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Abstract. An error analysis of approximation of derivatives of the solution to the

Cauchy problem for parabolic equations by �nite di�erences is given taking into account

that the solution itself is evaluated using weak-sense numerical integration of the cor-

responding system of stochastic di�erential equations together with the Monte Carlo

technique. It is shown that �nite di�erences are e�ective when the method of dependent

realizations is exploited in the Monte Carlo simulations. This technique is applicable to

evaluation of Greeks. In particular, it turns out that it is possible to evaluate both the

option price and deltas by a single simulation run that reduces the computational costs.

Results of some numerical experiments are presented.

1. Introduction

To evaluate a hedging strategy for a European claim depending on values of stocks (risky

assets) at maturity time, we have to know at every moment the solution of the Cauchy

problem for a parabolic equation (the value of the hedging portfolio) and its derivatives

(deltas). Other derivatives (price sensitivities known as Greeks) are an important measure

of risk.

Consider the Cauchy problem for the equation of parabolic type:

(1.1)
@u

@t
+

1

2

dX
i;j=1

aij(t; x)
@2u

@xi@xj
+

dX
i=1

bi(t; x)
@u

@xi
+ c(t; x)u+ g(t; x) = 0 ;

t0 � t < T; x 2 Rd;

with the initial condition

(1.2) u(T; x) = f(x) :

The solution of the problem (1.1)-(1.2) has various probabilistic representations:

(1.3) u(t; x) = E(f(Xt;x(T ))Yt;x;1(T ) + Zt;x;1;0(T )) ;

where Xt;x(s); Yt;x;y(s); Zt;x;y;z(s); s � t; is the solution of the Cauchy problem for the

system

dX = b(s;X)ds� �(s;X)�(s;X)ds+ �(s;X) dw(s); X(t) = x ;(1.4)

dY = c(s;X)Y ds+ �>(s;X)Y dw(s); Y (t) = y ;

dZ = g(s;X)Y ds+ F>(s;X)Y dw(s); Z(t) = z :

In (1.4) w(s) = (w1(s); : : : ; wd(s))> is a d-dimensional standard Wiener process, b(s; x) =
fbi(s; x)g is a column-vector of dimension d; �(s; x) is a matrix of dimension d � d such

that �(s; x)�>(s; x) = a(s; x) = faij(s; x)g, Y and Z are scalars, �(s; x) and F (s; x) are
column-vectors of dimension d with good analytical properties (for example, they have

bounded derivatives up to some order) but arbitrary otherwise.

Let F = 0: Then the usual representation can be seen if � = 0; the others rest on

Girsanov's theorem. For F 6= 0; the representation (1.3) is evidently true as well. We see

that the expectation in (1.3) does not depend on a choice of both � and F: At the same

time, V ar(f(Xt;x(T ))Yt;x;1(T ) + Zt;x;1;0(T )) does depend on them. A suitable choice of �
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and F allows us to reduce the variance (see, e.g., the method of important sampling in

[12, 15, 17], the method of control variates in [15], the combining method in [13, 14]).

We should note that stochastic models in �nancial mathematics are usually considered

in Rd
+ (not in Rd): However, the results obtained here can be carried over to the case of

R
d
+: Besides, we may also avoid these di�culties by using a suitable transformation of

R
d
+ into Rd:

In the case of c = 0; g = 0; � = 0; F = 0 we have

(1.5) u(t; x) = Ef(Xt;x(T )) ;

where Xt;x(s) is the solution of the problem

(1.6) dX = b(s;X)ds+ �(s;X) dw(s) ; X(t) = x :

The coe�cients b and � are assumed to have bounded derivatives up to some order. In

particular, this ensures the existence and uniqueness of the continuous solution to (1.6)

on [t; T ]: The uniform ellipticity condition is imposed on the matrix � :

9 � > 0; y|�(s; x)�|(s; x)y � �jyj2; for any s 2 [t0; T ]; x; y 2 Rd:

The function f(x) and its derivatives up to some order are assumed to satisfy inequalities

of the form

(1.7) jf(x)j � K � (1 + jxj{) ;
where K and { are positive constants. Under these conditions, the solution u(t; x) and
its derivatives satisfy inequalities of the type (1.7) [7].

For di�erentiable functions f; a probabilistic representation for
@u

@xk
(t; x) can be obtained

by straightforward di�erentiating (1.5) (see [2, 13]):

(1.8)
@u

@xk
(t; x) = E

dX
i=1

@f

@xi
(Xt;x(T )) ÆkX

i(T ) ;

where ÆkX
i(s) := @X i

t;x(s)=@x
k; t � s � T; satis�es the following system of variational

equations associated with (1.6):

dÆkX =

dX
i=1

@b(s;X)

@xi
ÆkX

ids+

dX
i=1

@�(s;X)

@xi
ÆkX

i dw(s) ;(1.9)

ÆkX
i(t) = 0 ; if i 6= k; and ÆkX

k(t) = 1 :

When f(x) is nondi�erentiable or when a European claim is speci�ed by a more compli-

cated payo� functional than the payo� function f(X(T )) at maturity time T , the authors
of [6] propose to use Malliavin calculus for numerical computation of Greeks. In particular,

their approach is based on the integration-by-parts formula which gives

(1.10) (T � t)
@u

@xk
(t; x) = Ef(Xt;x(T ))

Z T

t

[��1(s;Xt;x(s))ÆkX(s)]| dw(s) :
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Let us note that if the problem under consideration depends on some parameter �; i.e.,
X = Xt;x(s;�); u = u(t; x; �); then it is possible to �nd @u(t; x; �)=@�, in the same way.

Of course, we need Æ�X(s) := @Xt;x(s;�)=@�: However, if this derivative does not exist,
we cannot use, for example, the formula (1.10). We are faced with such a situation in the

case of �nding theta @u(t; x)=@t (e.g., the problem dX = dw(s); X(t) = x; s � t; has
the solution Xt;x(s) = x + w(s)� w(t) which is evidently nondi�erentiable with respect

to t). In [13], to evaluate theta, a system of linear parabolic equations is derived which

belongs to a class of systems admitting probabilistic representations for their solutions

[11]. It is shown in [13] that the computational costs are comparable with those of the

straightforward di�erentiation method (1.8)-(1.9).

Both formulas (1.8) and (1.10) require computation of ÆkX(s); i.e., to evaluate deltas by

these methods one has to integrate not only the d-dimensional system (1.6) but also d
additional systems, each of dimension d. This can present severe computational di�cul-

ties. At the same time, there is a very simple method which makes use of evaluating the

values of u only to evaluate deltas. This method rests on the �nite di�erence formula

(1.11)
@u

@xi
=

u(t; x1; : : : ; xi +�x; : : : ; xd)� u(t; x1; : : : ; xi ��x; : : : ; xd)

2�x
+O

�
(�x)

2
�
:

Of course, in (1.11) we are forced to use the approximate values û(t; x1; : : : ; xi��x; : : : ; xd)
instead of u(t; x1; : : : ; xi ��x; : : : ; xd) :

û(t; x1; : : : ; xi +�x; : : : ; xd) =
1

M

MX
m=1

f( �X
(m)

t;x1;:::;xi+�x;:::;xd
(T ))(1.12)

:
= �u = Ef( �Xt;x1;:::;xi+�x;:::;xd(T ))

:
= u = Ef(Xt;x1;:::;xi+�x;:::;xd(T )) :

The same can be written for û(t; x1; : : : ; xi � �x; : : : ; xd). In (1.12), �X(s); t � s �
T; is an approximate solution of (1.6) obtained by a scheme of numerical integration,
�X(m)(T ); m = 1; : : : ;M; are independent realizations of �X(T ): There are two errors

in (1.12): the error of numerical integration, say O(hp); and the statistical error of the

Monte Carlo method which is estimated as O(1=
p
M): Therefore, the error R of the

approximation

@u

@xi
=

û(t; x1; : : : ; xi +�x; : : : ; xd)� û(t; x1; : : : ; xi ��x; : : : ; xd)

2�x
+R

is equal, in general, to

R = O
�
(�x)

2
�
+O

�
hp

�x

�
+O

�
1

�x
p
M

�
:

Due to the presence of small �x in the denominators, the di�erence approach seems to

be not admissible. Fortunately, the more accurate arguments and the employment of the

dependent realizations in simulation of û(t; x1; : : : ; xi + �x; : : : ; xd) and û(t; x1; : : : ; xi �
�x; : : : ; xd) rehabilitate the di�erence approach. In Section 2, we prove that the error of

numerical integration by the weak Euler method (p = 1) contributes O(h) + O(h2=�x)
(not O(h=�x)) to the total error of evaluation of the derivative. This result is due to

the Talay-Tubaro expansion of the error of numerical integration [16]. In Section 3, we

prove that the method of dependent realizations, which is close to using common random
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numbers for Monte Carlo estimators (see [1, 4, 5, 10]), contributes just O(1=
p
M) to the

total error. Thus

R = O
�
(�x)

2
�
+O

�
h2

�x

�
+O

�
1p
M

�
:

If we put �x = �h�; � > 0, 1=2 � � � 1; then

R = O(h) +O(1=
p
M) :

Hence we get the same convergence rate in evaluating deltas as in evaluation of option

prices. We should note that this inference is rigorously obtained here in the case of simple

payo� functions which depend on the underlying asset process X at maturity time T
only: f = f(X(T )): Most likely, the results obtained here can be justi�ed in the case

when a contingent claim is de�ned as a functional of the asset process, for example,

f = f(X(t1); : : : ; X(tm)); t0 < � � � < tm = T:

It turns out (see Section 4) that the calculations for evaluating the option price u(t; x)
can be used for evaluation of deltas, i.e., we obtain both u and its �rst derivatives by a

single simulation run. This allows us to reduce the computational costs. In Section 5,

evaluation of other Greeks is discussed. Results of numerical experiments are presented

in Section 6.

2. Influence of the error of numerical integration on evaluating

deltas by finite differences

For simplicity, we �rst consider the one-dimensional Cauchy problem, more precisely the

problem (1.1)-(1.2) with d = 1; c = g = 0 :

Lu :=
@u

@t
+ b(t; x)

@u

@x
+
�2(t; x)

2

@2u

@x2
= 0(2.1)

u(T; x) = f(x):(2.2)

Then

(2.3) u(t; x) = Ef(Xt;x(T )) ;

where Xt;x(s); s � t; is the solution of the Cauchy problem (1.6).

We approximate the solution of (1.6) by a weak method, for instance by the weak Euler

method:

(2.4) �Xt;x(sk+1) := Xk+1 = Xk + hb(sk; Xk) + h1=2�(sk; x)�k; k = 0; : : : ; N � 1;

where h is a step of discretization of the time interval [t; T ] :

sk = t+ kh; k = 0; : : : ; N; sN = T ;

�k are independent random variables taking the values +1 and �1 with probability 1=2;
and X0 = x: The scheme (2.4) has the �rst order of accuracy in the sense of weak

approximation (see, e.g. [12]).

Using (2.3) and (2.4), we can evaluate the solution u(t; x) of (2.1)-(2.2) as follows

(2.5) u(t; x)
:
= �u(t; x) = Ef( �Xt;x(T )) :
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As is known [16], the error of this approximation can be expanded in powers of h :

(2.6) �(t; x) := �u(t; x)� u(t; x) = hE

Z T

t

B(#;Xt;x(#)) d# +O(h2) ;

where B(t; x) is determined by the coe�cients of the problem (2.1)-(2.2) and does not

depend on h :

B(t; x) = (L2u(t; x)� A(t; x))=2

with

A(t; x) =
@2u

@t2
+ 2b

@2u

@t@x
+ �2

@3u

@t@x2
+ b2

@2u

@x2
+ b�2

@3u

@x3
+

1

12
�4
@4u

@x4
:

We approximate the derivative
@u

@x
(t; x) by the central �nite di�erence:

(2.7)
@u

@x
(t; x) =

u(t; x+�x)� u(t; x��x)

2�x
+O((�x)

2
) :

Our aim in this section is to answer on the question: if we replace u in (2.7) by �u from

(2.5), how the error � in�uences the error of the evaluation of the derivative. We have

@u

@x
(t; x) =

u(t; x+�x)� u(t; x��x)

2�x
+O((�x)

2
)

=
�u(t; x+�x)� �u(t; x��x)

2�x
+

h

2�x
(v(t; x+�x)� v(t; x��x))

+O

�
h2

�x

�
+O((�x)

2
) ;

where

(2.8) v(t; x) = E

Z T

t

B(#;Xt;x(#)) d#

which is a smooth function due to the assumptions on the coe�cients made in Introduc-

tion. Then, expanding v(t; x��x) around (t; x); we obtain

h

2�x
(v(t; x+�x)� v(t; x��x)) = O(h) :

Therefore

@u

@x
(t; x) =

�u(t; x+�x)� �u(t; x��x)

2�x
+O

�
h+

h2

�x
+ (�x)

2

�
;

and if we select �x = �h�; � > 0, 1=2 � � � 1; then

@u

@x
(t; x) =

�u(t; x+ �h�)� �u(t; x� �h�)

2�h�
+O(h):

Thus, we have proved the theorem.

Theorem 2.1. Let �u(t; x) be evaluated according to (2:5) with �Xt;x(T ) obtained by the

Euler scheme (2:4); � be a positive number, and 1=2 � � � 1: Then

(2.9)
�u(t; x+ �h�)� �u(t; x� �h�)

2�h�
� @u

@x
(t; x) = O(h) :
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Remark 2.1. If the coe�cients of (2:1)-(2:2) have a su�cient number of bounded deriva-

tives, the error �(t; x) can be expanded as [16]:

�(t; x) = �u(t; x)� u(t; x) = h

n�1X
i=0

hiE

Z T

t

Bi(#;Xt;x(#)) d#+O(hn+1) :

Then

@u

@x
(t; x) =

�u(t; x +�x)� �u(t; x��x)

2�x
+O

�
h+

hn+1

�x
+ (�x)

2

�
;

and we achieve the accuracy O(h) by choosing �x = �h�; � > 0; 1=2 � � � n.

Remark 2.2. Let �Xt;x(T ) be obtained by a second-order weak scheme [12]. Then we

have the expansion

�u(t; x)� u(t; x) = h2E

Z T

t

B(#;Xt;x(#)) d# +O(h3) ;

(with another function B(t; x); of course) and

@u

@x
(t; x) =

�u(t; x+�x)� �u(t; x��x)

2�x
+O

�
h2 +

h3

�x
+ (�x)

2

�
:

Taking �x = �h; � > 0; we get

@u

@x
(t; x) =

�u(t; x + �h)� �u(t; x� �h)

2�h
+O(h2) :

Theorem 2.1 can easily be generalized to the general problem (1.1)-(1.2). Indeed, we can

approximate the solution of (1.4) by, e.g., the weak Euler method and evaluate �u by the

formula

(2.10) �u(t; x) = E
�
f( �Xt;x(T )) �Yt;x;1(T ) + �Zt;x;1;0(T )

�
:

Then, by the same arguments as above, we obtain the theorem.

Theorem 2.2. Let �u(t; x) be evaluated according to (2:10) with �Xt;x(T ); �Yt;x;1(T ); �Zt;x;1;0(T )
obtained by the weak Euler method applied to (1:4), � be a positive number, and 1=2 �
� � 1: Then

(2.11)
�u(t; x + �h��)� �u(t; x� �h��)

2�h�
� @u(t; x)

@�
= O(h) ;

where � is a unit vector and

@u(t; x)

@�
=

@u(t; x+ r�)

@r

����
r=0

is the derivative in the direction of �:
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3. Influence of the Monte Carlo error on evaluating deltas by

finite differences

For simplicity, we again �rst consider the one-dimensional case (2.1)-(2.2). To realize the

formula (2.5) (or (2.10)) in practice, we need to apply the Monte Carlo technique. As a

result, in addition to the error of numerical integration considered in the previous section,

there is also the Monte Carlo error:

(3.1) �u(t; x) = Ef( �Xt;x(T )) =
1

M

MX
m=1

f( �X
(m)

t;x (T ))� ru;

where M is the number of independent realizations �X
(m)

t;x (T ) of �Xt;x(T ): The Monte Carlo

error ru is estimated as

ru =
cp
M

q
V ar f( �Xs;x(T )) =

cp
M

�q
V ar f(Xs;x(T )) +O(h)

�
with, for example, the �ducial probability 0:997 for c = 3 and 0:95 for c = 2: Below, for
de�niteness, we take c = 3: Thus, the total error Ru in the evaluation of u is estimated as

Ru = O(h) +O

�
1p
M

�
;

which is of order O(h) if we choose M � 1=h2:

We have

@u

@x
(t; x) =

1

2�h�
1

M

"
MX

m=1

f( �X
(m)

t;x+�h�
(T ))�

MX
m=1

f( �X
(m)

t;x��h�(T ))

#
(3.2)

+O(h)� 1

2�h�
ru0 ;

where the Monte Carlo error ru0 is estimated for su�ciently large M as

ru0 =
3p
M

q
V ar f( �Xt;x+�h�(T )) + V ar f( �Xt;x��h�(T ))(3.3)

=
3p
M

�q
2V ar f(Xt;x(T )) +O(h)

�

with the �ducial probability 0:997:We have assumed here that all the realizations �X
(m)

t;x+�h�
(T )

and �X
(m)

t;x��h�(T ) are independent. The second relation in (3.3) is obtained by the following

arguments: the values V ar f( �Xt;x��h�(T )) di�er from V ar f(Xt;x��h�(T )) by O(h) and

V ar f(Xt;x��h�(T )) di�er from V ar f(Xt;x(T )) by O(h2�):

Thus, the total error Ru0 in the evaluation of @u=@x due to (3.2) is estimated as

(3.4) Ru0 = O(h) +O

�
1p
Mh2�

�
;

which is of order O(h) if we choose � = 1=2 and M � 1=h3 that is 1=h times larger than

it is required in the evaluation of the solution u itself.
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Now, instead of simulating the independent trajectories, let us simulate them in a pairwise

dependent way (that is similar to the use of common random numbers [1, 4, 5, 10]). More

precisely, we now simulate M pairs of trajectories, each pair consists of a trajectory

starting from x+�h� and a trajectory starting from x��h�. The pairs are independent,
but the two trajectories of the same pair are dependent: they correspond to the same

realization of the Wiener process. Then we have

@u

@x
(t; x) =

1

2�h�
1

M

MX
m=1

h
f( �X

(m)

t;x+�h�
(T ))� f( �X

(m)

t;x��h�(T ))
i

(3.5)

+O(h)� 1

2�h�
rnewu0 ;

where the Monte Carlo error rnewu0 is estimated for su�ciently large M as

(3.6) rnewu0 =
3p
M

q
V ar

�
f( �Xt;x+�h�(T ))� f( �Xt;x��h�(T ))

�
:

Since �Xt;x(T ) approximates Xt;x(T ) with the �rst weak order, we get

V ar
�
f( �Xt;x+�h�(T ))� f( �Xt;x��h�(T ))

�
(3.7)

= V ar
�
f(Xt;x+�h�(T ))� f(Xt;x��h�(T ))

�
+O(h) :

We have

V ar
�
f(Xt;x+�h�(T ))� f(Xt;x��h�(T ))

�
= E

�
f(Xt;x+�h�(T ))� f(Xt;x��h�(T ))

�2 � �E �f(Xt;x+�h�(T ))� f(Xt;x��h�(T ))
��2

:

Due to the conditions imposed on the coe�cients of the problem (2.1)-(2.2) and continuous

dependence of solutions to SDEs on the initial data (see [3, Section 8]), we obtain

E
�
f(Xt;x+�h�(T ))� f(Xt;x��h�(T ))

�2 � K � 4�2h2�

and �
E
�
f(Xt;x+�h�(T ))� f(Xt;x��h�(T ))

��2 � K � 4�2h2�

(here and in what follows we denote by the same letter K various positive constants

independent of h):

Hence

(3.8) V ar
�
f(Xt;x+�h�(T ))� f(Xt;x��h�(T ))

�
� K � 4�2h2�

and

(3.9) rnewu0 � 3p
M

(K � 4�2h2� +O(h))1=2:

By a more accurate analysis, it is possible to prove that

(3.10) rnewu0 =
3C � 2�h�p

M
(1 +O(h)) ;
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where the constant C can be estimated in the Monte Carlo simulation in the usual way.

Indeed, let �'(x) := f( �Xt;x(T )): It follows from the proof of Lemma 4.2 that the derivatives

of �'(x) exist and some their moments are bounded uniformly with respect to h: We have

�'(x+ �h�)� �'(x� �h�) = 2�h� �'0(x) +

�
�h�

�3
6

(�'000(�1) + �'000(�2)) ;

where �1 and �2 are some intermediate points. Then

V := V ar
�
�'(x+ �h�)� �'(x� �h�)

�
= 4�2h2��V ar

"
�'0(x) +

�
�h�

�2
12

(�'000(�1) + �'000(�2))

#
;

and, using Lemma 4.2, we get

V = 4�2h2� �
�
V ar �'0(x) +O(h2�)

�
:

The joint system of di�erence equations for �Xt;x(sk);
@ �Xt;x

@x
(sk) (cf. (2.4) and (4.6)-(4.7))

is the weak Euler approximation for the joint system for Xt;x(s);
@Xt;x

@x
(s); s � t (cf. (1.6)

and (1.9)). Then

V ar �'0(x) = V ar '0(x) +O(h);

where '(x) := f(Xt;x(T )): Finally, we obtain (recall that 1=2 � � � 1)

V = C2 � 4�2h2� (1 +O(h))

with

C =
p
V ar '0(x) ;

whence (3.10) follows.

The total error Rnew
u0 in the evaluation of @u=@x due to (3.5) is estimated as

(3.11) Rnew
u0 = O

�
h +

1p
M

�
:

Note that for � = 1=2 the estimate (3.11) follows from (3.5) and (3.9), i.e., (3.10) is not

needed. We see that it is su�cient to take M � 1=h2 like in the evaluation of the solution

u itself. Thus, the following theorem is proved.

Theorem 3.1. Let �Xt;x(T ) be obtained by the Euler scheme (2:4), the pairs ( �X
(m)

t;x+�h�
(T );

�X
(m)

t;x��h�(T )); m = 1; : : : ;M; � > 0; 1=2 � � � 1; be independent but the two realiza-

tions from the same pair be dependent (i.e., they are supposed to correspond to the same

realization of the Wiener process). Then

@u

@x
(t; x) =

1

2�h�
1

M

MX
m=1

h
f( �X

(m)

t;x+�h�
(T ))� f( �X

(m)

t;x��h�(T ))
i

(3.12)

+O(h)� 3Cp
M

:

9



Remark 3.1. In the case of one-sided �nite di�erence we can obtain the similar result:

@u

@x
(t; x) =

1

�h

1

M

MX
m=1

h
f( �X

(m)

t;x+�h(T ))� f( �X
(m)

t;x (T ))
i

(3.13)

+O(h)� 3Cp
M

; � > 0;

where the pairs ( �X
(m)

t;x+�h(T );
�X
(m)

t;x (T )); m = 1; : : : ;M; are independent but the two real-

izations from the same pair are dependent. It is clear that in practice the formula (3:12)
with � = 1=2 is usually preferable to (3:13) due to its better stability with respect to

inherent errors.

In the case of the general problem (1.1)-(1.2) we have with the �ducial probability 0:997 :

�u(t; x) = Ef( �Xt;x(T )) =
1

M

MX
m=1

h
f( �X

(m)

t;x (T )) �Y
(m)

t;x;1(T ) +
�Z
(m)

t;x;1;0(T )
i

(3.14)

� 3p
M

�q
V ar [f(Xt;x(T ))Yt;x;1(T ) + Zt;x;1;0(T )] +O (h)

�
;

whereM is the number of independent realizations ��
(m)

t;x (T ) := ( �X
(m)

t;x (T ); �Y
(m)

t;x;1(T );
�Z
(m)

t;x;1;0(T ))

of ��t;x(T ) := ( �Xt;x(T ); �Yt;x;1(T ); �Zt;x;1;0(T )): It is not di�cult to generalize Theorem 3.1

and obtain the following assertion.

Theorem 3.2. Let ��t;x(T ) := ( �Xt;x(T ); �Yt;x;1(T ); �Zt;x;1;0(T )) be obtained by the weak Euler

method applied to (1:4), the pairs

�
��
(m)

t;x+�h��
(T ); ��

(m)

t;x��h��(T )
�
; m = 1; : : : ;M; � > 0;

1=2 � � � 1; be independent but the two realizations from the same pair correspond to

the same realization of the Wiener process. Then for a unit vector �

@u(t; x)

@�
=

1

2�h�
1

M

MX
m=1

h
f( �X

(m)

t;x+�h��
(T )) �Y

(m)

t;x+�h��;1
(T ) + �Z

(m)

t;x+�h��;1;0
(T )(3.15)

�f( �X(m)

t;x��h��(T ))
�Y
(m)

t;x��h��;1(T )� �Z
(m)

t;x��h��;1;0(T )
i
+O(h)� 3Cp

M
:

4. The use of intermediate values from simulation of the option

price for evaluating deltas

The realization of the approach to evaluating derivatives explained in the previous two

sections requires many simulation runs. More precisely, to �nd the option price and all

the deltas in the general case (1.1)-(1.2), we need 2d + 1 values of the solution u(t; x)
at di�erent points, i.e., we have to simulate the system (1.4) with 2d+ 1 di�erent initial

values using the corresponding Monte Carlo technique. However, it turns out that it is

possible to evaluate derivatives using just a single simulation run if we use intermediate

values from simulation of the solution itself. This allows us to reduce computational costs

essentially.
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In this section we put � = 0 and F = 0 in (1.4) in order to simplify the exposition only.

All the results are easily carried over to the case of arbitrary � and F that does not require

any new ideas.

Let Xt;x(s); Yt;x;y(s); Zt;x;y;z(s); s � t; be a solution of the system of SDEs (1.4) with

� = 0 and F = 0 and Xk = �Xt;x(sk); Yk = �Yt;x(sk); Zk = �Zt;x(sk); k = 0; : : : ; N; s0 = t;
sN = T; be its approximation obtained by the weak Euler method:

Xk+1 = Xk + hb(sk; Xk) + h1=2�(sk; x)�k(4.1)

Yk+1 = Yk + hc(sk; Xk)Yk

Zk+1 = Zk + hg(sk; Xk)Yk; k = 0; : : : ; N � 1;

where �k = (�1k; : : : ; �
d
k)

| are d-dimensional vectors which components are i.i.d. random

variables with the law P (�i = �1) = 1=2:

In addition, denote by �X the one-step approximation

(4.2) �Xt;x(t+ h) = �X = x + hb(t; x) + h1=2�(t; x) � :

Lemma 4.1. Let U(t; x) be a su�ciently smooth function. Then

(4.3) �| 5 U(t; x) =
1p
h
E
�
U(t + h; �X) �

�
+O(h) ;

where 5U(t; x) = gradU =

�
@U

@x1
; : : : ;

@U

@xd

�
|

and �X is from (4:2).

Proof. We have

E
h
U(t + h; �X) �

p
h
i
= h1=2E

�
U(t + h; x + hb(t; x) + h1=2�(t; x)�) �

�
= h1=2E [U(t + h; x) �] + hE

"
dX

i=1

@U

@xi
(t + h; x)

�
h1=2bi + (��)

i
�
�

#

+h3=2E

"
1

2

dX
i;j=1

@2U

@xi@xj
(t+ h; x) (��)

i
(��)

i
�

#
+O(h2)

= hE

"
dX

i=1

@U

@xi
(t; x) (��)

i
�

#
+O(h2) = h�| 5 U(t; x) +O(h2) :

�

Now let u(t; x) be the solution of the problem (1.1)-(1.2). Then, due to Lemma 4.1, we

get

(4.4) E
h
u(t+ h; �X) �

p
h
i
= h�| 5 u(t; x) +O(h2);

where �X is from (4.2).

Lemma 4.2. The function �u(t; x) de�ned by (2:10) has derivatives up to some order which

are uniformly bounded with respect to h:
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Proof. Recall that we assumed (see Introduction) that the coe�cients of the problem

(1.1)-(1.2) have bounded derivatives up to some order. Let us prove, for example, that

�u(t; x) given by (2.10) has the continuous �rst derivatives with respect to x: We can

formally write

@

@xi
�u(t; x) =

@

@xi
E
�
f( �Xt;x(T )) �Yt;x;1(T ) + �Zt;x;1;0(T )

�
(4.5)

= E

"
dX

j=1

@

@xj
f( �Xt;x(T ))

@

@xi
�Xj
t;x(T )

�Yt;x;1(T )

+f( �Xt;x(T ))
@

@xi
�Yt;x;1(T ) +

@

@xi
�Zt;x;1;0(T )

�
:

We have (cf. (4.1)):

�Xj
t;x(sk+1) =

�Xj
t;x(sk) + hbj(sk; �Xt;x(sk)) + h1=2

dX
l=1

�jl(sk; �Xt;x(sk)) �
l
k ;

j = 1; : : : ; d; k = 0; : : : ; N � 1;

and s0 = t; sN = T; �Xt;x(t) = x:

We get

@

@xi
�Xj
t;x(s1) = Æij + h

@

@xi
bj(t; x) + h1=2

dX
l=1

@

@xi
�jl(t; x) �l1 ;

(here Æij is the Kronecker symbol). Hence the derivative
@

@xi
�Xj
t;x(s1) evidently exists

due to the assumptions on the coe�cients. By induction we obtain that
@

@xi
�Xj
t;x(sk);

k = 0; : : : ; N , j = 1; : : : ; d; exist and satisfy the linear system of stochastic di�erence

equations

@

@xi
�Xj
t;x(sk+1) =

@

@xi
�Xj
t;x(sk) + h

dX
l=1

@

@xl
bj(sk; �Xt;x(sk))

@

@xi
�X l
t;x(sk)(4.6)

+ h1=2
dX

l;m=1

@

@xm
�jl(s1; �Xt;x(sk)) �

l
k

@

@xi
�Xm
t;x(sk);

j = 1; : : : ; d; k = 0; : : : ; N � 1;

with the initial condition

(4.7)
@

@xi
�Xj
t;x(s0) = Æij :

It is not di�cult to show that the second moments of the derivatives
@

@xi
�X
j
t;x(T ) are

uniformly bounded with respect to h and that the derivatives
@

@xi
�Yt;x(T ) and

@

@xi
�Zj
t;x(T )
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possess the same properties. Then (4.5) implies the existence of the �rst derivatives uni-

formly bounded with respect to h: Di�erentiating (4.5) further, we arrive at the assertion
of the lemma. �

By Lemmas 4.1 and 4.2, we obtain

(4.8) E
h
�u(t + h; �X) �

p
h
i
= h�|5 �u(t; x) +O(h2)

with �X from (4.2).

Theorem 4.1. We have

(4.9) �|5 u(t; x) =
1p
h
E
�
�u(t+ h; �X) �

�
+O(h) :

Proof. The relations (4.4) and (4.8) imply

(4.10) �| (5u(t; x)�5�u(t; x)) =
1p
h
E
�
u(t+ h; �X)� �u(t+ h; �X)

�
� +O(h) :

Let us estimate E
�
u(t+ h; �X)� �u(t + h; �X)

�
�: For simplicity, consider the problem (2.1)-

(2.2) (note that the generalization of the proof to the problem (1.1)-(1.2) does not require

any additional ideas). We have (cf. (2.5) and (2.6)):

�u(t+ h; �X) = E
�
f( �Xt+h; �X(T )) j �X

�
= u(t+ h; �X) + hE(

Z T

t+h

B(#;Xt+h; �X(#)) d# j �X) +O(h2) :

Introducing v(t; x) as in (2.8) and recalling the relation (4.2) for �X, we obtain

�u(t+ h; �X) = u(t+ h; �X) + hv(t+ h; �X) +O(h2)

= u(t+ h; �X) + hv(t+ h; x+ hb + h1=2� �) +O(h2)

= u(t+ h; �X) + hv(t+ h; x+ hb) + h3=2
@v

@x
(t + h; x+ hb)� � +O(h2) :

Then

E
�
u(t+ h; �X)� �u(t+ h; �X)

�
�(4.11)

= �E
�
hv(t+ h; x + hb) + h3=2

@v

@x
(t+ h; x + hb)� � +O(h2)

�
�

= �h3=2E
�
@v

@x
(t + h; x+ hb)� �2

�
+O(h2) = O(h3=2) :

Substituting (4.11) in (4.10) and taking into account (4.8), we get (4.9). Theorem 4.1 is

proved. �

Remark 4.1. If we evaluate �u(t + h; �X) using (2:10) with �Xt;x(T ); �Yt;x;1(T ); �Zt;x;1;0(T )

obtained by a second-order weak scheme with the time step
p
h applied to (1:4), then

�|5 u(t; x) =
1p
h
E
�
�u(t+ h; �X) �

�
+O(h) ;

i.e., we get the same accuracy as before but for lower computational costs.
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To approximately �nd the derivatives of the solution u(t; x) to (1.1)-(1.2) by (4.9), we need

to evaluate the expectation E
�
�u(t+ h; �X) �

�
: Let us denote by �() =

�
�1(); : : : ; �

d
()

�|
;

 = 1; : : : ; 2d; all the di�erent values of the vector � from (4.2) and assign indices to these

values so that �(2d�1+�) = ��(�); � = 1; : : : ; 2d�1:We denote by �X() the value of the vector
�X from (4.2) corresponding to �():

We have

(4.12) E
�
�u(t+ h; �X) �

�
=

1

2d

2dX
=1

�u(t+ h; �X()) �() :

Note that �X() and �() are deterministic (not random) vectors. The approximate solution

�u(t; x) of (1.1)-(1.2) can be represented in the form (cf. (2.10)):

�u(t; x) = E
�
f( �Xt;x(T )) �Yt;x;1(T ) + �Zt;x;1;0(T )

�
= E

�
f( �Xt+h; �Xt;x(t+h)(T ))

�Yt+h; �Xt;x(t+h); �Yt;x;1(t+h)(T )

+ �Zt+h; �Xt;x(t+h); �Yt;x;1(t+h); �Zt;x;1;0(t+h)(T )
�
:

Taking into account that (see (4.1))

�Yt+h; �Xt;x(t+h); �Yt;x;1(t+h)(T ) =
�Yt+h; �Xt;x(t+h);1(T ) � �Yt;x;1(t+ h);

�Zt+h; �Xt;x(t+h); �Yt;x;1(t+h); �Zt;x;1;0(t+h)(T ) =
�Zt;x;1;0(t+ h) + h

N�1X
k=1

g(sk; �Xt;x(sk)) �Yt;x;1(sk)

= �Zt;x;1;0(t+ h) + �Zt+h; �Xt;x(t+h);1;0(T ) � �Yt;x;1(t+ h) ;

we get (recall that we have put � = 0; F = 0)

(4.13) �u(t; x) =
1

2d

2dX
=1

�u(t+ h; �X()) [1 + hc(t; x)] + hg(t; x) ;

i.e., we can simulate both the approximate solution and derivatives using the same inter-

mediate values �u(t+ h; �X()):

We �nd the approximations �u(t + h; �X()) due to (2.10), which is realized by the Monte

Carlo technique. If for this purpose we used (3.1) (i.e., if we simulated M = 2d � L

independent realizations ��
(l)

t+h; �X()
(T ) = ( �X

(l)

t+h; �X()
(T ); �Y

(l)

t+h; �X();1
(T ); �Z

(l)

t+h; �X();1;0
(T ));  =

1; : : : ; 2d; l = 1; : : : ; L), the error in evaluation of u(t+h; �X()) would be O(h)+O(1=
p
M)

but the error in evaluation of �|5 u(t; x) would be O(h) +O(1=
p
hM) (cf. (3.4)) that is

not acceptable. To decrease the Monte Carlo error, we use dependent realizations again.

Let us simulate M=2 = 2d�1 � L pairs (��
(l)

t+h; �X(�)
(T ); ��

(l)

t+h; �X
(2d�1+�)

(T )); � = 1; : : : ; 2d�1;

l = 1; : : : ; L; so that the pairs are independent, but the two realizations of the same

pair are dependent. We mean by �dependence� the same as in the previous section: the

dependent trajectories correspond to the same realization of the Wiener process. Our aim

now is to estimate the Monte Carlo errors arising in simulation of E
�
�u(t + h; �X) �

�
due

to (4.12) and �u(t; x) due to (4.13) in the case of dependent realizations.
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Theorem 4.2. Let ��t;x(T ) = ( �Xt;x(T ); �Yt;x;1(T ); �Zt;x;1;0(T )) be obtained by the weak Euler

method (4:1), the pairs (��
(l)

t+h; �X(�)
(T ); ��

(l)

t+h; �X
(2d�1+�)

(T )); � = 1; : : : ; 2d�1; l = 1; : : : ; L; be

independent but the two realizations from the same pair be dependent. Then

�u(t; x) =
1

M

2dX
=1

LX
l=1

h
f( �X

(l)

t+h; �X()
(T )) �Y

(l)

t+h; �X();1
(T ) + �Z

(l)

t+h; �X();1;0
(T )
i

(4.14)

� [1 + hc(t; x)] + hg(t; x)

�3
p
2p
M

�q
V ar (f(Xt+h;x(T ))Yt+h;x;1(T ) + Zt+h;x;1;0(T )) +O(h)

�
;

M = 2
d � L ;

with the �ducial probability 0:997:

Proof. Denote by ��() the random variable f( �Xt+h; �X()
(T )) �Yt+h; �X();1

(T ) + �Zt+h; �X();1;0
(T ) :

We have for su�ciently large L :

V := V ar

2
4 1

2d

1

L

2dX
=1

LX
l=1

��
(l)

()

3
5 =

1

22d

1

L

2d�1X
�=1

V ar
�
��(�) + ��(2d�1+�)

�

=
1

22d

1

L

2d�1X
�=1

V ar
�
�(�) + �(2d�1+�)

�
+O

�
h

M

�
;

where �() := f(Xt+h; �X()
(T ))Yt+h; �X();1

(T ) + Zt+h; �X();1;0
(T ) and �(�) and �(2d�1+�) are

dependent.

Using the closeness of �(�) + �(2d�1+�) to 2 [f(Xt+h;x(T ))Yt+h;x;1(T ) + Zt+h;x;1;0(T )] ; we
obtain

V ar
�
�(�) + �(2d�1+�)

�
= 4V ar [f(Xt+h;x(T ))Yt+h;x;1(T ) + Zt+h;x;1;0(T )] +O(h) :

Hence,

V =
2

M
V ar [f(Xt+h;x(T ))Yt+h;x;1(T ) + Zt+h;x;1;0(T )] +O

�
h

M

�
;

whence the Monte Carlo error in (4.14) follows. �

Remark 4.2. If all the M realizations in (4:14) are independent, then the Monte Carlo

error is
p
2 times smaller and equal to the Monte Carlo error in the case of evaluating

�u(t; x) by the usual formula (3:14). Thus, (4:14) is slightly less e�ective for evaluation of

the approximate solution than the formula (3:14). But the use of dependent realizations
allows simultaneous simulation of u(t; x) and its �rst derivatives in x that reduces the

computational costs in around 2d times when we need both the option price and deltas.

Theorem 4.3. Let ��t;x(T ) = ( �Xt;x(T ); �Yt;x;1(T ); �Zt;x;1;0(T )) be obtained by the weak Euler

method (4:1), the pairs

�
��
(l)

t+h; �X(�)
(T ); ��

(l)

t+h; �X
(2d�1+�)

(T )

�
; � = 1; : : : ; 2d�1; l = 1; : : : ; L; be
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independent but the two realizations from the same pair be dependent. Then

E
�
�u(t + h; �X) �i

�
=

1

2d

2d�1X
�=1

�
û(t+ h; �X(�))� û(t+ h; �X(2d�1+�))

�
�i(�)(4.15)

� 3C
p
hp

M
(1 +O(h)) ; i = 1; : : : ; d; M = 2

d � L ;

where

û(t+ h; �X(�))� û(t + h; �X(2d�1+�))(4.16)

:=
1

L

LX
l=1

h
f( �X

(l)

t+h; �X(�)
(T )) �Y

(l)

t+h; �X(�);1
(T ) + �Z

(l)

t+h; �X(�);1;0
(T )

� f( �X
(l)

t+h; �X
(2d�1+�)

(T )) �Y
(l)

t+h; �X
(2d�1+�)

;1
(T )� �Z

(l)

t+h; �X
(2d�1+�)

;1;0
(T )

�
� = 1; : : : ; 2d�1 :

Proof. We have

V := V ar

2
4 1

2d

2d�1X
�=1

�
û(t+ h; �X(�))� û(t+ h; �X(2d�1+�))

�
�(�)

3
5

=
1

22d

2d�1X
�=1

�(�) V ar
�
û(t+ h; �X(�))� û(t+ h; �X(2d�1+�))

�
:

By the arguments similar to those in the proof of Theorem 3.1, we get

V ar
�
û(t+ h; �X(�))� û(t + h; �X(2d�1+�))

�
� K h

L
;

whence (4.15) follows. �

Theorems 4.1 and 4.3 imply the following theorem.

Theorem 4.4. Let ��t;x(T ) = ( �Xt;x(T ); �Yt;x;1(T ); �Zt;x;1;0(T )) be obtained by the weak Euler

method (4:1), the pairs

�
��
(l)

t+h; �X(�)
(T ); ��

(l)

t+h; �X
(2d�1+�)

(T )

�
; � = 1; : : : ; 2d�1; l = 1; : : : ; L; be

independent but the two realizations from the same pair be dependent. Then

(�| 5 u(t; x))
i
=

1p
h

1

2d

2d�1X
�=1

�
û(t+ h; �X(�))� û(t + h; �X(2d�1+�))

�
�i(�)(4.17)

+O(h)� 3Cp
M

; i = 1; : : : ; d;

with û from (4:16) and M = 2d � L:
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5. Evaluation of other Greeks

Finite di�erences can also e�ectively be exploited for evaluating gammas, rho, and vega.

As an example, here we give error estimates for the evaluation of gammas.

For simplicity, consider the one-dimensional Cauchy problem (2.1)-(2.2). We approximate

the second derivative by the central �nite di�erence:

(5.1)
@2u

@x2
(t; x) =

u(t; x+�x)� 2u(t; x) + u(t; x��x)

(�x)
2

+O((�x)
2
) :

By the arguments similar to those in the proof of Theorem 2.1, we obtain the lemma.

Lemma 5.1. Let �u(t; x) be evaluated according to (2:5) with �Xt;x(T ) obtained by the Euler

scheme (2:4). Then

(5.2)
�u(t; x+ �h1=2)� 2�u(t; x) + �u(t; x� �h1=2)

�2h
� @2u

@x2
(t; x) = O(h) :

Note that the accuracy can be improved by using a second-order weak scheme (cf. Re-

mark 2.2). The use of dependent realizations gives a computationally e�ective procedure

for evaluating the second derivatives.

Theorem 5.1. Let �Xt;x(T ) be obtained by the Euler scheme (2:4), the triples ( �X
(m)

t;x+�h1=2
(T );

�X
(m)

t;x (T ); �X
(m)

t;x��h1=2(T )); m = 1; : : : ;M; � > 0; be independent but the realizations from

the same triple be dependent (i.e., they are supposed to correspond to the same realization

of the Wiener process). Then

@2u

@x2
(t; x) =

1

�2h

1

M

MX
m=1

h
f( �X

(m)

t;x+�h1=2
(T ))� 2f( �X

(m)

t;x (T )) + f( �X
(m)

t;x��h1=2(T ))
i

(5.3)

+O(h)� 3Cp
M

:

The proof of this theorem is analogous to the proof of Theorem 3.1. A generalization of

Theorem 5.1 to the general problem (1.1)-(1.2) is obvious (cf. Theorem 3.2).

Evaluation of theta, i.e. @u=@t; by the direct application of �nite di�erences is not so

e�ective from the computational point of view. Consider the problem (2.1)-(2.2). By

arguments similar to those used in the proof of Theorem 2.1, we get

@u

@t
(t; x) =

�u(t+ h; x)� �u(t; x)

h
+O(h);

where �u(t; x) is from (2.5) with �Xt;x(T ) obtained by the Euler scheme (2.4).

It is not di�cult to show that (cf. (3.8))

V ar (f(Xt+h;x(T ))� f(Xt;x(T ))) = O(h)

17



and, as a result, we have (cf. (3.12))

(5.4)
@u

@t
(t; x) =

1

hM

MX
m=1

h
f( �X

(m)

t+h;x(T ))� f( �X
(m)

t;x (T ))
i
+O(h)� 3Cp

Mh
;

where the pairs ( �X
(m)

t+h;x(T );
�X
(m)

t;x (T )); m = 1; : : : ;M; are independent but the two real-

izations from the same pair are dependent.

To achieve the accuracy O(h) by the approximation from (5.4), one needs to take M �
1=h3 that is 1=h times larger than it is required for evaluating the solution u; the deltas
(see (3.12)), and the gammas (see (5.3)) with the same accuracy O(h): Thus, the ap-

proximation (5.4) is computationally not e�ective. We note that if the realization from

the same pair in (5.4) were independent, the estimate of the Monte Carlo error would be

worse: O(1=(h
p
M)):

We can improve the accuracy of (5.4) by using the central �nite di�erence:

@u

@t
(t; x) =

1

2
p
hM

MX
m=1

h
f( �X

(m)

t+
p
h;x

(T ))� f( �X
(m)

t�
p
h;x

(T ))
i
+O(h)� 3C

h1=4
p
M

;

where ( �X
(m)

t+
p
h;x

(T ); �X
(m)

t�
p
h;x

(T )); m = 1; : : : ;M; are simulated by the Euler scheme with

the time step h; these pairs are independent but the two realizations from the same pair

are dependent.

Of course, we can evaluate theta due to the original equation (2.1) after �nding deltas

and gammas according to (3.12) and (5.3), respectively. In this case the total error of

approximation of theta is O(h+ 1=
p
M): Another way for evaluating theta is considered

in [13].

6. Numerical experiment

Example 6.1. We shall compare the approximation of deltas by (4.17) with the one from

[13]. Let u(t; x) be the solution of (1.1)-(1.2). Then (see [13]) the functions vk(t; x) :=

@u

@xk
(t; x); k = 1; : : : ; d; can be represented as:

(6.1)

vk(t; x) = E

"
dX

i=1

@f

@xi
(Xt;x(T )) � ÆkX i(T ) � Yt;x;1(T ) + f(Xt;x(T )) � ÆkY (T ) + ÆkZ(T )

#
;

where

ÆkX
i(s) := ÆkX

i
t;x(s) :=

@X i
t;x(s)

@xk
; ÆkY (s) := ÆkYt;x;1(s) :=

@Yt;x;1(s)

@xk
;

ÆkZ(s) := ÆkZt;x;1;0(s) :=
@Zt;x;1;0(s)

@xk
;

18



which satisfy the system of variational equations associated with (1.4):

dÆkX =

dX
l=1

@ (b(s;X)� �(s;X)�(s;X))

@xl
� ÆkX l ds+

dX
l=1

@�(s;X)

@xl
� ÆkX l dw(s) ;(6.2)

ÆkX
l
(t) = Ækl ;

dÆkY =

dX
l=1

@c(s;X)

@xl
� ÆkX l � Y ds+ c(s;X) � ÆkY ds+

dX
l=1

@�>(s;X)

@xl
� ÆkX l � Y dw(s)

+�>(s;X) � ÆkY dw(s) ; ÆkY (t) = 0 ;

dÆkZ =

dX
l=1

@g(s;X)

@xl
� ÆkX l � Y ds+ g(s;X) � ÆkY ds+

dX
l=1

@F>(s;X)

@xl
� ÆkX l � Y dw(s)

+F>(s;X) � ÆkY dw(s) ; ÆkZ(t) = 0 :

Of course, vk(t; x) can be found by the probabilistic method together with evaluating

u(t; x) by (3.14):

vk(t; x) =
1

M

MX
m=1

"
dX

i=1

@f

@xi
( �X

(m)

t;x (T )) � Æk �X i;(m)(T ) � �Y (m)

t;x;1(T )(6.3)

+f( �X
(m)

t;x (T )) � Æk �Y (m)(T ) + Æk �Z
(m)(T )

i
;

where M is the number of independent realizations of the Euler approximation �Xt;x(T );
�Yt;x;1(T ); �Zt;x;1;0(T ); Æk �X(T ); Æk �Y (T ); Æk �Z(T ) of the solution to (1.4), (6.2).

Consider the following particular case of the problem (1.1)-(1.2) (cf. Example 3.1 in [13]).

Let the coe�cients of (1.1) be of the form

aij(t; x) = �ij(t) xi xj; bi(t; x) = xiri(t); i; j = 1; : : : ; d;(6.4)

c(t; x) = c(t); g(t; x) = g(t)

and the payo� function be a sum

(6.5) f(X(T )) = f1(X
1(T )) + � � �+ fd(X

d(T )) :

In this case the solution of the problem (1.1)-(1.2) is given by

u(t; x) =
1p
2�

dX
i=1

Z 1

�1
fi(x

i�i(t) exp(�i(t)y)) � exp(�y2=2) dy(6.6)

� exp

�Z T

t

c(s)ds

�
+

Z T

t

g(s) exp

�Z T

t

c(s0)ds0
�
ds ;

where

�i(t) =

 Z T

t

dX
j=1

�
�ij(s)

�2
ds

!1=2

; �i(t) = exp

�Z T

t

ri(s)ds� 1

2
�2i (t)

�
:

Obviously, derivatives of u(t; x) can also be calculated explicitly.
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Table 1. Results of simulation of the solution u(3; 10) to (6.7) and its

derivative v(3; 10) with � = 0:2; r = 0:1; � = 0:02. Here � = F = 0. The

results for u and v in the second column are obtained by (4.14) and (4.17),

respectively, with L = 106. The results for u and v in the third column are

obtained by (3.14) and (6.3), respectively, with M = 106. The exact values

are u(3; 10)
:
= 3:043923, v(3; 10)

:
= 0:608785.

h (4.14), (4.17) (3.14), (6.3)

0:25
0:01
0:0025

�u(3; 10) �v(3; 10)

2:9920� 0:0063 0:5931� 0:0013
3:0431� 0:0071 0:6084� 0:0014
3:0463� 0:0072 0:6092� 0:0014

�u(3; 10) �v(3; 10)

2:9901� 0:0067 0:5980� 0:0013
3:0412� 0:0071 0:6082� 0:0014
3:0457� 0:0072 0:6091� 0:0014

We take

d = 1; �11(t) = �; r1(t) = r; c(t) = �r; g(t) = 0; f(x) = �x2 :

So, in this example we deal with the following Cauchy problem

@u

@t
+
�2

2
x2
@2u

@x2
+ rx

@u

@x
� ru = 0; 0 � t < T; x 2 R;(6.7)

u(T; x) = �x2 ;

the solution of which is

u(t; x) = �x2 exp
��
r + �2

�
(T � t)

�
and

@u

@x
(t; x) = 2�x exp

��
r + �2

�
(T � t)

�
:

The results of Table 1 are obtained by (4.14), (4.17) and by (3.14), (6.3) for the same

computational cost. And both approaches produce the results of the same quality. The

experiment approves, in particular, the order of convergence of the procedures and the

proportionality of the Monte Carlo error to 1=
p
M (not to 1=

p
hM).

To reduce the Monte Carlo error in evaluation of the option price u(t; x) by (3.14) or (4.14)
and the deltas vk(t; x) by (4.17) or (6.3), a variance reduction technique can be used. Here
we restrict ourselves to the method of control variates [15, 13], i.e., we put �(t; x) = 0 in

(1.4) and (6.2) and reduce the variances of random variables at the expectations in (1.3)

and (6.1) by choosing an appropriate F (t; x): It is known [13] that for

(6.8) F j
= �

dX
i=1

�ij
@u

@xi
; j = 1; : : : ; d;

these variances are equal to zero. It is not di�cult to see that in this case the corresponding

Monte Carlo errors become O(
p
h=M) (they are not zero due to the error of numerical

integration). The results of simulating (6.7) by (4.14), (4.17) with the optimal F from

(6.8) are given in Table 2.
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Table 2. Results of simulation of the solution u(3; 10) to (6.7) and its

derivative v(3; 10) by (4.14) and (4.17), respectively. Here � = 0, F is from

(6.8), L = 10, and the other parameters are the same as in Table 1. The

exact values are u(3; 10)
:
= 3:043923, v(3; 10)

:
= 0:608785.

h �u(3; 10) �v(3; 10)

0:25 2:9752� 0:0655 0:5898� 0:0013
0:01 3:0431� 0:0019 0:60838� 0:00038
0:0025 3:04382� 0:00044 0:60870� 0:00009
0:0001 3:04390� 0:00003 0:608778� 0:000007

Table 3. Results of simulation of the solution u(3; 10) to (6.9) and its

derivative v(3; 10) by (4.14) and (4.17), respectively. The parameters are

� = 0:2; r = 0:1; � = 0:02, " = 0:2, � = 0, F is from (6.10), and L = 10.

h �u(3; 10) �v(3; 10)

0:25 2:9858� 0:0654 0:0591� 0:0130
0:01 3:0548� 0:0011 0:6096� 0:0003
0:0025 3:0552� 0:0014 0:6098� 0:0001
0:0001 3:0557� 0:0014 0:60996� 0:00013

Example 6.2. In the multi-dimensional case, especially when the coe�cients of the

considered problem (1.1)-(1.2) are complicated, the variational system (6.2) becomes too

complex and the approach of [13] to evaluation of Greeks is not easy for practical realiza-

tion and rather costly (see also the discussion in the Introduction). The same comment

is true for the approach based on Malliavin calculus [6]. But realization of the �nite-

di�erence evaluation of Greeks remains very simple and quite cheap (at least, in the case

of smooth payo� functions).

In this example we consider a one-dimensional problem but with a more complicated

di�usion coe�cient than in (6.7):

@u

@t
+
�2

2
x2
�
1 +

"p
1 + x2

�
@2u

@x2
+ rx

@u

@x
� ru = 0; 0 � t < T; x 2 R ;(6.9)

u(T; x) = �x2 ;

" > 0 is a small parameter here.

To reduce the Monte Carlo error in evaluating of the solution u(t; x) to (6.9) and its

derivative v(t; x) by (4.14) and (4.17), we take

(6.10) � = 0; F = �2�� x2 exp
��
r + �2

�
(T � t)

�
;

which are optimal in the case of the problem (6.7) (cf. (6.8)).

A very small modi�cation of the computer program used in Example 6.1 for realization

of the �nite di�erence evaluation of deltas is needed here, while the required modi�cation

of the program used in Example 6.1 for realization of the approach from [13] is more

complicated. The results of experiments are presented in Table 3. We see that in this
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Table 4. Results of simulation of the solution u(3; 10) to (6.11) and its

derivative v(3; 10) by (4.14) and (4.17), respectively. The parameters are

� = 0:2; r = 0:1; K = 10, � = F = 0, and L = 106. The exact values are

u(3; 10)
:
= 2:907491, v(3; 10)

:
= 0:850651.

h �u(3; 10) �v(3; 10)

0:25 2:8512� 0:0089 0:8453� 0:0016
0:01 2:9061� 0:0096 0:8506� 0:0017
0:0025 2:9109� 0:0097 0:8510� 0:0017

case the �nite di�erence approach also works quite well (cf. the results in Table 3 and

�u(3; 10) = 3:05591� 0:00007; �v(3; 10) = 0:609982� 0:000007 obtained with h = 0:000025
and L = 10000):

Example 6.3. Consider the Cauchy problem

@u

@t
+
�2

2
x2
@2u

@x2
+ rx

@u

@x
� ru = 0; 0 � t < T; x 2 R;(6.11)

u(T; x) = max(0; x�K) ;

the solution of which for x > 0 and K > 0 is

u(t; x) = x�(y� + �
p
T � t)�K e�r(T�t) �(y�)

and

@u

@x
(t; x) = �(y� + �

p
T � t) +

1

�
p
T � t

exp

 
�
�
y� + �

p
T � t

�2
2

!

� K

�x
p
T � t

exp

�
�y2�

2
� r(T � t)

�
;

where

y� =
1

�
p
T � t

�
ln

x

K
+ (r � �2

2
)(T � t)

�
and �(y) =

1p
2�

Z y

�1
e�y

2=2dy :

It is not di�cult to show that the estimate (3.9) of the Monte Carlo error in the �nite

di�erence evaluation of deltas also holds for non-smooth globally Lipschitz payo� functions

(e.g., for f(x) = max(0; x � K) and f(x) = max(0; K � x)); i.e., in this case the Monte

Carlo error is also proportional just to 1=
p
M as for smooth functions. We have not

made a complete numerical analysis of the �nite-di�erence approach (we have not proved

Theorem 2.2 and 4.4) in the non-smooth case but the numerical experiments for the

problem (6.11) demonstrate (see Table 4) that evaluation of deltas by the �nite di�erence

can be e�ective for non-smooth globally Lipschitz payo� functions as well.
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