2 R1 ; � 2 Rn , for

almost every (t; x) 2 Q
T
; b

i
(t; x; 0) = 0; i = 1; : : : ; n;

ii) there exist positive constants �1; �2 such that 8 �0; �00 2 Rn and (t; x) 2 Q
T

nX
i=1

�
b
i
(t; x; �0)� b

i
(t; x; �00)

�
(�0

i
� �00

i
) � �1j�

0
� �00j2;

jb
i
(t; x; �)j � �2(j�j+ 1); i = 1; : : : ; n;

iii) there exist nonnegative functions �1 2 L1(Q
T
); � 2 Lp1(Q

T
); p1 >

n+2
2
, such

that for arbitrary (t; x) 2 Q
T
; v; u 2 R1

a(t; x; v; u)u � �1 "(u)juj
m

� �2jvj
m

� �1(t; x);

ja(t; x; v; u)j � �2("(u)juj+ jvj)m�1 + �(t; x) ;

where m = 2+

1+
under condition �1) and m = 2 under condition �2), here "(u)

is a nonnegative function bounded on R1 .
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We assume also an additional condition on the kernel K(x; y):

K2) if condition �1) is satis�ed, thenZ



Z



K(x; y) g(x) g(y) dx dy � 0 ; 8g 2 L2(
):

Remark 1 In relevant applications the kernel K models nonlocal particle interac-

tion. Positive sign of K as assumed in condition K2), corresponds to repulsive

interaction between particles and implies, roughly speaking, global existence of so-

lutions, whereas negative sign models attraction forces and may be cause blow of

solutions (cf. [5]). However, under condition �2) assumed in the papers [6, 7] �

turns out to be bounded, so global existence can be proved without condition K2).

We consider problem (1.2) � (1.4) with f; h such that

f 2 C
�
[0; T ]; Lp2(
)

�
;

@f

@t
2 Lm

�
0; T; [W 1;m(
)]�

�
; (2.4)

h(x) 2 L1(
) (2.5)

and p2 > n+ 2

+1
in the case of condition �1) and p2 > n under condition �2).

De�nition 1 A pair of functions (u; v), u; v 2 L2(0; T ;W 1;2(
)), is called solution

of problem (1.1) � (1.4), if following conditions are satis�ed:

i) the derivative
@�(u)

@t

exists in the sense of distributions,Z
QT

Z
�(u)

h���@u
@x

���2 + ���@v
@x

���2i dx dt <1 ; (2.6)

�(u) 2 C
�
[0; T ]; L2(
)

�
;

@�(u)

@t
2 L2

�
0; T ; [W 1;2(
)]�

�
; (2.7)

ii) 8' 2 C1(Q
T
) and almost every � 2 (0; T ); Q

�
= (0; �)� 
;Z

�

0

<
@�(u)

@t
; ' > dt +

+

Z
Q�

Z n nX
i=1

�(u) b
i

�
t; x; u;

@(u� v)

@x

� @'
@x

i

+ a(t; x; v; u)'
o
dx dt = 0 ;

(2.8)

equality (1.2) is satis�ed for almost all (t; x) 2 Q
T
;

iii) 8' 2 C1(Q
T
), satisfying '(T; x) = 0 for x 2 
,Z

T

0

<
@�(u)

@t
; ' > dt +

Z
QT

Z �
�(u)� �(h)

�@'
@t

dx dt = 0 : (2.9)
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Remark 2 Let (u; v) be a solution of problem (1.1) � (1.4). Since the space C1(Q
T
)

is dense in the weighted space L2(0; T ;W 1;2(
; �(u)), the integral identity (2.8) holds
for all ' 2 L2(0; T ;W 1;2(
)) such thatZ

QT

Z
�(u)

���@'
@x

���2 dx dt <1:

Remark 3 Lemma 1 below guarantees that the right hand side of equality (1.2) is

well�de�ned under our conditions on the functions � and f .

In what follows we shall understand as known parameters all numbers from the

conditions ii), iii), K1), norms of functions f; h; �1, � in respective spaces, numbers

that depend only on 
; T; n, the numbers �1; �2; �3 = maxf�(u) : juj � m0g and

�4 = minf�(u) : juj � m0g, where

m0 = kh(x)k
L
1(
) + 1: (2.10)

Further we shall denote by c
j
constants depending only on known parameters.

Theorem 1 Let the conditions i) � iii), K1); K2); �1); @); (2.4), (2.5) be satis�ed.

Then there exists a constant M1 depending only on known parameters, such that

each solution (u; v) of problem (1.1) � (1.4) satis�es

ess sup
t2(0;T )

Z



�(u(t; x)) dx+

Z
QT

Z n
�(u)

���@(u� v)

@x

���2o dt dx �M1; (2.11)

where

�(u) =

Z
u

0

s �(s) ds : (2.12)

Theorem 2 Let the assumptions of Theorem 1 and condition �2) be satis�ed. Then
there exists a constant M2, depending only on known parameters, such that each

solution (u; v) of problem (1.1) � (1.4) satis�esZ
QT

Z
�(u)

h���@u
@x

���2 + ���@v
@x

���2i dx dt � M2: (2.13)

Theorem 3 Let the assumptions of Theorem 2 be satis�ed. Then there exist con-

stants M3; p3 depending only on known parameters such that p3 > n and each solu-

tion (u; v) of problem (1.1) � (1.4) satis�es

kvk
L
1(QT ) +

@v
@x


L
p3+2(QT )

+
@v
@x


L
1(QT ;L

p3 (
))
�M3: (2.14)

In order to prove a priori estimates for u(t; x) we need an additional condition with

respect to the function a. In view of our uniqueness result we assume a stronger

condition than needed here:

6



a) the function 1
�(u)

a(t; x; v; u) is nondecreasing with respect to u 2 R1 , for arbi-

trary (t; x) 2 Q
T
; v 2 R1 .

Theorem 4 Let the conditions i) � iii), �1)� �3); K1); K2), a), @); (2.4), (2.5) be
satis�ed. Then there exists a constant M4, depending only on known parameters,

such that each solution (u; v) of problem (1.1) � (1.4) satis�es

ess sup
�
ju(t; x)j : (t; x) 2 Q

T

	
�M4: (2.15)

Theorem 5 Let the conditions of Theorem 4 be satis�ed. Then the initial�boundary

value problem (1.1) � (1.4) has at least one solution in the sense of De�nition 1.

Theorem 6 Let the conditions of Theorem 4 be satis�ed and assume additionally

that the functions b
i
(t; x; �); �0(u); a(t; x; v; u) are locally Lipschitzian with respect

to �; u; v, respectively. Then the solution of problem (1.1) � (1.4) in the sense of

De�nition 1 is unique.

Corollary 1 Let the conditions of Theorem 6 be satis�ed and assume additionally

that the functions f(t; x); b
i
(t; x; �); a(t; x; v; u) are Lipschitzian with respect to t.

Then the solution u of problem (1.1) � (1.4) is regular in the sense that

t! t
@u

@t
2 L1(0; T ;L2(
)) \ L2(0; T ;W 1;2(
)):

Remark 4 Corollary 1 and Theorem 4 imply that t ! t
@�(u)

@t

2 L1(0; T ;L2(
)).
Consequently, (1.1) can be understand not only in the sense of distributions, but

even as an equation in L2(0; T ;L2(
)).

Proofs of the theorems 1, 2, 3 are given in Section 3, proofs of the theorems 4, 5, 6

are given in Sections 4, 5, 6, respectively.

3 Integral estimates of the solution

We start from auxiliary lemmas needed in the proofs of the Theorems 1� 6.

Let us de�ne operators K0; K1 for g 2 L1(
) by

K0 g(x) =

Z



jK(x; y)j g(y) dy; K1 g(x) =

Z



���@K(x; y)

@x

��� g(y) dy: (3.1)

Lemma 1 The operators K0; K1 are well de�ned by (3.1) for g 2 Lp(
) ; p 2 [1;1],
and they are bounded operators in following spaces

K0 : L
p(
)! L

np

n�p (
) for 1 � p < n ; (3.2)

K1 : L
p(
)! Lp(
) for 1 � p � 1: (3.3)
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Proof. Firstly, we prove (3.3). For p = 1 and p = 1 (3.3) is a simple consequence

of (1.8). For 1 < p <1 we �nd for g 2 Lp(
) by Hölder's inequalityZ



jK1 g(x)j
p dx �

Z



h Z



���@K(x; y)

@x

���jg(y)j dyip dx �
�

Z



h Z



���@K(x; y)

@x

���jg(y)jp dyih Z



���@K(x; z)

@x

��� dzip�1 dx � {
p

Z



jg(y)jp dy ;

that is (3.3).

For proving (3.2) we use the embedding theorem for W 1;1(
) to infer from (1.8)

ess sup
x2


Z



jK(x; y)j
n

n�1 dy � c1: (3.4)

Now by Hölder's inequality we have for 1 � p < n; g 2 L1(
),Z



jK0 g(x)j
np

n�p dx �

�

Z



nZ



jK(x; y)j
n(p�1)

(n�1)p �

h
jK(x; y)j

n�p

(n�1)p � jg(y)j
n�p

n

i
� jg(y)j

p

n dy
o np

n�p

dx �

�

Z



nZ



jK(x; y)j
n

n�1 dy
on(p�1)

n�p

�

nZ



jK(x; y)j
n

n�1 � jg(y)jp dy
o
�

�

nZ



jg(ey)jp deyo p

n�p

dx � c2

nZ



jg(x)jp dx
o n

n�p

:

This inequality implies (3.2) and the proof of Lemma 1 is complete. �

Lemma 2 Let the assumptions of Theorem 1 be satis�ed. Then the estimateZ
�

0

<
@�(u)

@t
; v > dt �M5

�
1 + k�(u(�; x))k

L
1(
) + k�(u)k

L
2(Q� )

�
(3.5)

holds for each � 2 (0; T ) with a constant M5 depending only on known parameters.

Proof. Let � 2 (0; T ) and de�ne for 0 < Æ < T � �

I(Æ) =

Z
�

0

Z



�
�(u(t+ Æ; x)) � v(t+ Æ; x)� �(u(t; x))v(t; x)

�
dx dt: (3.6)

By writing I(Æ) as di�erence of two integrals and changing the integration variable

in the �rst integral we get

I(Æ) =

Z
�+Æ

�

Z



�(u(t; x))v(t; x) dx dt�

Z
Æ

0

Z



�(u(t; x))v(t; x) dx dt: (3.7)

On the other hand we can rewrite I(Æ) as

I(Æ) = I1(Æ) + I2(Æ); (3.8)

8



where

I1(Æ) =

Z
�

0

Z



�
�(u(t+ Æ; x))� �(u(t; x))

�
v(t+ Æ; x) dx dt ;

I2(Æ) =

Z
�

0

Z



�(u(t; x)) �
�
v(t+ Æ; x)� v(t; x)

�
dx dt:

Using (1.2) and setting v1(t; x) =
R


K(x; y)�(u(t; y)) dy, we can rewrite I2 as

I2(Æ) =

Z
�

0

Z



�
�(u(t+ Æ; x))� �(u(t; x))

�
v(t; x) dx dt +

+

Z
�

0

Z



�
f(t+ Æ; x)� f(t; x)

�
v1(t; x) dx dt �

�

Z
�

Æ

Z



�
f(t� Æ; x)� f(t; x)

�
v1(t; x) dx dt �

�

Z
�+Æ

�

Z



f(t� Æ; x)v1(t; x) dx dt +

Z
Æ

0

Z



f(t; x)v1(t; x) dx dt :

(3.9)

From (3.8) � (3.9), (2.4), (2.7) and Lemma 1 we see that dividing I(Æ) by Æ and

passing to the limit Æ ! +0 givesZ



�(u(�; x))v(�; x) dx�

Z



�(h(x))v(0; x) dx = 2

Z
�

0

<
@�(u)

@t
; v > dt +

+ 2

Z
�

0

<
@f

@t
; v1 > dt �

Z



f(�; x)v1(�; x) dx +

Z



f(0; x)v1(0; x) dx:

(3.10)

We shall estimate the summands in (3.10). In the case of condition �1) we have by
(2.3), (3.2) and condition K2)Z




�(u(�; x))v(�; x)dx =

Z



�
f(�; x)v1(�; x)�

Z



K(x; y)�(u(�; x))�

� �(u(�; y)) dy
	
dx �

Z



f(�; x)v1(�; x) dx � c3 k�(u(�; x)kL1(
):

(3.11)

An analogous estimate is true under condition �2), because of the boundedness of
the function � in that case. Further, using Lemma 1 we get

��� Z �

0

<
@f

@t
; v1 > dt

��� � c4

nZ �

0

Z



h���@vi
@x

���2 + v21

i
dx dt

o 1
2

� c5 k�(u)kL2(Q� ): (3.12)

Estimating the remaining summands in (3.10) and using (3.11), (3.12), we obtain

from (3.10) the desired estimate (3.5) and the proof of Lemma 2 is complete. �

Proof of Theorem 1. Condition (2.6) and Remark 2 allow us to use the test

function ' = u � v in the integral identity (2.8). Then, evaluating the resulting

9



terms by conditions ii); iii) and Lemma 2, we obtainZ
�

0

<
@�(u)

@t
; u > dt +

Z
Q�

Z
�(u)

���@(u� v)

@x

���2 dx +

+

Z
Q�

Z
"(u)ju(t; x)jm dx dt � c6

n
1 + k�(u(�; x))k

L
1(
) +

+ k�(u)k
L
m(Q� ) +

Z
Q�

Z �
jv(t; x)jm + �1(t; x) + �m

0

(t; x)
�
dx dt

o
:

(3.13)

We transform the �rst integral in (3.13) in following wayZ
�

0

<
@�(u)

@t
; u > dt =

Z



�(u; (�; x)) dx�

Z



�(h(x)) dx (3.14)

with �(u) de�ned by (2.9). The proof of equality (3.14) is analogous to the proof of

Lemma 1 in [9].

Remarking that condition �2) implies

c�17

�
�(u)

�
m

� c8 � �(u) � c7
�
�(u)

�
m

+ c8 ; (3.15)

using (3.14) and Lemma 1, we obtain from (3.13)Z



�m(u(�; x)) dx+

Z
Q�

Z
�(u)

���@(u� v)

@x

���2 dx dt +
+ "

Z
Q�

Z
(u(t; x))m dx dt � c9

n
1 +

Z
Q�

Z
�m(u(t; x)) dx dt

o
:

(3.16)

Now the estimate (2.11) follows from (3.15), (3.16) and Gronwall's Lemma and the

proof of Theorem 1 is complete. �

Proof of Theorem 2. The assertion of Theorem 2 follows simply under �2).
Indeed, in this case the functions �; � are bounded such that (2.4) and Lemma 1

imply @v

@x

2 C([0; T ]; Lp3(
)). Hence (2.13) follows immediately from (2.11).

Let us now assume that condition �1) is satis�ed. In this case we de�ne

u+(t; x) = maxfu(t; x); 0g; Q�

T
= f(t; x) 2 Q

T
: � u(t; x) > 0g: (3.17)

Theorem 1 implies

ess sup
t2(0;T )

Z



�
1 + u+(t; x)

�
+2

dx dt+

Z
Q

+
T

Z �
1 + u(t; x)

�


���@(u� v)

@x

���2 dx dt � c10 :

(3.18)

Thus for proving the desired inequality (2.13), it su�ces to show thatZ
QT

Z �
1 + u+(t; x)

�


���@v
@x

���2 dx dt � c11 : (3.19)

De�ne for q � 2
+1

; � �  + 2,

I(q) =

Z
QT

Z �
1 + u+(t; x)

�


���@v
@x

���q dx dt; J(�) =

Z
QT

Z
u�+(t; x) dx dt : (3.20)

We shall need the following assertions:

10



1) the estimate I( 2
+1

) � c12 holds;

2) if for � �  + 2, J(�) � c13 , then I(q) � c14 with q = minf��
+1

; p2�
+1

g;

3) if for eq 2 [ 2
+1

; 2]; I(eq) � c15 , then J(e�) � c16, with e� = eq +  + q

n

(2 + ).

To prove assertion 1) we apply (1.8), Theorem 1, Hölder's and Young's inequalities:

I
� 2

 + 1

�
� {

2
+1

�1

Z
QT

Z �
1 + u+(t; x)

�


Z



���@K(x; y)

@y

��� �
� j�(u(t; y))� f(t; y)j

2
+1 dy dx dt �

� c17 {
2

+1

Z
QT

Z �
1 + u+(t; x) + jf(t; x)j

	2+
dx dt ;

(3.21)

where we used also (2.2) and the simple inequality

j�(u)j � c18 (1 + u+)
+1; u+ = max(u; 0): (3.22)

Now (3.21), (3.18) and (2.4) imply assertion 1).

Assertion 2) follows from the next inequality that is obtained analogously to (3.21).

I(q) � {
q�1

Z
QT

Z �
1 + u+(t; x)

�


Z



���@K(x; y)

@y

���j�(u(t; y))� f(t; y)jq dy dx dt �

� c19 {
q

Z
QT

Z �
1 + u+(t; x) + jf(t; x)j

	
+q(+1)

dx dt � c20:

(3.23)

Assertion 3) follows by Hölder's inequality and Sobolev's embedding theorem. In-

deed, we get from (3.18)

J
�eq +  +

eq
h
(2 + )

�
�

Z
T

0

nZ



�
1 + u+(t; x)

�2+
dx
o eq

n

�

�

nZ



�
1 + u+(t; x)

�(eq+) n

n�eq dx
on�eq

n

dt �

� c21

Z
Q

+
T

Z �
1 + u(t; x)

�


���@u
@x

���eq dx dt+ c21

nZ
QT

Z �
1 + u+(t; x)

�2+
dx dt

o +eq

+2

:

(3.24)

Since I(eq) � c15 and (3.18) implyZ
Q

+
T

Z �
1 + u(t; x)

�


���@u
@x

���eq dx dt � c22 ; (3.25)
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we obtain assertion 3) from (3.24), (3.25) and (3.18).

Let us de�ne sequences fq
i
g; f�

i
g; i = 1; : : : ; N , such that

q1 =
2

 + 1
; �

i
= q

i
+  +

q
i

n
(2 + ); q

i+1 =
�
i
� 

 + 1
; q

N�1 < 2; q
N
� 2: (3.26)

This de�nition is justi�ed by (2.2) and

q
i+1 � q

i
=

q
i

n( + 1)

�
2� (n� 1)

�
�

2

n( + 1)2
�
2� (n� 1)

�
> 0:

Now, using the assertions 1) � 3), we get by iteration that I(q
N
) � c23 and hence

(3.19). This ends the proof of Theorem 2. �

Proof of Theorem 3. Analogously as in the proof of Theorem 2, we can restrict

us to the case of condition �1). We test the integral identity (2.8) with

'(t; x) =
�
�(u

k
(t; x))� �0

�
+

�
1 + [�(u

k
(t; x))� �0]

2
	
r

; (3.27)

where u
k
(t; x) = minfu(x; t); kg; k > m0; m0 is given by 2.10), �0 = �(m0) and

r 2
�
�

1
2
;1

�
is an arbitrary number.

Analogously to Lemma 1 in [9] we haveZ
�

0

<
@�(u)

@t
; ' > dt =

Z



�(r)(u(�; x)) dx ; (3.28)

where

�(r)(u) =

Z
u

0

�(s)
�
�(s

k
)� �0

�
+

�
1 + [�(s

k
)� �0]

2
	
r

ds; s
k
= minfs; kg; (3.29)

and

�(r)(u) �
1

2(r + 1)

�
1 + [�(u

k
)� �0]

2
	
r+1

� 1 for u > m0 : (3.30)

We write the derivative of ' in the form

@'

@x
i

= �(u)�(r)(u
k
)
@u

@x
i

� �(m0 < u < k) ; (3.31)

where �(m0 < u < k) is the characteristic function of the set f(t; x) 2 Q
T
: m0 <

u(t; x) < kg and the function �(r)(u) satis�es

c23 r
�
1 + [�(u)� �0]

2
	
r

� �(r)(u) � c24 (r + 1)
�
1 + [�(u)� �0]

2
	
r

(3.32)

12



with r = min(1+ 2r; 1). Using (3.28) � (3.32) and the conditions ii), iii), we obtainZ



�
1 + [�(u

k
(�; x))� �0]

2
	
r+1

�(m0 < u) dx +

+

Z
�

0

Z



�2(u)
�
1 + [�(u

k
)� �0]

2
	
r

�

���@u
@x

���2�(m0 < u < k) dx dt �

� c24

nhr + 1

r

i2 Z �

0

Z



�2(u)
�
1 + [�(u

k
)� �0]

2
	
r

���@v
@x

���2�
� �(m0 < u < k) dx dt+

r + 1

r

h
1 +

Z
Q�

Z �
jujm�1 + jvjm�1 + �(t; x)

�
�

�

�
1 + [�(u

k
)� �0]

2
+

	
r+ 1

2�(m0 < u) dx dt
io
:

(3.33)

We introduce the notations fu > 1g = f(t; x) 2 Q
T
: u(t; x) > 1g and

I�(q) = ess sup
t2(0;T )

Z



�q(u+(t; x)) dx +
R R

fu > 1g
�2(u)�q�2(u)

���@u
@x

���2 dx dt
J�(�) =

Z
QT

Z
[1 + u+(t; x)]

� dx dt ; q �
2 + 

1 + 
; � �  + 2 :

(3.34)

We shall need the following assertions:

1) I�(2+
1+

) � c25 ;

2) if J�(�) � c26, � � +2, then I�(q) � c27, q = minf��2
+1

; p2�
2

+1
; �

�
0

1(+1)
+1g;

3) if I�(eq) � c28 for eq � 2+

1+
, then J�(e�) � c29 for e� = 1

n

eq(n+ 2)(1 + ).

Remarking that �2(u)�q�2(u) � c30 �(u) for u > 1; q = 2+

1+
, we obtain assertion 1)

immediately from the Theorems 1, 2.

To prove assertion 2) we start estimating the �rst integral on the right hand side of

(3.33) with r � minf ��2

2(+1)
� 1; p2

2
�



+1
� 1g. Analogously to the inequality (3.21)

we haveZ
�

0

Z



�2(u)
�
1 + [�(u

k
)� �0]

2
	
r

���@v
@x

���2�(m0 < u < k) dx dt �

� c31

Z
Q

+
�

Z
[1 + u

k
(t; x)]2+2r(1+)

���@v
@x

���2 dx dt �
� c31 {

Z
Q

+
�

Z
[1 + u

k
(t; x)]2+2r(1+)

Z



���@K(x; y)

@y

����
� j�(u(t; y))� f(t; y)j2 dy dx dt �

� c32

Z
QT

Z �
1 + j�(u(t; x)j+ jf(t; x)j

	 2

+1
+2r+2

dx dt �

� c33

Z
QT

Z �
1 + [u+(t; x)]

+1 + jf(t; x)j
	 2

+1
+2r+2

dx dt � c34:

(3.35)
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Let us now estimate the last integral in (3.33). Using Theorem 1, Lemma 1, Hölder's

inequality and supposing r such that

2(r +
m

2
) � p2; 2( + 1)

�
r +

m

2

�
� �; (2r + 1)( + 1)p01 � � ;

we obtainZ
Q

+
�

Z �
jujm�1 + jvjm�1 + �(t; x)

��
1 + [�(u

k
)� �0]

2
+

	
r+ 1

2 dx dt �

� c34

nZ
Q

+
�

Z
[1 + u

k
]2(+1)(r+m

2
) dt dx +

Z
Q�

Z
j�(u)� f(t; x)j2(r+

m

2
) dx dt +

+
h Z

Q

+
�

Z
[1 + u

k
](2r+1)(+1)p01 dx dt

i 1

p
0

1

o
� c35 :

(3.36)

From (3.35), (3.36) we see that the left hand side in (3.33) is bounded by some

constant depending only on known parameters and independent of k; r, provided

J�(�) � c26 and r is de�ned by

r =
1

2
min

n�� 2

 + 1
; p2 �

2

 + 1
;

�

p01( + 1)
+ 1

o
� 1: (3.37)

So we are able to pass to the limit k ! +1 in (3.33) to obtain I�(q) � c27. That

is assertion 2).

Assertion 3) follows from Hölder's inequality and Sobolev's embedding theorem anal-

ogously to inequality (3.24).

Now we de�ne numbers fq
i
g; f�

i
g; i = 1; : : : ; N , such that

q1 =
2 + 

1 + 
; �

i
=

1

n
q
i
(n+ 2)(1 + )

q
i+1 = min

n�
i
� 2

1 + 
; p2 �

2

1 + 
;

�
i

p01( + 1)
+ 1

o
;

q
N�1 < p2 �

2

 + 1
; q

N
= p2 �

2

 + 1
:

(3.38)

This de�nition is justi�ed, since fq
i
g is increasing by

�
i
� 2

 + 1
� q

i
=

2q
i

n
�

2

 + 1
�

2

n( + 1)
[ + 2� n] > 0 ;

�
i

p01( + 1)
+ 1� q

i
= q

i

hp1 � 1

p1
�

n + 2

n
� 1

i
+ 1 > 1 :

(3.39)

Note also that �
N
> (n + 2)(1 + ).

So the assertions 1) � 3) imply I�(q
i
) � c36; J�(�

i
) � c37 for i = 1; : : : ; N . By

I�(q
N
) � c36; J

�(�
N
) � c37 we have

ess sup
t2(0;T )

Z



�
�(u(t; x))

�
p2�

2

+1dx � c36;

Z
QT

Z
j�(u(t; x))j

�
N

1+ dxdt � c37 : (3.40)

Hence the conditions (2.4), ') and Lemma 1 imply (2.14) with p3 = minfp2 �
2

+1
; �N

+1
� 2g and the proof of Theorem 3 is complete. �
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4 Boundedness of the function u

Firstly we want to estimate u(t; x) from above under condition �1).

Lemma 3 Let the conditions of Theorem 4 and �1) be satis�ed. Then there exists

a constant M6 depending only on known parameters such that

ess sup
�
u(t; x) : (t; x) 2 Q

T

	
�M6: (4.1)

Proof.We apply (3.33) and estimate the integrals on the right hand side by Hölder's

inequality. Using the properties of the function �, (2.14), and (3.40), we getZ
Q�

Z
�2(u)

�
1 + [�(u

k
)� �0]

2
	���@v
@x

���2�(m0 < u < k) dx dt +

+

Z
Q�

Z �
jujm�1 + jvjm�1 + �(t; x)

��
1 + [�(u

k
)� �0]

2
	
r+ 1

2�(m0 < u) dx dt �

� c39

nZ
Q�

Z �
1 + [�(u

k
)� �0]

2
	(r+1)p

�(m0 < u) dx dt
o 1

p

(4.2)

with p < n+2
n

depending only on known parameters. (3.33), (4.2) imply for r � 1Z



�
1 + [�(u

k
(�; x))� �0]

2
	
r+1

�(m0 < u) dx +

+

Z
Q�

Z
�2(u)

�
1 + [�(u)� �0]

2
	
r

���@u
@x

���2�(m0 < u < k) dx dt �

� c40 r
2
n
1 +

Z
Q�

Z �
1 + [�(u

k
)� �0]

2
	(r+1)p

�(m0 < u) dx dt
o 1

p

:

(4.3)

(4.3), Hölder's inequality and Sobolev's embedding inequalities yield for r � 1Z
QT

Z �
1 + [�(u

k
)� �0]

2
	(r+1)n+2

n
� �(m0 < u) dx dt �

� c41 �

Z
T

0

nZ



�
1 + [�(u

k
)� �0]

2
	
r+1

� �(m0 < u) dx
o 2

n

�

�

nZ



�
1 + [�(u

k
)� �0]

2
	(r+1) n

n�2 dx
o n

n�2

dt �

� c42 r
2ess sup

0<t<T

nZ



�
1 + [�(u

k
(t; x))� �0]

2
	
r+1

�(m0 < u) dx
o 2

n

�

�

Z
QT

Z h
�2(u)

�
1 + [�(u)� �0]

2
	
r

���@u
@x

���2�(m0 < u < k) +

+
�
1 + [�(u

k
)� �0]

2
+

	
r+1

i
dx dt �

� c43 r
4+ 4

n

nZ
QT

Z �
1 + [�(u

k
)� �0]

2
+

	(r+1)p
dx dt

o(1+ 2
n
) 1
p

:

(4.4)
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The inequalities (4.4), (3.40) justify the application of Moser's iteration process to

verify (4.1) and the proof of Lemma 3 is complete. �

For arbitrary k 2 R and functions w on Q
T
we de�ne:

w(k) = w(k)(t; x) = maxfw(t; x); kg; w� = w�(t; x) = minfw(t; x); 0g: (4.5)

Lemma 4 Let the conditions of the Theorem 4 be satis�ed. Then there exists a

constant M7 depending only on known parameters such that for an arbitrary k 2 R

ess sup
t2(0;T )

Z



ju(k)(t; x)j dx +

Z
QT

Z ���@u(k)(t; x)
@x

���2 dx dt �M7: (4.6)

The proof of this lemma is analogous to the proof of Lemma 5 in [10].

Lemma 5 Let the conditions of Theorem 4 be satis�ed. Then the estimate

ess inf fu(t; x) : (t; x) 2 Q
T
g � �M8 (4.7)

holds with a positive constant M8 depending only on known parameters.

Proof. We test the integral identity (2.8) with

' =
1

�(u(k))

�
�(u(k))� �(�m0)

�
�
� ju(k) +m0j

r; k < �m0; r > 0:

Then, analogously to the proof of the inequality (4.32) in [10], we obtainZ



j[u(k)(�; x) +m0]�j
r+1 dx +

+

Z
Q�

Z
ju+m0j

r

���@u
@x

���2�(k < u < �m0) dx dt �

� c44 (r + 1)2
Z
Q�

Z nh
ju+m0j

r

���@v
@x

���2 + ���@u
@x

���2 + ���@v
@x

���2i�(k < u < �m0) +

+ [1 + �(t; x)] � j[u(k) +m0]�j
r

o
dx dt:

(4.8)

Using Lemma 4 we have from (4.8)Z



j[u(k)(�; x) +m0]�j
r+1 dx+

Z
Q�

Z
ju+m0j

r

���@u
@x

���2�(k < u < �m0) dx dt

� c45 (r + 1)2
nZ

Q�

Z
j[u(k) +m0]�j

re�(t; x) dx dt + 1
o
;

(4.9)

where e�(t; x) = �(t; x) + j
@v

@x

j
2 + 1. The condition on � and Theorem 3 implye� 2 Lep(Q

T
) with ep > n+2

2
.
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The inequality (4.9) allows to apply Moser's iteration process for proving

j[u(k)(t; x) +m0]�j � c46:

This implies (4.7) with M8 = m0 + c46 and Lemma 5 is proved. �

Proof of Theorem 4. The assertion of Theorem 4 follows immediately from the

lemmas 3, 5 if condition �1) is satis�ed. In the case of condition �2) Lemma 5

yields a lower bound of u(t; x). The existence of an upper bound in that case can

be analogously shown. The proof of Theorem 4 is complete. �

5 Proof of the existence Theorem

Firstly we shall assume that condition �1) is satis�ed. In this case we regularize the

problem (1.1)-(1.4) by replacing �; a; � by ��; a�; �� in the following way: Let M4 be

the constant from Theorem 4 and (t; x) 2 Q
T
; v 2 R1, then

��(u) = �(u); a�(t; x; v; u) = a(t; x; v; u); ��(u) = �(u); if u � M4; (5.1)

��(u) = �(M4)e
M4�u; a�(t; x; v; u) = a(t; x; v;M4)e

M4�u;

��(u) = �(M4) + �(M4)[1� eM4�u]; if u > M4 :
(5.2)

We consider the regularized problem in Q
T
, i. e.,

@��(u)

@t
�

nX
c=i

@

@x
i

n
��(u) b

i

�
t; x;

@(u� v)

@x

�o
+ a�(t; x; v; u); (5.3)

v(t; x) = �

Z



K(x; y)[��(u(t; y))� f(t; y)] dy; (5.4)

nX
i=i

b
i

�
t; x;

@(u� v)

@x

�
cos(�; x

i
) = 0 (t; x) 2 (0; T )� @
; (5.5)

u(0; x) = h(x); x 2 
: (5.6)

This problem satis�es all conditions of Section 2 with the same known parameters

as problem (1.1) � (1.4). Therefore each solution (u; v) of problem (5.3) � (5.6)

satis�es the priori estimate (2.15). So from (5.1) we see that a solution (u; v) of
problem (5.3) � (5.6) is automatically solution of problem (1.1) � (1.4). Therefore it

is su�cient to establish the existence of a solution of problem (5.3) � (5.6) in order

to prove Theorem 5.

Let X(k); k 2 [0; 1], be the Banach space of functions such that

kuk2
X(k) = kuk2

L
2(0;T ;W 1;2(
)) + sup

0<Æ<T

2

Z
QT�Æ

Z
ju(t+ Æ; x)� u(t; x)j2

Æk
dx dt <1 :
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To study the solvability of problem (5.3) � (5.6) we introduce the operator A :
X(1

2
) ! X(1

2
) transforming a function g 2 X(1

2
) into the solution U = Ag of the

following problem in Q
T

@��(U)

@t
�

nX
i=1

@

@x
i

n
��(U) b

i

�
t; x;

@(U �G)

@x

�o
+ a�(t; x; G; U) = 0; (5.7)

G(t; x) = �

Z



K(x; y)[��(g(t; y))� f(t; y)] dy; (5.8)

nX
i=1

b
i

�
t; x;

@(U �G)

@x

�
cos(�; x

i
) = 0; (t; x) 2 (0; T )� @
; (5.9)

U(0; x) = h(x); x 2 
: (5.10)

Taking into account the boundedness of the function ��, the assumptions (2.4), @)
and Lemma 1 we have

ess sup
t2(0;T )

Z



���@G(t; x)

@x

���p2 dx + ess sup
(t;x)2QT

jG(t; x)j � c47 ; (5.11)

with a constant c47 depending only on known parameters and independent of g. In

order to guaranty the unique solvability of problem (5.7), (5.9)� (5.10) for given

function G satisfying (5.11), the Theorems 3, 4 in [9] can be adapted. Indeed, the

functions

b�
i
(t; x; �) = b

i

�
t; x; � �

@G(t; x)

@x

�
; i = 1; : : : ; n

satisfy the inequalities

nX
i=1

�
b�
i
(t; x; �0)� b�

i
(t; x; �00)

�
(�0

i
� �00

i
) � �j�0 � �00j2; (5.12)

jb�
i
(t; x; �)j � �2j�j+ �(t; x) (5.13)

with �(t; x) = �2(1 + j
@G

@x

j) 2 L1(0; T ;Lp2(
)), which essentially coincide with

the conditions ii)2 and ii�) ensuring in [9] existence and uniqueness in the case of

Dirichlet boundary conditions. But it is simple to check that the Theorems 3, 4 in

[9] are also true for Neumann boundary conditions.

The estimate (5.11) and adaptations of the Theorems 1, 2 from [9] imply

ess sup
�
jU(t; x)j : (t; x) 2 Q

T

	
�M9;

Z
QT

Z ���@G(t; x)

@x

���2 dx dt �M9 ; (5.14)

where U(t; x) is the solution of problem (5.7) � (5.10) andM9 is a constant depending

only on known parameters and independent of g.

Using the estimates (5.14), (5.11) we can show analogously to [13] that

sup
0<Æ<T

2

Z
QT�Æ

Z
jU(t + Æ; x)� U(t; x)j2

Æ
dx dt �M10 ; (5.15)
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with a constant M10 depending only on known parameters and independent of g.

So the solution U of problem (5.7) � (5.10) belongs to the space X(1) and therefore

the operator A : X(1
2
)! X(1

2
) is well de�ned. From the de�nition of this operator

we see immediately that the solvability of problem (5.3) � (5.6) is equivalent to the

existence of a �xed point

Ag = g; g 2 X
�1
2

�
: (5.16)

We shall prove the existence of a solution of (5.16) by using the Leray�Schauder

principle. The Leray�Schauder degree theory implies (cf. [13, 16]) that for the

solvability of the equation (5.16) it is su�cient to establish following statements:

1) there exists a family fA
�
g, � 2 [0; 1], of operators A

�
: X(1

2
) ! X(1

2
) such

that A1 = A; A0 = 0; A
�
is completely continuous 8� 2 [0; 1] and fA

�
g

satis�es following continuity condition: for arbitrary sequences f�
j
g; fu

j
g

such that �
j
! �0; uj ! u0 we have A�j

u
j
! A

�0
u0, where ! denotes strong

convergence in X(1
2
).

2) there exists a positive number R such that

A
�
g 6= g for � 2 [0; 1]; kgk

X( 1
2
) = R : (5.17)

We de�ne A
�
g = U

�
, where U

�
is the solution of the problem

@��(U
�
)

@t
�

nX
i=1

@

@x
i

n
��(U

�
) b

i

�
t; x;

@(U
�
� �G)

@x

�o
+

+ a�(t; x; G; U
�
)� (1� �)a�(t; x; G; 0) = 0; (t; x) 2 Q

T
;

(5.18)

nX
i=1

b
i

�
t; x;

@(U
�
� �G)

@x

�
cos(�; x

i
) = 0 ; (t; x) 2 (0; T )� @
 ; (5.19)

U
�
(0; x) = �h(x); x 2 
 : (5.20)

The unique solvability of this problem can be seen as that of (5.7) � (5.10). Hence

the operator A
�
: X(1

2
)! X(1

2
) is well de�ned.

We shall check �rstly statement 2) formulated above. Let us assume that �; g are

such that � 2 [0; 1]; g 2 X(1
2
) and A

�
g = g. Then from (5.18) � (5.20), (5.8)

we see that the pair (U;G) is solution of a nonlocal nonlinear problem being anal-

ogous to problem (1.1) � (1.4). Consequently, by Theorem 2 there exists a con-

stant M11 depending only on known parameters and independent of � 2 [0; 1] such
that kU

�
k
L
2(0;T ;W 1;2(
)) � M11. From the corresponding inequality (5.15) we have

kU
�
k
X( 1

2
) � M12 with a constant M12 depending only on known parameters and

independent of g(t; x); �. Since the equality A
�
g = g implies kgk

X( 1
2
) � M12, the

desired relation (5.17) is ful�lled for R = M12 + 1.

Now we shall check statement 1) formulated above. The equalities A1 = A and

A0 = 0 hold because of the unique solvability of problem (5.7), (5.10). Thus it

19



remains to prove compactness and continuity of the operator A. To this aim we

prove the following lemma.

Lemma 6 Assume that the conditions of Theorem 4 are satis�ed. Then the operator

A : X(1
2
) ! X(1

2
) de�ned by the map g ! U = Ag, where U is the solution of

problem (5.7)� (5.10), is completely continuous.

Proof. Firstly we remark that the operator A is bounded. This follows immediately

from (5.14), (5.15).

Next we prove auxiliary inequalities. Let for this purpose g
i
2 X(1

2
), i = 1; 2, and

set

U
i
= Ag

i
; G

i
(t; x) = �

Z



K(x; y)
�
��(g

i
(t; y))� f(t; y)

�
dy : (5.21)

We put the test functions '
i
given by

'1 =
1

��(U1)

�
��(U1)� ��(U2)

�
; '2 = U1 � U2;

into the integral identities corresponding to U
i
. Taking the di�erence of the two

resulting equalities, we getZ
�

0

n
<
@��(U1)

@t
;

1

��(U1)

�
��(U1)� ��(U2)

�
> � <

@��(U2)

@t
; U1 � U2 >

o
dt +

+
nX
i=1

Z
Q�

Z n
��(U1) bi

�
t; x;

@(U1 �G1)

@x

� @

@x
i

h 1

��(U1)

�
��(U1)� ��(U2)

�i
�

� ��(U2) bi

�
t; x;

@(U2 �G2)

@x

� @

@x
i

[U1 � U2]
o
dx dt +

+

Z
Q�

Z n
a�(t; x; G1; U1)

��(U1)� ��(U2)

��(U1)
� a�(t; x; G2; U2)(U1 � U2)

o
dx dt = 0 :

(5.22)

We transform the �rst integral in (5.22) analogously to Lemma 2 in [9] to obtainZ
�

0

n
<
@��(U1)

@t
;

1

��(U1)

�
��(U1)� ��(U2)

�
> � <

@��(U2)

@t
; U1 � U2 >

o
dt =

=

Z



Z
U1(�;x)

U2(�;x)

�
U1(�; x)� s

�
��(s) ds dx � c48

Z



jU1(�; x)� U2(�; x)j
2 dx:

(5.23)

To estimate the second integral in (5.22), we note that by condition �1)

�

(��)0(U1)

��(U1)

�
��(U1)� ��(U2)

�
� �

Z
U1

U2

(��)0(s)

��(s)
��(s) ds = ��(U2)� ��(U1) ; (5.24)
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such that

nX
i=1

��(U1) bi

�
t; x;

@(U1 �G1)

@x

� @

@x
i

h 1

��(U1)

�
��(U1)� ��(U2)

�i
�

�

nX
i=1

h
b
i

�
t; x;

@(U1 �G1)

@x

�
� b

i

�
t; x;

@G1

@x

�i@U1

@x
i

�
��(U2)� ��(U1)

�
+

+
nX
i=1

b
i

�
t; x;

@(U1 �G1)

@x

�h
��(U1)

@U1

@x
i

� ��(U2)
@U2

@x
i

i
�

�

nX
i=1

b
i

�
t; x;�

@G1

@x

�@U1

@x
i

�

(��)0(U1)

��(U1)

�
��(U1)� ��(U2)

�
:

(5.25)

Since the properties of the function � ensure that

�����(U1)� ��(U2)�
(��)0(U1)

��(U1)
�

�
��(U1)� ��(U2)

���� � c49 jU1 � U2j ; (5.26)

we get from (5.11), (5.25), (5.26) and condition ii)

nX
i=1

n
��(U1) bi

�
t; x;

@(U1 �G1)

@x

� @

@x
i

h 1

��(U1)

�
��(U1)� ��(U2)

�i
�

� ��(U2) bi

�
t; x;

@(U2 �G2)

@x

� @

@x
i

(U1 � U2)
o
� c50

���@(U1 � U2)

@x

���2�
� c51

n���@(G1 �G2)

@x

���2 + �
1 +

���@G1

@x

�������@U1

@x

��� � jU1 � U2j

o
:

(5.27)

Using condition iii) and (5.14), we can estimate the last integral in (5.22)

���a�(t; x; G1; U1)
��(U1)� ��(U2)

��(U1)
� a�(t; x; G2; U2)(U1 � U2)

��� �
� c52 jU1 � U2j[1 + �(t; x)] :

(5.28)

Finally, from (5.22), (5.23), (5.27) and (5.28) we see thatZ



jU1(�; x)� U2(�; x)j
2 dx +

Z
Q�

Z ���@(U1 � U2)

@x

���2 dx dt �
� c53

Z
Q�

Z n���@(G1 �G2)

@x

���2 + h
1 +

���@G1

@x

���i���@U1

@x

��� � jU1 � U2j +

+
�
1 + �(t; x)

�
jU1 � U2j

o
dx dt:

(5.29)

Now we are ready to return to the study of properties of the operator A. We

begin with the compactness. Let fg
j
g be a bounded sequence in X(1

2
). Then

by the compactness of the embedding X(1
2
) � L2(Q

T
) we can assume that fg

j
g

converges strongly in L2(Q
T
) to some function g0. This and Lemma 1 imply the
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strong convergence of
@Gj

@x

to @

@x

G0 in [L2(Q
T
)]n, where G

j
is de�ned analogously

to (5.21). Using (5.14), (5.15) with U
j
= Ag

j
, we can assume that U

j
converges to

some U0 2 X(1
2
) weakly in L2(0; T ;W 1;2(
)) and strongly in Lq(Q

T
) for an arbitrary

q <1.

In order to prove strong convergence of fU
j
g in L2(0; T ;W 1;2(
)), we use (5.29) with

U1 = U
j
; U2 = U

i
; G1 = G

j
; G2 = G

i
and we obtain

ess sup
�2(0;T )

Z



jU
j
(�; x)� U

i
(�; x)j2 dx +

Z
QT

Z ���@(Uj
� U

i
)

@x

���2 dx dt �
� c54

Z
QT

Z n���@(Gj
�G

i
)

@x

���2 + h
1 +

���@Gj

@x

���i � ���@Uj

@x

��� � jUj
� U

i
j+

+
�
1 + �(t; x)

�
jU

i
� U

j
j

o
dx dt:

(5.30)

Using already known convergence properties of the sequences fU
j
g, fG

j
g and (5.11),

we see that the right hand side of (5.30) tends to zero as j; i ! 1. That means

compactness of the sequence fU
j
g in L2(0; T ;W 1;2(
)). The compactness of this

sequence in X(1
2
) follows now from (5.30) and (5.15) with U

j
; U

i
. So we have estab-

lished the compactness of the operator A.

Now we shall check its continuity. Let fg
j
g be a sequence converging strongly in

X(1
2
) to g0. Lemma 1 implies that @

@x

G
j
!

@

@x

G0 in [L2(Q
T
)]n. Using the com-

pactness of A we can assume that fU
j
= Ag

j
g converges strongly in X(1

2
) to some

U 0 2 X(1
2
). We have to show U 0 = Ag0. From the integral identity for U

j

Z
�

0

<
@��(U

j
)

@t
; ' > dt +

Z
Q�

Z n nX
i=1

��(U
j
) b

i

�
t; x;

@(U
j
�G

j
)

@x

� @'
@x

i

+

+ a�
�
t; x; G

j
; U

j

�
'
o
dx dt = 0; ' 2 L2

�
0; T ;W 1;2(
)

� (5.31)

we obtain the boundedness of the sequence f��(U
j
)g in L2(0; T ; [W 1;2(
)]�). There-

fore we can assume that ��(U
j
) converges weakly in H1(0; T ; [W 1;2(
)]�) to some

functional h0. Using the strong convergence of fU
j
g to U0 in L2(Q

T
), it is simple

to see that h0 = ��(U0).
Now we are able to pass to the limit j !1 in (5.31) to get

Z
�

0

<
@��(U 0)

@t
; ' > dt +

Z
Q�

Z n nX
i=1

��(U0) bi

�
t; x;

@(U 0 �G0)

@x

� @'
@x

i

+

+ a�
�
t; x; G0; U 0

�
'
o
dx dt = 0; ' 2 L2

�
0; T ;W 1;2(
)

�
; U 0(0; x) = h(x); x 2 
 :

Adapting the uniqueness result Theorem 4 from [9], we obtain from (5) U0 = Ag0
and this ends the proof of Lemma 6. �

End of the proof of Theorem 5. We have had reduced the solvability of problem

(1.1) � (1.4) to that of equation (5.16). The solvability of the last equation follows via

Leray�Schauders's principle from the above formulated statements 1), 2), which are
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consequences of Lemma 6. Therefore the proof of Theorem 5 is complete provided

condition �1) is satis�ed. In the case of condition �2) the same arguments can be

used. But it is not necessary to pass to the regularized problem (5.3) � (5.5) in that

case. �

6 Proof of the Uniqueness Theorem

Assume by contradiction the existence of two solutions (u
j
; v

j
); j = 1; 2; of prob-

lem (1.1) � (1.4) in the sense of De�nition 1. We shall show that u1(t; x) =
u2(t; x); v1(t; x) = v2(t; x). By Theorem 2 � 4 we have

ku
j
k
L
1(QT ) + kv

j
k
L
1(QT ) +

@uj
@x


L
2(QT )

+
@vj
@x


L
2(QT )

�M13 (6.1)

with a constant M13 depending only on known parameters. Let us now prove two

auxiliary estimates.

First auxiliary estimate: We have for almost all � 2 (0; T )Z



ju1(�; x)� u2(�; x)j
2 +

Z
Q�

Z ���@(u1 � u2)

@x

���2 dx dt �
� c55

Z
Q�

Z n���@(v1 � v2)

@x

���2 + jv1 � v2j
2+

+
h���@v1
@x

������@u1
@x

���+ 1 + �(t; x)
i
ju1 � u2j

2
o
dx dt :

(6.2)

We shall obtain this estimate from the equality (5.22) with �(u
i
); �(u

i
); a(t; x; v

i
; u

i
);

u
i
; v

i
instead of ��(U

i
); ��(U

i
); a�(t; x; G

i
; U

i
); U

i
; G

i
respectively. Indeed, using (6.1)

the local Lipschitz conditions for �0 resp. for a(t; x; �; u), we get

����(u1)� �(u2)�
�0(u1)

�(u1)

�
�(u1)� �(u2)

���� � c56 ju1 � u2j
2 ; (6.3)

and ���a(t; x; v1; u2)�(u1)� �(u2)

�(u1)
� a(t; x; v2; u2)(u1 � u2)

��� �
� ja(t; x; v1; u2)j �

����(u1)� �(u2)

�(u1)
� (u1 � u2)

��� +
+ ja(t; x; v1; u2)� a(t; x; v2; u2)j � ju1 � u2j �

� c57

n�
1 + �(t; x)

�
ju1 � u2j

2 + jv1 � v2j
2
o
:

(6.4)

Now (6.2) follows by using (6.3) and (6.4) in the same way as (5.29) by using (5.23)

and (5.27).

23



Second auxiliary inequality: We have for almost all � 2 (0; T )Z



ju1(�; x)� u2(�; x)j
2 dx+

Z
Q�

Z
ju1 � u2j

2
h���@u1
@x

���2 + ���@u2
@x

���2i dx dt �
� c58

Z
Q�

Z n���@(u1 � u2)

@x

���2 + ���@(v1 � v2)

@x

���2+
+
h���@v1
@x

���2 + ���@v2
@x

���2iju1 � u2j
2 +

�
1 + �(t; x)

�
ju1 � u2j

2
o
dx dt :

(6.5)

The proof of inequality (6.5) coincides with that of inequality (6.8) in [10]. That

proof is based on testing the integral identity (2.8) for u = u
j
; v = v

j
with the test

functions '
j
given by

'1 =
1

�(u1)

�
exp(N�(u1))� exp(N�(u2))

�
+
; '2 = N [u1 � u2]+ exp(N�(u2))] ;

where N = max
n
j1�2�0(s)j

�
2(s)

: jsj �M13

o
and M13 is the constant from (6.1). Remark

that this proof is independent of the equation for the function v:

We shall use also the estimateZ



���@(v1 � v2)

@x

���2 dx+

Z



jv1 � v2j
2 dx � c59

Z



ju1 � u2j
2 dx (6.6)

following from Lemma 1 and (6.1).

Now we can turn to the proof of Theorem 6. Applying Cauchy's inequality to the

term with j@v1
@x

j in (6.2), we obtain from (6.2), (6.5), (6.6)Z



ju1(�; x)� u2(�; x)j
2 +

Z
Q�

Z ���@(u1 � u2)

@x

���2 dx dt �
� c60

Z
Q�

Z h
1 + �(t; x) +

���@v1
@x

���2 + ���@v2
@x

���2iju1 � u2j
2 dx dt:

(6.7)

From condition iii) and Theorem 3 we have

1 + �(t; x) +
���@v1
@x

���2 + ���@v2
@x

���2 2 Lep(Q
T
); ep = min

�
p1;

p3 + 2

2

�
>
n + 2

2
:

Estimating the integral on the right hand side of (6.7) by Hölder's inequality, we getZ
Q�

Z h
1 + �(t; x) +

���@v1
@x

���2 + ���@v2
@x

���2iju1 � u2j
2 dx dt �

� c61

nZ
Q�

Z
ju1 � u2j

2ep1 dx dt
o 1

ep

:

(6.8)

Applying Hölder's and Young's inequalities and the embedding V 2(Q)! L
2(n+2)

n (Q)
(cf. [13]), we can estimate the last integral in (6.8) as followsnZ

Q�

Z
ju1 � u2j

2ep0 dx dt
o 1

ep0

� "
n

sup
0 < � < �

Z



ju1(�; x)� u2(�; x)j
2 dx +

+

Z
Q�

Z ���@(u1 � u2)

@x

���2 dx dto+ c62 "
�(n+2)(ep1�1)

n+2�ep1

Z
Q�

Z
ju1 � u2j

2 dx dt

(6.9)
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with an arbitrary positive number ". With a suitable " (6.7) � (6.9) implyZ



ju1(�; x)� u2(�; x)j
2 dx � c63

Z
Q�

Z
ju1(t; x)� u2(t; x)j

2 dx dt (6.10)

for all � 2 (0; T ). Gronwall's lemma and the last estimate yield u1 = u2. By (6.6)

this implies v1 = v2 and the proof of Theorem 6 is complete. �

Proof of Corollary 1. With the solution u of (1.1)� (1.4) we de�ne

u1(t; x) = u(t; x) ; u2(t; x) = u(t+ Æ; x) ; Æ 2 (0; T � t)

and test the integral identity (2.8) with the functions '
i
; i = 1; 2; given by

'1(t; x) =
t2

��(u1(t; x))

�
��(u1(t; x))��

�(u2(t; x))
�
; '2(t; x) = t2(u1(t; x)�u2(t; x)) :

Then, arguing essentially as in the proof of (6.7) and (6.10), we obtain

� 2
Z



ju1(�; x)� u2(�; x)j
2 dx+

Z
Q�

t2
Z ���@(u1 � u2)

@x

���2 dx dt �
� c64

Z
Q�

Z
ju1 � u2j

2 dx dt:

Now dividing by Æ2, applying Gronwall's lemma and taking the limit Æ ! 0, the
corollary follows. �
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