
Weierstraÿ-Institut
für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 � 8633

On asymptotic minimaxity of kernel based tests

Michael Ermakov 1

submitted: 25 November 2002

1 Mechanical Engineering Problem Institute
Russian Academy of Sciences
Bolshoy pr. V.O. 61
199178 St.Petersburg
Russia
e-mail ermakov@ensure.ipme.ru

No.
Berlin 2002

WIAS
1991 Mathematics Subject Classi�cation. 62G10, 62G20.
Key words and phrases. Nonparametric hypothesis testing, kernel-based-tests, goodness-of-�t, e�ciency,

kernel estimator.
The support by RFFI-NNIO Grant 02-01-04001.

The paper was �nished during the author staying at WIAS 01.11.02-01.12.02.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications Server of the Weierstrass Institute for Applied Analysis and Stochastics

https://core.ac.uk/display/289297986?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Edited by
Weierstraÿ-Institut für Angewandte Analysis und Stochastik (WIAS)
Mohrenstraÿe 39
D � 10117 Berlin
Germany

Fax: + 49 30 2044975
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Abstract

In the problem of signal detection in Gaussian white noise we show asymptotic mini-
maxity of kernel-based tests. The test statistics equal L2-norms of kernel estimates. The
sets of alternatives are essentially nonparametric and are de�ned as the sets of all signals
such that L2-norms of signal smoothed by the kernels exceed some constants ρε > 0. The
constant ρε depends on the power ε of noise and ρε → 0 as ε → 0. Similar statements
are proved also if an additional information on a signal smoothness is given. By theo-
rems on asymptotic equivalence of statistical experiments these results are extended on
the problems of testing nonparametric hypothesis on density and regression. The exact
asymptotically minimax lower bounds of type II error probabilities are pointed out for
all these settings. Similar results are also obtained in the problems of testing parametric
hypothesis versus nonparametric sets of alternatives.

1.Introduction. Let we observe a random process Yε(t), t ∈ [0, 1], de�ned by a stochastic
di�erential equation

dYε(t) = S(t)dt + εq(t)dw(t), ε > 0 (1.1)

where dw(t) is the standard Gaussian white noise and q(t), t ∈ [0, 1] is a weight function. The
function S, called a signal, is unknown. The problem is to test a hypothesis that the signal
S(t) is absent, that is, S(t) = 0 for all t ∈ [0, 1].
We could not test this hypothesis without a priory information of parametric or nonparametric
type (see Burnashev [5], Ermakov [11]). For nonparametric sets of alternatives a priory
information is often given in terms of assumptions on a signal smoothness (see Ingster and
Suslina [23], Ermakov [6], Spokoiny [31]). Such a setting can be considered as an analog of
standard setting nonparametric estimation and obtained practically an adequate development.
The optimal rates of distinguishability of hypothesis were pointed out for nonparametric sets
of alternatives that can belong to a wide range of functional spaces (see Ingster and Suslina
[22], [23] Lepski and Spokoiny [25]). The asymptotically minimax tests have been found for
the nonparametric sets of alternatives in L2 (see Ermakov [6]) and lp (see Ingster [21]) spaces.
In nonparametric hypothesis testing the test statistics are often de�ned as the distances
between the hypothesis and estimator of nonparametric parameter. We have no usually any
information on a signal smoothness, such an information is not necessary in the problem
of distinguishability of hypothesis and nonparametric sets of alternatives (see Ermakov [11])
and it seems desirable to represent the sets of alternatives in a more evident form depending
also on a distance between the hypothesis and alternatives, covering all possible alternatives.
Thus it seems natural to consider the testing nonparametric hypothesis from the distance
positions and to develop rigorous justi�cation of this approach. From viewpoint of asymptotic
minimaxity such an argumentation has been developed in Ermakov [9],[10] in the case of
standard goodness-of-�t tests. These results are based on the interpretation of test statistics of
Kolmogorov, omega-square and chi-squared tests as the corresponding norms or seminorms (in
the case of chi-squared tests) Nn(F̂n−F0) depending on a di�erence of empirical distribution
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function F̂n of independent sample X1, . . . , Xn and the distribution function F0 of hypothesis.
The corresponding norms or seminorms Nn are de�ned in the linear space generated by the
di�erences of distribution functions. The sets of alternatives are the sets of all distribution
functions F such that Nn(F−F0) > ρn > 0 with ρn → 0 as n →∞. In this setting asymptotic
minimaxity of tests statistics Nn(F̂n−F0) has been proved and asymptotic behaviour of type
II error probabilities has been studied. In the case of chi-squared tests we supposed that the
number of cells grows with increasing sample size. Note that this approach can be naturally
considered as a part of asymptotic theory of hypothesis testing on a value of functional (see
Stein [32]; Ermakov [7]; Bickel, Klaassen, Ritov and Wellner [2]).
In paper similar statements will be obtained for the test statistics based on the kernel estimator
(see Bickel,Rosenblatt [1], Eubank and Spiegelman [12], Fan [13], Hardle and Mammen [18],
Hart [19], Rayner and Best [29], Stute [33], Horowitz and Spokoiny [20] and references therein)

T (h, Yε) =
∫ 1

0
Ŝ2

h(t)r(t)dt =
∫ 1

0

(
1

h

∫ 1

0
K

(
t− s

h

)
dYε(s)

)2

r(t)dt (1.2)

where
Ŝh(t) =

1

h

∫ 1

0
K

(
t− s

h

)
dYε(s)

is a kernel estimator of signal with a kernel K and r(t), t ∈ [0, 1] is a weight function. We
suppose that the support of K is contained in [−1, 1], K(t) = K(−t) for all t ∈ (0, 1),∫ 1
−1 K(t)dt = 1 and the function K is bounded. The functions r(t), q(t) are supposed positive
and continuous in [0, 1], 0 < c < r(t) < C < ∞, 0 < c < q(t) < C < ∞ for all t ∈ [0, 1].
The sets =ε,h of alternatives are as follows

=ε,h = =ε,h(ρε) = {S : T (h, S) > ρε(h) > 0, S ∈ L2(0, 1)} =

=

{
S :

∫ 1

0

(
1

h

∫ 1

0
K

(
t− s

h

)
S(s)ds

)2

r(t)dt > ρε(h) > 0, S ∈ L2(0, 1)

}
. (1.3)

The rates of convergence ρε = ρε(hε) → 0 and h = hε → 0 as ε → 0 will be de�ned later.
We also consider the sets of alternatives =ε,hε de�ned as the intersections of sets =ε,hε(ρε) with
the balls in Sobolev space.
It is easy to see that, in the case of alternative S,

ES(T (h, Yε))− ε2

h2

∫ 1

0
r(t)dt

∫ 1

0
K2

(
t− s

h

)
q2(s)ds =

∫ 1

0
r(t)dt

(
1

h

∫ 1

0
K

(
t− s

h

)
S(s)ds

)2

.

Thus the sets of alternatives are de�ned by the components of biases of test statistics T (h, Yε)
caused by the presence of signal.
For any test L denote α(L) = E0(L) its type I error probability and β(L, S) = ES(1− L) its
type II error probability for the alternative S ∈ =ε,h. For any set of alternatives =ε we put

βε(L) = βε(L,=ε) = sup{β(L, S) : S ∈ =ε}. (1.4)

We say a family of tests Uε with α(Uε) ≤ α, 0 < α < 1, ε > 0 is asymptotically minimax for
the sets of alternatives =ε, if for any family of tests Wε, α(Wε) ≤ α, it holds

lim inf
ε→0

(βε(Wε,=ε)− βε(Uε,=ε)) ≥ 0.
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The test statistics Rε, ε > 0 generating the asymptotically minimax families of tests will be
called asymptotically minimax as well.
In paper we prove asymptotic minimaxity of kernel-based test statistics Tε(Yε) = T (hε, Yε)
for the sets of alternatives =ε,hε(ρε) and the intersections of sets =ε,hε(ρε) with the balls in
Sobolev spaces. After that, using the theory of asymptotic equivalence of nonparametric
statistical experiments (see Brown and Low [4], Nussbaum [27]) this statement is extended
on the problems of hypothesis testing on regression and density. We show that similar results
can be also obtained if the hypotheses are parametric. Such statements are proved for the
problems of signal detection and hypothesis testing about density. We do not consider the
same setting for parametric regression in order to do not increase extremely the scope of
paper. The sets alternatives =ε,hε(ρε) are the largest sets =ε such that the hypothesis and
alternatives Sε ∈ =ε are distinguishable if we apply the test statistics T (hε, Yε). Thus we
prove asymptotic minimaxity of test statistics T (hε, Yε) for the largest among possible sets of
alternatives. Moreover, it turns out, the lower bound of type II error probabilities is attained
for all families of alternatives Sε, ε > 0 such that T (hε, Sε) = ρε(1 + o(1)).
The asymptotic behaviour of kernel-based test statistics has been intensively studied in many
papers (see Konakov [24]; Hall [15],[16]; Rayner and Best [29], Ghosh and Wei-Min Huang
[14], Eubank and Spiegelman [12], Hardle and Mammen [18], Fan [13], Hart [19], Stute [33],
Horowitz and Spokoiny [20] and references therein). Thus the results on asymptotic mini-
maxity represent the essential complement to the existing theory. We �nd the distance of
hypothesis from the signal given in the Gaussian noise and can analyse the type II error
probabilities for all possible sets of alternatives de�ned in terms of the same distance. The
more detailed discussion of the role of asymptotic minimaxity in the distance approach for
testing nonparametric hypothesis one can �nd in Ermakov [10].
The reasonings in the paper are based on the same approach as in Ermakov [6]. In Ermakov
[6] the sets of alternatives were de�ned as the intersections of exteriors of balls and ellipsoid
in L2. The requierement that the signal belongs to ellipsoid was caused the smoothness
assumptions. The problem was reduced to minimization of variance of test statistics. The
minimum of variance was attained on the intersection of boundaries of balls and ellipsoid.
Thus we got the minimization problem with two restrictions of quadratic type. In the present
paper the sets of alternatives =ε,hε(ρε) are interpreted as the exteriors of ellipsoids in L2(0, 1).
As a consequence one needs to solve the problem of variance minimization with only one
restriction of quadratic type. At the same time in the present paper the operator that set the
restriction in is not diagonal. This cause the main di�erences in paper reasoning.
Note that, in the problems of signal detection with a given signal smoothness, asymptotically
minimax test statistics or statistics having optimal rates of distinguishability (see Ermakov
[6], Ingster and Suslina [22]) are often de�ned as seminorms Nε(Yε) of quadratic type. A
simple analysis of the proofs in Ermakov [6] and Ingster and Suslina [22] shows that these
test statistics Nε(Yε) are asymptotically minimax or have optimal rates of distinguishability
for the more wider sets of alternatives {S : Nε(S) > ρε > 0, S ∈ L2(0, 1)} then in the setting
with a signal smoothness. Thus the results on signal detection with a given signal smoothness
can be also interpreted in terms of distance approach.
The asymptotic minimaxity of tests statistics T (hε, Yε) is proved for the sets of alternatives
=ε,hε(ρε) having two variable parameters hε and ρε. If ρε = ρε(hε) satis�es more strong
restrictions as a function of hε we prove asymptotic minimaxity of T (hε, Yε) for the more
narrow sets. These sets of alternatrives are de�ned as intersections of =ε,hε(ρε) with the balls
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in Sobolev space.

Remark 1.1. If we test the hypothesis S = S0, the test statistic T (h, Yε−S0) has the following
modi�ed form

T (h, Yε − S0) =
∫ 1

0

(∫ 1

0
Kh(t− s)dYε(s)−

∫ 1

0
Kh(t− s)S0(s)ds

)2

r(t)dt (1.5)

where Kh(t− s) = 1
h
K

(
t−s
h

)
.

The sets of alternatives are as follows

=ε,h(ρε, S0) =

{
S :

∫ 1

0

(∫ 1

0
Kh(t− s)S(s)ds−

∫ 1

0
Kh(t− s)S0(s)ds

)2

r(t)dt > ρε(h) > 0,

S ∈ L2(0, 1)} . (1.6)

The kernel-based tests have often another form

T̄ (h, Yε, S0) =
∫ 1

0

(∫ 1

0
Kh(t− s)dYε(s)− S0(t)

)2

r(t)dt (1.7)

and it seems natural, for such tests, to de�ne the sets of alternatives in another form

=̄ε,h(ρε, S0) =

{
S :

∫ 1

0

(∫ 1

0
Kh(t− s)S(s)ds− S0(t)

)2

r(t)dt > ρε(h) > 0, S ∈ L2(0, 1)

}
.

(1.8)
as well.
The test statistic T̄ (h, Yε, S0) contains additional bias term

E(T̄ (h, Yε, S0)− T (h, Yε − S0)) =
∫ 1

0

(∫ 1

0
Kh(t− s)S0(s)ds− S0(t)

)2

r(t)dt. (1.9)

Note that similar bias term
∫ 1

0

(∫ 1

0
Kh(t− s)S(s)ds− S(t)

)2

r(t)dt

caused the alternative is absent in test statistics T̄ (h, Yε, S0) and T (h, Yε − S0)). Thus, using
test statistics T (h, Yε−S0), we simply delete the fast oscilating component both in hypothesis
and alternatives. This is a standard procedure. If we test the hypothesis versus sets of
alternatives de�ned in terms of series of ortogonal functions (see Ingster and Suslina [23],
Lepskii and Spokoiny [25], Ermakov [6]), the tests statistics are also based on the �rst Fourier
coe�cients of hypothesis and estimates of these coe�cients for the alternatives. The Fourier
coe�cients of higher orders are ignored both for the hypothesis and alternatives. Thus, using
the test statistics T (h, Yε − S0) instead of T̄ (h, Yε, S0), we follow the same reasons. If we
could not make any serious conclusions about very fast oscilating part of signal, we simply
do not include this part in test statistics. The de�nition of sets of alternatives =ε,h(ρε, S0)
follows the same reasons as well. Note that the bias term (1.9) have often the order o(ρε(hε))
(see Remark 2.2.3) and is unessential in the problems of hypothesis testing. In this case
both test statistics T (h, Yε−S0) and T̄ (h, Yε, S0) are asymptotically minimax for both sets of
alternatives =ε,h(ρε, S0) and =̄ε,h(ρε, S0).
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Remark 1.2. The asymptotic minimaxity is proved for a wide classes of sets of alternatives
de�ned by the structure of kernel based tests. All these sets of alternatives have the same
optimal rates of distingiushability if a priori information is given, that signal belongs to a ball
W (β)(P0) in Sobolev space and hε ³ ε

4
4β+1 . Moreover we show that T (hε, S − S0) ³ ||S − S0||

if S − S0 ∈ W (β)(P0) and hε ³ ε
4

4β+1 (see (2.8), (2.9)). Thus such a wide class of sets
of alternatives arises as the consequence of requirement: for given procedure to enclose all
distinguishable alternatives. Note that seminorm T (hε, S − S0) has a rather evident inter-
pretation. We compare the L2-norms for di�erences of smoothed signals of hypothesis and
alternatives obliterating the oscilations greater then hε.

We use letter C as a generic notation for positive constants. We put

K2,h(t) =
1

h
K2

(
t

h

)
=

1

h2

∫ 1

−1
K

(
t− s

h

)
K

(
s

h

)
ds,

Ki,h(t) =
1

h
Ki

(
t

h

)
=

1

h2

∫ 1

−1
Ki−1

(
t− s

h

)
K

(
s

h

)
ds

for i = 3, 4. If h = 1, the indice h will be omitted, that is, K2,1 = K2, K4,1 = K4 and so on.
Denote χ(A) the indicator of an event A, [x] the whole part of x ∈ R1 and || · || � L2-norm in
[0,1].
In paper the three settings are considered: the signal detection in Gaussian white noise, the
hypothesis testing on regression and density. It will be convenient to make use of similar or
the same notation in the statements and in the proofs of the related results.

2. Main Results. The results on signal detection, testing hypothesis on nonparametric
regression and density will be given in three subsections.

2.1. Nonparametric signal detection. De�ne xα, 0 < α < 1, by the equation

α = 1− Φ(xα) =
1√
2π

∫ ∞

xα

exp

{
−x2

2

}
dx.

Denote
dε(h) =

ε2

h

∫ 1

0
r(t)dt

∫ 1

−1
K2(u)q2(t− uh)du,

σ2 = 2
∫ 2

−2
K2

2(v)dv
∫ 1

0
q4(t)r2(t)dt.

Hereafter we suppose that q(t) = 0 if t /∈ [0, 1].
Note that, if q(t) satis�es Hoelder condition: |q(t)−q(s)| < C|t−s|κ, κ > 1/2 for all t, s ∈ [0, 1],
one can make use of the more simple formula

dε(h) =
ε2

h

∫ 1

0
q2(t)r(t)dt

∫ 1

−1
K2(u)du(1 + o(h1/2)).

Theorem 2.1.1. Let ε2h−1/2
ε → 0, hε → 0 as ε → 0 and

0 < lim inf
ε→0

ε−2ρε(hε)h
1/2
ε ≤ lim sup

ε→0
ε−2ρε(hε)h

1/2
ε < ∞. (2.1)
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Then the family of kernel-based tests

Lε = χ
{
ε−2h1/2

ε σ−1(Tε(Yε)− dε(hε)) > xα

}

is asymptotically minimax for the sets of alternatives =ε,hε(ρε).
It holds

βε,hε(Lε) = Φ

(
xα − h1/2

ε ρε(hε)

ε2σ

)
(1 + o(1)) (2.2)

as ε → 0.
Moreover for each Sε ∈ L2(0, 1), ε > 0 such that T (hε, Sε) = ρε(hε)(1 + o(1)) it holds

βε,hε(Lε, Sε) = Φ

(
xα − h1/2

ε ρε(hε)

ε2σ

)
(1 + o(1)) (2.3)

as ε → 0.

Remark 2.1.1. In the kernel estimation, to preserve the optimal rate of convergence (see
Hardle [18]), a modi�cation of kernel estimator is often introduced near the boundary of
interval [0, 1]. The same problem can arise in testing nonparametric hypothesis if a priory
information on a signal smoothness is given. If we are not interesting very seriously the signal
behaviour near the boundary, one can use the test statistics

T̃ (h, Yε) =
∫ 1−h

h

(∫ 1

0
Kh(t− s)dYε

)2

r(t)dt

with the sets of alternatives

=̃ε,h = {S : T̃ (h, S) > ρε(h) > 0}.

For the test statistics T̃ (h, Yε) the similar statements of Theorem 2.1 holds. One needs only
to replace the sets of alternatives =ε,hε(ρε) by the sets =̃ε,hε(ρε) = {S : T̃ (h, S) > ρε(h) > 0}
and dε(hε) by

d̃ε(hε) =
ε2

hε

∫ 1−hε

hε

r(t)dt
∫ 1

−1
K2(u)q2(t− uhε)du.

Similar modi�cation of statements holds for the settings Theorems 2.2 and 2.3 as well.

Remark 2.1.2. As follows from (2.2) and (2.3) the lower bounds of type II error probabilities
are attained for all families of alternatives Sε, ε > 0 such that

0 < lim inf
ε→0

ε−2h1/2
ε T (hε, Sε) ≤ lim sup

ε→0
ε−2h1/2

ε T (hε, Sε) < ∞.

Thus the test statistics give optimal distinguishability for all alternatives having a given
distance from the hypothesis in the sense of T 1/2(hε, S)- seminorm. Note that the same
situation takes place in the case of chi-squared tests as well (see Ermakov [10]).

A similar statement is valid if a priory information on a signal smoothness is given that the
signal S belongs to a ball in Sobolev space

S ∈ W
(β)
2 (P0) =

{
S :

∫ 1

0
(S2(s) + (S(β)(s))2)ds < P0

}
.
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Hereafter S(β) denotes β-derivative of S and β = m + κ where m = [β] and 0 ≤ κ < 1.
The sets of alternatives equal =ε,hε(ρε, β, P0) = =ε,hε(ρε) ∩W

(β)
2 (P0).

Make the following additional assumption.

A. There exists the bounded β-derivative K(β) of kernel K, that is, sups∈(−1,1) |K(β)(s)| <

C < ∞ and K(β)(−1) = K(β)(1) = 0, K(i)(−1) = K(i)(1) = 0 for all i, 0 ≤ i ≤ m. The
function r(t) has bounded β-derivatives on (0, 1).

Denote
Cβ(K) =

∫ 1

−1
(K(β)(s))2ds

∫ 1

0
q2(t)r(t)dt.

Theorem 2.1.2. Let the assumptions of Theorem 2.1 be satis�ed, let A hold and let

lim sup
ε→0

ρεh
−2β
ε Cβ(K) <

1

2
P0. (2.4)

Then the family of kernel-based tests Lε, ε > 0 is asymptotically minimax for the sets of
alternatives =ε,hε(ρε, β, P0) and

βε,hε(Lε) = βε,hε(Lε,=ε,hε(ρε, β, P0)) = Φ

(
xα − h1/2

ε ρε(hε)

ε2σ

)
(1 + o(1)). (2.5)

As follows from (2.3) the lower bound in (2.5) is attained for each family of signals Sε ∈
W

(β)
2 (P0) such that T (hε, Sε) = ρε(hε)(1 + o(1)).

By (2.1),(2.4) we get the following bounds for the rate of convergence hε and ρε to zero

lim sup
ε→0

ε2h−2β−1/2
ε < ∞ (2.6)

and
lim sup

ε→0
ε−

8β
4β+1 ρε > 0. (2.7)

The proof of Theorem 2.1.2 is similar to that of Theorem 2.1.1. It su�ces to test only that the
realizations of random process generated by the Bayes a priori measures belongs to the ball
W

(β)
2 (P0) in Sobolev space. A similar statements can be obtained also for the balls in other

functional spaces, using the same arguments and the fact that, by (2.3), the corresponding
lower bound is attained.
We say that the sets of alternatives =ε are distinguishable if, for each 0 < α < 1, there exists
a family of tests Uε, α(Uε) = α such that

lim inf
ε→0

βε,hε(Uε,=ε) < 1− α.

It follows from (2.1), (2.6), (2.7) that the optimal rate of distinguishability for the sets of
alternatives =ε,hε(ρε, β, P0) equals ε

8β
4β+1 . This rate is attained if hε ³ ε

4
4β+1 .

De�ne the sets
Q1(ρε, β, P0) = {S : S ∈ W

(β)
2 (P0), ||S||2 > ρε}.

Denote Q(ρε, β, P0) the set of all S ∈ Q1(ρε, β, P0) such that there exist β-derivatives S(β)(0) =
0 and S(β)(1) = 0 of S and S(0) = S(1) = S(i)(0) = S(i)(1) = 0 for all 0 < i ≤ [β].
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Denote
K̂(ω) =

∫ ∞

−∞
K(t) exp{iωt}dt, Ŝ(ω) =

∫ ∞

−∞
S(t) exp{iωt}dt

the Fourier transforms of K(t) and S(t).
Suppose K̂(ω)|ω|−β → 0 as ω →∞. Suppose also that r(t) = 1 for all t ∈ (0, 1).
Denote ω0ε such that P0ω

−2β
ε = ρεh

−2β
ε and ω0 = inf{ω : K̂(ω) = 0, ω > 0}.

We show that,
=ε,hε(ρε, β, P0) ⊂ Q1(ρε, β, P0) (2.8)

and, if ω0ε < ω0 − δ with δ > 0,

Q(ρε, β, P0) ⊂ =ε,hε(Cερε, β, P0) (2.9)

with Cε = |K̂(ω1ε)|−2(1 + o(1)) where ω1ε = arg infω{K̂(ω) = inf{K̂(u) : |u| < ω0ε}}.
The optimal order of distinguishability for the sets of alternatives Q(ρε, β, P0) equals ε

8β
4β+1

(see Ingster and Suslina [23], Ermakov [6]). Thus if hε ³ ε
4

4β+1 and ω0ε < ω0 − δ with δ > 0,
then the orders of distinguishability coinside for the sets of alternatives =ε,hε(ρ1ε, β, P0) and
Q(ρε, β, P0).
In hypothesis testing with a priory information on a signal smoothness the optimal rates
of distinguishability is often proved for the test statistics admitting the interpretation as
seminorms in functional spaces (see Ermakov [6]; Ingster and Suslina [23]). Theorems 2.1.1,
2.1.2 and (2.8) show that, in this case, one can expect asymptotic minimaxity of these tests
statistics for essentially more wider sets of alternatives =ε(ρε) generated by these seminorms.
For such sets of alternatives we do not need to make any assumptions of smoothness type.
Moreover the statements of type (2.9) hold.
By Young inequality, we get Tε(S, hε) < ||S||2. This implies (2.8).
By Parseval identity, we get

Tε(S, hε) =
∫ ∞

−∞
|K̂(hεω)Ŝ(ω)|2dω,

∫ ∞

−∞
(S(β)(t))2dt =

∫ ∞

−∞
|ω|2β|Ŝ(ω)|2dω

and ||S|| = ||Ŝ||.
Hence, we get

inf{Tε(S, hε) : ||S||2 > ρε, S ∈ W
(β)
2 (P0), suppS ⊂ (0, 1)} ≥

inf
{∫ ∞

−∞
|K̂(hεω)Ŝ(ω)|2dω : ||Ŝ||2 > ρε,

∫ ∞

−∞
|ω|2β|Ŝ(ω)|2dω < P0

}
+ o(h2β

ε ) = |K̂(ω1ε)|2ρ2
ε + o(h2β

ε ). (2.10)

This implies (2.9).

Theorems 2.1.1 and 2.1.2 admit the interpretation from the con�dence estimation viewpoint.
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We say that the family of con�dence sets Uε(Yε) with con�dence coe�cient 1 − α is =ε(ρε)-
asymptotically minimax if for any other con�dence sets U1ε(Yε) with the same con�dence
coe�cient 1− α

lim inf
ε→0

sup
S∈=ε(ρε)

(PS(S ∈ U1ε(Yε))− PS(S ∈ Uε(Yε))) ≥ 0

for each family ρε → 0 as ε → 0.
De�ne the con�dence sets

Uε(hε, Yε, xα) = {S : Thε(Yε − S) ≤ xα, S ∈ L2(0, 1)}
with xα de�ned by the equation 1− Φ(xα) = α.

Theorem 2.1.3. Let the assumptions of Theorem 2.1.1 be satis�ed. Then Uε(hε, Yε, xα) are
=ε,hε(ρε)-asymptotically minimax con�dence sets and Uε(hε, Yε, xα)∩W

(β)
2 (P0) are =ε,hε(ρε)∩

W
(β)
2 (P0)- asymptotically minimax con�dence sets.

The proof is omitted. The reasoning are akin to the proof of similar statement on the relation
of uniformly most powerful tests and uniformly most accurate con�dence intervals.

2.2. Testing hypothesis on nonparametric regression. We shall follow to the setting
in Brown and Low [4].
Let H(·) be an increasing c.d.f. in [0, 1]. Let S(·) : [0, 1] → R1 and λ2(·) : [0, 1] → (0, 1) be
measurable functions.
The independent random variables (xni, Yni), 1 ≤ i ≤ n are observed with

xni = H−1
(

i

n + 1

)

and
Yni = S(xni) + λ(xni)ξni, ξni ∼ N(0, 1).

Suppose the functions λ2(·) and H(·) are continuously di�erentiable and such that
∣∣∣∣∣
d

dt
log λ(t)

∣∣∣∣∣ < C, 0 < c < p(t)
.
=

dH

dt
(t) < C, t ∈ [0, 1]. (2.11)

Denote q(t) = λ(t)p−1/2(t).
The problem is to test a hypothesis S(t) = S0(t), t ∈ [0, 1] for a given function S0(t), t ∈ [0, 1].
Let hn > 0, hn → 0 as n →∞ be a given sequence. De�ne the kernel-based test statistics

Tn(Yn) =
∫ 1

0

(
1

n

n∑

i=1

Khn(t− xni)Yni −
∫ 1

0
Khn(t− s)S0(s)ds

)2

r(t)dt

with Yn = {Yni}n
i=1.

De�ne the functional T̄n(S) = Tn(Sn) where Sn = {S(xni)}n
i=1.

We �x a sequence cn > 0, cn → 0 as n →∞ and denote

=n(hn, cn) =



S :

∫ 1

0

(
1

n

n∑

i=1

Khn(t− xni)S(xni)−
∫ 1

0
Khn(t− s)S(s)ds

)2

r(t)dt <

9



cn

∫ 1

0

(∫ 1

0
Khn(t− s)(S(s)− S0(s))ds

)2

r(t)dt, S ∈ L2(0, 1)

}
. (2.12)

The sets =nhn of alternatives equal

=nhn(ρn) = {S : T̄n(S) > ρn(hn) > 0, S ∈ =n(hn, cn)}.

or
=nhn(ρn, β, P0) = =nhn(ρn) ∩W

(β)
2 (P0)

where

W
(β)
2 (P0) = {S :

∫ 1

0
(S(s)− S0(s))

2 + (S(β)(s)− S
(β)
0 (s))2)ds < P0, S ∈ L2(0, 1)}.

Remark 2.2.1. We test a hypothesis using the discrete observations. Thus it seems natural to
make some assumptions on approximation properties of the following type

∫ 1

0

(
1

n

n∑

i=1

Khn(t− xni)S(xni)−
∫ 1

0
Khn(t− s)S(s)ds

)2

r(t)dt = o(ρn(hn))

if ∫ 1

0

(∫ 1

0
Khn(t− s)(S(s)− S0(s))ds

)2

r(t)dt = O(ρn(hn)).

The inequality in (2.12) can be interpreted as an extension of this assumption on the more
distant alternatives.
Assume as follows.
A1. There exists γ > 0 such that

∫ ∞

−∞
(K(u1 − s)−K(u2 − s))2ds < C|u1 − u2|1+γ (2.13)

for all u1, u2 ∈ [0, 1].
A2. There exists κ > 1/2 such that

|S0(u1)− S0(u2)| < C|u1 − u2|κ

for all u1, u2 ∈ [0, 1].

Theorem 2.2. Assume A1,A2 and (2.3). Let the assumptions of Theorem 2.1.1 be satis�ed
with ε = n−1/2. Let n−1h−3/2−ω

n → 0 as n →∞ with ω > 0. Then the sequence of tests

Ln = χ
{
nh1/2

n σ−1(Tn(Yn)− dn(hn)) > xα

}
(2.14)

is asymptotically minimax for the sets of alternatives =nhn(ρn) and (2.2) holds.
The lower bound (2.2) is attained for any sequence Sn ∈ =(hn, cn) such that Tn(Sn) = ρn(hn),
that is, (2.3) holds.
Let A and (2.4) hold also. Then the sequence of tests Ln is asymptotically minimax for the
sets of alternatives =nhn(ρn, β, P0) and (2.2) holds with

βnhn(Ln) = βnhn(Ln,=(ρn, β, P0)).
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Remark 2.2.2. The main goal of paper is to prove lower bounds of minimax type for the
kernel-based tests and to show that these lower bounds are principally attained. One can
suppose that the upper bound similar to the second statement of Theorem 2.2 can be proved
for essentially more wider assumptions and for essentially more wider classes of statistical
models. The proofs of lower bounds are more di�cult.

Remark 2.2.3. The procedure of hypothesis testing is based on the comparison of kernel
estimator with the smoothed signal ∫

Khn(t− s)S0(s)ds. The smoothing may cause the losses
of information about the signal S0. Such a losses will be absent if

||S0||2 − ||Khn ∗ S0|| =
∫

(1− K̂2(hnω))Ŝ2
0(ω)dω = o(ρn) = o(h−1/2n−1) (2.15)

Let K̂(ω) = 1− C|ω|γ(1 + o(1)) in some vicinity of ω = 0. Then

||S0||2 − ||Khn ∗ S0|| = Chγ
n

∫
|ω|γŜ2

0(ω)dω(1 + o(1)).

Thus it su�ces to put hn = o(n−
2

1+2γ ) and (2.15) will be hold. If γ = 1, we get hn =
o(n−2/3), ρn = O(n−2/3), β = 1/4 and assumptions of Theorem 2.2 do not ful�lled. If γ = 2,
we get hn = o(n−2/5), ρn = O(n−4/5) and β = 1. Thus all the assumptions of Theorems 2.2
and Theorems 2.3, 3.2 given below are satis�ed. Therefore, if we apply the hypothesis testing
procedure with hn ³ n−λ, λ > 2/5, we test the hypothesis versus alternatives having more
serious �uctuation then the signal S0.

Remark 2.2.4. The di�erence between the rates of consistent distinguishability n−
4β

4β+1 (or
n−1h−1/2

n ) in testing nonparametric hypothesis and n−1/2 in testing parametric hypothesis is
essentially smaller (n− 1

4β+1 ) then the corresponding di�erence (n−
1

2β+1 ) in estimation theory.
If the sample size n ≤ 2000, the choice of bandwidth O(n−

2
4β+1 for the smoothness parameter

β ≥ 2 is approximately the same as in the testing with the kernel-based tests of parametric
hypothesis. Thus, for su�ciently smooth kernels, there exists small di�erence in interpre-
tation of results of kernel-based procedure for parametric and nonparametric settings. The
most essential di�erence is that we get uniform estimates of distinguishability in terms of the
sets =n,hn(ρn) for nonparametric setting. If we want to test the hypothesis versus fast oscilat-
ing nonparametric sets of signals, the de�nition of sets =n,hn(ρn) shows clearly the types of
oscilations that can be distinguished. This is the signals with oscilation width ³ 2hn − 3hn

and the amplitude ³ ρn

3lσ2hn
where l is the number of oscilation peaks.

2.3. Nonparametric hypothesis testing on a density. Let X1, . . . , Xn be i.i.d.r.v.'s
with c.d.f. F (x), x ∈ [0, 1]. The problem is to test a hypothesis F (x) = F0(x), x ∈ (0, 1),
where F0 is a given c.d.f. We suppose F0(x) is absolutely continuous w.r.t. Lebesgue measure
and has the density f0(x) = dF0

dx
(x), x ∈ (0, 1).

Denote F̂n the empirical c.d.f. of X1, . . . , Xn.
The kernel-based test statistics are de�ned as follows

Tn(F̂n) =
∫ 1

0

(
1

n

n∑

i=1

Khn(t−Xi)−
∫ 1

0
Khn(t− s)f0(s)ds

)2

r(t)dt =

∫ 1

0

(∫ 1

0
Khn(t− s)d(F̂n(s)− F0(s))

)2

r(t)dt.
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The functionals Tn de�ning the sets of alternatives equal

Tn(F )
.
= Tn(F, F0)

.
=

∫ 1

0

(∫ 1

0
Khn(t− s)d(F (s)− F0(s))

)2

r(t)dt.

Make the following assumptions.

B. The density f0 satis�es the Hoelder condition

|f0(x)− f0(y)| < C|x− y|κ, x, y ∈ [0, 1] (2.16)

with κ > 1/2 and f0(x) > c > 0 for all x ∈ [0, 1].

C. |r(x)− r(y)| < C|x− y|κ1 for all x, y ∈ [0, 1] and κ1 > 1
2
. (2.17)

We �x values ζ > 1
2
and C > 0, c > 0 and de�ne the set = = =(C, c, ζ) of all distribution

functions such that
F (h) + 1− F (1− h) < Chζ (2.18)

for all 0 < h < c.
The sets of alternatives equal

=nhn = =nhn(ρn) = {F : Tn(F ) > ρn(hn) > 0, F ∈ =}

or
=nhn = =nhn(ρn, β, P0) = =nhn(ρn) ∩W

(β)
2 (P0)

where

W
(β)
2 (P0) =

{
f :

∫ 1

0
(f(s)− f0(s))

2 + (f (β)(s)− f
(β)
0 (s))2ds < P0, f(s) =

dF

ds
(s), F ∈ =

}
.

In what follows, we shall make use of the same notation as in the problem of signal detection
putting ε = n−1/2 and q(t) = f

1/2
0 (t), t ∈ [0, 1]. In particular

dn(hn)
.
= dn(hn, f0)

.
=

1

nhn

∫ 1

−1
K2(s)ds

∫ 1

0
r(t)f0(t)dt,

σ2 = σ2(f0) = 2
∫ 2

−2

(∫ 1

−1
K(u + v)K(u)du

)2

dv
∫ 1

0
f 2

0 (t)r2(t)dt.

Theorem 2.3. Assume A1,B,C and let the assumptions of Theorem 2.1 be satis�ed with
ε = n−1/2. Let n−1h−3/2−ω

n → 0 as n →∞ with ω > 0. Then the sequence of tests

Ln = χ
{
nh1/2

n σ−1(Tn(F̂n)− dn(hn)) > xα

}

is asymptotically minimax and (2.2) holds.
Let A and (2.4) hold also. Then the sequence of tests Ln is asymptotically minimax for the
sets of alternatives =nhn(ρn, β, P0) and (2.2) holds with

βnhn(Ln) = βnhn(Ln,=(ρn, β, P0)).
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Remark 2.3.1. The tests based on kernel estimators of density are usually treated as non-
parametric tests for testing hypothesis on a density. In this setting we apply these tests for a
more wide sets of alternatives de�ned on the sets of distribution functions.

Remark 2.3.2. The proofs of lower bounds in Theorems 2.2 and 2.3 are based on the statements
about asymptotic equivalence of statistical experiments (see Brown and Low [4], Nussbaum
[27]). The problem of hypothesis testing on a density is asymptotically equivalent to the
problem of signal detection

dY (t) = f(t)dt +
1√
n

f
1/2
0 (t)dw(t)

in the Gaussian white noise with the weight function F
1/2
0 (t) (see Nussbaum [25]). Since

our model (1.1) of signal detection also contains the weight function q(t) we can apply the
theorem on asymptotic equivalence of statistical experiments putting q(t) = f

1/2
0 (t).

Remark 2.3.3. It is easy to see from the proof of Theorem 2.3 that the assumptions of theorem
can be weaken. In the assignment of sets =nhn of alternatives the set = = =(ζ, C, c) can be
replaced by the set of all distribution functions. In such a setting the statement of Theorem
2.3 holds for the sequence of test statistics

T̂n(F̂n) = Tn(F̂n)−
∫ 1

0
r(t)dt

∫ 1

0

(
Khn(t− x)−

∫ 1

0
Khn(t− s)f0(s)ds

)2

dF̂n(x). (2.19)

generating the sequence of tests

L1n = χ(nh1/2
n σ−1T̂n(F̂n) > xα).

The last addendum in the right-hand side of (2.20) deletes the component of bias EF (Tn(F̂n))
having the order greater then n−1h−1/2

n = O((Var(Tn(F̂n)))1/2). Without deleting this term
we need to estimate more accurately the boundary e�ects in asymptotic of EF (Tn(F̂n)) and
to assume (2.17),(2.18).

3. Main Results. Parametric Hypothesis. We begin with the study of problem of signal
detection.
Let we observe a random process Yε(t) de�ned by a stochastic di�erential equation (1.1) with
an unknown signal S(t). The problem is to test a parametric hypothesis S(t) = S(t, θ), θ ∈
Θ ⊂ Rl versus nonparametric sets of alternatives

S ∈ =ε,hε(Θ) = =ε,hε(Θ, ρε) =

=

{
S : inf

θ∈Θ

∫ 1

0

(∫ 1

0
Khε(t− s)(S(s)− S(s, θ))ds

)2

r(t)dt > ρε(hε) > 0, S ∈ L2(0, 1)

}

or
S ∈ =ε,hε(Θ) = =ε,hε(Θ, ρε, β, P0) = =ε,hε(Θ, ρε) ∩W

(β)
2 (P0, Θ)

where
Wβ(P0, Θ) =

{
S :

∫ 1

0
(S(s)− S(s, θ))2 + (S(β)(s)− S(β)(s, θ))2ds < P0,

with θ = θ̃(S) = argminθ Tε(S, θ)
}

.
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Thus, in the case of sets of alternatives =ε,hε(Θ, ρε, β, P0), we assume that there exists β-
derivative S(β)(s, θ) of a signal S(s, θ), θ ∈ Θ and ∫ 1

0 ((S(β)(s, θ))2ds < ∞.
Suppose the set Θ is a closure of bounded open set in Rl.
Let θ̂ε be an estimator of unknown parameter θ ∈ Θ. De�ne the test statistics

Tε(Yε, θ̂ε) =
∫ 1

0

(
Ŝhε(t)−

∫ 1

0
Khε(t− s)S(s, θ̂ε)ds

)2

r(t)dt.

For any test U denote αθ = Eθ(U) its type I error probability for the hypothesis θ ∈ Θ. We
put βε,hε(U) = βε,hε(U,=ε,hε(Θ)) = sup{β(U, S) : S ∈ =ε,hε(Θ)}.
We say that a family of tests Uε, ε > 0, αθ(Uε) = Eθ(Uε) ≤ α > 0, θ ∈ Θ is uniformly asymp-
totically minimax on the sets of alternatives =ε,hε(Θ) if the family of tests Uε is asymptotically
minimax for each �xed θ ∈ Θ in the problems of testing the simple hypothesis S(s) = S(s, θ)
versus S ∈ =ε,hε(Θ).
For a wide class of estimators θ̂ε we prove that the test statistics Tε(Yε, θ̂ε) generates uniformly
asymptotically minimax families of tests.
Denote u′v the inner product of u, v ∈ Rl.
Assume as follows.
D1. For all θ1, θ2 ∈ Θ, θ1 6= θ2

∫ 1

0
(S(s, θ1)− S(s, θ2))

2ds 6= 0.

Suppose S(s, θ) is di�erentiable in θ ∈ Θ and denote Sθi
(s, θ) = ∂S(s,θ)

∂θi
the partial derivatives

of S(s, θ) for all 1 ≤ i ≤ l, s ∈ [0, 1], θ = (θ1, . . . , θl) ∈ Θ. Denote Sθ(s, θ) = {Sθi
(s, θ)}l

i=1.

D2. There exists ω > 0 such that for all θ1, θ2 ∈ Θ

∫ 1

0
(S(s, θ2)− S(s, θ1)− (θ2 − θ1)

′Sθ(s, θ1))
2ds < C|θ2 − θ1|2+ω.

D3. Uniformly in θ ∈ Θ it holds ∫ 1
0 S2

θi
(s, θ)ds < C, 1 ≤ i ≤ l.

D4. There exists a functional θ̄ : L2(0, 1) → Θ such that, θ̄(S(·, θ)) = θ for all θ ∈ Θ and for
any δ > 0

PS(|θ̂ε − θ̄(S)| > δT 1/2
ε (S, θ̄(S))) = o(1)

PS(|θ̂ε − θ̄(S)|2+ω > δh1/2
ε Tε(S, θ̄(S))) = o(1)

uniformly in S ∈ L2(0, 1) as ε → 0.

D5. There exists λ1(δ) → 0 as δ → 0 such that for all θ ∈ Θ

sup{|S(s, θ)− S(t, θ)| : |t− s| < δ : t, s ∈ [0, 1]} < λ1(δ).

D6. There exists λ2(δ) → 0 as δ → 0 such that

sup
{∫ 1

0
|S(β)(s, θ1)− S(β)(s, θ2)|2ds : |θ1 − θ2| < δ, θ1, θ2 ∈ Θ

}
< λ2(δ).
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Theorem 3.1. Assume D1-D5. Let ε2h−1/2
ε → 0, hε → 0 as ε → 0 and (2.1) holds. Then the

family of tests
Lε = χ(ε−2h1/2

ε σ−1(Tε(Yε, θ̂ε)− dε(hε)) > xα)

is uniformly asymptotically minimax for the sets of alternatives =ε,hε(Θ, ρε) and (2.2), (2.3)
hold.
Let A, D6 and (2.4) hold also. Then the family of tests Lε is uniformly asymptotically minimax
for the sets of alternatives =ε,hε(Θ, ρε, β, P0) and (2.2) holds with

βε,hε(Lε) = βε,hε(Lε,=ε,hε(Θ, ρε, β, P0))

The problem of testing parametric hypothesis on a density versus nonparametric sets of
alternatives will be treated in the following setting. Let X1, . . . , Xn be i.i.d.r.v.'s with c.d.f.
F (x), x ∈ [0, 1]. One needs to test a hypothesis F = Fθ, θ ∈ Θ versus

F ∈ =nhn(Θ, ρn) = {F : inf{Tn(F, Fθ) : θ ∈ Θ} > ρn(hn), F ∈ =}.

Suppose that c.d.f.'s Fθ, θ ∈ Θ are absolutely continuous w.r.t. Lebesgue measure and have
the densities f(x, θ) = Fθ

dx
(x), x ∈ (0, 1).

Let θ̂n be an estimator of θ. We shall test the hypothesis on the base of test statistics
T̂n = Tn(F̂n, Fθ̂n

).
Make the following assumptions.

B1. There exists κ > 1/2 and C > 0 such that, for all θ ∈ Θ,

|f(x, θ)− f(y, θ)| < C|x− y|κ, x, y ∈ [0, 1].

B2. There exist C > c > 0 such that 0 < c < f(x, θ) < C < ∞ for all x ∈ [0, 1] and θ ∈ Θ.

E1. For all θ ∈ Θ it holds Fθ ∈ =.

E2. The assumptions D1-D3,D5 hold with S(s, θ) =
√

f(s, θ), θ ∈ Θ.

E3. For each c.d.f. F (x) ∈ = there exists θ̄(F ) ∈ Θ such that θ̄(Fθ) = θ for all θ ∈ Θ and for
any δ > 0

PF (|θ̂n − θ̄(F )|2 > δTn(F, θ̃(F ))) = o(1)

uniformly in F ∈ =.

Theorem 3.2. Assume A1,B1,B2,C,E1-E3 and (2.1). Let n−1h−3/2−ω
n → 0 as n → ∞ with

ω > 0. Then the sequence of tests

Ln = χ{nh1/2
n σ−1(fθ̂n

)(Tn(F̂n, Fθ̂n
)− dn(hn, fθ̂n

)) > xα}

is uniformly asymptotically minimax and

βnhn(Ln) = sup
θ∈Θ

Φ(xα − nh1/2
n σ(fθ)ρn(hn))(1 + o(1)) (3.1)

as n →∞.
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We begin with the proof of Theorem 3.1. The proof of Theorem 2.1.1 is obtained by an easy
modi�cation of these arguments.

4. Proof of Theorem 3.1. To simplify notation we suppose that θ is one dimensional
parameter, θ ∈ Θ ⊂ R1.
First of all we study the asymptotic behaviour of test statistics T (Yε, θ̂ε) and prove the upper
bound in (2.2).
Let S(s) ∈ =ε,hε(Θ) be a true value of a signal. We have

∫ 1

0
Khε(t− s)(dYε(s)− S(s, θ̂ε)ds) = g1hε(t) + g2hε(t) + ξε(t) (4.1)

with
g1hε(t) =

∫ 1

0
Khε(t− s)(S(s)− S(s, θ̄(S)))ds,

g2hε(t) =
∫ 1

0
Khε(t− s)(S(s, θ̄(S))− S(s, θ̂ε))ds,

ξε(t) = ε
∫ 1

0
Khε(t− s)q(s)dw(s).

Hence we get
T (Yε, θ̂ε) = I1ε + I2ε + I3ε + I4ε + I5ε + I6ε (4.2)

with
I1ε =

∫ 1

0
g2
1hε

(t)r(t)dt, I2ε = 2
∫ 1

0
g1hε(t)g2hε(t)r(t)dt, (4.3)

I3ε =
∫ 1

0
g2
2hε

(t)r(t)dt, I4ε = 2
∫ 1

0
g1hε(t)ξε(t)r(t)dt, (4.4)

I5ε = 2
∫ 1

0
g2hε(t)ξε(t)r(t)dt, I6ε =

∫ 1

0
ξ2
ε (t)r(t)dt. (4.5)

Since S(s) ∈ =ε,hε(Θ, ρε(hε)) we have

I1ε > ρε(hε). (4.6)

Note that for any function U ∈ L2(0, 1) it holds
∫ 1

0
r(t)

(∫ 1

0
Kh(t− s)U(s)ds

)2

dt ≤ Ch−2
∫ 1

0

(∫ t+h

t−h
|U(s)|ds

)2

dt ≤

Ch−1
∫ 1

0

∫ t+h

t−h
U2(s)dsdt < C

∫ 1

0
U2(t)dt. (4.7)

Denote
W (s) = S(s, θ̂ε)− S(s, θ̄(S))− (θ̂ε − θ̄(S))Sθ(s, θ̄(S)).

By (4.7), D2,D3, we get

I3ε < 2(θ̂ε − θ̄(S))2
∫ 1

0
r(t)

(∫ 1

0
Khε(t− s)Sθ(s, θ̄(S))ds

)2

dt+

2
∫ 1

0
r(t)

(∫ 1

0
Khε(t− s)W (s)ds

)2

dt ≤ C|θ̂ε − θ̄(S)|2. (4.8)
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We have
E(I4ε) = 0. (4.9)

De�ne the operators K̄2,qh and K̄2,h with the kernels K2,qh(t1, t2) =
∫ 1
0 Kh(t1− s)q2(s)Kh(t2−

s)ds and K2,h(t1, t2) respectively. The operators K̄2,qh and K̄2,h are nonnegative. Since K̄2,qh <
CK̄2,h and the kernel K is bounded we get

Var(I4ε) = 4
∫ 1

0
r(t1)dt1

∫ 1

0
r(t2)dt2 g1hε(t1)g1hε(t2)E(ξε(t1)ξε(t2)) =

4ε2
∫ 1

0
r(t1)dt1

∫ 1

0
r(t2)dt2g1hε(t1)g1hε(t2)K2,qhε(t1, t2) ≤

Cε2I
1/2
1ε

(∫ 1

0
r(t1)dt1

(∫ 1

0
K2,hε(t1, t2)g1hε(t2)r(t2)dt2

)2
)1/2

≤

Cε2I
1/2
1ε

(∫ 1

0
r(t1)dt1

∫ 1

0
|K2,hε(t1, t2)|r(t2)dt2

∫ 1

0
|K2,hε(t1, t3)|g2

1hε
(t3)r(t3)dt3

)1/2

≤

Cε2I
1/2
1ε

(∫ 1

0
r(t1)dt1

∫ 1

0
|K2,hε(t1, t3)|g2

1hε
(t3)r(t3)dt3

)1/2

≤

Cε2I
1/2
1ε

(
h−1

ε

∫ 1

0
r(t1)dt1

∫ t1+2hε

t1−2hε

g2
1hε

(t3)r(t3)dt3

)1/2

≤ Cε2I1ε. (4.10)

By Schwartz inequality, we get
I2ε ≤ 2I

1/2
1ε I

1/2
3ε . (4.11)

We have
I2
5ε ≤ 2I2

51ε + 2I2
52ε (4.12)

with

I51ε
.
= 2(θ̂ε − θ̄(S))Qε

.
= 2(θ̂ε − θ̄(S))

∫ 1

0
ξε(t)r(t)dt

∫ 1

0
Khε(t− s)Sθ(s, θ̄(S))ds, (4.13)

I52ε = 2
∫ 1

0
r(t)ξε(t)dt

∫ 1

0
Khε(t− s)W (s)ds. (4.14)

By (4.7), we get

EQ2
ε = ε2

∫ 1

0
q2(s)

(∫ 1

0
Khε(s− t)r(t)

∫ 1

0
Khε(t− s1)Sθ(s1, θ̄(S))ds1dt

)2

ds ≤

Cε2
∫ 1

0
q2(s)

(∫ 1

0
Khε(s− t)r(t)Sθ(t, θ̄(S))dt

)2

ds ≤

Cε2
∫ 1

0
q2(s)r2(s)S2

θ (s, θ̄(S))ds ≤ Cε2. (4.15)

By Schwartz inequality, we get
I52ε ≤ J51εJ52ε (4.16)

with
J2

51ε =
∫ 1

0
r(t)dt

(∫ 1

0
Khε(t− s)W (s)ds

)2

,

J2
52ε =

∫ 1

0
r(t)ξ2

ε (t)dt.
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By (4.7), D2, we get

J2
51ε ≤ C

∫ 1

0
r(t)W 2(t)dt ≤ C|θ̂ε − θ̄(S)|2+ω. (4.17)

Estimating similarly to (4.10), we get

E(J2
52ε) ≤ ε2

∫ 1

0
q2(s)K2,rhε(s, s)ds ≤ ε2h−1

ε (4.18)

with
K2,rhε(y1, y2) =

∫ 1

0
Khε(y1 − t)r(t)Khε(y2 − t)dt, y1, y2 ∈ [0, 1].

By (4.16)-(4.18), we get

I52ε = oP (Tε(S, θ̄(S))) + εh−1/4
ε T 1/2

ε (S, θ̄(S))). (4.19)

By D4, (4.12)-(4.15),(4.19), we get

I2
5ε = OP (ε2h(ω−1)/2

ε ) (4.20)

By straightforward calculations, arguing similarly to Hall (1984a,b), we get

E(I6ε) = dε(hε)(1 + O(hε)), (4.21)

Var(I6ε) = 2ε4
∫ 1

0
r(t1)dt1

∫ 1

0
r(t2)dt2K

2
2,qhε

(t1, t2). (4.22)

Putting t2 = t1 + vhε, s = t1 − uhε, we get

Var(I6ε) = 2ε4
∫ 1

0
r(t1)dt1

∫ (1−t1)/hε

−t1/hε

r(t1 + vhε)×
(∫ t1/hε

(t1−1)/hε

K(u)q2(t1 − uhε)K(u + v)du

)2

dv =
ε4σ2

hε

(1 + o(1)). (4.23)

By D4,(4.6),(4.8)-(4.11),(4.20)-(4.23) together, we get that ε2h−1/2
ε = O(I1ε) implies

I2ε + I3ε + I4ε + I5ε = oP (I1ε + I6ε − dε(hε)) (4.24)

as ε → 0.

Lemma 4.1. Let the assumptions of Theorem 3.1 be satis�ed. Then the distributions of
h1/2

ε ε−2σ−1(I6ε(hε)− dε(hε)) converge to the standard normal one.

By (4.6),(4.24) and Lemma 4.1 we get (2.2) and (2.3). The proof of Lemma 4.1 will be given
later.

It remains to prove the lower bounds for the type II error probabilities if the problem of
testing a simple hypothesis S = S(θ0), θ0 ∈ Θ versus S ∈ =ε,hε(Θ, ρε(hε)) is considered. The
proof is based on the wellknown fact that the Bayes risk does not exceed the minimax one.
We �x δ > 0 and introduce the family of Gaussian probability measures µεδ which set by the
random processes

S̃(t) = S̃ε(t) = S(t, θ0) + τr1/2(t)
∫ 1

0
Khε(t− s)q(s)dw1(s)

18



where dw1(s), s ∈ (0, 1) is a Gaussian white noise and

τ 2 = τ 2
ε,δ = 2(1 + δ)ρε(hε)hεσ

−2.

The Bayes probability measure νεδ is de�ned as the conditional probability measure of S̃
under the condition S̃ ∈ =ε,hε(Θ).

Lemma 4.2. It holds

((1 + δ)ρε(hε))
−1

∫ 1

0

(∫ 1

0
Khε(t− s)(S̃(s)− S(s, θ0))ds

)2

r(t)dt → 1 (4.25)

and
((1 + δ)ρε(hε))

−1 inf
θ∈Θ

∫ 1

0

(∫ 1

0
Khε(t− s)(S̃(s)− S(s, θ))ds

)2

r(t)dt → 1 (4.26)

in probability as ε → 0.
This implies

Pµεδ
(S̃ ∈ =εhε(Θ, ρε(hε))) = 1 + o(1) (4.27)

as ε → 0.

The proof of Lemma 4.2 will be given later.
Denote Ũε and Uε a posteriory Bayes likelihood ratios generated by a priory Bayes probability
measures µεδ and νεδ respectively. It is easy to see that (4.27) implies Ũε/Uε → 1 as ε → 0
in probability both in the case of hypothesis and Bayes alternatives νεδ, µεδ. This allows us
to replace a priory Bayes probability measures νεδ by a priory Bayes probability measure µεδ

in the further arguments. Therefore, for the proof of theorem, it su�ces to get a convenient
assignment of Bayes test statistic Dεδ(Yε) corresponding to a priory probability measure µεδ

and to show that, for the tests Uεδ having the test statistics Dεδ(Yε), it holds

lim
δ→0

lim
ε→0

(
βε,hε(Lε)−

∫
β(Uεδ, S)dµεδ

)
= 0. (4.28)

Let us �nd Bayes a posteriory likelihood ratios in the case of a priory probability measures
µεδ.
Let {φj}∞1 be an orthonormal system of functions in L2(0, 1). Then (1.1) can be written as
follows

yj = sj + εξj, 1 ≤ j < ∞
with yj =

∫ 1
0 φj(t)dYε(t), sj =

∫ 1
0 S(t)φj(t)dt, ξj =

∫ 1
0 φj(t)q(t)dw(t).

De�ne the operators Q, R such that (Qu)(t) = q(t)u(t), (Ru)(t) = r(t)u(t) for any function
u ∈ L2(0, 1). De�ne also the operator Kh with the kernel Kh(x − t) with x, t ∈ [0, 1] and
the unit operator E. In (4.29)-(4.32) we shall make use of notation Yε = {yj}∞j=1, S =

{sj}∞j=1, S0 = {sj0}∞j=1 with sj0 =
∫ 1
0 S(t, θ0)φj(t)dt.

The Bayes a posteriory likelihood ratio equals
∫

exp
{
− 1

2ε2
(Yε − S)′Q−2(Yε − S)− 1

2
τ−2(S − S0)

′Q−1K−1
hε

R−1K−1
hε

Q−1(S − S0)+

1

2ε2
(Yε − S0)

′Q−2(Yε − S0)
}

dµεδ =
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∫
exp

{
ε−2(Yε − S0)

′Q−2(S − S0)−
1

2
(S − S0)

′(ε−2Q−2 + τ−2Q−1K−1
hε

R−1K−1
hε

Q−1)(S − S0)
}

dµεδ =

C
∫

exp
{
−1

2
||(Yε − S0)

′Q−1(ε−2Q−2 + τ−2Q−1K−1
hε

R−1K−1
hε

Q−1)−1/2−

(ε−2Q−2 + τ−2Q−1K−1
hε

R−1K−1
hε

Q−1)1/2(S − S0)||2
}

dµεδ×

exp
{
−1

2
(Yε − S0)

′Q−1(ε−2Q−2 + τ−2Q−1K−1
hε

R−1K−1
hε

Q−1)−1Q−1(Yε − S0)
}

=

C exp
{
−1

2
(Yε − S0)

′Q−1(ε−2Q−2 + τ−2Q−1K−1
hε

R−1K−1
hε

Q−1)−1Q−1(Yε − S0)
}

. (4.29)

Thus the Bayes test statistics can be de�ned as follows

Dεδ = (Yε − S0)
′Q−1(ε−2Q−2 + τ−2Q−1K−1

hε
R−1K−1

hε
Q−1)−1Q−1(Yε − S0) =

(Yε − S0)
′KhεR

1/2(ε−2τ 2KhεRKhε + E)−1R1/2Khε(Yε − S0).

Denote
D1εδ = D1εδ(Yε − S0) = ε−2τ 2(Yε − S0)

′(KhεRKhε)
2(Yε − S0).

We have

Tε −Dεδ −D1εδ = ε−4τ 4(Yε − S0)
′(KhεR

1/2)3(ε−2τ 2KhεRKhε + E)−1(R1/2Khε)
3(Yε − S0)) <

ε−4τ 4(Yε − S0)
′(KhεRKhε)

3(Yε − S0)
.
= D2εδ. (4.30)

We have
D1εδ(Yε − S0) ≤ 2D1εδ(Yε − S) + 2D1εδ(S − S0), (4.31)

D2εδ(Yε − S0) ≤ 2D2εδ(Yε − S) + 2D2εδ(S − S0). (4.32)

The unique di�erence of statistics Tε = (Yε−S)′KhεRKhε(Yε−S) and D1εδ(Yε−S), D2εδ(Yε−S)
are the powers of the kernels. Hence, estimating similarly to (4.21)-(4.23), we get

d1ε(hε)
.
= ES[D1εδ(Yε − S)] = τ 2

∫ 1

0
q2(t) dt

∫ 1

0
dt1K

2
2,rhε

(t, t1) < C
τ 2

hε

< Cε2h−1/2
ε , (4.33)

ES[D2εδ(Yε − S)] = ε−2τ 4
∫ 1

0
q2(t) dt

∫ 1

0
r(s)ds

(∫ 1

0
dt1Khε(t1 − s)×

K2,rhε(t, t1))
2 < C

ε−2τ 4

hε

< Cε2, (4.34)

VarS(D1εδ(Yε − S)) < C
τ 4

hε

< Cε4, VarS(D2εδ(Yε − S)) < C
ε−4τ 8

hε

< Cε4h3
ε . (4.35)

By straightforward calculations, using (4.7), we get

D1εδ(S − S0) < Cρε(hε), D2εδ(S − S0) < Cρε(hε) (4.36)

if ρε(hε) < Tε(S, θ0) < Cρε(hε).
By (4.30)-(4.36) we get

PS(ε−2h1/2
ε σ−1(Tε(Yε, θ0)− dε(hε)) < xα) =
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PS(ε−2h1/2
ε σ−1(Dεδ(Yε, θ0)− dε(hε))− d1ε(hε)) < xα(1 + o(1))) (4.37)

uniformly in S : ρε(hε) < Tε(S, θ0) < Cρε(hε) as δ → 0, ε → 0.
By (4.25),(4.29),(4.37) we get (4.28). This completes the proof of Theorem 3.1 in the case of
sets of alternatives =ε,hε(Θ, ρε).
The Theorem 2.1.2, Theorems 2.2, 2.3 for the sets of alternatives =ε,hε(ρε, β, P0) and Theorem
3.1 in the case of sets of alternatives =ε,hε(Θ, ρε, β, P0) follows from Lemma 4.3.

Lemma 4.3. Let A and (2.4) hold additionally. Then

lim
ε→0

(∫ 1

0
(S̃(β)(t)− S(β)(t, θ0))

2dt ≤ P0

)
= 1 (4.38)

and
lim
ε→0

(∫ 1

0
(S̃(β)(t)− S(s, θ̄ε))

2dt ≤ P0

)
= 1. (4.39)

Proof of Lemma 4.1. We have

ε−2h1/2
ε I6ε = 2J1∆ε + J2∆ε (4.40)

where
J1∆ε = h1/2

ε

∫ 1

0
q(y1)dw(y1)

∫ y1−∆

y1−2hε

K2,rhε(y1, y2)q(y2)dw(y2),

J2∆ε = h1/2
ε

∫ 1

0
q(y1)dw(y1)

∫ y1+∆

y1−∆
K2,rhε(y1, y2)q(y2)dw(y2)

and ∆ = ∆ε → 0, ∆ε/hε → 0 as ε → 0.
By straightforward calculations, arguing similarly to (4.10) and (4.62) below we get

Var(J2∆ε) = 2hε

∫ 1

−1
q2(y1)dy1

∫ y1+∆

y1−∆
K2

2,rhε
(y1, y2)q

2(y2)dy2 < C∆. (4.41)

Thus it su�ces to study the limit behaviour of J1∆ε. One can write

J1∆ε =
C∆∑

j=1

Zjε

where C∆ = [1/∆] and

Zjε = h1/2
ε

∫ j∆

(j−1)∆
q(y1)dw(y1)

∫ y1−∆

y1−2hε

K2,rhε(y1, y2)q(y2)dw(y2).

We can consider J1∆ε as a sum of martingale di�erences Zjε and to apply corresponding
Central Limit Theorem (see Brown [3]) to prove asymptotic normality. Thus it su�ces to
show that

lim
ε→0

C∆∑

j=2

E{Z2
jεχ(|Zjε| > C)} = 0, (4.42)

lim
ε→0

2

σ2

C∆∑

j=2

E{Z2
jε|Fj−1,ε} = 1 (4.43)
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where Fj−1,ε is the σ-�eld generated by the Wiener process w(t), 0 ≤ t ≤ (j − 1)∆ε.
We have

C∆∑

j=1

E(Z4
jε) = 3h2

ε

C∆∑

j=1

(∫ j∆

(j−1)∆
q2(y1)dy1

∫ y1−∆

y1−2hε

K2
2,rhε

(y1, y2)q
2(y2)dy2

)2

=

3h2
ε∆

∫ 1

0
q4(y1)dy1

(∫ y1−∆

y1−2hε

K2
2,rhε

(y1, y2)q
2(y2)dy2

)2

(1 + o(1)) =

3∆h−1
ε

∫ 1

0
q8(y)r4(y)dy

(∫ 0

−2
K2

2(u)du
)2

(1 + o(1)). (4.44)

By Chebyshov inequality, (4.44) implies (4.42).
Denote

Vjε = E(Z2
jε|Fj−1,ε) = hε

∫ j∆

(j−1)∆
q2(y1)dy1

(∫ y1−∆

y1−2hε

K2,rhε(y1, y2)q(y2)dw(y2)

)2

.

Estimating similarly to (4.10), we get

Var



C∆∑

j=1

Vjε


 <

Ch2
ε

∫ 1

0
q2(y1)dy1

∫ 1

0
q2(y2)dy2

(∫ z2−∆

z1−2hε

K2,rhε(y1, y3)q
2(y3)K2,rhε(y2, y3)dy3

)2

<

Ch2
ε

∫ 4

−4
dx1

∫ 4

−4
dx2K

2
4,hε

(x1, x2) < Chε (4.45)

where z1 = z1(y1, y2) = max{y1, y2}, z2 = z2(y1, y2) = min{y1, y2}.
By Chebyshov inequality, (4.45) implies (4.43). This completes the proof of Lemma 4.1.

Proof of Lemma 4.2. Denote ζ(t) = S̃(t)− S(t, θ0) and θ̃ε = argminθ∈Θ Tε(S̃, θ). We have

Tε(S̃, θ̃ε) = M1ε + 2M2ε + M3ε (4.46)

with
M1ε =

∫ 1

0
r(t)dt

(∫ 1

0
Khε(t− s)ζ(s)ds

)2

,

M2ε =
∫ 1

0
r(t)dt

∫ 1

0
Khε(t− s)(S(s, θ0)− S(s, θ̃ε))ds

∫ 1

0
Khε(t− s)ζ(s)ds,

M3ε =
∫ 1

0
r(t)dt

(∫ 1

0
Khε(t− s)(S(s, θ0)− S(s, θ̃ε))ds

)2

.

At �rst we shall prove (4.26), assuming that (4.25) holds, that is

((1 + δ)ρε(hε))
−1M1ε → 1 (4.47)

in probability as ε → 0.
After that the proof of (4.25) will be given.

22



We have
M2ε ≤ M

1/2
1ε M

1/2
3ε . (4.48)

Using the assignment of θ̄ε and (4.47), (4.48) together we get

M3ε → 0 (4.49)

in probability as ε → 0.
We have

M
1/2
3ε ≥ B

1/2
1ε −B

1/2
2ε −B

1/2
3ε (4.50)

with
B1ε =

∫ 1

0
(S(t, θ0)− S(t, θ̃ε))

2r(t)dt,

B2ε =
∫ 1

0
r(t)dt

(∫ 1

0
Khε(t− s)(S(s, θ0)− S(t, θ0))ds

)2

,

B3ε =
∫ 1

0
r(t)dt

(∫ 1

0
Khε(t− s)(S(s, θ̃ε)− S(t, θ̃ε))ds

)2

.

By D5,
B2ε < Cλ1(hε), B3ε < Cλ1(hε). (4.51)

By (4.49)-(4.51), we get
B1ε → 0 (4.52)

in probability as ε → 0.
By D1-D3, (4.52) implies

θ̃ε → θ0 (4.53)

in probability as ε → 0.
Denote

V (s) = S(s, θ0)− S(s, θ̃ε)− (θ0 − θ̃ε)Sθ(s, θ0).

We have
M3ε = M31ε + 2M32ε + M33ε (4.54)

with
M31ε = (θ̃ε − θ0)

2
∫ 1

0
r(t)dt

(∫ 1

0
Khε(t− s)Sθ(s, θ0)ds

)2

,

M32ε = (θ̃ε − θ0)
∫ 1

0
r(t)dt

∫ 1

0
Khε(t− s)Sθ(s, θ0)ds

∫ 1

0
Khε(t− s)V (s)ds,

M33ε =
∫ 1

0
r(t)dt

(∫ 1

0
Khε(t− s)V (s)ds

)2

.

By (4.7), D2, we get

M33ε ≤ C
∫ 1

0
r(t)dt

∫ 1

0
V 2(s)ds ≤ C|θ̃ε − θ0|2+ω. (4.55)

By Schwartz inequality, we get
M32ε < M

1/2
31ε M

1/2
33ε . (4.56)
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By (4.7), we get

M31ε ≤ C(θ̃ε − θ0)
2

∫ 1

0
r(t)S2

θ (t, θ0)dt ≤ C(θ̃ε − θ0)
2. (4.57)

By (4.54)-(4.57), we get
M3ε ≤ C|θ̃ε − θ0|2(1 + oP (1)). (4.58)

By (4.47),(4.48),(4.58) together, we get

M2ε = OP (|θ̃ε − θ0|ρ1/2
ε (hε)). (4.59)

By (4.47), M1ε = ρε(hε)(1 + δ) + oP (ρε(hε)) as ε → 0. Similarly, by (4.58),(4.59), we get
M2ε + M3ε = OP (|θ̃ε − θ0|ρ1/2

ε (hε) + |θ̃ε − θ0|2). Hence, by de�nition of θ̄ε) and (4.46), (4.53)
we get

|θ̃ε − θ0| = oP (ρ1/2
ε (hε)). (4.60)

By (4.46),(4.47),(4.58),(4.59),(4.60) together, we get (4.26).
It remains to prove (4.25). Denote

K̃2,rhε(t1, t2) =
∫ 1

0
Khε(t1 − s)r1/2(s)Khε(t2 − s)ds.

By straightforward calculations, using the same technique as in (4.10), we get

E

{∫ 1

0

(∫ 1

0
Khε(t− s)(S̃(s)− S(s, θ0))ds

)2

r(t)dt

}
=

τ 2E

{∫ 1

0

(∫ 1

0
Khε(t− s1)r

1/2(s1)ds1

∫ 1

0
Khε(s1 − s2)q(s2)dw1(s2)

)2

r(t)dt

}
=

τ 2
∫ 1

0
r(t)dt

∫ 1

0
Khε(t− s1)ds1

∫ 1

0
Khε(t− s3)ds3r

1/2(s1)r
1/2(s3)×

E
(∫ 1

0
Khε(s1 − s2)q(s2)dw1(s2)

∫ 1

0
Khε(s3 − s4)q(s4)dw1(s4)

)
=

τ 2
∫ 1

0
r(t)dt

∫ 1

0
Khε(t− s1)ds1

∫ 1

0
Khε(t− s3)ds3r

1/2(s1)r
1/2(s3)×

∫ 1

0
Khε(s1 − s2)q

2(s2)Khε(s2 − s3)ds2 =

τ 2
∫ 1

0
r(t)dt

∫ 1

0
q2(s)dsK̃2

2,rhε
(t, s) = τ 2σ2/(2hε)(1 + o(1)). (4.61)

Arguing similarly to (4.59), we get

Var
(∫ 1

0

(∫ 1

0
Khε(t− s)(S̃(s)− S(s, θ0))ds

)2

r(t)dt

)
=

2τ 4
∫ 1

0
r(t1)dt1

∫ 1

0
r(t2)dt2

(∫ 1

0
Khε(t1 − s1)ds1

∫ 1

0
Khε(t2 − s3)ds3×

r1/2(s1)r
1/2(s3)

∫ 1

0
Khε(s1 − s2)q

2(s2)Khε(s3 − s2)ds2

)2

(1 + o(1)) =
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2τ 4
∫ 1

0
r(t1)dt1

∫ 1

0
r(t2)dt2

(∫
K̃2,rhε(t1, s2)q

2(s2)K̃2,rhε(t2, s2)ds2

)2

(1 + o(1)) =

2τ 4h−1
ε

∫ 1

0
q4(s)r4(s)ds

∫ 4

−4
K2

4(v)dv(1 + o(1)). (4.62)

By Chebyshov inequality, (4.61),(4.62) together imply (4.25).

Proof of Lemma 4.3. To simplify the reasoning we assume r(t) = 1 for all t ∈ [0, 1]. This
does not cause any principal di�erences in the arguments.
We have

ζ̃β
.
= S̃(β)(t)− S(β)(t, θ0) = τh−β−1

∫ 1

0
K(β)

(
t− s

h

)
q(s)dw1(s). (4.63)

Repeating similar estimates as in the proof of (4.25) we get (4.38).
We have ∫ 1

0
(S̃(β)(t)− S(β)(t, θ̄ε))

2dt
.
= D1ε + D2ε + D3ε (4.64)

where
D1ε =

∫ 1

0
(S̃(β)(t)− S(β)(t, θ0))

2dt,

D2ε =
∫ 1

0
(S̃(β)(t)− S(β)(t, θ0))

2dt(S(β)(t, θ0)− S(β)(t, θ̃ε))
2dt,

D3ε =
∫ 1

0
(S(β)(t, θ̃ε)− S(β)(t, θ0))

2dt.

We have
|D2ε| < D

1/2
1ε D

1/2
3ε . (4.65)

By D6, (4.60), we get
D3ε → 0 (4.66)

in probability as ε → 0.
By (4.38),(4.64)-(4.66) together, we get (4.39). This completes the proof of Lemma 4.3.
5. Proofs of Theorems 2.2,2.3 and 3.2. The further arguments will be given in the
notation of Theorems 2.2 and 2.3. In the case of Theorem 3.2 a modi�cation of notation is
unessential.
The statements on asymptotic equivalence of statistical experiments (see Brown and Low [4]
and Nussbaum [25]) can be applied to the proof of lower bounds if the realizations of random
processes generated by the Bayes a priory measures belong to the Hoelder space

Σ(β, M) = {S : |S(t)− S(s)| < M |t− s|β, t, s ∈ (0, 1)}

with M > 0, β > 1
2
.

In the problem of hypothesis testing on density we need also to suppose f(t) > c > 0 for all
t ∈ [0, 1] (see Nussbaum [25]).
Denote

=̄nhn(β, M) = {S : S ∈ =nhn , S ∈ Σ(β, M), |S(t)− S0(t)| < cn, t ∈ [0, 1]}

where cn → 0 as n →∞.
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The Bayes a priory probability measures νlnδ of S and f in the problems of hypothesis testing
on regression and density respectively are de�ned as the conditional probability measures of
S̃ = S̃n under the condition S̃n ∈ =̄nhn(β,Ml) with Ml →∞ as l →∞.
For the proof of lower bounds it su�ces to show that there exists Ml → ∞ as l → ∞ such
that

Pµnδ
(S̃n ∈ =nhn(β, Ml)) = 1 + o(1) (5.1)

as l →∞, δ → 0, n →∞.
Thus we need to prove that there exists cn → 0 as n →∞ such that

lim
n→∞P (sup{|S̃n(t)− S0(t)| : t ∈ [0, 1]} < cn) = 1 (5.2)

and there exists ωl → 0,Ml →∞ as l →∞ such that

lim inf
n→∞ P (S̃n ∈ Σ(β,Ml)) > 1− ωl. (5.3)

We begin with the proof of (5.2). By A, we get

E|S̃n(t)− S̃n(s)|2 < Cτ 2
∫ 1

0
|Khn(t− u)−Khn(s− u)|2q2(u)du ≤

Cτ 2h−2−γ
n min{|t− s|1+γ, h1+γ

n } < Cn−1h−3/2−γ
n min(|t− s|1+γ, h1+γ

n ). (5.4)

By straightforward calculations, we get

E(S̃2
n(t)) < Cτ 2h−1

n < Cn−1h−1/2
n . (5.5)

By Theorem 7.1 in Piterbarg [26] and Slepian comparison principle (see Slepian [28]) we get
(5.2) with cn = chγ/2

n .
It follows from Theorem 1 �15 in Lifshits (1995) that for any sequence φl > 0, φl → 0 as
l →∞ there exist sequences Mln →∞ as l →∞ such that

P (S̃n ∈ Σ(β, Mln)) > 1− φl (5.6)

with 1
2

< β < 1+γ
2
.

The proof of Theorem 1 �15 in Lifshits [24] is based on Borel-Cantelli Lemma. In order to
show that one can choose the values Mln = Ml which does not depend on n it su�ces to make
use of the following version of Borel-Cantelli Lemma in Lifshits [24] arguments.

Lemma 5.1. Let A1n, A2n, . . . be sequences of events. Let there exist a sequence κm → 0 as
m →∞ such that for each n

∞∑

i=m

P (Ain) < κm. (5.7)

Denote Bmn = ∪∞i=mAin. Then P (Bmn) → 0 as m →∞ uniformly in n.

Applying Lemma 5.1 in the reasoning the proof of Theorem 1 �15 in Lifshits [24] we get the
version of this theorem with Ml = Mln which does not depend on n. Therefore (5.3) holds. By
(5.2),(5.3), we can apply to the realizations of random processes generated by corresponding
Bayes a priory measures the arguments of the proof of Theorem 2.1 and get the lower bounds
in Theorems 2.2,2.3 and 3.2 as corollaries of Theorem 4.1 in Brown and Low [4] and Theorems
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2.1,2.7 in Nussbaum [25] respectively. This completes the proof of lower bounds in Theorems
2.2,2.3 and 3.2.

Proof of Theorem 2.2. Upper bound. The estimates are akin to (4.1)-(4.24).
Denote

gh(t) =
1

n

n∑

i=1

Kh(t− xni)S(xni)

and
g0h(t) =

1

n

n∑

i=1

Kh(t− xni)S0(xni).

We write
Tn(Y ) = I1n + I2n + I3n (5.8)

with
I1n =

∫ 1

0
(ghn(t)− g0hn(t))2r(t)dt,

I2n =
∫ 1

0

(
1

n

n∑

i=1

Khn(t− xni)(Yni − S(xni))

)
(ghn(t)− g0hn(t))r(t)dt,

I3n =
∫ 1

0

(
1

n

n∑

i=1

Khn(t− xni)(Yni − S(xni))

)2

r(t)dt.

Observe that I3n does not depend on S.
We write

I3n = I31n + I32n (5.9)

where
I31n =

1

n2

n∑

i=1

∫ 1

0
(Khn(t− xni)(Yni − S(xni)))

2r(t)dt,

I32n =
2

n2

∑

1≤i<j≤n

(Yni − S(xni))(Ynj − S(xnj))×
∫ 1

0
Khn(t− xni)Khn(t− xnj)r(t)dt.

Denote tni = 2i−1
2n+1

for all 1 ≤ i ≤ n.
We have

E(I31n) =
1

n2

n∑

i=1

λ2(xni)
∫ 1

0
K2

hn
(t− xni)r(t)dt. (5.10)

We have
|E(I31n)− dn(hn)| < Rn1 + Rn2 (5.11)

where, by (2.13),

Rn1 =
1

n

n∑

i=1

λ2(xni)
∫ 1

0
r(t)dt

∫ tn,i+1

tni

|K2
hn

(t− xni)−K2
hn

(t−H−1(s))|ds ≤

C

nhn

n∑

i=1

λ2(xni)
∫ tn,i+1

tni

ds
∫ 1

0
r(t)dt|Khn(t− xni)−Khn(t−H−1(s))| ≤

27



C

nhn

n∑

i=1

∫ tn,i+1

tni

(∫ 1

0
(Khn(t− xni)−Khn(t−H−1(s)))2dt

)1/2

ds ≤

C

nhn

n∑

i=1

∫ tn,i+1

tni

(hn)(1+γ)/2ds ≤ C

nh
1/2−γ/2
n

= o

(
1

nh
1/2
n

)
(5.12)

and, by (2.8),

R2n =
1

n

n∑

i=1

∫ tn,i+1

tni

|λ2(xni)− λ2(H−1(s))|ds
∫ 1

0
K2

hn
(t−H−1(s))r(t)dt ≤

C

n2hn

= o(n−1h−1/2
n ). (5.13)

By (5.11)-(5.13), we get
|E(I31n)− dn(hn)| = o(n−1h−1/2

n ). (5.14)

Using a similar technique as in the estimation of addendum denoted I1n in Hall [14], we get

Var(I31n) = O(n−1). (5.15)

Using the same reasoning and estimates as in analysis of I2n in Hall [14], we get the following
lemma.

Lemma 5.2.The distributions of I32n are asymptotically normal and

E(I32n) = 0, Var(I32n) = n−2h−1
n σ2(1 + o(1)). (5.16)

We have
E(I2n) = 0. (5.17)

Arguing similarly to (4.10), we get

Var(I2n) =
1

n2

n∑

i=1

λ2(xni)
∫ 1

0
r(t)dt

∫ 1

0
r(s)dsKhn(t− xni)Khn(s− xni)×

(ghn(t)− g0hn(t))(ghn(s)− g0hn(s)) ≤
1

n2
I

1/2
1n

(∫ 1

0
r(t)dt

(
n∑

i=1

λ2(xni)×

∫ 1

0
r(s)Khn(s− xni)dsKhn(t− xni)(ghn(t)− g0hn(t))

)2
)1/2

. (5.18)

Since
Dn(t, s)

.
=

n∑

i=1

λ2(xni)r(t)Khn(t− xni)r(s)Khn(s− xni) <
Cn

hn

if |t− s| < 2hn and Dn(t, s) = 0 if |t− s| > 2hn, we get

Var(I2n) < Cn−1I
1/2
1n




∫ 1

0
dth−2

n

(∫ t+2hn

t−2hn

|ghn(s)− g0hn(s)|ds

)2



1/2

≤
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Cn−1I
1/2
1n

(∫ 1

0
dth−1

n

∫ t+2hn

t−2hn

(ghn(s)− g0hn(s))2ds

)1/2

≤ C

n
I1n. (5.19)

Now the upper bound in Theorem 2.2 follows from Lemma 5.2 and (5.8), (5.9),(5.14)-(5.17),
(5.19) together. This completes the proof of Theorem 2.2.

Proof of Theorem 3.2. Upper bound. We follow to the same arguments as in the proof of
Theorem 3.1.
Let F ∈ =nhn(Θ) be a true c.d.f.. Denote θ0 = θ̄(F ).
We have ∫ 1

0
Khn(t− s)d(F̂n(s)− F (s, θ̂n)) = g1hn(t) + g2hn(t) + ξn(t) (5.20)

with
g1hn(t) =

∫ 1

0
Khn(t− s)d(F (s)− F (s, θ0)),

g2hn(t) =
∫ 1

0
Khn(t− s)d(F (s, θ0)− F (s, θ̂n)),

ξn(t) =
∫ 1

0
Khn(t− s)d(F̂n(s)− F (s)).

Hence we get
T (F̂n, Fθ̂n

) = I1n + I2n + I3n + I4n + I5n + I6n (5.21)

with I1n, . . . , I6n de�ned by (4.3) - (4.5) respectively with ε = n.
Since F ∈ =nhn(Θ) then (4.6) holds.
Similarly to (4.8) we get

I3n < C|θ̂n − θ0|2. (5.22)

We have
E(I4n) = 0. (5.23)

By Schwartz inequality, we get

E(I2
4n) = n−1

∫ 1

0

∫ 1

0
g1hn(t1)g1hn(t2)r(t1)r(t2)

(∫ 1

0
Khn(t1 − s)Khn(t2 − s)dF (s)−

∫ 1

0
Khn(t1 − s)dF (s)

∫ 1

0
Khn(t2 − s)dF (s)

)
<

n−1
∫ 1

0
dF (s)

(∫ 1

0
Khn(t− s)r(t)g1hn(t)dt

)2

< Cn−1I1n ≤

n−1
∫ 1

0
dF (s)

∫ 1

0
K2

hn
(t− s)dt

∫ 1

0
r2(t)g2

1hn
(t)dt < Cn−1h−1

n Tn(F, Fθ0). (5.24)

We get
I2n < I

1/2
1n I

1/2
3n . (5.25)

Arguing similarly to (4.13)-(4.20), we get

I5n = OP (n−1h(−1+ω)/2
n ). (5.26)

It remains to study the asymptotic behaviour of I6n.
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Denote
σ2(h, F ) = 2

∫ 1

0
r2(x)dx

∫ 2

−2
du

[∫ 1

−1
K(z)K(z + u)dF (x− zh)

]2

.

For all 1 ≤ i ≤ n, 1 ≤ j ≤ n denote

Hn(Xi, Xj) =
∫ 1

0

(
Khn(t−Xi)−

∫ 1

0
Khn(t− s)dF (s)

)
×

(
Khn(t−Xj)−

∫ 1

0
Khn(t− s)dF (s)

)
r(t)dt.

We have
I6n = I61n + I62n (5.27)

where
I61n = 2n−2

∑

1≤i<j≤n

Hn(Xi, Xj),

I62n = n−2
n∑

j=1

Hn(Xj, Xj).

It follows from (2.17) and (2.18) that

E(I62n) = n−1
∫ 1

0

∫ 1

0
K2

hn
(t− x)dF (x)r(t)dt(1 + o(h1/2

n )) =

n−1
∫ 1

0

∫ 1

0
K2

hn
(t− x)r(x)dF (x)dt(1 + o(h1/2

n )) =

n−1h−1
n

∫ 1

0
r(t)dF (t)

∫ 1

−1
K2(z)dz(1 + o(h1/2

n ))
.
= en(1 + o(h1/2

n )). (5.28)

By direct calculations, we get
Var(I62n) = O(n−3h−2

n ). (5.29)

By (2.17), we get
sup

hn<t<1−hn

∣∣∣∣
∫ 1

0
Khn(t− s)r(s)ds− r(t)

∣∣∣∣ < Chκ1
n .

Hence, using (2.16) and Schwartz inequality, we get
∣∣∣∣
∫ 1

0
r(t)(dF (t)− dF (t, θ0))

∣∣∣∣ <

Chζ
n + Chκ1

n +

∣∣∣∣∣
∫ 1−hn

hn

∫ 1

0
Khn(t− s)r(s)ds(dF (t)− dF (t, θ0))

∣∣∣∣∣ <

Chζ
n + Chκ1

n +

∣∣∣∣∣
∫ 1

0
r(s)ds

∫ 1−hn

hn

Khn(t− s)(dF (t)− dF (t, θ0))

∣∣∣∣∣ <

Chζ
n + Chκ1

n + CI
1/2
1n .

Therefore, using n−1h−3/2−ω
n → 0 as n →∞, we get

|dn(hn, fθ0)− en| < Cn−1h−1
n I

1/2
1n = o(I1n). (5.30)
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By the same arguments, using E2,E3 additionally, we get

|dn(hn, fθ0)− dn(hn, fθ̂n
)| < Cn−1h−1

n T 1/2
n (Fθ̂n

, Fθ0) ≤

Cn−1h−1
n |θ̂n − θ0| = oP (n−1h−1/2

n ). (5.31)

By Lemma 3 in Hall [15],
E(I61n) = 0, (5.32)

n2hnVar(I61n) =
1

2

∫ 1

0
r(t)dt

∫ h−1
n −t/hn

−t/hn

r(t + uhn)
[∫ 1

−1
K(z)K(z + u)dF (t− zhn)−

hn

{∫ 1

−1
K(z)dF (t− zhn)

} {∫ 1

−1
K(z)dF (t + uhn − zhn)

}]2

du(1 + o(1)) =

1

2

∫ 1

0
r2(t)dt

∫ h−1
n −t/hn

−t/hn

[∫ 1

−1
K(z)K(z + u)dF (t− zhn)

]2

du(1 + o(1)) =

.
=

1

4
σ2(hn, F )(1 + o(1)). (5.33)

By B1, we get

σ2(h, Fθ0)− σ2(fθ0) = 2
∫ 1

0
r2(t)dt

∫ 2

−2
du

((∫ 1

−1
K(z)K(z + u)fθ0(t− zh)dz

)2

−

(∫ 1

−1
K(z)K(z + u)dz

)2

f 2
θ0

(t)

)
+ O(h) ≤

2
∫ 1

0
r2(t)dt

∫ 2

−2
du

∫ 1

−1
K(z)K(z + u)|fθ0(t− zh)− fθ0(t)|dz×

∫ 1

−1
K(z)K(z + u)(fθ0(t− zh) + fθ0(t))dz + O(h) ≤

Chκ
∫ 1

0
r2(t)dt

∫ 2

−2
du

∫ 1

−1
K(z)K(z + u)|z|κdz×

∫ 1

−1
K(z)K(z + u)(fθ0(t− zh) + fθ0(t))dz + O(h) ≤ Chκ. (5.34)

By E1, we have
1

2
σ2(hn, F )− 1

2
σ2(hn, Fθ0) =

=
∫ 1

0
r2(t)dt

∫ 2

−2
du

∫ 1

−1
K(z1)K(z1 + u)d(F (t− z1hn)− Fθ0(t− z1hn))×

∫ 2

−2
K(z2)K(z2 + u)d(F (t− z2hn) + Fθ0(t− z2hn)) + O(hn) = J1n + J2n + O(hn). (5.35)

with

J1n =
∫ 1

0
r2(x)dx

∫ 1

−1

∫ 1

−1
K2(z1 − z2)K(z1)d(F (x− z1hn)− Fθ0(x− z1hn))×

K(z2)d(F (x− z2hn)− Fθ0(x− z2hn)) ≤ CI1n = CTn(F, Fθ0), (5.36)

J2n = 2
∫ 1

0
r2(x)dx

∫ 1

−1

∫ 2

−2
K2(z1 − z2)×
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K(z1)d(F (x− z1hn)− Fθ0(x− z1hn))K(z2)dFθ0(x− z2hn) + O(hn). (5.37)

Since the operator K̄2,h is nonnegative, by Shwartz inequality, we get

J2n < 2
∫ 1

0
r2(x)dx

(∫ 1

−1

∫ 2

−2
K2(z1 − z2)K(z1)d(F (x− z1hn)− Fθ0(x− z1hn))×

K(z2)d(F (x− z2hn)− Fθ0(x− z2hn)))1/2×
(∫ 1

−1

∫ 2

−2
K2(z1 − z2)K(z1)dFθ0(x− z1hn)K(z2)dFθ0(x− z2hn)

)1/2

+ O(hn) ≤

C
(∫ 1

0
r2(x)dx

∫ 1

−1

∫ 2

−2
K2(z1 − z2)K(z1)d(F (x− z1hn)− Fθ0(x− z1hn))×

K(z2)d(F (x− z2hn)− Fθ0(x− z2hn)))1/2×
(∫ 1

0
r2(x)dx

∫ 1

−1

∫ 2

−2
K2(z1 − z2)K(z1)dFθ0(x− z1hn)K(z2)dFθ0(x− z2hn)

)1/2

+ O(hn) ≤

C
(∫ 1

0
r2(x)dx

∫ 1

−1

∫ 2

−2
K2(z1 − z2)K(z1)d(F (x− z1hn)− Fθ0(x− z1hn))×

K(z2)d(F (x− z2hn)− Fθ0(x− z2hn)))1/2 ≤ CT 1/2
n (F, Fθ0) + O(hn). (5.38)

By (5.35)-(5.38), we get

|σ2(hn, F )− σ2(hn, Fθ0)| < CI1n + CI
1/2
1n + O(hn). (5.39)

Arguing similarly and using E2,E3, we get

|σ2(hn, Fθ̂n
)− σ2(hn, Fθ0)| = oP (I1n + I

1/2
1n ) + O(hn) (5.40)

as n →∞.
We have

β(Kn, F ) ≤ Λ1n + Λ2n + Λ3n + Λ4n (5.41)

with
Λ1n = PF (−Tn(F̂n, Fθ0) + dn(hn, fθ0) <

< −xαn−1h−1/2
n σ(hn, Fθ0) + O(cnI

1/2
1n n−1/2h−1/4

n + cnn−1h−1/2
n )),

Λ2n = PF (Tn(F̂n, Fθ0)− Tn(F̂n, Fθ̂n
) < cnI

1/2
1n n−1/2h−1/4

n ) =

PF (I2n + I3n + I5n < cnI
1/2
1n n−1/2h−1/4

n ),

Λ3n = PF (|dn(hn, fθ0)− dn(hn, fθ̂n
)| > cnn

−1h1/2
n ),

Λ4n = PF (|σ2(hn, Fθ̂n
)− σ2(hn, Fθ0)| > cn).

By (5.22),(5.25),(5.26) and (5.31),(5.40) respectively, there exists cn → 0 as n →∞ such that

Λ2n = o(1), Λ3n = o(1), Λ4n = o(1). (5.42)

By Chebyshov inequality, using (5.41),(5.42) and (5.28),(5.30), we get

β(Kn, F ) = Λ1n + o(1) = PF (−Tn(F̂n, Fθ0) + dn(hn, Fθ0) + Tn(F, Fθ0)(1 + o(1)) <
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< −xαn−1h−1/2
n σ(hn, Fθ0) + Tn(F, Fθ0)(1 + o(1))) + o(1) ≤

VarF (Tn(F̂n, Fθ0))

(Tn(F, Fθ0)(1 + o(1))− xαn−1h
−1/2
n σ(hn, Fθ0))

2
. (5.43)

By (5.24),(5.27),(5.29),(5.33) together, we get

VarF (Tn(F̂n, Fθ0)) < 2VarF (I4n) + 2Var(I6n) < Cn−1h−1
n I1n + O(n−2h−1

n ). (5.44)

By (2.1), (5.43), (5.44) together, for any sequence of c.d.f. Fn,

β(Kn, Fn) → 0 (5.45)

if nh1/2
n Tn(Fn, Fθ0) →∞ as n →∞.

Denote ΓC = {F : nh1/2
n Tn(F, Fθ0) < C}.

By (5.39),(5.40), we have

σ2(hn, F )(1 + o(1)) = σ2(fθ̂n
)(1 + o(1)) (5.46)

uniformly in F ∈ ΓC .
The estimates in the proof of Lemma 3 in Hall [15] are uniform w.r.t. F ∈ ΓC . Therefore the
distributions of 2I61n(σ(fθ̂n

)nh1/2
n )−1 converges to the standard normal one uniformly w.r.t.

F ∈ ΓC . Hence, using (5.21)-(5.31),(5.41) (5.42), (5.45), (5.46), we get (3.1). This completes
the proof of Theorem 3.2.

Remark 5.1. The corresponding version of (5.20) for the test statistics T̂n(F̂n) does not contain
the addendum I32n. Therefore, in the analysis of asymptotic behaviour of T̂n(F̂n) we do not
need to estimate E(I32n). This allows to simplify the assignment of the sets of alternatives
and to prove the statement of Remark 2.4.
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