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Abstract

In the problem of signal detection in Gaussian white noise we show asymptotic mini-
maxity of kernel-based tests. The test statistics equal Lo-norms of kernel estimates. The
sets of alternatives are essentially nonparametric and are defined as the sets of all signals
such that Lo-norms of signal smoothed by the kernels exceed some constants p. > 0. The
constant p. depends on the power € of noise and p. — 0 as ¢ — 0. Similar statements
are proved also if an additional information on a signal smoothness is given. By theo-
rems on asymptotic equivalence of statistical experiments these results are extended on
the problems of testing nonparametric hypothesis on density and regression. The exact
asymptotically minimax lower bounds of type II error probabilities are pointed out for
all these settings. Similar results are also obtained in the problems of testing parametric
hypothesis versus nonparametric sets of alternatives.

1.Introduction. Let we observe a random process Y (t),t € [0, 1], defined by a stochastic
differential equation

dY.(t) = S(t)dt + eq(t)dw(t), €>0 (1.1)

where dw(t) is the standard Gaussian white noise and ¢(¢),¢ € [0, 1] is a weight function. The

function S, called a signal, is unknown. The problem is to test a hypothesis that the signal
S(t) is absent, that is, S(t) = 0 for all t € [0, 1].

We could not test this hypothesis without a priory information of parametric or nonparametric
type (see Burnashev [5], Ermakov [11]). For nonparametric sets of alternatives a priory
information is often given in terms of assumptions on a signal smoothness (see Ingster and
Suslina [23], Ermakov [6], Spokoiny [31]). Such a setting can be considered as an analog of
standard setting nonparametric estimation and obtained practically an adequate development.
The optimal rates of distinguishability of hypothesis were pointed out for nonparametric sets
of alternatives that can belong to a wide range of functional spaces (see Ingster and Suslina
[22], [23] Lepski and Spokoiny [25]). The asymptotically minimax tests have been found for
the nonparametric sets of alternatives in Ly (see Ermakov [6]) and [, (see Ingster [21]) spaces.

In nonparametric hypothesis testing the test statistics are often defined as the distances
between the hypothesis and estimator of nonparametric parameter. We have no usually any
information on a signal smoothness, such an information is not necessary in the problem
of distinguishability of hypothesis and nonparametric sets of alternatives (see Ermakov [11])
and it seems desirable to represent the sets of alternatives in a more evident form depending
also on a distance between the hypothesis and alternatives, covering all possible alternatives.
Thus it seems natural to consider the testing nonparametric hypothesis from the distance
positions and to develop rigorous justification of this approach. From viewpoint of asymptotic
minimaxity such an argumentation has been developed in Ermakov [9],[10] in the case of
standard goodness-of-fit tests. These results are based on the interpretation of test statistics of
Kolmogorov, omega-square and chi-squared tests as the corresponding norms or seminorms (in
the case of chi-squared tests) Nn(Fn — Fy) depending on a difference of empirical distribution

1



function F, of independent sample X1, ..., X, and the distribution function Fg of hypothesis.
The corresponding norms or seminorms N,, are defined in the linear space generated by the
differences of distribution functions. The sets of alternatives are the sets of all distribution
functions F' such that N, (F —Fy) > p, > 0 with p, — 0 as n — oo. In this setting asymptotic
minimaxity of tests statistics Nn(ﬁ’n — Fj) has been proved and asymptotic behaviour of type
IT error probabilities has been studied. In the case of chi-squared tests we supposed that the
number of cells grows with increasing sample size. Note that this approach can be naturally
considered as a part of asymptotic theory of hypothesis testing on a value of functional (see

Stein [32]; Ermakov [7]; Bickel, Klaassen, Ritov and Wellner [2]).

In paper similar statements will be obtained for the test statistics based on the kernel estimator
(see Bickel,Rosenblatt [1], Eubank and Spiegelman [12], Fan [13], Hardle and Mammen [18],
Hart [19], Rayner and Best [29], Stute [33], Horowitz and Spokoiny [20] and references therein)

T(hY)) :/01 S’Z(t)r(t)dt:/ol GL /OlK(tzs) dK(s))Qr(t)dt (1.2)

where

. 1/t t—s
)=—| K dy,
50 =7 | < h ) (5
is a kernel estimator of signal with a kernel K and r(t),t € [0,1] is a weight function. We
suppose that the support of K is contained in [—1,1], K(t) = K(—t) for all t € (0,1),

[1, K(t)dt = 1 and the function K is bounded. The functions 7(t), ¢(t) are supposed positive
and continuous in [0,1], 0 <c<7(t) < C < 00,0 <c<q(t) < C < oo forall t €0,1].

The sets S, of alternatives are as follows

Sen = Senlpe) ={S:T(h,S) > pe(h) >0,5 € Ly(0,1)} =

1 /1 o1 t— 2
_ {5;/ (h/ K( hs) S(s)ds) r(8)dt > p(h) > 0, S € L2(o,1)}. (1.3)
0 0
The rates of convergence p. = pc(h.) — 0 and h = h. — 0 as € — 0 will be defined later.

We also consider the sets of alternatives 3. ;. defined as the intersections of sets e, (pe) with
the balls in Sobolev space.

It is easy to see that, in the case of alternative S,

Bo(rh,¥) — 5 [t [ 1 (1) oy =

/01 r(t)dt <]11 /01 K (t . S) S(s)ds>2.

Thus the sets of alternatives are defined by the components of biases of test statistics T'(h, Y)

caused by the presence of signal.

For any test L denote a(L) = Ey(L) its type I error probability and 5(L,S) = Es(1 — L) its

type II error probability for the alternative S € S p. For any set of alternatives e we put
Be(L) = B(L, ) =sup{B(L,S) : S € S} (1.4)

We say a family of tests U, with a(U.) < o, 0 < o < 1, € > 0 is asymptotically minimax for
the sets of alternatives S, if for any family of tests We, a(W,) < «, it holds

llm lglf(ﬁe(Wg, %e) - 5E<U€’ %E)) Z 0
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The test statistics R.,e > 0 generating the asymptotically minimax families of tests will be
called asymptotically minimax as well.

In paper we prove asymptotic minimaxity of kernel-based test statistics T.(Y:) = T'(h., Ye)
for the sets of alternatives S¢p, (pe) and the intersections of sets Sep. (pe) with the balls in
Sobolev spaces. After that, using the theory of asymptotic equivalence of nonparametric
statistical experiments (see Brown and Low [4]|, Nussbaum [27]) this statement is extended
on the problems of hypothesis testing on regression and density. We show that similar results
can be also obtained if the hypotheses are parametric. Such statements are proved for the
problems of signal detection and hypothesis testing about density. We do not consider the
same setting for parametric regression in order to do not increase extremely the scope of
paper. The sets alternatives S p, (pe) are the largest sets S, such that the hypothesis and
alternatives S. € ¢ are distinguishable if we apply the test statistics T'(he,Y:). Thus we
prove asymptotic minimaxity of test statistics T'(h., Y¢) for the largest among possible sets of
alternatives. Moreover, it turns out, the lower bound of type II error probabilities is attained
for all families of alternatives S, e > 0 such that T'(h., S¢) = pe(1 + o(1)).

The asymptotic behaviour of kernel-based test statistics has been intensively studied in many
papers (see Konakov [24]; Hall [15],[16]; Rayner and Best [29], Ghosh and Wei-Min Huang
[14], Eubank and Spiegelman [12]|, Hardle and Mammen [18], Fan [13], Hart [19], Stute [33],
Horowitz and Spokoiny [20] and references therein). Thus the results on asymptotic mini-
maxity represent the essential complement to the existing theory. We find the distance of
hypothesis from the signal given in the Gaussian noise and can analyse the type II error
probabilities for all possible sets of alternatives defined in terms of the same distance. The
more detailed discussion of the role of asymptotic minimaxity in the distance approach for
testing nonparametric hypothesis one can find in Ermakov [10].

The reasonings in the paper are based on the same approach as in Ermakov [6]. In Ermakov
|6] the sets of alternatives were defined as the intersections of exteriors of balls and ellipsoid
in Ly. The requierement that the signal belongs to ellipsoid was caused the smoothness
assumptions. The problem was reduced to minimization of variance of test statistics. The
minimum of variance was attained on the intersection of boundaries of balls and ellipsoid.
Thus we got the minimization problem with two restrictions of quadratic type. In the present
paper the sets of alternatives S, (pc) are interpreted as the exteriors of ellipsoids in Ly (0, 1).
As a consequence one needs to solve the problem of variance minimization with only one
restriction of quadratic type. At the same time in the present paper the operator that set the
restriction in is not diagonal. This cause the main differences in paper reasoning.

Note that, in the problems of signal detection with a given signal smoothness, asymptotically
minimax test statistics or statistics having optimal rates of distinguishability (see Ermakov
[6], Ingster and Suslina [22]) are often defined as seminorms N.(Y;) of quadratic type. A
simple analysis of the proofs in Ermakov [6] and Ingster and Suslina |22| shows that these
test statistics N (Y;) are asymptotically minimax or have optimal rates of distinguishability
for the more wider sets of alternatives {S : N.(S) > p. > 0,5 € L3(0,1)} then in the setting
with a signal smoothness. Thus the results on signal detection with a given signal smoothness
can be also interpreted in terms of distance approach.

The asymptotic minimaxity of tests statistics T'(h,, Ye) is proved for the sets of alternatives
Sen (pe) having two variable parameters he and p.. If p. = pe(he) satisfies more strong
restrictions as a function of h. we prove asymptotic minimaxity of T'(h,Y) for the more
narrow sets. These sets of alternatrives are defined as intersections of ¢, (pe) with the balls



in Sobolev space.

Remark 1.1. If we test the hypothesis S = Sy, the test statistic T'(h, Y. — Sp) has the following
modified form

2
T(h,Y, — Sy) = / (/ Kn(t — 5)dY.(s / Kn(t — 5)So(s )ds) rt)dt (1.5)
where Kp(t — s) = %K (t_Ts)
The sets of alternatives are as follows
1 2
Senlpe; So) = { / (/ Kp(t —s)S(s)ds — / K (t - 5)50(3)d5> r(t)dt > pe(h) > 0,
0
S € Ly(0,1)}. (1.6)
The kernel-based tests have often another form
_ 1 1 2
T(h,YeSo) = [ ([ Kalt = 5)avi(s) = sof)) r(eyt (L.7)
0 0

and it seems natural, for such tests, to define the sets of alternatives in another form

Sun(per So) = { /(/ Kt — 5)S )ds—So(t))zr(t)dt>p€(h)>O,SELQ(O,l)}.

(1.8)
as well.
The test statistic T'(h, Ye, So) contains additional bias term
_ 1/ 1 2
B(T(h,Y.. S0) = T(h Y, — ) = [ ( | Kl = )S(s)ds - So(t)) r(t)dt.  (1.9)
o \Jo

Note that similar bias term

/01 </01 Kp(t —s)S(s)ds — S(t)>2 r(t)dt

caused the alternative is absent in test statistics T'(h, Yz, So) and T(h,Y, — Sp)). Thus, using
test statistics T'(h, Y. —Sp), we simply delete the fast oscilating component both in hypothesis
and alternatives. This is a standard procedure. If we test the hypothesis versus sets of
alternatives defined in terms of series of ortogonal functions (see Ingster and Suslina [23],
Lepskii and Spokoiny [25], Ermakov [6]), the tests statistics are also based on the first Fourier
coeflicients of hypothesis and estimates of these coefficients for the alternatives. The Fourier
coefficients of higher orders are ignored both for the hypothesis and alternatives. Thus, using
the test statistics T'(h,Y. — Sp) instead of T(h,YE,SO), we follow the same reasons. If we
could not make any serious conclusions about very fast oscilating part of signal, we simply
do not include this part in test statistics. The definition of sets of alternatives . p(pe, So)
follows the same reasons as well. Note that the bias term (1.9) have often the order o(pe(he))
(see Remark 2.2.3) and is unessential in the problems of hypothesis testing. In this case
both test statistics T'(h, Y, — Sp) and T(h, Y., Sy) are asymptotically minimax for both sets of
alternatives ¢ p(pe, So) and @Qh(pe, So)-



Remark 1.2. The asymptotic minimaxity is proved for a wide classes of sets of alternatives
defined by the structure of kernel based tests. All these sets of alternatives have the same
optimal rates of distingiushability if a priori information is given, that signal belongs to a ball

W (P,) in Sobolev space and h, < €71, Moreover we show that T(he, S — So) < ||S — Sol|
4
if S$— Sy € WOHR) and he < €77 (see (2.8), (2.9)). Thus such a wide class of sets

of alternatives arises as the consequence of requirement: for given procedure to enclose all
distinguishable alternatives. Note that seminorm 7'(h.,S — Sp) has a rather evident inter-
pretation. We compare the Lo-norms for differences of smoothed signals of hypothesis and
alternatives obliterating the oscilations greater then h..

We use letter C' as a generic notation for positive constants. We put

ot = e (1) = f 5 (5K ()

1 t 1 /1 t—s S
unlt) = 6 () = 3 [ e (7)1 ()
for ¢ = 3,4. If h = 1, the indice h will be omitted, that is, K91 = K, K41 = K4 and so on.
Denote x(A) the indicator of an event A, [z] the whole part of x € R and || - || -~ Ly-norm in
[0,1].
In paper the three settings are considered: the signal detection in Gaussian white noise, the
hypothesis testing on regression and density. It will be convenient to make use of similar or

the same notation in the statements and in the proofs of the related results.

2. Main Results. The results on signal detection, testing hypothesis on nonparametric
regression and density will be given in three subsections.

1. Nonparametric signal detection. Define z,,0 < a < 1, by the equation

1 > z?
a=1-d(z,) = NI exp {—2} dz.

de(h)—EQ/l dt/ K2(u) g (t — uh)du,

0? = 2/ K2(v dv/ )2 (1) dt.
Hereafter we suppose that ¢(t) = 0if ¢ ¢ [0, 1].

Note that, if ¢(t) satisfies Hoelder condition: |q(t)—q(s)| < Clt—s|®,k > 1/2forallt, s € [0, 1],
one can make use of the more simple formula

Denote

am="5 [ LAt / 11 K2(u)du(1 + o(h'/2).

Theorem 2.1.1. Let ¢h7'/? — 0, he — 0 as e — 0 and

0 < lim iglf € 2p(h)h? < limsup e 2p.(h)h}? < . (2.1)

e—0



Then the family of kernel-based tests

Lo = x {e2h2a " (T.(Ye) = de(he)) > 7o

is asymptotically minimaz for the sets of alternatives e (pe).

It holds )
h?pc(he)

o

Ben (L) = P (a:a - ) (1+0(1)) (2.2)

as € — 0.

Moreover for each Se € L2(0,1),e > 0 such that T'(he, Se) = pe(he)(1 4 o(1)) 4t holds

hiﬂpE(h’e)

o

B (LS = @ ( - ) 1+ o(1)) (2.3

as € — 0.

Remark 2.1.1. In the kernel estimation, to preserve the optimal rate of convergence (see
Hardle [18]), a modification of kernel estimator is often introduced near the boundary of
interval [0,1]. The same problem can arise in testing nonparametric hypothesis if a priory
information on a signal smoothness is given. If we are not interesting very seriously the signal
behaviour near the boundary, one can use the test statistics

. 1-h 1 2
T(hv) = [ (/ Kn(t — s)dY€> r(t)dt
h 0
with the sets of alternatives
Scp=1{S:T(h,S) > pc(h) > 0}.

For the test statistics T(h, Y:) the similar statements of Theorem 2.1 holds. One needs only
to replace the sets of alternatives ey, (pe) by the sets Sep (pe) = {S : T'(h,S) > pc(h) > 0}
and d.(h.) by

~ 6 1- he
d.(h) =< dt/ K2(u) g (t — uh)du.
Similar modification of statements holds for the settings Theorems 2.2 and 2.3 as well.

Remark 2.1.2. As follows from (2.2) and (2.3) the lower bounds of type II error probabilities
are attained for all families of alternatives S, € > 0 such that

0< hmmfe 2pL2 T (b, So) < limsup e 2hY2T(he, S.) <

e—0

Thus the test statistics give optimal distinguishability for all alternatives having a given
distance from the hypothesis in the sense of T/%(h., S)- seminorm. Note that the same
situation takes place in the case of chi-squared tests as well (see Ermakov [10]).

A similar statement is valid if a priory information on a signal smoothness is given that the
signal S belongs to a ball in Sobolev space

S e Wi(R) = {s : /0 1(52(5) +(SP(5))?)ds < PO}.
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Hereafter S®) denotes B-derivative of S and 3 = m + x where m =[] and 0 < k < 1.
The sets of alternatives equal S p (pe, B3, Fo) = Sen (pe) N Wz(’g)(Po).

Make the following additional assumption.

A. There exists the bounded [-derivative K of kernel K, that is, SUPge(—1,1) IKW)(s)| <
C < ooand K@(—1) = K®(1) = 0, KV(—1) = K®(1) = 0 for all i,0 < i < m. The
function r(t) has bounded [-derivatives on (0, 1).

Denote

1 1

(KP(s))2ds / (t)r(t)dt.

0

Cs(K) =/

-1
Theorem 2.1.2. Let the assumptions of Theorem 2.1 be satisfied, let A hold and let

1
lim sup p.h-?Cs(K) < §P0. (2.4)

e—0
Then the family of kernel-based tests Le,e > 0 1s asymptotically minimaz for the sets of
alternatives S p, (pe, B, Po) and

hlp.(h,)

2o

B (L) = B (s S (per B ) — @ ( ) (to1).  (25)

As follows from (2.3) the lower bound in (2.5) is attained for each family of signals S, €
WiP(P,) such that T(he, So) = pe(h) (1 + o(1)).

By (2.1),(2.4) we get the following bounds for the rate of convergence he and p. to zero

limsup e2h 27712 < oo (2.6)
e—0
and o
lim sup €~ #+1 p, > 0. (2.7)
e—0

The prootf of Theorem 2.1.2 is similar to that of Theorem 2.1.1. It suffices to test only that the
reahzatlons of random process generated by the Bayes a priori measures belongs to the ball
W2 (PO) in Sobolev space. A similar statements can be obtained also for the balls in other
functional spaces, using the same arguments and the fact that, by (2.3), the corresponding
lower bound is attained.

We say that the sets of alternatives . are distinguishable if, for each 0 < o < 1, there exists
a family of tests U, a(U.) = « such that
lim iglf Ben. (Ue,Se) <1 —a.
€E—>

It follows from (2.1), (2.6), (2.7) that the optimal rate of dlstmgulshablhty for the sets of

alternatives Sep, (pe, 8, Po) equals €77, This rate is attained if he < €T,

Define the sets
Qi(pe. B, o) = {S : S € W3 (Py).1ISII* > pe}-

Denote Q(pe, 3, Py) the set of all S € Q1 (pe, B, Py) such that there exist S-derivatives S(?(0) =
0 and S (1) =0 of S and S(0) = S(1) = SD(0) = SO(1) = 0 for all 0 < i < [4].
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Denote

A

K(w) = / K(t) explictydt, S(w) = / S(t) expliwt}dt
the Fourier transforms of K (t) and S(t).

Suppose f((u))|w|7fj — 0 as w — 00. Suppose also that 7(t) =1 for all t € (0, 1).
Denote wo. such that Pyw- 2% = p.h-?% and wy = inf{w : K(w) = 0,w > 0}.

We show that,
%e,he(peaﬁa PO) - Ql(loEJﬁ?PO) (28)

and, if wpe < wp — 9 with § > 0,
Q(;Oeu ﬁa PO) - %e,he (Cepea 57 PO) (29)

with Ce = | K (wie)|72(1 4 0(1)) where wy, = arginf,{K (w) = inf{K (u) : |u| < woe}}.

The optimal order of distinguishability for the sets of alternatives Q(p., 3, Fo) equals e%il

(see Ingster and Suslina [23], Ermakov |6]). Thus if k. < €T and Woe < wp — 0 with 6 > 0,
then the orders of distinguishability coinside for the sets of alternatives Sep, (pie, 5, Fo) and

Q(pe> ﬁa PO)

In hypothesis testing with a priory information on a signal smoothness the optimal rates
of distinguishability is often proved for the test statistics admitting the interpretation as
seminorms in functional spaces (see Ermakov [6]; Ingster and Suslina [23]). Theorems 2.1.1,
2.1.2 and (2.8) show that, in this case, one can expect asymptotic minimaxity of these tests
statistics for essentially more wider sets of alternatives 3.(p.) generated by these seminorms.
For such sets of alternatives we do not need to make any assumptions of smoothness type.
Moreover the statements of type (2.9) hold.

By Young inequality, we get T.(S, h.) < ||S||?>. This implies (2.8).
By Parseval identity, we get

TS he) = [ IR (hew)S(w)d,

—0o0

[ = [ w|Sw)Pds

and || S]] = [|S]].

Hence, we get
inf{T,(S, he) : ||S]]> > pe, S € WiP(Py), supp S C (0,1)} >
inf { [ 1K (hao) S(@)Pd - (191 > p.
/_Z jw[*]S(w)[Pdw < Po} +0(h) = |K(wi)*p? + o(h27). (2.10)
This implies (2.9).

Theorems 2.1.1 and 2.1.2 admit the interpretation from the confidence estimation viewpoint.



We say that the family of confidence sets U.(Y) with confidence coefficient 1 — av is Sc(pe)-
asymptotically minimax if for any other confidence sets Uj.(Y;) with the same confidence
coefficient 1 — «

lim mf sup (Ps(S € Ure(Ye)) — Ps(S € U (Y))) >0

=0 S€Te(pe)
for each family p. — 0 as € — 0.

Define the confidence sets
U5<h€,}/€,l'a> = {S : ThE(Ye - S) S Ly S € L2(07 1)}
with x, defined by the equation 1 — ®(z,) = «a.

Theorem 2.1.3. Let the assumptions of Theorem 2.1.1 be satisfied. Then U.(h., Y., x,) are
Se.ne (pe)-asymptotically minimaz confidence sets and Ue(he, Ye, 24) N WQ(B)(PO) are Sep. (pe) N
Wéﬁ)(Pg)— asymptotically minimax confidence sets.

The proof is omitted. The reasoning are akin to the proof of similar statement on the relation
of uniformly most powerful tests and uniformly most accurate confidence intervals.

2.2. Testing hypothesis on nonparametric regression. We shall follow to the setting
in Brown and Low [4].

Let H(-) be an increasing c.d.f. in [0,1]. Let S(:) : [0,1] — R! and A?() : [0,1] — (0,1) be

measurable functions.

The independent random variables (%, Yni), 1 < i < n are observed with

e )
ni 7’L+1

and
Y,i S(xm) + )\(xm)gma Eni ~ N<07 1)
Suppose the functions A*(-) and H(-) are continuously differentiable and such that
. dH
Denote q(t) = A(t)p _1/2(15)

The problem is to test a hypothesis S(t) = Sy(t),t € [0, 1] for a given function Sy(t),t € [0, 1].

Let h, > 0,h, — 0 as n — o0 be a given sequence. Define the kernel-based test statistics

T.0%) = | 1 (iiKhn(t—xni)Ym— / 1 Khn(t—s)So(s)ds> r(t)dt

with Y, = {Y.i}7,.
Define the functional T,(S) = T,,(S,) where S,, = {S(zn:)},.

We fix a sequence ¢, > 0,¢, — 0 as n — 0o and denote
2
Sn(hn, cn) = { / ( ZKh — X ) S (i) / Ky, (t — s)S(s)ds) r(t)dt <

9



1/ 1 2
o [ ( | Kt = 5)(8(s) - So(s))ds> r(t)dt, S € La(0, 1)} . (2.12)
o \Jo
The sets Sy, of alternatives equal
S, (pn) = 1S : T,,(S) > pulhyn) > 0,5 € Sp(hy,cn)}

or

St (0n: By Po) = S, (pn) N WP (Py)

where
WE(P) = {8 5 [ (5(5) = Sols))? + (89(s) = S§7(5))2)ds < Po, S € La(0,1)}:

Remark 2.2.1. We test a hypothesis using the discrete observations. Thus it seems natural to
make some assumptions on approximation properties of the following type

/ ( ZKh — 20)S () — / K, t—s)S(s)ds)QT(t)dt:o(pn(hn))
if
/ 1 ( / Ko (t— 5)(S(s) — So(s))ds> r(t)dt = O(pn(hn)).

The inequality in (2.12) can be interpreted as an extension of this assumption on the more
distant alternatives.

Assume as follows.

A1. There exists 7 > 0 such that

/OO (K(uy — ) — K(ug — 8))%ds < Cluy — ug|'t? (2.13)

for all uy,us € [0, 1].
A2. There exists kK > 1/2 such that

|So(u1) — So(U2)| < C’|u1 — Uy ®
for all uy,us € 0, 1].

Theorem 2.2. Assume A1,A2 and (2.3). Let the assumptions of Theorem 2.1.1 be satisfied
with € = n~Y2. Let n™'h;3/?>7% — 0 asn — oo with w > 0. Then the sequence of tests

Ly = x {nh)2e ™ (Tu(V) = dn(hn)) > 74 (2.14)

is asymptotically minimaz for the sets of alternatives Sun, (pn) and (2.2) holds.

The lower bound (2.2) is attained for any sequence S, € S(hy, ¢,) such that T,,(S,) = pn(hn),
that is, (2.8) holds.

Let A and (2.4) hold also. Then the sequence of tests L, is asymptotically minimaz for the
sets of alternatives Sun, (pn, 5, Po) and (2.2) holds with

ﬁnhn (Ln) = ﬁnhn (Ln7 %(Pm ﬁv PO))

10



Remark 2.2.2. The main goal of paper is to prove lower bounds of minimax type for the
kernel-based tests and to show that these lower bounds are principally attained. One can
suppose that the upper bound similar to the second statement of Theorem 2.2 can be proved
for essentially more wider assumptions and for essentially more wider classes of statistical
models. The proofs of lower bounds are more difficult.

Remark 2.2.3. The procedure of hypothesis testing is based on the comparison of kernel
estimator with the smoothed signal [ Kj,, (t —s)So(s)ds. The smoothing may cause the losses
of information about the signal Sp. Such a losses will be absent if

10l = 13, = S0l = (1~ B2 $(@)do = o(p) = ol Pn™)  (2.15)
Let [A((w) =1—C|w["(1+4 o(1)) in some vicinity of w = 0. Then
10l = 11, * Soll = Chy, [ " $3(w)deo(1 + o(1)).

Thus it suffices to put h, = O(n_ﬁ) and (2.15) will be hold. If v = 1, we get h, =
o(n=23), pp, = O(n™%/?), 3 = 1/4 and assumptions of Theorem 2.2 do not fulfilled. If v = 2,
we get h, = o(n™%°),p, = O(n™/°) and 3 = 1. Thus all the assumptions of Theorems 2.2
and Theorems 2.3, 3.2 given below are satisfied. Therefore, if we apply the hypothesis testing
procedure with h, < n=* X\ > 2/5, we test the hypothesis versus alternatives having more
serious fluctuation then the signal Sp.

__45
Remark 2.2.4. The difference between the rates of consistent distinguishability n™ %+ (or
nilhgl/z) in testing nonparametric hypothesis and n~'/? in testing parametric hypothesis is

1
essentially smaller (n” %+1) then the corresponding difference (n”~ 23+1) in estimation theory.

If the sample size n < 2000, the choice of bandwidth O(Tfﬁ for the smoothness parameter
[ > 2 is approximately the same as in the testing with the kernel-based tests of parametric
hypothesis. Thus, for sufficiently smooth kernels, there exists small difference in interpre-
tation of results of kernel-based procedure for parametric and nonparametric settings. The
most essential difference is that we get uniform estimates of distinguishability in terms of the
sets Sy, n, (Pn) for nonparametric setting. If we want to test the hypothesis versus fast oscilat-
ing nonparametric sets of signals, the definition of sets Sy, p, (pn) shows clearly the types of
oscilations that can be distinguished. This is the signals with oscilation width =< 2h,, — 3h,

and the amplitude < z%,— where [ is the number of oscilation peaks.

2.3. Nonparametric hypothesis testing on a density. Let X;,..., X, be iid.r.v.’s
with c.df. F(x), x € [0,1]. The problem is to test a hypothesis F(x) = Fy(x),z € (0,1),
where Fj is a given c.d.f. We suppose Fy(x) is absolutely continuous w.r.t. Lebesgue measure
and has the density fo(z) = 42 (z), z € (0,1).

Denote Fn the empirical c.d.f. of Xy,..., X,.

The kernel-based test statistics are defined as follows

2

T (F) :/01 (;;;Khn(t—Xi) —/01 Khn(t—s)fo(s)ds> r(t)dt =

2

/01 (/: K, (t = S)d(ﬁn(s) — Fo(s))> r(t)dt.

11



The functionals 7,, defining the sets of alternatives equal

To(F) = To(F, Fy) = / (/ K, (t — s)d(F(s) — Fg(s))>2r(t)dt.
Make the following assumptions.
B. The density fy satisfies the Hoelder condition
[fo(x) = fo(y)| < Cle —yl*, z,y €[0,1] (2.16)
with k > 1/2 and fo(z) > ¢ > 0 for all z € [0, 1].
C. |r(z) —r(y)| < Clz —y|™ forall z,y € [0,1] and k1 > 3. (2.17)

We fix values ¢ > % and C' > 0,c¢ > 0 and define the set & = (C, ¢, () of all distribution

functions such that

F(h)+1—F(1—h)<Ch® (2.18)
forall 0 < h <e.
The sets of alternatives equal

Snh, = Snhn(pn) = {F :To(F) > pn<hn) >0,F € %}

or

S = Sonn (0 55 Po) = S (pn) N WP (Py)

where

w3 (Py) = {f | (s = () + (FO(s) = F57(s))%ds < Py, f(s) = ‘flf<s>, Fe %} -

In what follows, we shall make use of the same notation as in the problem of signal detection
putting e =n -1/2 and ¢(t) = 1/2( t),t € [0,1]. In particular

e / K?*(s ds/ r(t) fo(t)dt

o2 = 02(f,) = 2/_22 (/_11 K(u+ U)K(u)du)2 dv /01 F2(8)r2(t)dt

Theorem 2.3. Assume A1,B,C and let the assumptions of Theorem 2.1 be satisfied with
e=n"Y2 Let n™'h;3/*7% — 0 as n — oo with w > 0. Then the sequence of tests

dn(h ) (hnufo

Lo = x {nh)/*o ™ (Tu(F,) = du(hn)) > 70}

is asymptotically minimaz and (2.2) holds.

Let A and (2.4) hold also. Then the sequence of tests L, is asymptotically minimaz for the
sets of alternatives Sun, (pn, 5, o) and (2.2) holds with

ﬁnhn(Ln) = 5nhn (Lna %(pna ﬁ7 PO))

12



Remark 2.3.1. The tests based on kernel estimators of density are usually treated as non-
parametric tests for testing hypothesis on a density. In this setting we apply these tests for a
more wide sets of alternatives defined on the sets of distribution functions.

Remark 2.3.2. The proofs of lower bounds in Theorems 2.2 and 2.3 are based on the statements
about asymptotic equivalence of statistical experiments (see Brown and Low [4], Nussbaum
[27]). The problem of hypothesis testing on a density is asymptotically equivalent to the
problem of signal detection

dY (t) = f(t)dt + \/15 () dw(t)

in the Gaussian white noise with the weight function F&/Q(t) (see Nussbaum [25]). Since
our model (1.1) of signal detection also contains the weight function ¢(t) we can apply the

theorem on asymptotic equivalence of statistical experiments putting q(t) = fol/Q(t).

Remark 2.3.3. Tt is easy to see from the proof of Theorem 2.3 that the assumptions of theorem
can be weaken. In the assignment of sets Sy, of alternatives the set & = (¢, C,¢) can be
replaced by the set of all distribution functions. In such a setting the statement of Theorem
2.3 holds for the sequence of test statistics

() = To(Fy) — /lr(t)dt / 1 (Khn(t_g;) -/ Ko (t—9) fo<s)ds)2dﬁn(x). (2.19)

0

generating the sequence of tests

Ly, = X(nhiﬂa_lfn(ﬁ’n) > Ty)-

A

The last addendum in the right-hand side of (2.20) deletes the component of bias Er(T),(F},))
having the order greater then n~'h /% = O((Var(Tn(Fn)))l/2). Without deleting this term
we need to estimate more accurately the boundary effects in asymptotic of EF(Tn(Fn)) and
to assume (2.17),(2.18).

3. Main Results. Parametric Hypothesis. We begin with the study of problem of signal
detection.

Let we observe a random process Y,(t) defined by a stochastic differential equation (1.1) with
an unknown signal S(t). The problem is to test a parametric hypothesis S(t) = S(¢,0),60 €
© C R! versus nonparametric sets of alternatives

S e %e,he (@) = %e,he (67 pé) =
2

- {s Cinf [ (/01 Ko (t — $)(S(s) — 5(3,9))ds> r(8)dt > pe(he) > 0, S € La(0, 1)}

0€0 Jo

or

S S %e,he (@) == ge,he (@a Pe, ﬂa PO) = %e,he(ga pe) N WQ(ﬁ)(Pﬂa @)

where

Wy, ©) = {55 [ (5(5) = S(5,0))? + (5(s) = 8 (s, 0))%ds < P,
with 6 = é(S) = argmin, T¢(S, 9)} :

13



Thus, in the case of sets of alternatives 3. (0, pe, 5, ), we assume that there exists (-

derivative S (s,0) of a signal S(s,6),0 € © and [ ((SP)(s,0))%ds < co.
Suppose the set © is a closure of bounded open set in R!.
Let 6. be an estimator of unknown parameter 6 € ©. Define the test statistics
. 1/, 1 R 2
TYeb) = [ (Sh0) = [ Kt = 9)(s.80ds) r(t)at
0 0
For any test U denote ag = Ey(U) its type I error probability for the hypothesis § € ©. We
PUt 6€,h€(U) - 6€,h€<U7 %e,hg (@)) = Sup{/B(UJ S) 0 S S %e,he<®)}‘

We say that a family of tests U, € > 0, ap(Ue) = Ep(U) < a > 0, 6 € O is uniformly asymp-
totically minimax on the sets of alternatives e 5, (©) if the family of tests U, is asymptotically
minimax for each fixed § € © in the problems of testing the simple hypothesis S(s) = S(s,0)
versus S € Sy (O).

For a wide class of estimators ée we prove that the test statistics T.(Y, ée) generates uniformly
asymptotically minimax families of tests.

Denote u'v the inner product of u,v € R

Assume as follows.

D1. For all 91,92 € @,91 7é 0,
1
/ (S(5,61) — S(s,05))2ds # 0.
0

Suppose S(s,0) is differentiable in § € © and denote Sy, (s,0) = % the partial derivatives

of S(s,0) forall 1 <i <1l s€0,1],0 = (0y,...,0;) € O. Denote Sp(s,0) = {S,(s,0)}._,.

D2. There exists w > 0 such that for all 6;,0, € ©

1
/0 (S(5,02) — S(s,601) — (B — 01)'Sa(s,61))2ds < C|fs — 6|2+

D3. Uniformly in 6 € © it holds [, Sg(s,0)ds <C, 1<i<l.

D4. There exists a functional 8 : L(0,1) — O such that, 8(S(-,0)) = 6 for all € © and for
any 0 > 0 o
Ps(|0. — 6(S)| > 0T1/%(S,0(5))) = o(1

Ps(|0. — 6(S)[** > 5hPT.(S,6(5))) = o(1)
uniformly in S € Ly(0,1) as € — 0.

D5. There exists A\1(6) — 0 as § — 0 such that for all 6 € ©
sup{|S(s,0) —S(t,0)| : |t —s| <d: t,s€0,1]} < A (6).
D6. There exists Ag(d) — 0 as 6 — 0 such that
1
sup {/ 15 (s,0,) — SO (s, 0,)[%ds - |61 — o] < 6,61, € @} < M(0).
0
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Theorem 3.1. Assume D1-D5. Let €2h; /2 — 0,h, — 0 as ¢ — 0 and (2.1) holds. Then the
family of tests R
Le= X(E_th/QU_l(TE(Ya Oc) — de(he)) > o)

is uniformly asymptotically minimaz for the sets of alternatives S (0O, pe) and (2.2), (2.3)
hold.

Let A, D6 and (2.4) hold also. Then the family of tests L. is uniformly asymptotically minimaz
for the sets of alternatives Sep, (0, pe, B, Po) and (2.2) holds with

ﬁe,h6 (Le) = ﬁe,he(Lea Se,he((97 Pes Bv PO))

The problem of testing parametric hypothesis on a density versus nonparametric sets of
alternatives will be treated in the following setting. Let X;,..., X, be i.i.d.r.v.’s with c.d.f.
F(z),z € [0,1]. One needs to test a hypothesis F' = I}y, § € © versus

F € S, (0,p,) ={F :inf{T,(F, Fy) : 0 € ©} > p,(h,), F € S}.

Suppose that c.d.f.’s Fp,0 € O are absolutely continuous w.r.t. Lebesgue measure and have

the densities f(z,60) = %(x),x € (0,1).

Let 0, be an estimator of . We shall test the hypothesis on the base of test statistics
T, =T, (Fy, Fy,).

Make the following assumptions.

B1. There exists k > 1/2 and C' > 0 such that, for all € ©,

|f(x,0) = f(y,0)| < Clz —y|", x,y €[0,1].

B2. There exist C' > ¢ > 0 such that 0 < ¢ < f(z,0) < C < oo for all x € [0, 1] and 6 € O.
E1l. For all 6 € © it holds Fy € 3.
E2. The assumptions D1-D3,D5 hold with S(s,0) =/ f(s,6),0 € O.

E3. For each c.d.f. F(z) €  there exists (F) € O such that 6(Fy) = 6 for all § € © and for
any 0 > 0 o .
Pp (|0, = 0(F)]* > 6T, (F.0(F))) = o(1)

uniformly in F' € .

Theorem 3.2. Assume A1,B1,B2,C,E1-E3 and (2.1). Let n='h;3/>“ — 0 as n — oo with
w > 0. Then the sequence of tests

L, = X{nhi/QU_l(fén)(Tn<Fm Fén) - dn<hn7 fén)) > aja}
18 untformly asymptotically minimaz and

B (Ln) = sup (o — nhy*o(fo)pu(ha)) (1 + 0(1)) (3.1)

as n — Q.
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We begin with the proof of Theorem 3.1. The proof of Theorem 2.1.1 is obtained by an easy

modification of these arguments.

4. Proof of Theorem 3.1. To simplify notation we suppose that 6 is one dimensional

parameter, § € © C R,

First of all we study the asymptotic behaviour of test statistics T'(Y, ég) and prove the upper

bound in (2.2).
Let S(s) € S (O) be a true value of a signal. We have
1 R
[ Kt = 9)(Yile) — (5,004 = 9. (1) + 9o, (0) + £.00)

with

g (t) = [ Knlt = 9)(S(s) = (s, 0(5)ds,
g 0) = [ 1 (6 = $)(S(5,0(8)) — (s, 0))ds,

&) = ¢ [ 1= s)al)dus)

Hence we get

T(Ye,0) = D+ Loc + Inc + Lic + Isc + I
with . .
he= [ ghOr@dt, Lo=2 [ g O Ot

b= [ @ran 1o=2 [ g 0 0rom

1 1
I5e = 2/0 92h. (t)€€<t)r(t)dt7 Iﬁe = /O £e2<t)r<t)dt
Since S(s) € S p. (O, pe(he)) we have
[15 > pg(he)

Note that for any function U € Ly(0,1) it holds

/Olr(t) (/01 Ky (t — S)U(s)ds)zdt < Ch™? /01 (/t:h \U(3)|ds>2dt <

1 t+h 1
Ch! / / U%(s)dsdt < C / U(t)dt.
0 Jt— 0

Denote

~ — ~ — —

W(s) = S(s,0c) = S(s,0(5)) — (0 — 0(5)) (s, 0(5)).
By (4.7), D2,D3, we get

e < 26, — 9_(5))2/01r(t) (/01 K (t — 5)59(5,5(5))ds)2dt+

2/01 r(#) (/01 Ko (t S)W(s)dS)th < Clh. - 8(S)P.

16
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We have
E(I4) =0. (4.9)

Define the operators l_(quh and }_(g’h with the kerr_lels Kg’qh(_tl, ty) = fol Kp(ty — s)qQ(s)lgh(tg -
S)C{S and Ky (t1,t2) respectively. The operators K g, and K5 p, are nonnegative. Since K 4, <
CKs, and the kernel K is bounded we get

Var(Iy) = 4/01 r(ty)dt /01 r(to)dts gin, (t1)gin, (t2) E(E(t1)Ec(t2)) =
4€2 /01 r(tl)dtl /01 T(tQ)dtzglhe (tl)glhe (tQ)szth (th lfg) <

1 1 2\ 1/2

052[1/2 (/0 r(t1)dty (/0 KZ,he(tlyt2)glh€(t2)7”(t2)dt2> > <

1 1 1 1/2
cer? ( /0 r(ty)dty /0 Ko (1, t2) | (t2)dts /0 yKZ,hE@l,tg)ygﬁe(tg)r(tg)dtg) <

1 1 1/2
062]1/2 (/0 T(tl)dtl /0 |K2,h€ (tl, t3)|g%h€ (tg)?"(tg)dtg) S

1/2
271/2 e ht2he 2
cer? (n- / r(t)dty / G (ts)r(ts)dts | < Ol (4.10)
0 tl*Qhe
By Schwartz inequality, we get
L < 2117, (4.11)
We have
‘[526 S 2]5216 + 2‘[5226 (412)
with

Lo = 206, — 8(5))Q. = 2(0. — (S /ge t)dt/olKhe(t—5)59(5,0_(5))ds, (4.13)

=2 [ 6 (1)t | Ko (t— $)W(s)ds. (4.14)
By (4.7), we get

Esze/ (/ Kn.(s — t)r /Kh t—81)59(81,9(3))d81dt>2d8S

ce [ L (s)r2(s)S2 (s, 6(S))ds < Ce (4.15)

By Schwartz inequality, we get
I52e < Js1ed52¢ (4.16)

with



By (4.7), D2, we get

Estimating similarly to (4.10), we get
1
() <& [ () Kan. (s, 9)ds <
0

with

1
Ko h (y1,y2) = /0 Ky (y1 — t)r(t) K (y2 — t)dt, y1,y2 € [0,1].

By (4.16)-(4.18), we get
Isae = 0p(T.(S,0(S))) + eh-YATY2(S,0(S))).
By D4, (4.12)-(4.15),(4.19), we get
5. = Op(ehl~VP?)
By straightforward calculations, arguing similarly to Hall (1984a,b), we get
E(lee) = de(he)(1 + O(he)),

1 1
0 r(tl)dtlA T(tg)dthiqhe(tl,tg).

Putting to = t1 + vhe, s = t; — uh, we get

Var(lg.) = 264/

o4 1 (1—t1)/he
Val‘([6€> = 2¢ T(tl)dtl T(tl -+ ’Uhe)X

0 —tl/h€

elo?

</(t1/he K(u)g*(t; — uh ) K (u + U)du) dv = . (14+o0(1)).

tl—l)/he

By D4,(4.6),(4.8)-(4.11),(4.20)-(4.23) together, we get that €2h_ /2 = O(I.) implies

[25 + ]36 + I4e + IBe - OP(]le + IGE - de(hf))

as € — 0.

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

Lemma 4.1. Let the assumptions of Theorem 3.1 be satisfied. Then the distributions of

hl2e 201 (Isc(he) — de(he)) converge to the standard normal one.

By (4.6),(4.24) and Lemma 4.1 we get (2.2) and (2.3). The proof of Lemma 4.1 will be given

later.

It remains to prove the lower bounds for the type II error probabilities if the problem of
testing a simple hypothesis S = S(6p),0p € © versus S € S (O, pe(he)) is considered. The
proof is based on the wellknown fact that the Bayes risk does not exceed the minimax one.
We fix 6 > 0 and introduce the family of Gaussian probability measures js which set by the

random processes
_ 1
S(t) = Se(t) = S(t, 60) + 7'7’1/2(25)/ K, (t — s)q(s)dwi(s)
0
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where dw(s),s € (0,1) is a Gaussian white noise and

2 = 7'25 =2(1+ 5)p6(h6)h60_2.

The Bayes probability measure v is defined as the conditional probability measure of S
under the condition S € S, (O).

Lemma 4.2. It holds

(0 ) [ ([ Konlt = (8(6) - St th)ds) w1 (@29
and,
(14 6)pe(he) 1nf/ (/ Ky, (t—s)(S(s) — S(s,@))ds)Qr(t)dtH 1 (4.26)

i probability as € — 0.

This tmplies .
P(3 € S, (0, pe(h))) = 1+ o(1) (127)

as € — 0.

The proof of Lemma 4.2 will be given later.

Denote U, and U, a posteriory Bayes likelihood ratios generated by a priory Bayes probability
measures [ and Ve respectively. It is easy to see that (4.27) implies UE/U6 — lase— 0
in probability both in the case of hypothesis and Bayes alternatives v, ttes. This allows us
to replace a priory Bayes probability measures v by a priory Bayes probability measure fies
in the further arguments. Therefore, for the proof of theorem, it suffices to get a convenient
assignment of Bayes test statistic D¢s(Y;) corresponding to a priory probability measure fi.s
and to show that, for the tests Uy having the test statistics Dcs(Ye), it holds

lim lim <5€h /ﬁ 5> d,ue(;) =0. (4.28)

6—0e—

Let us find Bayes a posteriory likelihood ratios in the case of a priory probability measures
Hes -
Let {¢;}3° be an orthonormal system of functions in L2(0,1). Then (1.1) can be written as
follows

y;=s5;+€, 1<j<oo
with y; = Jy ¢;(1)dY(t), 55 = Jy S(t)¢;(t)dt, & = [y ¢;(t)a(t)dw(t).
Define the operators @), R such that (Qu)(t) = q(t)u(t), (Ru)(t) = r(t)u(t) for any function

u € L9(0,1). Define also the operator K} with the kernel Kj(z — t) with z,t € [0,1] and
the unit operator E. In (4.29)-(4.32) we shall make use of notation Y. = {y;}2,,5 =

Jj=b
{53521, S0 = {50152, with sjo = Jy S(t,60)¢;(t)dt
The Bayes a posteriory likelihood ratio equals

/ exp{ 212 (Y. - S)YQ (Y. - S) — ;7‘_2(8 — So)Q 'K, 'RTK, Q7N (S — So)+

1

5o (Ve = S0/ Q2(Y. = 50) | djus =
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[ exp {2 = 50/Q (5 — 50)-
;(S —S8)(e?Q P+ 7°Q 'K, 'RTK, Q) (S — so)} dptes =

1 St o o
C’/exp{—2||(YE — SO) Q 1<€ 2@ 2 + T 2Q lKhis lKhelQ 1) 1/2
(E—QQ—z + 7'_2Q_1K};1R_1K};1Q_1)1/2(S _ SO)HQ} dftes ¥

exp {_;@fe = 8)Q N ePQT+ QTR RTK, Q) T QTI(Y. - So)} =

Cexp {—i(Y; —80)QNePQ T+ TP Q K, RTK QT T QTN (YL - So>} . (429)
Thus the Bayes test statistics can be defined as follows
Des = (Ye = So)Q e ?Q + 7 QT K, ' RTK,1Q7) QT (Y — So) =
(Ye = So)' K RV (e °7° K, RK), + E) 'R’ K,, (Y. — Sp).

Denote

Dis = Dis(Y. — Sp) = € 272(Ye — So) (Kn, RK,)*(Y: — Sp).
We have

T. — Dos — Dies = € 7Y, — Sp) (K, RV?)? (e 212K}, RK),, + E) Y (RY?K,,, )3 (Y. — Sp)) <

e Y. — So) (Kp, RK,)*(Ye — Sy) = Das. (4.30)

We have
Dies(Ye = Sp) < 2Dq5(Ye — S) +2D1e5(S — So), (4.31)
Does(Ye = So0) < 2Dae5(Ye — S) + 2Dae5(S — Sp). (4.32)

The unique difference of statistics T, = (Y. —S)' K;, RK,, (Y. —S) and D1es(Ye—S5), Daes(Ye—S5)
are the powers of the kernels. Hence, estimating similarly to (4.21)-(4.23), we get

1 1 2
dio(he) = Es[Dies(Y, — S)] = 72 / g2(t) dt /0 At K2, (t 1) < C;— < CERTV2, (4.33)

0 €

Eg[Does (Y. — 9)] = e 27* /01 ¢A(t)dt /01 r(s)ds (/01 dt, Kp (t1 — s)x

€ °T

Ko (t,11))° < C < Cé, (4.34)
—4,.8

4
Vars(Dies (Y, — S)) < 02— < O, Varg(Das(Y, — §)) < O < Ce*h?. (435

€ €

€

By straightforward calculations, using (4.7), we get
D15(S — Sp) < Cpe(he),  Daes(S — So) < Cpelhe) (4.36)

if pe(he) < Te(S,0p) < Cpe(he).
By (4.30)-(4.36) we get

Ps(e 2h 20 HT.(Y,, 00) — de(he)) < 24) =
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PS(E_th/QU_l(De(S(YEv 0o) — de(he)) — dic(he)) < za(l+0(1)))
uniformly in S : pe(he) < To(S,0p) < Cpe(h.) as § — 0,e — 0.

(4.37)

By (4.25),(4.29),(4.37) we get (4.28). This completes the proof of Theorem 3.1 in the case of

sets of alternatives S (0O, pe).

The Theorem 2.1.2, Theorems 2.2, 2.3 for the sets of alternatives S p, (pe, 3, Po) and Theorem

3.1 in the case of sets of alternatives 3.4 (0, pe, 5, ) follows from Lemma 4.3.

Lemma 4.3. Let A and (2.4) hold additionally. Then

lim ( /0 LGP0 — SO, 09))2dt < PO) _1

e—0

and

lim < / {SP(1) — S(s,8.))2dt < PO) _1

e—0

Proof of Lemma 4.1. We have
Gizhi/2j6e = 2J1Ae + =]2A€

where
y1—A

T =022 [ atyawt) [ Ko, p2)alvn)d (),

y1—2he

y1+A
Tose =07 [ aty)duwtn) [ Ko, w)atua)w (v2)

Yyi—

and A=A, — 0, A /h. — 0 as € — 0.
By straightforward calculations, arguing similarly to (4.10) and (4.62) below we get

y1+A
Var(Joae) = 2he / (1 dyl/ R K3 o (1, 12) @7 (y2)dyo < CA.
Yy

1—

Thus it suffices to study the limit behaviour of Jia.. One can write
Ca
Jine = Z Z
j=1

where Ca = [1/A] and

y1—A

JA
Zje = h;” /(],1)A q(yl)dw(yl)/y Karn. (y1,42)4(y2) dw(y2).

172he

(4.38)

(4.39)

(4.40)

(4.41)

We can consider Jia as a sum of martingale differences Z;c and to apply corresponding
Central Limit Theorem (see Brown [3]) to prove asymptotic normality. Thus it suffices to

show that

Ca
- {2212, > O} =
=2

hm— ZE{ |Fj—1p =1

e—0 g
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where F;_; . is the o-field generated by the Wiener process w(t), 0 <t < (j — 1)A..
We have

A 4 2 & ia 2 n-8 2 ?
Y E(Z;)=3h2) (/ q (yl)dyl/ K3 o (Y1, 92)q (yz)dy2> =
j=1 j=1 \7(G-DA y1—2he

y1—A 2
3h2A/ (y1)dya (/y . K%,me(yl,yg)qQ(ya)dm) (1+4+0(1)) =

1—=<le

2
3AR- / \dy (/ g(u)du) (1 + o(1)). (4.44)
By Chebyshov inequality, (4.44) implies (4.42).

Denote

JA y1—A 2
Vie=E(Z;|Fj 1) = he | lAqQ(yl)dyl (/y \ K27The<y17y2>q<y2)dw<y2)> :

(3-1) 1—2he

Ca
ar ZV}E <
j=1

1 1 2-A 2
on [ i |yt ( [ Koo ()2 Ko, i ) <

21 €

Estimating similarly to (4.10), we get

4 4
Ch? [4 dxy [4 dzy K3, (21, 2) < Che (4.45)

where 21 = 21(y1, ¥2) = max{yi, yao}, 22 = 22(y1, y2) = min{ys, y2}.
By Chebyshov inequality, (4.45) implies (4.43). This completes the proof of Lemma 4.1.

Proof of Lemma 4.2. Denote ((t) = S(t) — S(t,6;) and 6. = arg mingee 7.(S,0). We have

Te(S é ) Mls + 2M2e + MSE (446)

M, — /01 r(t)dt (/01 Ko (t s)g(s)ds)2 |

M = | ()t / " Ko (t — 5)(S(s, 60) — S(s, 6.))ds / K (t = 5)C(s)ds,

with

1 1 - 2
My = [ oyt ([ Kt = 9)(S(5,600) — S(5.0)ds)
0 0
At first we shall prove (4.26), assuming that (4.25) holds, that is

(L +0)pe(he))™ M — 1 (4.47)

in probability as € — 0.
After that the proof of (4.25) will be given.
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We have
Mye < MM/,

Using the assignment of 6, and (4.47), (4.48) together we get
Mge — 0

in probability as € — 0.

We have
My* > B - BY* - B/
Bic= [ (S(t,60) = S(t,00)*r (),
0
1 1 2
By, = /0 r(t)dt (/0 K, (t — $)(S(s,00) — S(t,9o))d8> :
1 1 ~ ~ 2
Buo= [ e ([ Kot = 9)((5,00 — $(1,8))ds)
0 0
By D5,

By < C)\l(he), Bs,. < C)\l(he)
By (4.49)-(4.51), we get

Ble — 0
in probability as € — 0.
By D1-D3, (4.52) implies )

95 — 90
in probability as € — 0.
Denote B ~

V(s) = S(s,00) — S(s,0.) — (0o — 0.)Su(s, ).
We have
M3 = M3y + 2M3zpc + M33,

with

2

My, = (6. — 6,)° /01 r(t)dt (/01 Ko (t — 5)Sa(s, Go)ds) ,

M. = (6, —490)/01r(t)dt/01 th(t—s)Sg(s,Qo)ds/; K (t — 8)V(s)ds,

2

1 1
M3 = / r(t)dt </ Ky (t — s)V(s)ds) .
0 0
By (4.7), D2, we get
1 1 .
Mag, < O/ r(t)dt/ V2(s)ds < C|f. — 6o+
0 0
By Schwartz inequality, we get

Msoe < M?}{EM?}:Q
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By (4.7), we get
~ 1 ~
Mo < C(6, — 6,)? / r(1)S2(L, 60)dt < C(6, — 6o)2. (4.57)
0
By (4.54)-(4.57), we get

Mse < C|6. — 0o|*(1 + op(1)). (4.58)
By (4.47),(4.48),(4.58) together, we get

= Op(|0. — 05|pY*(he)). (4.59)

By (4.47), Mic = pe(he)(1 + 6) + op(pc(he)) as € — 0. Similarly, by

(
Mye + Ms. = Op(|6. — 0o|pY/?(he) + |6 — 6o|?). Hence, by definition of 0

we get

4.5 ) (4.59), we get
¢) and (4.46), (4.53)

0. — 60| = op(pY/%(h.)). (4.60)
By (4.46),(4.47),(4.58),(4.59),(4.60) together, we get (4.26).

It remains to prove (4.25). Denote

~ 1
Ko, (1, t2) = /0 K, (t — s)r'/2(s) K (s — s)ds.

By straightforward calculations, using the same technique as in (4.10), we get

E {/01 (/01 K, (t = $)(S(s) — S(s. 90))ds>2 r(t)dt} _
{/01 ( 01 (t — s1)r'/%(s1)ds, /1 Ky (51— 32)q(82)dw1(52)>2r(t)dt} _

1
7'2/ 7( dt/ K, (t — s1) dsl/ K, (t — s3)dssr'/?(s1)r'/?(s3) x
0

dl

1
7'2/ r( dt/ Ky, (t— s1) d81/ Ky (t — s3)dsar/?(s1)r'/?(s3)
0

/01 K (51— 52)q(s2)dw(s2 / K, (s3 — s4)q (34)dw1(54)> _

/ K, (s1 — 32)q2(52)Kh5(52 — 83)dsy =

/ dt/ $)dsK2,, (t,5) = 7202/(2h) (1 + o(1)). (4.61)

Arguing similarly to (4.59), we get

ar (/01 (/01 K, (t — )(3(s) — S(s, 60))ds)2 r(t)dt) _

274 /Olr(tl)dtl /Olr(tQ)dtg (/01 Ko (11— s1)ds, /01 K (1 — s3)ds
2 (s1)r? (s3) /01 K. (51— 82)q°(52) K, (53 — 32)d32>2 (14+0(1)) =
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1 o1 - _ 2
274 /0 r(t)dts /0 r(t2)dts ( / KQ,rhe(tl,SQ)qQ(SQ)KQ,ThE(tz,52)d52) (1+0(1) =
1 4
2rth ! / ¢ () (s)ds / K2(0)du(1 + o(1)). (4.62)
0 —4
By Chebyshov inequality, (4.61),(4.62) together imply (4.25).

Proof of Lemma 4.3. To simplify the reasoning we assume r(t) = 1 for all ¢ € [0,1]. This
does not cause any principal differences in the arguments.

We have ) ;
Go = 59(t) = $O(t,00) = 7h " [ KO ( . 5) a(s)dw (). (4.63)
0
Repeating similar estimates as in the proof of (4.25) we get (4.38).
We have
1 _
/ (SO (t) — SO(t,0,))2dt = Dy + Dy, + Ds (4.64)
0
where )
Dic= [ (89(t) = St 60))dt,
1 .
Dac = [ [(8D(1) = SOk, 00)2at(S )¢, 00) = S0 (1, 0.))t,
0
1 .
Ds. = [ (89(t,0.) = 59)(2.00) .
We have
|Ds] < DI D3/, (4.65)
By D6, (4.60), we get
Ds. — 0 (4.66)

in probability as € — 0.
By (4.38),(4.64)-(4.66) together, we get (4.39). This completes the proof of Lemma 4.3.

5. Proofs of Theorems 2.2,2.3 and 3.2. The further arguments will be given in the
notation of Theorems 2.2 and 2.3. In the case of Theorem 3.2 a modification of notation is
unessential.

The statements on asymptotic equivalence of statistical experiments (see Brown and Low [4]
and Nussbaum [25]) can be applied to the proof of lower bounds if the realizations of random
processes generated by the Bayes a priory measures belong to the Hoelder space

Y(B, M) ={S:|S(t) — S(s)| < M|t —s|’, t,s€(0,1)}

with M > 0,6 > 3.

In the problem of hypothesis testing on density we need also to suppose f(t) > ¢ > 0 for all
t € [0, 1] (see Nussbaum [25]).

Denote
@nhn(ﬁ, M)={S:5¢€Sum,,S €X(B,M),|S(t) — So(t)] < ecn,t €[0,1]}

where ¢, — 0 as n — oo.
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The Bayes a priory probability measures v,,5 of S and f in the problems of hypothesis testing
on regression and density respectively are defined as the conditional probability measures of
S = S, under the condition S,, € S, (5, M) with M; — oo as | — oc.

For the proof of lower bounds it suffices to show that there exists M; — oo as [ — oo such
that 5
P, Sy, € S, (6, M)) =1+ 0(1) (5.1)

as [ — 00,0 — 0,n — oo.

Thus we need to prove that there exists ¢, — 0 as n — oo such that

lim P(sup{|S,(t) — So(t)| : t €[0,1]} < c,) =1 (5.2)

n—oo

and there exists w; — 0, M; — 00 as [ — oo such that
liminf P(S, € X(3, My)) > 1 - w. (5.3)

We begin with the proof of (5.2). By A, we get

EISu(t) — Sa(s)2 < C72 /01 K (t— 1) — K, (5 — u) P (w)du <

Cr2h 2 Y min{|t — s|**7, A7} < On~ A 32 Y min(|t — s|*7, B2, (5.4)
By straightforward calculations, we get
B(S2(t)) < Orh,' < Cn~'h, "2 (5.5)
By Theorem 7.1 in Piterbarg [26] and Slepian comparison principle (see Slepian [28]) we get
(5.2) with ¢, = ch)/?.
It follows from Theorem 1 §15 in Lifshits (1995) that for any sequence ¢, > 0,¢;, — 0 as
[ — oo there exist sequences M;, — oo as [ — 00 such that

P(S, € (8, M) > 1 — ¢ (5.6)

ith L Ity
with 5 < 8 < =2

The proof of Theorem 1 §15 in Lifshits [24] is based on Borel-Cantelli Lemma. In order to
show that one can choose the values M, = M; which does not depend on n it suffices to make
use of the following version of Borel-Cantelli Lemma in Lifshits [24] arguments.

Lemma 5.1. Let Ay, Aoy, ... be sequences of events. Let there exist a sequence Kk, — 0 as
m — 00 such that for each n

o0

=m

Denote By, = U2, Ay Then P(By,) — 0 as m — oo uniformly in n.

Applying Lemma 5.1 in the reasoning the proof of Theorem 1 §15 in Lifshits [24]| we get the
version of this theorem with M; = M, which does not depend on n. Therefore (5.3) holds. By
(5.2),(5.3), we can apply to the realizations of random processes generated by corresponding
Bayes a priory measures the arguments of the proof of Theorem 2.1 and get the lower bounds
in Theorems 2.2,2.3 and 3.2 as corollaries of Theorem 4.1 in Brown and Low [4] and Theorems
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2.1,2.7 in Nussbaum [25] respectively. This completes the proof of lower bounds in Theorems
2.2,2.3 and 3.2.

Proof of Theorem 2.2. Upper bound. The estimates are akin to (4.1)-(4.24).

Denote |
gh(t) = E Z Kh(t - xnz)s($nz)
=1
and
gOh n Z Kh t - mnz)'S’O(Im)
=1
We write
with

B = [ (g (0) = gon, () P00,
= ( 3 it )0 = ) ) 31,0 =, (0)r 0t

/ ( ZK’M — Tni) (Yni — S(%mz))) r(t)dt.

Observe that I3, does not depend on S.

We write
I3, = I31p, + I3, (5.9)

where

Loy = ; f; /0 Ko (= ) (Yo — S(an)) 2 (1),

I = = S (Vi = S(0) (Yag — S(ng)) %

1<i<j<n

/Khn — i) K, (t = o) (1),

Denote t,,; = 227’;“
We have

Bls) = - ZA2 i) / K2 (t — 2)r(t)dt. (5.10)
We have

where, by (2.13),

1 n 1 tn,i
- Z)\Q(ajm)/ r(t)dt/ YIKE (t— 2p) — K2 (t— H™\(s))|ds <
i=1 0 tni

tn,i 1
C S N /t o ds/o r(8)dt| K, (t — ni) — K, (t — H™V(s))| <

n =1

nh
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Cc tn,it1 1 1 ) 12
nh Z/t ( A (Kp, (t — xp;) — Ky, (t — H " (s))) dt) ds <
n j=1""tni
C n th—l 1_'_7 /2 C B 1
nhy, ; s ds W O\ (5.12)
and, by (2.8),
fan /+ [N (i) = A (H |d3/ K2 (t— HY(s))r(t)dt <
Tyt 5.13
n2h, = oln ) (5.13)
By (5.11)-(5.13), we get
|E(Isnn) = du(h)| = o(n™"h;"/2). (5.14)

Using a similar technique as in the estimation of addendum denoted Iy, in Hall [14], we get
Var(I31,) = O(n™1). (5.15)

Using the same reasoning and estimates as in analysis of Iy, in Hall [14], we get the following
lemma.

Lemma 5.2. The distributions of I3, are asymptotically normal and
E(I30,) =0, Var(Isy,) = n 2h;'0*(1 4 0(1)). (5.16)
We have
E(Iy,) = 0. (5.17)
Arguing similarly to (4.10), we get

Var(Ils,) = Z)\2 (i) / dt/ s)dsKp, (t — xpi) K, (8 — Tpi) X

(9 () = Gon, (1)) (gn,. (5) = gon, (5)) <

iﬂ/ 2 ( / (znj A2 () X

1 2 1/2
/0 r(8)Kp, (s — Tpi)dsKp, (t — xni)(gn, (t) — Gon, (t))> ) ) (5.18)
Since
LI Cn
Z A (i) r () K, (t — 20)7(8) Kp,, (8 — ) < N

i=1
if [t — s| < 2h, and D,(t,s) =0 if [t — s| > 2h,,, we get

1/2

Var(ly,) < Cn*1[1/2 (/ dth;, </t+2 ' \gn,, (s) — gohn(s)]ds> 2) <
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Q

n

t+2hy, 1/2
Cn ' (/ dth; / ) — Gon,, (s ))st> < =1, (5.19)

Now the upper bound in Theorem 2.2 follows from Lemma 5.2 and (5.8), (5.9),(5.14)-(5.17),
(5.19) together. This completes the proof of Theorem 2.2.

Proof of Theorem 3.2. Upper bound. We follow to the same arguments as in the proof of
Theorem 3.1.

Let F € Sy, () be a true c.d.f.. Denote 0y = 6(F).

We have .
| K (= ) (s) = F(5,6,)) = 910, () + gan, (6) + () (5.20)

with
9, (1) = [ K, (¢ = $)d(F(s) = F(s.60).
g (1) = /0 Ko (t— $)d(F(s,00) — F(s,6,)),

_ /01 K, (t — 8)d(Ep(s) — F(s)).

Hence we get

with Iy, ..., I, defined by (4.3) - (4.5) respectively with € = n.
Since F' € 3y, (©) then (4.6) holds.

Similarly to (4.8) we get A
I3, < C|0, — 6]*. (5.22)

We have
E(ly,) = 0. (5.23)

By Schwartz inequality, we get

B = [ [ g, g (r(e)r(e) ([ K, (6 = )i (62 = 5)aF (5)-
/ Ko (1 — s)dF(s) / Ko (ts s)dF(s)> <
’1/ dF (s (/ Ky, (t — s)r(t)gip, (t )dt>2 <Cn ', <

—1/ dF (s / K2 (t—s dt/ g2, (Ddt < Cn B T, (F, Fy).  (5.24)

We get
Ly, < 1?12 (5.25)

Arguing similarly to (4.13)-(4.20), we get
= Op(n~th{1T)/2), (5.26)

It remains to study the asymptotic behaviour of Ig,.
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Denote

o*(h,F) = 2/01 rQ(g[;)dx/_Zdu {/1 K(2)K(z +u)dF(x — zh)r.

-1
For all 1 <7< n,1 <j <n denote

Ho(X:, X;) = /01 <Khn(t ~ X)) - /01 K, (t — s)dF(s)) x

1
(Khn(t - X5) - [ Kt s)dF(s)) r(t)dt.
0
We have
Iy, = Isin + Ig2n

where
Is1, = 2072 Z H,(X;, X;),

1<i<j<n

IGQn = n_2 Z Hn(va X])

J=1

It follows from (2.17) and (2.18) that

E(Igan) = 0" /0 1 /0 1 K2 (t — 2)dF (z)r(t)dt(1 + o(hY/2)) =

e /o /0 K, (t = 2)r(2)dF (2)dt(1+ o(hy*)) =

1 1
ot [Crar() [ KA+ o) = en(1 + o(l/2).
0 -1
By direct calculations, we get
Var(Ig2,) = O(n3h?).
By (2.17), we get

sup
hp<t<l—hnp

/01 Ky, (t —s)r(s)ds — r(t)l < Chpt.

Hence, using (2.16) and Schwartz inequality, we get

/ (AP — dF (L, 90))‘ <

1—h, 1
ChS, + Chi* + ‘/h /0 Ky, (t — s)r(s)ds(dF(t) — dF(t,00))| <

1 1-hn
ChS, + Ch + |/ r(s)ds/ Ky, (t — s)(dF(t) — dF(t,0p))| <
0 n

ChS + Ch™ + CLL?.

in

Therefore, using n~'h;%/2™ — 0 as n — 00, we get

Ao (B, o) — €n] < Cn YW M2 = o(14).
0 n
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By the same arguments, using E2,E3 additionally, we get

(P, foo) = (P, 3, )| < Oy M T2 (Ey L Fyy) <

Cn 'm0, — 0o = op(n~"h;1?). (5.31)
By Lemma 3 in Hall [15],

E(Igi) = 0, (5.32)
n2h, Var(Igin) = - / / i/h;t/hn (t + uhy) [ /_ 11 K(2)K (2 + u)dF(t — zhy)—
hn{ 2)dF(t — 2hy,) }{ 2dF(t + uhy — zh )}]2du(1+0(1)):
;/ /tﬂ:t/h {/ K(z+u)dF(t— zh )rdu(l%—o(l)):

4 02 (B, F)(1 + 0(1)). (5.33)
By B1, we get
2 (h, Fyy) — 0°(fon) = 2/01 dt/ du <</ K(z + ) fay (t zh)dz)2 _
([ >K<z+u>dz)2feo< >) o) <
2/01 dt/ du/ K (2 )| fay (t — 2h) — fo, (£)]dzx

/_1 K(2)K(z+u)(fo,(t — zh) + fo,(t))dz + O(h) <

/ dt/ du/ K(z +u)|z|"dzx

/ 11 K(2)K (2 + u)(foy (t — 2h) + fou (£))dz + O(h) < CI". (5.34)

By E1, we have

1 1
50’2(hn,F) — 50'2(hn,F90) =

/ dt/ du/ K(z1 + Wd(F(t — 21hy) — Fao(t — 21h0)) ¥
/ 22 K (29)K (2 + w)d(F(t — 2shy) + Foy (£ — 2hn)) + O(hn) = Jon + Jon + O(hn).  (5.35)
with
_ /01 r2(2)d /_11 /_11 Ko(z1 — 2) K (20)d(F(z — 21hn) — Fyy (€ — 21hn)) X

K (29)d(F(x — 20hy) — Fypy(x — 22hy,)) < Cly,, = CT,(F, Fy,), (5.36)

1 1 2
Joy, = 2/ r2(as)da:/ / Ky(z1 — z9) X
0 —1J-2



K(z2)d(F(x — z1hy,) — Fpy(x — 21hy)) K (29)dFy, (x — 20hy,) + O(hy,). (5.37)
Since the operator Ky, is nonnegative, by Shwartz inequality, we get
1 12
Tom < 2/ r2(z)dx (/ / K21 — 20) K (20)d(F (2 — 21hn) — Foy (@ — 21hn)) %
0 —1J-2
K (2)d(F( — 20hy) — Fgo(x — 20h,)))"* x
12 1/2
([ [, Ko = 20 K(e0)dFay (@ = 21ha) K (z2)dFay (= 22ha)) 4+ Olhn) <
1 12
C ( [ @i [ [ Kol = m)K)d(F (@ = k) = Fa (e = 210))x
0 —1J-2
K (20)d(F(x — 22hy,) — Fp,(x — Zth)))l/2 X

</01 r?(z)dx /11 /22 Ky (21 — 29) K (21)dFyy (x — 21hn) K (29)d Fy, (x — ZZhn))l/2 +O(hn) <

c(/ ' 2(2)dz / 11 / 22 Koz — 2) K (20)d(F(x — 21hn) — F (2 — 217n))

K (2)d(F(z — 2z5hy) — Fgy(x — 25h,))) Y2 < CTV(F, Fy,) + O(hy,). (5.38)
By (5.35)-(5.38), we get

02 (h, F) — 02(hy, Fy,)| < ClLiy + CL + O(hy). (5.39)

Arguing similarly and using E2,E3, we get

(02 (hy Fy ) — 0% (s Fyy)| = 0p(Lin + 107) + O(hy) (5.40)
as n — 0o.
We have
B(Kp, F) < A+ Aoy + Az + Ayyy (5.41)
with

Ain = Pr(=T,(Fy, Fyy) + dy(ha, fo,) <
< —zon 'h Y20 (hy, Fy,) + O(cn1'11,/L277,_1/2fz,:1/‘l + cnth 1),
Ao = Pr(Tp(Fny Foo) — Tu(Fny Fy, ) < cai)?n™ Y204 =
Pr(Ioy + Iy + Iy < 11, 7204,
Asn = Pr(|dn(hns fag) = dn(Pn, f3,)] > can™ hy/?),
Ay, = PF(]U2(hn,F9n) — 02, Fay)| > ).

By (5.22),(5.25),(5.26) and (5.31),(5.40) respectively, there exists ¢,, — 0 as n — oo such that

Ao, =0(1), Asp=0(1), Ay =o0(1). (5.42)
By Chebyshov inequality, using (5.41),(5.42) and (5.28),(5.30), we get

ﬁ(Km F) = A + 0(1> - PF<_TH(FH7 FGO) + dn<hn7 F90> + Tn(F7 F90)<1 + 0(1)) <
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< — 2o h 20, Fay) + Tu(F, Fa)(1+ 0(1)) + 0(1) <
VarF(Tn(Fn, F@O))

- . (5.43)
(T,(F, Fpy) (1 4+ 0(1)) — zon=hn "“o(hy, Fy,))?
By (5.24),(5.27),(5.29),(5.33) together, we get
VarF(Tn(Fn, Fgo)) < 2Varp(f4n) + 2Var([6n) < Cn_lhglfln + O(n_zhgl). (544)
By (2.1), (5.43), (5.44) together, for any sequence of c.d.f. F},,
B(Ky, Fr) — 0 (5.45)
if nh}/2T,(F,, Fy,) — o0 as n — oo.
Denote I'c = {F : nh}/?T,(F, Fy,) < C}.
By (5.39),(5.40), we have
o2 (e, F)(1+ (1)) = o*(f;, )(1 + (1) (5.46)

uniformly in F' € I'c.

The estimates in the proof of Lemma 3 in Hall [15] are uniform w.r.t. ' € I'c. Therefore the
distributions of 2[61n(0(fén)nhi/2)*1 converges to the standard normal one uniformly w.r.t.
F € T'c. Hence, using (5.21)-(5.31),(5.41) (5.42), (5.45), (5.46), we get (3.1). This completes
the proof of Theorem 3.2.

Remark 5.1. The corresponding version of (5.20) for the test statistics Tn(ﬁn) does not contain
the addendum Is9,. Therefore, in the analysis of asymptotic behaviour of Tn(ﬁn) we do not
need to estimate E([3s,). This allows to simplify the assignment of the sets of alternatives
and to prove the statement of Remark 2.4.
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