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Abstract

We consider a class of singularly perturbed parabolic problems in case of

exchange of stabilities, that is, the corresponding degenerate equation has two

intersecting roots. By means of the technique of asymptotic lower and upper

solutions we prove that the considered initial-boundary value problem has a

unique solution exhibiting the phenomenon of delayed exchange of stabilities.

Thus, the problem under consideration has a canard solution.

1 Introduction

Consider an autonomous dynamical system S depending on some parameter �. The

study of the in�uence of � on the long-term behavior of the dynamical system S
represents an essential part of the bifurcation theory. �� is called a bifurcation point

for S concerning the region G in the phase space of S if in any neighborhood N
of �� in the parameter space there exist two points �1 and �2 such that the phase

portrait of S in G is not topologically equivalent for �1 and �2.

If we assume that � is slowly changing in time then we arrive at the so-called dynamic

bifurcation theory [1]. As an example we consider the scalar ordinary di�erential

equation
dx

dt
= f(x; �); (1.1)

where we assume f(0; �) � 0 for all �. For de�niteness we suppose that �� = 0 is

an bifurcation point of (1.1), where x = 0 is stable (unstable) for � < 0 (� > 0).

This assumption implies that the bifurcation point � = 0 is generically related either

to a transcritical bifurcation (see Fig 1.1) or to a pitchfork bifurcation (see Fig. 1.2).

u = '(t)

u = '(t)

t0 Ttc t

u

u = 0

Fig. 1.1. Transcritical bifurcation

u =  +(t)

u =  �(t)

t0 Ttc t

u

u = 0

Fig. 1.2. Pitchfork bifurcation
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Now we suppose that � increases slowly with t. For simplicity we set

� = "t;

where " is a small positive parameter. Introducing the slow time � by � = "t, the

di�erential equation (1.1) takes the form

"
dx

d�
= f(x; �); (1.2)

that is, (1.2) is a singularly perturbed non-autonomous di�erential equation. Under

our assumption, the solution set f�1(0) of the degenerate equation of (1.2)

0 = f(x; �) (1.3)

consists in the � � x�plane of two curves intersecting for � = 0, as indicated in

Fig. 1.1 and Fig. 1.2. All points of f�1(0) are equilibria of the associated equation

to (1.2)
dx

d�
= f(x; �); (1.4)

where � has to be considered as a parameter. The curve x = 0 is an invariant

manifold of (1.4) which is attracting for � < 0 and repelling for � > 0. We call this

situation as exchange of stabilities (according to Lebovitz and Schaar [21]).

If we consider for equation (1.2) the initial value problem

x(�0) = x0; �0 < 0; (1.5)

and if we assume that x0 belongs to the region of attraction of the invariant manifold

x = 0, then it follows from the standard theory of singularly perturbed systems (see,

e.g., [32] - [34]) that the solution x(�; ") of the initial value problem (1.2),(1.5) exists

at least for �0 < � < 0.

For � > 0 there are the following possibilities for the behavior of the solution x(�; ") :

(i). x(�; ") follows immediately the new stable branch emerging at � = 0.

(ii). x(�; ") follows for some O(1)-time interval (not depending on ") the repelling

part of the invariant manifold x = 0 and then jumps to the stable branch.

(iii). x(�; ") follows for some O(1)-time interval the repelling part of the invariant

manifold x = 0 and then jumps away from this manifold (possibly blowing

up).

The case (ii) is called delayed exchange of stabilities, case (iii) is called delayed loss

of stability. The corresponding solutions are said to be canard solutions.

The case of exchange of stabilities for singularly perturbed ordinary di�erential

equations has been treated by several authors using di�erent methods (see, e.g.,

[11-22, 25, 26, 29-31]). In the papers [23, 24], the authors have applied the method

of lower and upper solutions to derive conditions for an immediate and for a delayed
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exchange of stabilities.

The same technique has been used in the papers [2, 5-10] to derive conditions for an

immediate exchange of stabilities for di�erent classes of partial di�erential equations.

In the sequel, we will show that the same method can be used to establish the

phenomenon of delayed exchange of stabilities for a class of singularly perturbed

parabolic problems. Therefore, the technique of asymptotic di�erential inequalities

provides an e�cient way to establish canard solutions also for partial di�erential

equations.

2 Formulation of the Problem

We consider the scalar singularly perturbed parabolic di�erential equation

"

�
@u

@t
� @2u

@x2

�
= g(u; x; t; ");

(2.1)
(x; t) 2 Q = f(x; t) : 0 < x < 1; 0 < t � Tg;

where " > 0 is a small parameter, and study the initial-boundary value problem

@u

@x
(0; t; ") =

@u

@x
(1; t; ") = 0 for t 2 (0; T ];

(2.2)
u(x; 0; ") = u0(x) for x 2 [0; 1]:

A root u = '(x; t) of the degenerate equation

g(u; x; t; 0) = 0 (2.3)

represents a family of equilibria of the associated equation to (2.1)

du

d�
= g(u; x; t; 0); (2.4)

where x and t have to be considered as parameters.

We recall that a root u = '(x; t) is referred to as stable (unstable) in a region G if

gu('(x; t); x; t; 0) < 0 (> 0) 8(x; t) 2 G.
As in [10], we consider the case that the degenerate equation (2.3) has exactly two

roots u = '1(x; t) and u = '2(x; t) intersecting in a curve such that an exchange of

stabilities arises. In di�erence to [10], we treat in this chapter the phenomenon of

delayed exchange of stabilities, that is, we derive conditions such that the solution

u(x; t; ") of (2.1), (2.2) stays in the unstable region of '1(x; t) arising for t = tc(x)

for some O(1)-time interval near the unstable root '1(x; t) and then either jumps to

the stable root '2(x; t) (delayed exchange of stability) or escapes from the unstable

root (delayed loss of stability).
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3 Assumptions

Let Iu be an open bounded interval containing the origin, let I"0 = f" : 0 < " <

"0 � 1g; D = Q � Iu � I"0. Let the functions g and u0 satis�es the smoothness

condition

(A0). g 2 C2
(D;R), u0 2 C2

([0; 1]; Iu).

With respect to the roots of the degenerate equation we suppose

(A1). The degenerate equation (2.3) has in Iu � Q exactly two roots: u � 0 and

u = '(x; t), '(x; t) 2 C2
(Q; Iu): The roots u � 0 and u = '(x; t) intersect

in some smooth curve K with the representation t = tc(x) 2 C1
([0; 1]; (0; T )).

For de�niteness we suppose

'(x; t) < 0 for 0 � t < tc(x); 0 � x � 1;

'(x; t) > 0 for tc(x) < t � T; 0 � x � 1

(see Fig. 3.1).

From assumption (A1) it follows

'(x; tc(x)) � 0 for 0 � x � 1:

Concerning the stability of these roots we assume

(A2).

gu(0; x; t; 0) < 0; gu('(x; t); x; t; 0) > 0 for 0 � t < tc(x); 0 � x � 1;

gu(0; x; t; 0) > 0; gu('(x; t); x; t; 0) < 0 for tc(x) < t � T; 0 � x � 1:

Hypothesis (A2) implies that the roots u � 0 and u = '(x; t) of the degenerate

equation (2.3) considered as families of equilibria of the associated equation (2.4)

exchange their stabilities at the curve K.
Furthermore, we suppose

(A3). g(0; x; t; ") � 0 for (x; t; ") 2 Q� I0.

Assumption (A3) is motivated by applications in reaction kinetics where we are

looking for nonnegative solutions.
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u

0

0 x1

tc(x)

T

t

ϕ(x, t)

Fig. 3.1. Intersection of u � 0 and u = '(x; t) in the curve t = tc(x):

Now we introduce the functions

gmin
u

(t) = min
x2[0;1]

gu(0; x; t; 0); gmax
u

(t) = max
x2[0;1]

gu(0; x; t; 0) for 0 � t � T:

Obviously, we have for (x; t) 2 Q

gmin
u

(t) � gu(0; x; t; 0) � gmax
u

(t): (3.5)

We need also the primitives of these functions:

Gmin
(t) =

Z
t

0

gmin
u

(s)ds; G(x; t) =

Z
t

0

gu(0; x; s; 0)ds; G
max

(t) =

Z
t

0

gmax
u

(s)ds:

By (3.5) the following inequalities hold for (x; t) 2 Q (see Fig. 3.2)

Gmin
(t) � G(x; t) � Gmax

(t):

From assumption (A2) we get that the equation G
min

(t) = 0 has at most one solution

in the interval (0; T ). We assume that this solution exists.

(A4). The equation Gmin
(t) = 0 has a solution t = tmax in (0; T ).
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T ttmaxt∗
maxtmax

c t∗(x)tmin t∗
min

0

G

Gmax(t)

G(x, t)

Gmin(t)

Fig. 3.2. Inclusion of G(x; t) by Gmin

and Gmax for given x

0 x1

tc(x)

t∗(x)

T

t

tmax

t∗
min

tmin

tmax
c

Fig. 3.3. Location of tc(x) and t
�
(x)

From hypotheses (A2) and (A4) it follows that the equation G
max

(t) = 0 has a unique

solution t = tmin in (0; T ), and that for each x 2 [0; 1] the equation G(x; t) = 0 has

a unique solution t = t�(x) in (0; T ) (see Fig. 3.2).

Obviously, for x 2 [0; 1] we have

tmin � t�(x) � tmax:

Finally we assume that the following conditions hold.

(A5).

tmax

c
= max

x2[0;1]
tc(x) < tmin (see Fig. 3.3):

(A6). There is a positive number c0 such that (�c0; c0) � Iu where Iu is the interval

from assumption (A0), and

g(u; x; t; ") � gu(0; x; t; ")u for juj � c0; x 2 [0; 1]; 0 � t � t�(x); " 2 I"0 :
We note that assumption (A6) is satis�ed if the second derivative guu(0; x; t; ") is

negative for all (x; t; ") under consideration.

(A7). u
0
(x) lies in the basin of attraction of the stable root u � 0.

4 Main results

Our main result is concerned with the estimate of the delay time in cases of delayed

exchange or delayed loss of stabilities.
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Theorem 4.1 Assume the hypotheses (A1)�(A7) to be valid and u0(x) > 0 . Then,

for su�ciently small " , there exists a unique solution u(x; t; ") of (2.1), (2.2) which

is positive and satis�es

lim
"!0

u(x; t; ") = 0 for (x; t) 2 [0; 1]� (0; tmin); (4.6)

lim
"!0

u(x; t; ") = '(x; t) for (x; t) 2 [0; 1]� (tmax; T ]: (4.7)

In case u0(x) < 0, the unique solution u(x; t; ") of (2.1), (2.2) is negative and and

satis�es

lim
"!0

u(x; t; ") = 0 for (x; t) 2 [0; 1]� (0; tmin);

for t > tmin the solution escapes from u � 0 at some time tesc (escaping time) which

can be estimated by tesc � tmax.

Remark 4.2 From Theorem 4.1 it follows that the solution u(x; t; ") stays near

the unstable root u = 0 of the degenerate equation at least for the time interval

(tc(x); tmin),

Remark 4.3 In case u0(x) < 0, the solution u(x; t; ") may not exist for all t in

[0; T ].

Proof. We apply the method of di�erential inequalities. To this end, we recall

the de�nition of ordered lower and upper solutions.

De�nition 4.4 Let U(x; t; ") and U(x; t; ") be functions continuously mapping Q�
I"1 (I"1 � I"0) into R, twice continuously di�erentiable with respect to x and continu-

ously di�erentiable in t. Then U and U are called ordered lower and upper solutions

of (2.1), (2.2) for " 2 I"1, if they satisfy for " 2 I"1
1
Æ: U(x; t; ") � U(x; t; ") for (x; t) 2 Q;

2
Æ: "

�
@U

@t
� @2U

@x2

�
� g(U; x; t; ") � 0 � "

�
@U

@t
� @2U

@x2

�
� g(U; x; t; ")

for (x; t) 2 Q,

3
Æ:

@U

@x
(0; t; ") � 0 � @U

@x
(0; t; ");

@U

@x
(1; t; ") � 0 � @U

@x
(1; t; ")

for t 2 [0; T ],

4
Æ: U(x; 0; ") � u0(x) � U(x; 0; ") for x 2 [0; 1]:
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It is known (see, e.g., [28]) that the existence of ordered lower and upper solutions

of (2.1), (2.2) implies the existence of a unique solution u(x; t; ") of (2.1), (2.2)

satisfying

U(x; t; ") � u(x; t; ") � U(x; t; "):

Without loss of generality we may assume that ju0(x)j � c0 for 0 � x � 1, where c0
is the constant from hypothesis (A6).

Let � > 0 be any number independent of " such that tmin � � > tmax

c
(see Fig. 3.3).

It follows from assumption (A4) that to given � there is a constant Æa(�) > 0 such

that the function a(t; �) de�ned by

a(t; �) = gmax
u

(t) + Æa(�) for t 2 [0; T ] (4.8)

satis�es Z
tmin��=2

0

a(t; �)dt = 0: (4.9)

In what follows we consider the case u0(x) > 0.

In order to prove relation (4.6) we construct an upper solution U(x; t; ") to (2.1),

(2.2) for (x; t) 2 [0; 1]� [0; tmin � �] in the form

U(x; t; ") = c0 exp

�
1

"

Z
t

0

a(s; �)ds

�
:

By (4.9) it holds Z
t

0

a(�; �)d� < 0 for t 2 (0; tmin � �]:

Therefore, we have

lim
"!0

U(x; t; ") = 0 for (x; t) 2 [0; 1]� (0; tmin � �]: (4.10)

Since U(x; t; ") does not depend on x and ju0(x)j < c0, the inequalities 3
Æ and 4

Æ for

U in De�nition 4.1 are satis�ed trivially.

Next we verify that U(x; t; ") satis�es the second inequality in 2
Æ. It is easy to check

that U(x; t; ") obeys

"

�
@U

@t
� @2U

@x2

�
= a(t; �) U: (4.11)

From (4.11) we get

"

�
@U

@t
� @2U

@x2

�
� g(U; x; t; ")

(4.12)
= gu(0; x; t; ")U � g(U; x; t; ") + (a(t; �)� gu(0; x; t; "))U:

By assumption (A6) we have for (x; t) 2 [0; 1]� [0; tmin � �] and " 2 I"0
gu(0; x; t; ") U � g(U; x; t; ") � 0: (4.13)

8



From (3.5) and (4.8) we obtain for su�ciently small " (" 2 I"1 � I"0)

a(t; �)� gu(0; x; t; ") = gmax

u
(t) + Æa(�)� gu(0; x; t; ") � 0: (4.14)

From (4.12)�(4.14) it follows that U(x; t; ") satis�es the second inequality from con-

dition 2
Æ of De�nition 4.4 and, therefore, is for " 2 I"1 an upper solution of (2.1),

(2.2) in [0; 1]� [0; tmin � �].

Since u0(x) > 0, assumption (A3) implies that U � 0 is for " 2 I"1 a trivial lower

solution of (2.1), (2.2). Hence, for " 2 I"1, (2.1), (2.2) has a unique solution u(x; t; ")
for t 2 [0; tmin � �] satisfying by (4.10) the limit relation

lim
"!0

u(x; t; ") = 0 for (x; t) 2 [0; 1]� (0; tmin � �]: (4.15)

Since � is any small positive number, relation (4.15) is valid for 0 < t < tmin. Thus,

relation (4.6) has been proven. Note that tmin is a lower bound for the escaping time

tesc of the solution u(x; t; ") from the unstable root u = 0, that is, tmin� tc(x) yields
a lower bound for the delay of exchange of stabilities.

Now we prove relation (4.7). Let u1(x; ") = u(x; tmin � �; "). Obviously we have

0 < u1(x; ") = o(").

We consider equation (2.1) for t 2 (tmin� �; T ] with the initial-boundary conditions

u(x; tmin � �; ") = u1(x; ") for x 2 [0; 1];
(4.16)

@u

@x
(0; t; ") =

@u

@x
(1; t; ") = 0 for t 2 [tmin � �; T ]:

We note that U � 0 is a lower solution to that problem. In order to prove the

existence of a solution of (2.1), (4.16), we construct an upper solution in [0; 1] �
[tmin � �; T ] in the form

U(x; t; ") � '(x; t) +
p
"(
 + z(x; ")); (4.17)

where z is de�ned by

z(x; ") = exp

�
� �xp

"

�
+ exp

�
��(1� x)p

"

�
; (4.18)

the positive constants 
 and � will be chosen in an appropriate way later.

By (4.17) and assumption (A3) we have

"
�@U
@t

� @2U

@x2

�
� g(U; x; t; ") = "

�
@'

@t
� @2'

@x2

�

�p"�2 z(x; ")� g('(x; t) +
p
"(
 + z(x; ")); x; t; ")

� �2
p
"�2 �p"gu('(x; t); x; t; 0) (
 + z(x; ")) + o(

p
"):

By hypothesis (A2) there is a positive constant � such that

gu('(x; t); x; t; 0) � �� < 0 for (x; t) 2 [0; 1]� [tmin � �; T ]:

9



Hence, we can conclude that for su�ciently large 
 and for su�ciently small "

U(x; t; ") satis�es the second inequality from condition 2
Æ of De�nition 4.4.

Now we check that U(x; t; ") satis�es the inequalities in 3
Æ. From (4.17) and (4.18)

we obtain

@U

@x
(0; t; ") =

@'

@x
(0; t)� �

�
1� exp

�
� �p

"

��
;

@U

@x
(1; t; ") =

@'

@x
(1; t) + �

�
1� exp

�
� �p

"

��
:

If we choose � su�ciently large, then the inequalities for U in condition 3
Æ of De�ni-

tion 4.4 are satis�ed. Therefore, U(x; t; ") de�ned by (4.17) is for su�ciently small

" an upper solution of the problem (2.1), (4.16) in [0; 1] � [tmin � �; T ] and we can

conclude that problem (2.1), (2.2) has a unique solution u(x; t; ").

To obtain an upper estimate for the escaping time tesc of the solution u(x; t; ")

from the unstable root u = 0, we construct for su�ciently small " a nontrivial lower

solution of (2.1), (2.2) in [0; 1]� [0; tmax+�], where � > 0 is any number independent

of " satisfying tmax + � < T .

By hypothesis (A4), there is to any given small � > 0 a constant Æb(�) > 0 such that

the function b(t; �) de�ned by

b(t; �) = gmin
u

(t)� Æb(�) for 0 � t � tmax + � (4.19)

satis�es Z
tmax+�

0

b(s; �)ds = 0: (4.20)

Now we construct a lower solution in the form

U(x; t; ") = � exp

�
1

"

Z
t

0

b(s; �)ds

�
; (4.21)

where 0 < � < min(min0�x�1 '(x; tmax);min0�x�1 u
0
(x)). The constant � will be

more speci�ed later.

It is obvious that U(x; t; ") obeys conditions 3Æ and 4
Æ of De�nition 4.4 and satis�es

the equation

"
�@U
@t

� @2U

@x2

�
= b(t; �)U:

Using this equation we have

"

�
@U

@t
� @2U

@x2

�
� g(U; x; t; ")

(4.22)
= (b(t; �)� gu(0; x; t; "))U + gu(0; x; t; ")U � g(U; x; t; "):

From (3.5) and (4.19) it follows that for su�ciently small "

(b(t; �)� gu(0; x; t; "))U � �Æb(�)U=2: (4.23)

10



Since g(0; x; t; ") = 0 (see assumptions (A3)) we have

g(u; x; t; ") = gu(0; x; t; ")u+
1

2
guu(u�; x; t; ")u

2:

and, therefore, for juj � c0 ( c0 is the constant from assumption (A6)) the inequality

holds

gu(0; x; t; ")� g(u; x; t; ") � �1u
2; (4.24)

where �1 is some positive number. Thus, it follows from (4.22)�(4.24)

"

�
@U

@t
� @2U

@x2

�
� g(U; x; t; ") � U(�Æb(�)=2 + �1U): (4.25)

If we choose � such that � � Æb(�)=(2�1), then we get from (4.25)

"

�
@U

@t
� @2U

@x2

�
� g(U; x; t; ") � 0:

Thus, U(x; t; ") de�ned by (4.21) is a nontrivial lower solution of (2.1), (2.2) for

t 2 [0; tmax+�] and, consequently, it holds u(x; t; " � U(x; t; ") for this time interval.

By (4.21) and (4.20) we have U(x; tmax + �; ") = �, thus it holds

u(x; tmax + �; ") � � (4.26)

From this inequality we get the validity of the relation

lim
"!0

u(x; t; ") = '(x; t) for (x; t) 2 [0; 1]� (tmax + �; T ]: (4.27)

This follows from the fact that for t � tmax + � the root u = '(x; t) of degenerate

equation is stable, and that the positive function u(x; tmax+ �; ") lies in the basin of

attraction of this root.

As � does not depend on " and can be chosen arbitrarily small,

relation (4.27) is valid for all t from the interval (tmax; T ]. This completes the proof

of relation (4.7), and consequently, the proof of Theorem 6.1 is completed for the

case u0(x) > 0.

In the case u0(x) < 0 the proof is based on the same scheme with the following

changes: U � 0 is a trivial upper solution

of problem (2.1), (2.2) for 0 � t � T ,

U(x; t; ") = �c0 exp
�
1

"

Z
t

0

a(s; �)ds

�

is a lower solution for 0 � t � tmin � �, and

U(x; t; ") = �� exp
�
1

"

Z
t

0

b(s; �)ds

�

is an nontrivial upper solution for 0 � t � tmax + �. 2

11



References

[1] E. Benoît (Ed.), Dynamic bifurcation, Lecture Notes in Mathematics 1493,

Springer-Verlag, New York, 1991.

[2] V.F. Butuzov, Singularly perturbed parabolic equations in case of intersecting

roots of the degenerate equation, Russian J. Math. Physics 9, 50�59 (2002).

[3] V.F. Butuzov and N.N. Nefedov, Singularly perturbed boundary value

problem for a second order equation in case of exchange of stability, Math. Notes

63, 311�318 (1998), (translation from Mat. Zametki 63, 354�362 (1998)).

[4] V.F. Butuzov, N.N. Nefedov and K.R. Schneider, Singularly perturbed

boundary value problems in case of exchange of stabilities, J. Math. Anal. Appl.

229, 543�562 (1999).

[5] V.F. Butuzov, N.N. Nefedov and K.R. Schneider, Singularly perturbed

reaction-di�usion systems in cases of exchange of stabilities, Nat. Resour.

Model. 13, 247�269 (2000).

[6] V.F. Butuzov, N.N. Nefedov and K.R. Schneider, Singularly perturbed

elliptic problems in the case of exchange of stabilities, J. Di�er. Equations 169,

373�395 (2001).

[7] V.F. Butuzov, N.N. Nefedov and K.R. Schneider, On a class of singu-

larly perturbed partly dissipative reaction-di�usion systems, Weierstraÿ�Institut

für Angewandte Analysis und Stochastik Berlin, Preprint No. 646, Berlin, 2001.

[8] V.F. Butuzov, N.N. Nefedov and K.R. Schneider, On a singularly per-

turbed system of parabolic equations in the case of intersecting roots of the de-

generate equation, Computational Mathematics and Mathematical Physics 42,

176�187 (2002).

[9] V.F. Butuzov, N.N. Nefedov and K.R. Schneider, Singularly perturbed

partly dissipative reaction-di�usion systems in case of exchange of stabilities, to

appear in: J. Math. Anal. Appl. (2002).

[10] V.F. Butuzov and I. Smurov, Initial boundary value problem for a singularly

perturbed parabolic equation in case of exchange of stability, J. Math. Anal.

Appl. 234, 183�192 (1999).

[11] F. Dumortier and B. Smits, Transition time analysis in singularly perturbed

boundary value problems, Trans. Am. Math. Soc. 347, 4129�4145 (1995).

[12] F. Dumortier and R. Roussarie, Canard cycles and center manifolds,

Mem. Am. Math. Soc. 577, AMS, Providence, 1996.

[13] T. Erneux and P. Mandel, Imperfect bifurcation with a slowly-varying con-

trol parameter, SIAM J. Appl. Math. 46, 1�15 (1986).

12



[14] T. Erneux and P. Mandel, The slow passage through a steady state bifur-

cation: Delay and memory e�ects, J. Stat. Physics 48, 1059�1069 (1987).

[15] R. Haberman, Slowly varying jump and transition phenomena associated with

algebraic bifurcation problems, SIAM J. Appl. Math. 37, 69�106 (1979).

[16] S. Karimov, The asymptotics of the solutions of some classes of di�erential

equations with a small parameter at the highest derivatives in case of exchange

of stability of the equilibrium point in the plane of fast motions, Di�er. Equs.

21, 1136�1139 (1985), (translation from Di�er. Uravn. 21, 1698�1701 (1985)).

[17] A.Yu. Kolesov and N.Kh. Rozov, �Chase on ducks� in the investigation

of singularity perturbed boundary value problems, Di�er. Equs. 35, 1374�1383

(1999), (translation from Di�er. Uravn. 35, 1356�1365 (1999)).

[18] A.Yu. Kolesov and N.Kh. Rozov, �Buridans's ass� problem in relaxation

systems with one slow variable, Math. Notes 65, 128�131 (1999), (translation

from Mat. Zametki 65, 153�156 (1999)).

[19] M. Krupa and P. Szmolyan, Relaxation oscillation and canard explosion, J.

Di�. Equs. 174, 312�368 (2001).

[20] M. Krupa and P. Szmolyan, Extending geometric singular perturbation the-

ory to non-hyperbolic points�fold and canard points in two dimensions, SIAM

J. Math. Anal. 33, 286�314 (2001).

[21] N.R. Lebovitz and R.J. Schaar, Exchange of stabilities in autonomous

systems, Stud. Appl. Math. 54, 229�260 (1975).

[22] N.R. Lebovitz and R.J. Schaar, Exchange of stabilities in autonomous

systems - II. Vertical bifurcation, Stud. Appl. Math. 56, 1�50 (1977).

[23] N.N. Nefedov and K.R. Schneider, Delayed exchange of stabilities in sin-

gularly perturbed systems, Weierstraÿ�Institut für Angewandte Analysis und

Stochastik Berlin, Preprint No. 270, Berlin, 1996.

[24] N.N. Nefedov and K.R. Schneider, Immediate exchange of stabilities in

singularly perturbed systems, Di�. Int. Equs. 12, 583�599 (1999).

[25] N.N. Nefedov, K.R. Schneider and A. Schuppert, Jumping behavior

in singularly perturbed systems modeling bimolecular reactions, Weierstraÿ�

Institut für Angewandte Analysis und Stochastik, Berlin, Preprint No. 137,

Berlin, 1994.

[26] A.I. Neishtadt, On delayed stability loss under dynamic bifurcations I, (in

Russian), Di�er. Uravn. 23, 2060�2067 (1987).

[27] A.I. Neishtadt, On delayed stability loss under dynamic bifurcations II, (in

Russian), Di�er. Uravn. 24, 226�233 (1988).

13



[28] C.V. Pao, Nonlinear parabolic and elliptic equations, Plenum Press, New York

and London, 1992.

[29] M.A. Shishkova, Study of a system of di�erential equations with a small pa-

rameter at the highest derivatives, (in Russian), Dokl. Akad. Nauk SSSR 209,

576�579 (1973).

[30] E.A. Shchepakina and V.A. Sobolev, Integral manifolds, canards and

black swans, Nonlin. Analysis, Theory, Methods, Applications 44, 897�908

(2001).

[31] V.A. Sobolev and E.A. Shchepakina, Integral surfaces of duck-trajectories

with changing stability, (in Russian), Izv. Ross. Akad. Estestv. Nauk, Ser. MM-

MIU 1, No. 3, 151�175 (1997).

[32] A.B. Vasil'eva and V.F. Butuzov, Asymptotic expansions of solutions of

singularly perturbed equations, (in Russian), Nauka, Moscow, 1973.

[33] A.B. Vasil'eva and V.F. Butuzov, Asymptotic methods in the theory of

singular perturbation, (in Russian), Vysshaya Shkola, Moscow, 1990.

[34] A.B. Vasil'eva, V.F. Butuzov and L.V. Kalachev, The boundary func-

tion method for singular perturbation problems, SIAM Studies in Applied Math-

ematics, Philadelphia 1995.

14


