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A stability analysis is presented for neural �eld equations in the presence of axonaldelays and for a general class of connectivity kernels and synaptic properties. SuÆ-cient conditions are given for the stability of equilibrium solutions. It is shown thatthe delays play a crucial role in non-stationary bifurcations of equilibria, whereasthe stationary bifurcations depend only on the kernel. Bounds are determined forthe frequencies of bifurcating periodic solutions. A perturbative scheme is used tocalculate the types of bifurcations leading to spatial patterns, oscillatory solutions,and traveling waves. For high transmission speeds a simple method is derived thatallows the determination of the bifurcation type by visual inspection of the Fouriertransforms of the connectivity kernel and its �rst moment. Results are numericallyillustrated on a class of neurologically plausible second order systems with combi-nations of Gaussian excitatory and inhibitory connections.1 IntroductionIn recent years, there has been growing interest in the mechanisms of spatio-temporalactivity in neural tissue. In this line, applications of various experimental techniques[28, 15, 30, 32] revealed formations of di�erent spatial patterns, traveling waves andpulses[19, 34, 39], standing pulses (e.g. [12]) or irregular spatial patterns [2, 31]. Sinceneural tissue exhibits multi-scale properties in space and time, the analysis of suchactivity represents a challenging task. However, reduced biological models at �xedscales in time and space simplify the analysis and allows for analytical treatments(see e.g. [4, 8, 33] for review). In this context, a well-known approach is to focuson neuronal ensembles [37, 38, 20], which allows for the succesful reconstruction ofempirical data measured on a macroscopic scale [17, 21, 26, 25, 18].On a small spatial level (� 50�m), model neurons may consists of two compartments:synapses, which convert incoming action potentials to postsynaptic potentials, and atrigger zone, where these potentials sum up and are re-converted to outgoing actionpotentials. Due to the large spatial density of neurons (� 104 neurons=mm3), onemight consider ensemble activity on a larger spatial scale (> 1mm), obtaining acoarse-grained description in space and time [37]. Consequently, macroscopic statevariables of neuronal ensembles are mean pulse rates P (x; t) and mean postsynapticpotentials 	(x; t). In the following, all measures are meant to represent means ofmicroscopic measures.Since the link between the microscopic description and the level of neural ensembleshas been established in several previous works (e.g. [37, 29, 4, 3]), we only brieyoutline the basic mechanisms of activity conversion in neuronal �elds. At chem-1



ical passive synapses, incoming pulse activity J(x; t) is converted to postsynapticpotentials by convolution with an impulse response function h(t), yielding	(x; t) = Z t�1 h(t� �)J(x; �)d�:Since neuronal �elds exhibit non-local interactions via axonal connections betweensynapses, incoming pulse activity obeysJ(x; t) = � Z
 K(x; y)P (y; t��(x; y))dy + E(x; t);where 
 is an appropriate spatial domain, K(x; y) is the connectivity kernel, � > 0is a scaling factor and E is an additional external input. In the case of undampedaxonal pulse propagation with �nite velocity v and no additional constant delay, weget �(x; y) = jx � yj=v. Essentially, the chain of activity conversion closes by theconversion of postsynaptic potentials to pulse ratesP (x; t) = S[	(x; t)];where S is called the transfer function. Considering all conversions, we obtain theintegral equation	(x; t) = Z t�1 d� Z
 dy h(t� �)K(x; y)S[	(y; � � jx� yj=v)] + E(x; �):Finally, we recast the impulse response function as a Green's function and thusstipulate L̂h(t) = Æ(t)introducing a temporal di�erential operator L̂. Hence, the �nal equation readsL(@=@t)V (x; t) = � Z
K(x� y)S(V (y; t� jx� yj=v)) dy+ E(x; t): (1)Here L is a polynomial and L(@=@t) denotes a temporal di�erentiation operatorwith constant coeÆcients. It is assumed that L is a stable polynomial, i.e., all itsroots have negative real parts. We shall refer to (1) as an n-th order system wheren � 1 is the order of L. The kernel K : R! R is continuous, integrable, and even,that is, K(�z) = K(z) for all z 2 R. The transfer function S : R! R is assumedto be di�erentiable and monotone increasing; in most works it is taken to have asigmoidal shape.The model (1) has been treated in the literature in several contexts and with di�er-ent choices for L. In most studies the e�ect of transmission speed has been neglectedby letting v = 1 in the model, the justi�cation being that the signal propagationis suÆciently fast or the spatial scales of the problem are small [23]. Some recentworks [4, 10, 13, 22, 16, 6] have addressed the case of �nite v by numerical inves-tigations for particular choices of the kernel K. Our aim is to give an analyticaltreatment of the e�ects of �nite transmission speeds for general K and L.2



2 Stability of equilibrium solutionsIt is often convenient to normalize the time and space in (1). For instance, if l and �are some characteristic length and time of the physical problem, then one can de�ne�t = t=� , �x = x=l, �V (�x; �t) = V (l�x; ��t), �E(�x; �t) = E(l�x; ��t), �L(@=@�t) = �nL(��1@=@�t),�K(�z) = K(l�z), and �v = �v=l so that (1) becomes�L(@=@�t) �V (�x; �t) = l�n� Z
 �K(�x� �y)S( �V (�y; �t� j�x� �yj=�v)) d�y + �E(�x; �t)which has the same form as (1). A common choice for characteristic time is �n =1=L(0), in which case �L(0) = 1. Thus without loss of generality we consider (1)with the assumption that L(0) = 1. Most studies of neuronal �elds assume �rst orsecond order time derivatives in (1). To address these models in a uni�ed mannerwe shall often refer to the following speci�c formL(�) = ��2 + �+ 1; � = 0 or 1;  > 0 (2)although certain results will be stated for arbitrary order stable polynomials L. Forthe spatial domain we assume 
 = R; but all the results remain valid virtuallywithout modi�cation when 
 is a circle.For a constant input E(x; t) � E�, an equilibrium solution V (x; t) � V � satis�esV � = � Z 1�1K(x� y)S(V �) dy + E�: (3)Let � = Z 1�1K(z) dz = 2 Z 10 K(z) dz: (4)Then (3) can be written asf(V �) def= V � � ��S(V �) = E�: (5)If S is bounded then f : R! R is surjective; thus (5) has a solution V � for anyE� 2 R. The uniqueness of V � depends on the sign of � and the shape of S. If Sis positive and increasing on R, such as a sigmoid function, and if � � 0, then fis increasing and hence also injective, in which case the solution V � is unique. Onthe other hand if � > 0 then there may be multiple equilibria, as (5) can have morethan one solution V � for a given E�.The stability of the equilibrium solution V � is determined by the linear variationalequation L(@=@t)u(x; t) = � Z 1�1K(x� y)u(y; t� jx� yj=v) dy (6)where u(x; t) = V (x; t)� V � and � = �S 0(V �) > 0. We shall use � as a bifurcationparameter in the following sections. Using the ansatz u(x; t) = e�t'(x) in (6) oneobtains L(�)'(x) = � Z 1�1K(x� y) exp(��jx� yj=v)'(y) dy: (7)3



Thus ' is an eigenfunction of an integral operator. Due to the di�erence kernel theeigenfunctions have the form '(x) = eikx for some k 2 R, and substituting into (7)followed by a change of variables z = x� y in the integral givesL(�) = � Z 1�1K(z) exp(��jzj=v) exp(�ikz) dz: (8)The integral above is the Fourier transform of the functionK�(z) = K(z) exp(��jzj=v)(up to a multiplicative factor depending on which de�nition one uses), which is alsoequal to its cosine transform since K�(z) is an even function of z. The dispersionrelation (8) between the temporal and spatial modes � and k is in general diÆcultto solve explicitly. A notable exception is the case of instantaneous informationtransmission, since when v = 1 the right hand side of (8) is independent of �. Inthis paper we shall be interested in �nite transmission speeds.The solutions (�; k) of (8) correspond to the perturbations u(x; t) = e�teikx aboutthe equilibrium solution, which grow or decay in time depending on whether Re�is positive or negative, respectively, thus determining the stability of V �. We givesuÆcient conditions for asymptotic stability.Theorem 1 Let c = � R1�1 jK(z)j dz. Ifc < min! jL(i!)j (9)then V � is asymptotically stable. In particular, if L(�) = �+ 1 then the conditionc < 1 (10)is suÆcient for the asymptotic stability of V �. If L() = �2 + � + 1 with  > 0,then V � is asymptotically stable provided that the condition22 > 1�p1� c2 (11)holds in addition to (10).The following lemma will be useful in the proof of the theorem.Lemma 1 Let L(�) be a polynomial whose roots have nonpositive real parts. ThenjL(� + i!)j � jL(i!)jfor all � � 0 and ! 2 R.Proof. If �k denote the roots of L, then L(�) = (���1)(���2) � � � (���n), wheren is the order of L. ThusjL(� + i!)j = nYk=1 j� + i! � �kj= nYk=1 �(� � Re[�k])2 + (! � Im[�k])2�1=2 :4



By assumption, � � 0 and Re[�k] � 0 for all k, sojL(� + i!)j � nYk=1 �(�Re[�k])2 + (! � Im[�k])2�1=2= nYk=1 ji! � �kj= jL(i!)j:Proof of Theorem 1. In the ansatz u(x; t) = e�teikx let � = � + i! where � and! are real numbers. We will prove that � < 0 if (9) holds. Suppose by way ofcontradiction that (9) holds but � � 0. >From the dispersion relation (8) it followsthat jL(� + i!)j = � ����Z 1�1K(z) exp(�(� + i!)jzj=v) exp(�ikz) dz����� � Z 1�1 jK(z)j j exp(�(� + i!)jzj=v)j dz� � Z 1�1 jK(z)jdz = c: (12)On the other hand, by Lemma 1,jL(i!)j � jL(� + i!)j;which together with (12) implies jL(i!)j � cfor some ! 2 R. This, however, contradicts (9). Thus � < 0, and the equilibriumsolution is asymptotically stable. This proves the �rst statement of the theorem. Inthe speci�c case when L is given by L(�) = �+1, one has jL(i!)j2 = 1+!2. Henceif (10) is satis�ed, thenc2 < 1 � 1 + !2 = jL(i!)j2 for all ! 2 Rwhich is a suÆcient condition for stability by (9). Similarly, suppose L has the formL(�) = �2 + �+ 1 and suppose that (10) and (11) are satis�ed. ThenjL(i!)j2 = (1� !2)2 + (!)2:Consider now the functiong(!) def= jL(i!)j2 � c2= !4 + (2 � 2)!2 + (1� c2): (13)5



If 2 � 2 then g(!) is positive for all ! by (10). On the other hand if 2 < 2, thenby (11) 0 < 2� 2 < 2p1� c2implying that the discriminant (2 � 2)2 � 4(1 � c2) is negative; so g has no realroots. Thus in either case g(!) is positive, or equivalently c < jL(i!)j, for all !, andstability again follows by the �rst statement of the theorem.3 BifurcationsWhen � = 0, the eigenvalues � are simply given by the roots of L, so that Re� <0 by the assumption that L is a stable polynomial, and the equilibrium point isasymptotically stable. As � is increased, stability may be lost if an eigenvalue �crosses the imaginary axis, and a dynamically di�erent behavior may result in theoriginal nonlinear equation (1). At the critical transition there is an eigenvalue ofthe form � = i!, ! 2 R, and the dispersion relation (8) becomesL(i!) = � Z 1�1K(z) exp(�i(kz + !jzj=v)) dz: (14)The possibilities for the resulting behavior when � is near such a critical value canthen be qualitatively classi�ed as follows:I. Stationary bifurcations(a) ! = 0 and k = 0 : bifurcation to a spatially and temporally constantsolution.(b) ! = 0 and k 6= 0 : bifurcation to a spatially periodic solution which isconstant in time, leading to spatial patterns (Turing modes).II. Non-stationary bifurcations(a) ! 6= 0 and k = 0 : Hopf bifurcation to periodic oscillations of a spatiallyuniform solution.(b) ! 6= 0 and k 6= 0 : bifurcation to traveling waves, with wave speed equalto !=k.The conditions for stationary bifurcations are easily characterized by the relation(14) recalling the assumption that L(0) = 1. Thus for Case Ia one has1 = � Z 1�1K(z) dz = �� (15)
6



with � as de�ned in (4). This is only possible if � > 0, and is the mechanism forappearance of multiple equilibrium solutions of (3). Similarly, the condition (8) forCase Ib is 1 = � Z 1�1K(z) exp(ikz) dz = �K̂(k); k 6= 0; (16)where K̂ denotes the Fourier transform of K. As � is increased from zero, the�rst mode that becomes unstable in the linearized equation is expected to give anindication of what would be observed in the full nonlinear system (1). Hence, spatialpatterns are typically observed as bifurcations from equilibria if a nonzero k is the�rst mode that loses stability. From (16) it follows that a necessary condition forthis is that the maximum value of the Fourier transform of K is positive and occursat a nonzero frequency k.It is clear from (15) and (16) that stationary bifurcations are independent of theorder of the temporal di�erentiation operator L or the transmission speed v. Theiranalysis only involves the properties of the Fourier transform of the kernel function.On the other hand, L and v turn out to be crucial in non-stationary bifurcations,which will be our main focus in the remainder of the paper. Indeed, our next resultshows that a suÆciently small transmission speed is actually a necessary conditionfor non-stationary bifurcations in �rst and second order systems.Proposition 2 Suppose L(�) = ��2 + �+ 1 with  > 0 (� may possibly be zero).If v > �jj Z 1�1 jzK(z)j dz (17)then (6) has no solutions of the form u(x; t) = exp i(!t+kx) with ! real and nonzero.Proof. >From the dispersion relation (8),L(�) = � Z 1�1K(z) exp(��jzj=v)(cos kz � i sin kz) dz= � Z 1�1K(z) exp(��jzj=v) cos kz dzsince the functionK(z) exp(��jzj=v) is even in z. Separating the real and imaginaryparts of the above expression at the bifurcation value � = i! givesReL(i!) = � Z 1�1K(z) cos(!z=v) cos(kz) dz (18)ImL(i!) = �� Z 1�1K(z) sin(!jzj=v) cos(kz) dz (19)
7



Suppose L(�) = ��2 + �+ 1. Then ImL(i!) = !, and (19) impliesj!j = � ����Z 1�1K(z) sin(!jzj=v) cos(kz) dz����� � Z 1�1 jK(z) sin(!z=v)j dz� � Z 1�1 jK(z)!z=vj dzwhere we have used the estimate j sin(x)j � jxj for all x 2 R. If ! 6= 0, then j!jmay be cancelled in the last inequality to yieldjj � �v Z 1�1 jzK(z)j dz:This, however, contradicts the assumption (17). Hence ! = 0, which proves theproposition.We note that in third and higher order systems bifurcation values � = i! 6= 0 mayoccur even with v =1.In systems of all orders, it is possible to put a priori bounds on the possible valuesof ! in terms of the kernel function, as given by the next result.Proposition 3 Let c be as de�ned in Theorem 1. Then there exists B > 0, depend-ing only on L and c, such that j!j � B (20)whenever u(x; t) = exp i(!t + kx) is a solution of (6). Furthermore, if c < 1 thenthere exists A > 0, depending only on L and c, such that0 < A � j!j: (21)In particular, if L(�) = �+ 1 then !2 � c2 � 1; (22)and if L(�) = �2 + �+ 1 then(1� 122)� Æ � !2 � (1� 122) + Æ if 0 � c < 1;0 � !2 � (1� 122) + Æ if c � 1 (23)where Æ =q(1� 122)2 � 1 + c2.Remark. The existence of a solution of the form u(x; t) = exp i(!t+ kx) impliesthat the equilibrium point is not asymptotically stable. It is then a conse-quence of Theorem 1 that the right sides of the inequalities in (22) and (23)are nonnegative. 8



Proof of Proposition 3. . If � = i! satis�es the dispersion relation (8) for somek, then jL(i!)j � � Z 1�1 jK(z)j dz = c: (24)Since jL(i!)j ! 1 as ! ! �1 for any nonconstant polynomial L, the aboveinequality implies an upper bound B on j!j, which proves (20). For the particularcase when L(�) = �+ 1; (24) givesjL(i!)j2 = !2 + 1 � c2;proving (22). Similarly, for L(�) = �2 + �+ 1; (24) yieldsjL(i!)j2 = !4 + (2 � 2)!2 + 1 � c2: (25)If we let u = !2, then the inequality above is equivalent to saying that possiblevalues of u � 0 are those which render the functionh(u) def= u2 + (2 � 2)u+ (1� c2)negative or zero. This is only possible if h has at least one root in the interval[0;1), implying that the discriminant (2 � 2)2 � 4(1� c2) is nonnegative. LettingÆ = q(1� 122)2 � 1 + c2, the roots of h can be written as (1 � 122) � Æ. Thush(!2) � 0 for !2 satisfying(1� 122)� Æ � !2 � (1� 122) + Æ: (26)It remains to ensure that the interval above is a subset of [0;1). If c < 1, then bothroots of h are nonnegative. For if the smaller root is negative, we have0 > (1� 122)� Æ > (1� 122)� j1� 122j;so (1� 122) < 0. But then both the conditions (10) and (11) are satis�ed, and byTheorem 1 � = i! cannot be a solution to (8). On the other hand, if c � 1; then(1� 122)� Æ � (1� 122)� j1� 122j � 0and (1� 122) + Æ � (1� 122) + j1� 122j � 0:So, in this case the lower bound on !2 in (26) can be replaced by zero. Thisestablishes (23). Finally, to prove (21) for arbitrary L assume that c < 1. Then1 = L(0) > c. By the continuity of L there exists A > 0 such that jL(i!)j > cwhenever j!j � A. Since (24) is not satis�ed, (6) does not have a solution of theform exp i(!t+ kx) with j!j � A, which completes the proof.
9



4 Perturbative analysisIn order to study the type of bifurcations that may arise in a give situation, thedispersion relation (14) needs to be solved for ! and k. However, explicit solutionsare diÆcult to obtain for general kernel functions. The results of the previoussections imply that in the absence of delays one has a simpler case, where non-stationary bifurcations do not exist in �rst and second order systems. It followsthat the role of delays can be systematically examined by following the changes inthe bifurcation structure as the value of the transmission speed is decreased fromin�nity. Hence we introduce the parameter " = 1=v, and consider the change indynamics as " is increased from zero. This leads to an approximation scheme thatprovides valuable insight into the e�ects of axonal delays in the dynamics of thesystem. Consider the power series estimateexp(��jzj=v) = m=NXm=0 (��jzj=v)mm! +O(v�(N+1)):Substitution in the dispersion relation (8) at the bifurcation value � = i! gives a�nite series in powers of " = 1=v,L(i!) = � Z 1�1K(z) exp(�ikz)"m=NXm=0 (�i"!jzj)mm! +O("N+1)# dz= �m=NXm=0 (�i"!)mm! K̂m(k) +O("N+1) (27)where the K̂m denote the transforms of the moments of K:K̂m(k) = Z 1�1 jzjmK(z) exp(�ikz) dz = 2 Z 10 zmK(z) cos(kz) dz: (28)and the integrals are assumed to exist. Separating the real and imaginary parts of(27) then yields��1ReL(i!) = K̂0(k)� "22 !2K̂2(k) + "424!4K̂4(k)� : : : (29)��1 ImL(i!) = �"!K̂1(k) + "36 !3K̂3(k)� "5120!5K̂5(k) + : : : (30)The number of terms needed for the above series to be useful depends on the valueof " as well as the shape of the kernel K. If K is highly concentrated near theorigin then a few terms are suÆcient. To make this precise, suppose that K is ofexponential order, which is the case in most practical situations. In other words,suppose there exist positive numbers �1 and �2 such thatjK(z)j � �1 exp(��2jzj) for all z 2 R.10



It then follows from (28) that���K̂m(k)��� � Z 1�1 jzjm�1 exp(��2jzj) dz = 2�1 Z 10 zm exp(��2z) dz= 2�1��(m+1)2 � (m + 1) = 2�1��(m+1)2 m!so the m-th term in the series (27) is bounded in absolute value by2�1�2 �"j!j�2 �m � 2�1�2 �B�2 "�mwhere we have used Proposition 3 to bound the values of !. Hence, in case of small "(large transmission speed) or B (e.g. small � or S 0), or a large value of �2 (fast decayof K away from the origin), the �nite series has increased accuracy. We assume thatat least one of these conditions is satis�ed so that a small number of terms suÆcesto determine the general behavior.In order to observe the qualitative e�ects of �nite transmission speed, we thus neglectthird and higher order terms in " in the series (27). Then, for L given by (2),equations (29)-(30) become��1(1� �!2) = K̂(k)� 12"2!2K̂2(k) (31)��1! = �"!K̂1(k) (32)where we have substituted the more conventional notation K̂ for the Fourier trans-form K̂0 of the kernel. For stationary bifurcations (! = 0) one obtains from the �rstequation that K̂(k) = 1=� (33)which is the same as the conditions (15)-(16) given by exact calculation. For anon-stationary bifurcation ! 6= 0, so (32) implies thatK̂1(k�) = �="�: (34)Since K̂1 is continuous and K̂1(k)! 0 as k! �1, it has a minimum at some valueof k, which corresponds to the �rst mode that loses stability as " or � is increased.Thus, let k� = mink K̂1(k) = mink Z 1�1 jzjK(z) exp(�ikz) dz; (35)and provided K̂1(k�) < 0, k� will be the sought solution of (34). Substituting k�into (31) gives !2 = �K̂(k�)� 112�"2K̂2(k�)� � (36)which has a solution for ! whenever the right-hand side is nonnegative. This gives asimple procedure to calculate the pairs (!; k) satisfying the dispersion relation andcorresponding to the bifurcating solution exp(!t+ kx).11



It remains to determine what type of bifurcation actually occurs. This depends onthe mode by which the equilibrium solution, which is stable for � = 0, loses itsstability as the bifurcation parameter � is increased. The procedure described inthe above paragraph gives a simple graphical method. Thus if one plots the curvesK̂(k) and �K̂1(k)=v in the same graph, and thinks of 1=� as a horizontal linebeing lowered from +1, then the �rst intersection point speci�es the bifurcationtype. If the horizontal line touches the graph of K̂(k) �rst, then (33) is satis�edand a stationary bifurcation occurs. If, on the other hand, it touches �K̂1(k)=v�rst, then (34) is satis�ed and a non-stationary bifurcation occurs. Furthermore,the value of k at the intersection point being zero or nonzero speci�es whether thebifurcating solution is spatially constant or not, respectively. It is worthwhile to notethat the the type of bifurcations that can occur depends only the extremal valuesof K̂ and K̂1 and not on the exact shapes of their graphs. This observation has twoimportant consequences. Firstly, the bifurcation structure depends on some generalqualities of the kernel and not on its precise shape. And secondly, although ouranalysis is based on an approximation scheme, the qualitative conclusions regardingthe type of bifurcations are generally robust, except for some degenerate cases suchas when the maximum values of K̂(k) and �K̂1(k)=v are equal.An example for the investigation of possible bifurcations is illustrated in Figure 1for some typical kernel functions representing the possibilities for di�erent typesof inhibitory and excitatory interaction within the �eld. For each kernel type inthe �rst column of the �gure, the corresponding graphs of K̂(k) and �K̂1(k)=vare plotted in the second column. By the argument outlined above, the possiblebifurcations for each type of kernel can be directly read o� from the graphs inthe second column. The actual graphs in the �gure are calculated from Gaussiandistributions; however, it is clear that small variations in the graphs do not changethe bifurcation types. In this way, it is possible to draw some general conclusionsconcerning di�erent interaction kernels.The analysis of presented in this section is useful for having a better understandingabout the relationship between the interactions within the �eld and the resultingdynamical behavior. The Fourier transforms K̂ and K̂1=v are seen to be crucial inthis regard, the former instrumental for stationary bifurcations and the latter thenon-stationary ones, for the parameter ranges where the approximation scheme isjusti�ed. Outside of this range, e.g. for very low transmission speeds, the highermoments of the kernel are also expected to make contributions to the results. Inthis case, more terms need to be considered in the series (27), together with a nu-merical solution of the system (29)-(30). Nevertheless, already in the term K̂1=vone can see the ingredients that come into play in creating non-stationary bifurca-tions, namely the operator L (through ) representing the local temporal behavior,the kernel (through K̂1) representing spatial interaction, and the transmission speedconnecting the two aspects of the dynamics. Figure 1 gives a summary of the bifurca-tions resulting from the interplay of these elements. In the next section we presentnumerical simulations for the corresponding dynamical behavior in the nonlinearsystem (1), obtained on the basis of the foregoing analysis.12
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Figure 1: Typical interaction kernels and possible bifurcation types. The �rst col-umn shows the kernels, with the corresponding Fourier transforms in the secondcolumn. The maxima of K̂ and �K̂1=v, respectively, determine the stationary andoscillatory bifurcations, the largest peak giving the actual bifurcation taking placeas � is increased. Hence, depending on the value of v, some typical cases are (a)an excitatory �eld, possible bifurcations Ia and IIb; (b) an inhibitory �eld, possiblebifurcation IIa; (c) local inhibition and lateral excitation, possible bifurcations Iaand IIb; (d) local excitation and lateral inhibition, possible bifurcations Ib and IIaor IIb. In the last sub�gure two distinct possibilities for �K̂1=v are shown withdashed and dotted lines.
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5 ApplicationsWe now examine the previous results numerically for a particular model. To thisend, we set the di�erential operator toL( @@t ) = @2@t2 +  @@t + 1; (37)and further specify the connectivity kernel. Since a neuronal �eld might exhibitexcitatory and inhibitory connections, the kernel K contains both excitatory andinhibitory distributions over space. In case of a homogeneous and isotropic neuronal�eld, a choice of K is K(z) = 1p� (aee�z2 � aire�r2z2); (38)where ae; ai denote excitatory and inhibitory weights and r = �e=�i gives the relationof excitatory and inhibitory spatial connectivity ranges �e;i, respectively. In thisformulation, the terms in (38) represent probability distributions of excitatory andinhibitory connections, respectively. Thus a purely excitatory connection (Fig. 1a)is obtained when ai = 0 and ae > 0, whereas the choice ae = 0 and ai > 0 givesan inhibitory connection (Fig. 1b). Similarly, for ae > ai > 0, local inhibition andlateral excitation (Fig. 1c) or local excitation and lateral inhibition (Fig. 1d) canbe obtained by choosing r > ae=ai or r < 1, respectively. We shall mostly focus onthese last two cases. Finally, � = 1 and the transfer function in (1) is chosen to beS(y) = 1=(1 + exp(�1:8(y � 3))) according to previous works [37, 27].The subsequent temporal integration procedure applies a fourth-order Runge-Kuttaalgorithm, while the spatial integration algorithm discretizes the �eld into N inter-vals and applies Z L0 f(z)dz � NXi=1 12(f(zi) + f(zi+1))�x (39)for any function f , with L the �eld length and �x = L=N . Further, for periodicboundary conditions, the integration obeys the circular ruleZ 1�1K(jx� yj)f(y)dy � Z L0 K(L=2� jL=2� jx� yjj)f(y)dy: (40)In subsequent applications we take N = 400 and L = 40. For integration in spaceand time initial valuesV 0(x; t) = V � + �(x; t); ��m � t � 0are chosen randomly with the stationary constant state V � and deviations �(x; t) 2[�0:1; 0:1] subject to a uniform distribution. The parameter �m = L=v denotes themaximum temporal delay. 14
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application.Our work is mostly motivated by experimental �ndings (e.g. [20, 35, 11]). In this line,the presented study aims to generalize the analysis of synaptically-coupled neuronal�elds in order to gain a classi�cation scheme for observed spatio-temporal patterns.Here, we would like to mention the important generalization of Amari [1] in lateral-inhibition type �elds without axonal delay. Since neurophysiological properties ofobserved neural tissue are not accessible precisely, a classi�cation scheme mightlink model functionals with observed phenomena. For example, observed travelingwaves necessitate an axonal propagation velocity below a certain threshold de�nedby synaptic kernel properties and synaptic response properties (Proposition 2), andfurthermore, their frequencies are con�ned to a bounded band (Proposition 3). Inaddition, this classi�cation might be important for estimating interaction parametersfrom multi-site neuronal data (e.g. [9]). Due to the large number of di�erent activityphenomena, further studies in this area could incorporate additional mechanisms likestanding and traveling pulse fronts as in [23, 24], boundary e�ects in local neuronalareas (e.g. [5]), or the inuence of external inputs [36, 7] local in space and time.
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