
Abstract

We study a mathematical model for the inductive heating of steel.It consists of a vector

potential formulation of Maxwells equations coupled with a heat equation and an evolution

equation for the volume fraction of the high temperature phase in steel. An important

task for practical applications of induction heating it to �nd the optimal coupling distance

between inductor and workpiece.

To this end, we employ the speed method to investigate the sensitivity of solutions

to the state equations with respect to perturbations of the inductor coil. We show the

existence of strong material derivatives for the state variables and apply the structure

theorem to characterize the Eulerian derivative of the cost functional.

1 Introduction

Electromagnetic induction provides a method of heating electrically conducting materials. The

basic components of an induction heating system are depicted in Figure 1. An altenating current

�ows through the induction coil (in the sequel called inductor). It generates an alternating

magnetic �eld which in turn induces eddy currents in the workpiece. These dissipate energy,

bring about heating and lead to the growth of the high temperature phase austenite in the

workpiece made of steel.

Figure 1: Induction heating: real process (left) and notation of domains in idealized setting.

Since the magnitude of the eddy currents decreases with growing distance from the workpiece

surface because of the frequency dependent skin-e�ect, induction heating is a suitable heat

source for surface heat treatments if the current frequency has been chosen big enough. On the

other hand, if su�cient time for heat conduction is allowed and the current frequency is not
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Figure 2: Adjustment of induction heating patterns by varying the turn spacing (a) or the

coupling distance (b),(c) (from [5]).

too big, relatively uniform heating patterns can be obtained. Hence induction heating can also

be used in heat treatments like annealing.

An important task during the planning of an induction heat treatment is to �nd the optimal

coupling distance between inductor and workpiece in order to obtain a desired heating pat-

tern.This is illustrated in Figure 2. In all the examples shown, the goal is to produce a uniform

hardening depth. In (a) a conical workpiece shall be heated by an inductor of the shape of a

cylindrical spiral. To compensate for the bigger distance between inductor and workpiece in

the upper part, the turn spacing there is narrower compared to the lower part.

In (b), because of the workpiece's geometry, heat will concentrate in the lower corners of

the workpiece cross-section, if the coupling distance is everywhere the same. The remedy

is to increase the coupling distance in the lower part of the workpiece leading to a uniform

penetration depth.

Example (c) depicts the typical situation of a hole in an otherwise plane workpiece surface. The

inductor on the left-hand side with a uniform coupling distance leads to an uneven hardening

pattern and possibly even to a melting of hole edges. A better result can be achieved when the

coupling distance between inductor and workpiece is increased locally around the hole.

In the next Section we present the mathematical model for induction heating, which has been

derived in [14]. To investigate the sensitivity with respect to perturbations of the inductor, we

apply the speed-method as presented in the monographs [23] and [6]. In Section 3 we transform

the state equations to the �xed domain, Section 4 is devoted to deriving stability estimates and
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in Section 5 we prove the existence of strong material derivatives for the state variables.

There are already a lot of papers on modeling, analysis and simulation of induction heating,

e.g., [2]�[4], [7]�[9], [14], [16], [20]�[22]. In [1], an optimal control problem for a 2D induction

heating setting has been considered. Mathematical models for phase transitions in steel have

been considered in, e.g., [11]�[14] and [19].

2 The mathematical model

2.1 The state equations

Since we cannot model the hardening machine itself, we restrict ourselves to the following

idealized geometric setting (cf. Fig. 1 (right)). Let D � IR3 be the hold all domain, which

contains the inductor 
 and the workpiece �.

We call G = 
 [ � the set of conductors and de�ne the space - time cylinder Q = �� (0; T ).

Since we do not consider the hardening machine in our model, we assume that the inductor 


is a closed tube. Inside we �x a section � and model the current density which is generated by

the hardening machine by an interface condition on �.

In [14] an electrothermomechanical model for the induction heating of steel has been derived.

Here we consider a simpli�ed version where the equations are only sequentially coupled. It

consists of a linear elliptic problem for the scalar potential �, a degenerate parabolic equation

for the magnetic vector potential A, a semilinear parabolic equation for the temperature � and

and ODE for the evolution of the austenite volume fraction z.

(P) Find (A; ��; �; z) 2 L1(0; T ;X)�H1(0; T ;H1(
)=IR)�W 2;1
3 (Q)�W 1;1(0; T ;L1(�))

such that

�0

Z



r� � ru dx+

Z
�

j
s
'dx = 0; for all ' 2 H1(
)=IR; (2.1a)

A(0) = A0; in D; (2.1b)

�0

Z
G

A
t
� v dx +

Z
D

1

�
curl A � curl v dx+

Z
D

1

�
div A div v dx

+�0

Z



r� � v dx = 0; for all v 2 X; a.e. in (0; T ); (2.1c)

�(0) = �0; in �; (2.1d)

@�

@�
= 0; in @�� (0; T ); (2.1e)

�c
"
�
t
� k�� = ��Lz

t
+ �0jAt

j
2; in Q; (2.1f)

z(0) = 0; in �; (2.1g)

z
t

=
1

T (�)
[z
eq
(�)� z]+; in Q; (2.1h)

with W 2;1
p

(Q) = W 1;p(0; T ;Lp(�)) \ Lp(0; T ;W 2;p(�)) and Q = � � (0; T ) the space time
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domain. The solution space X for the vector potential as

X = fv 2 H( curl ;D)
��� div v 2 L2(D) and n� v

���
@D

= 0g;

which in view of (H1) below is a closed subset of H1(D). Owing to [10, Lemma 3.4]

kvkX =
�Z
D

j curl vj2 dx+

Z
D

( div v)2 dx
�1=2

is an equivalent norm on X. Note further that (2.1a) is Neumann problem for which solutions

are sought for in the quotint space H1(
)=IR.

Remark 2.1 In the original model derived in [14] the Coulomb gauge div A = 0 has been

enforced by including it in the solution space X. To simplify the application of the speed-method

in the next section, we have chosen here to include a divergence part in the bilinear form in

(2.1c).

We make the following assumptions:

(H1) �
 � D; �� � D; �
 \ �� = ;; and @
; @�; @D are of class C1;1.

(H2) �0; �; c"; k, and L are positive constants,

(H3) A0 2 X \H2(D), �0 2 W
2;3(�);

(H4) �(x) = �2��
+ �1(1 � �

�
); with constants 0 < �1 < �2.

To obtain higher regularity we will di�erentiate the equations for scalar and vector potential

with respect to time. Therefore we have to assume the compatibility conditions

(H5) j
s
2 H1(0; T ;H�1=2(�)); such that

R
�
j
s
dx = 0 and

R
�
j
s;t
dx = 0:

(H6) There exists y0 2 X, such that

�0

Z
G

y0 � v dx+

Z
D

1

�
curl A0 � curl v dx

+

Z
D

1

�
div A0 div v dx+ �0

Z



r�(0) � v dx = 0;

for all v 2 X.

(H7) 0 < T� � T (x) � T � <1, for all x 2 IR, kT k
C
2(IR) �M;

(H8) 0 � z
eq
(x) � 1, for all x 2 IR, kz

eq
k
C
2(IR) �M;

(H9) H 2 C2;1(IR), a monotone approximation of the heaviside function.
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2.2 A weak solution to the state equations

Problem (P) is only sequentially coupled and can be solved by solving consecutively the sub-

problems (2.1a), (2.1b) + (2.1c), and (2.1d) � (2.1h).

For the �rst one, we have

Lemma 2.1 Assume (H1), (H2), and (H5), then (2.1a) has a unique solution

� 2 H1(0; T ;H1(
)=IR) such that

kr�k
H

1(0;T ;L2(
)) � C; (2.2)

with a constant C > 0, depending on j
s
; T , and �0.

Proof.

The proof follows from the Lax-Milgram lemma and the fact that we may di�erentiate (2.1a)

with respect to time because of (H5). 2

For the vector potential equation (2.1b), (2.1c) we have

Lemma 2.2 Assume (H1)�(H6), then (2.1b), (2.1c) has a unique solution A 2 L1(0; T ;X),

satisfying the estimate

kAk
L
1(0;T ;X)+ kA

t
k
L
1(0;T ;L6(G)) � C; (2.3)

with a constant C depending on j
s
, T; A0; �0, and �1;2.

Proof.

To prove the xistence of a unique weak solution one can use, e.g., Rothe's method of implicit

time discretization as described in the monograph [17]. The �rst part of the a priori estimate

follows from inserting v = A
t
into (2.1c) and integrating in time. To obtain the second part

one can formally di�erentiate (2.1c) with respect to t. Then, we substitute y = A
t
and solve

the system

y(0) = y0; in D;

�0

Z
G

y
t
� v dx+

Z
D

1

�
curl y � curl v dx+

Z
D

1

�
div y div v dx

+�0

Z



r�
t
� v dx = 0; for all v 2 X; a.e. in (0; T ):

Testing with v = y
t
and integrating in time we obtain an estimate for y in L1(0; T ;X). Owing

to the compatibility condition (H6) we can recover that y = A
t
a.e. in G. Hence we can use

the embedding H1(G) � L6(G) and obtain the second part of (2.3). 2

Lemma 2.3 Assume (H7)�(H9), then the following are true:

(1) Let � 2 L1(Q), then (2.1g), (2.1h) has a unique solution satisfying

0 � z(x; t) < 1 a.e. in Q; (2.4)
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and

kzk
W

1;1(0;T ;L1(�)) � C; (2.5)

with a constant C > 0 independent of �.

(2) Let �
k
! � strongly in L1(�). Then

z
k
�! z; strongly in W 1;p(0; T ;Lp(�)); for p 2 [1;1);

where z
k
and z are the solution to (2.1g), (2.1h) corresponding to �

k
and �, respectively.

(3) Let �1; �2 2 Lp(Q); p 2 [1;1), and z1; z2 the corresponding solutions to (2.1g), (2.1h),

then there exists a constant C > 0, such that

kz1 � z2k
W

1;p(0;T ;Lp(�)) � Ck�1 � �2kW 1;p(0;T ;Lp(�)):

Proof.

The existence of a unique local solution to (2.1g), (2.1h) is a direct consequence of the theorem of

Carathéodory, see e.g. [24, p. 1044]. Using (H7)�(H9), and the theory of di�erential inequalities

(cf. [11, Lemma 2.1], we obtain (2.4), whereas (2.5) is a direct consequence of (H7)�(H9).

Assertion (2) follows from Lebesgue's lemma.

To prove (3), let �i 2 Lp(Q), i = 1; 2, and de�ne �� = �1 � �2, then �z = z1 � z2 solves

�z
t
= f(�1; z1)� f(�2; z2); (2.6)

where f(�; z) denotes the right-hand side of (2.1h). In view of (H7)�(H9), f is Lipschitz

continuous. Hence, we can test (2.6) with �zp�1 and apply Young's inequality to obtain

1

p

Z
�

k�z(t)kp dx � c1

tZ
0

Z
�

j�zjp dx ds + c2

tZ
0

Z
�

j��jj�zjp�1 dx ds

�

�
c1 + c2

p � 1

p

� tZ
0

Z
�

j�zjp dx ds +
c2

p

tZ
0

Z
�

j��jp dx ds:

Now we can apply Gronwall's lemma and use (2.6) once again to conclude the proof. 2

Remark 2.2 Lemma 2.3 shows that the volume fraction z, which is de�ned as the solution to

the initial value problem (2.1g), (2.1h), satis�es assumption (A6).

Before considering the heat equation (2.1f), we recall the following results from the linear theory

of parabolic equations:

Lemma 2.4 [18, Theorem 9.1] Let g 2 Lp(Q) and u0 2 W 1;p(�) for some p 2 (1;1). Then

there exists a constand C > 0 such that the unique solution to

u
t
��u = g in Q;

@u

@�
= 0; in @�� (0; T );

u(0) = u0; in �
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satis�es the estimate

kuk
W

2;1
p

(Q)
� C

�
ku0kW 1;p(�) + kgk

L
p(Q)

�
:

For later use we also note the following embedding theorem [22, (3.9)], written down for dim

� = 3:

Lemma 2.5 Let k = 0; 1; p � q; 2� k � 5
�
1
q

� 1
p

�
� 0; then the embedding

W 2;1
q

(Q) � W k;0
p

(Q)

is continuous. The inclusion is compact if the last inequality is strict.

Lemma 2.6 Assume(H1)�(H9), then (2.1d)�(2.1h) has a unique solution (�; z), such that

k(�; z)k
W

2;1
3 (Q)�W 1;1(0;T ;L1(�)) � C:

The constant C depends on A
t
and �0.

Proof.

The existence can be proved, e.g., using the Schauder �xed point theorem. The a priori estimate

is a direct consequence of Lemma 2.3 and Lemma 2.4.

To prove uniqueness, we take the di�erence of two solutions �� = �1 � �2 which satis�es

�c
"

��
t
� k��� = ��L(z1

t
� z2

t
); in Q;

@��

@�
= 0; in @�� (0; T ); ��(0) = 0; in �:

Using Lemma 2.3(3), Lemma 2.4 and Hölder's inequality, we can infer1

k��k3
W

2;1
3 (Qt)

� c1

tZ
0

Z
�

���
sZ

0

��
�
d�
���3 dx ds � T 2c1

tZ
0

sZ
0

Z
�

j��
�
j3 dxd� ds � c2

tZ
0

k��k3
W

2;1
3 (Qs)

ds;

where Q
t
= �� (0; t). Now the assertion follows from Gronwall's lemma. 2

Summarizing the results of Lemmas 2.1�2.3 and Lemma 2.6 we obtain

Theorem 2.1 Assume (H1) � (H9), then Problem (P) has a unique solution.

2.3 The shape design problem

To decide whether the coupling distance between inductor and workpiece has been chosen

decently, we measure the volume fraction of austenite at the end-time T and compare it to a

desired volume fraction �z, i.e., we consider the following cost functional of tracking type

J (
) =

Z
�

�
z(x; T )� �z

�2
dx: (2.7)

The precise formulation of our design problem then reads

1Note that ��� is short for
@��(x;�)

@�
:
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(CP) Minimize J (
) , given by (2.7) ,

subject to


 2 U
ad

and the state equations (2.1a)�(2.1h).

In this paper we completely ignore the question of de�ning a reasonable set of admissible

domains U
ad

and proving the existence of an optimal design. Using a special topology, namely

tubes generated from space curves, these questions have been discussed in [15].

Instead we will investigate the shape sensitivity with respect to perturbations of the inductor

without specifying the inductor topology. We only require that it satis�es (H1).

3 Speed method and transformation to the �xed domain

To investigate the sensitivity of solutions to the state system (2.1a) - (2.1h) with respect to

perturbations of the shape of the inductor 
, we use the speed method (cf. [23, Sec. 2.9]).

We introduce a speed vector �eld V satisfying

(H10) V 2 C(��1; �1;C
2
0(D; IR

3)); supp V � (B
Æ1(
) n BÆ2(�1)), with positive constants �1

and Æ1;2.

Hence, the velocity �eld is chosen in such a way that the inductor can be perturbed, except

for a small region around the interface �, where current is supplied and in reality the inductor

is �xed to the hardening machine. Moreover, we tacitly assume that Æ1 has been chosen small

enough to assure �� \ suppV = ;.

Now we construct a family of mappings

T
�
(V ) : IR3

3 X �! x
�
2 IR3;

where x
�
satis�es the initial value problem

dx
�

d�
= V (�; x

�
);

x0 = X:

Then we de�ne a family of perturbations of a given initial con�guration 
 by



�
= T

�
(V )(
):

All equations de�ned in 

�
can be transported to the �xed domain 
, using the transformation

T�1
�

: 

�
! 
. Note that, by construction, we have 
0 = 
 and 


�
\ �� = ;, for all

� 2 (��1; �1), if �1 has been chosen small enough. Moreover, the interface �, where the source

current is supplied, remains invariant under the perturbations of 
, and we have T
�
(V )(D) = D.
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Remark 3.1 In the sequel we indicate functions on 

�
with subscript � , and functions trans-

ported to the �xed domain 
 with superscript � , i.e., f � = f
�
Æ T

�
.

The following lemma describes the transport of div and grad to the �xed domain. The proof

can be found in [23, Sec. 2]. Note that the Jacobian of T
�
is denoted by DT

�
. Moreover, for

any matrix B, the transposed one is denoted by �B.

Lemma 3.1 Let B1(� ) =
�DT�1

�
, then we have

(1)

( grad ') Æ T
�
=
�
B1(� )r

��
' Æ T

�

�
; for all ' 2 H1(D);

(2)

( div  ) Æ T
�
=
�
B1(� )r

�
�

�
 Æ T

�

�
; for all  2 H1(D):

(3)

( curl  ) Æ T
�
=
�
B1(� )r

�
�

�
 Æ T

�

�
; for all  2 H1(D):

Using Lemma 3.1, we obtain for (2.1a), with ' 2 H1(

�
)=IR ,

�

Z
�

j
g
'dx = �0

Z

�

r�
�
� r'dx

= �0

Z



det(DT
�
)
�
r�

�
� r'

�
Æ T

�
dx

= �0

Z



B2(� )r�
�

� r(' Æ T
�
) dx

with

�(� ) = det(DT
�
) and B2(� ) = �(� ) �B1(� )B1(� ):

Hence, (2.1a) is replaced with

�

Z
�

j
g
'dx = �0(�; �

� ; '); for all ' 2 H1(
)=IR; (3.8)

and

�0(�; �
� ; ') := �0

Z



B2(� )r�
�

� r'dx:

Now we turn to the Maxwell equation (2.1c). For the �rst term, we obtain

�0

Z
G�

@A
�

@t
v dx = �0

Z
G

�(� )A�

t
� (v Æ T

�
) dx

=: �1(�;A
�

t
; v Æ T

�
);
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For the next term, we utilize Lemma 3.1 (2), (3) to obtainZ
D

1

�
curl A

�
� curl v dx+

Z
D

1

�
div A

�
div v dx

=

Z
D

�(� )

�

�
curl A

�
� curl v

�
Æ T

�
dx+

Z
D

�(� )

�

�
div A

�
div v

�
Æ T

�
dx

=

Z
D

�(� )

�
f(B1(� )r)�A�

g � f(B1(� )r)� (v Æ T
�
)g dx

+

Z
D

�(� )

�
f(B1(� )r) �A�g f(B1(� )r) � (v Æ T

�
)g dx

=: �2(�;A
� ; v Æ T

�
):

For the last term in (2.1c), we have

�0

Z

�

r�
�
� v dx = �0

Z



�(� )
�
r�

�
� v
�
Æ T

�
dx

= �0

Z



B3(� )r�
�

� (v Æ T
�
) dx

=: F (�; �� ; v Æ T
�
);

with B3(� ) = �(� )B1(� ).

Altogether, we have replaced (2.1c) with 2

�1(�;A
�

t
; v) + �2(�;A

� ; v) + F (�; �� ; v) = 0; for all v 2 X; (3.9a)

A�

0 = A0 Æ T� : (3.9b)

Remark 3.2 Another possibility to transport the divergence operator to the �xed domain is, to

use the formula (cf. [23])

( div  ) Æ T
�
=

1

�(� )
div

�
�(� )DT�1

�
( Æ T

�
)
�
; for all  2 H1(D):

It shows, that functions that are divergence-free on 

�
generally loose this property, when trans-

ported to the �xed domain. To cope with this di�culty, we could introduce an auxiliary unknown

function

�� = �(� )DT�1
�
A� ;

which in view of the above formula would give

div A
�
= 0 in 


�
() div �� = 0 in 
:

However, as we have mentioned already in Remark 2.2, in this case the shape sensitivity analysis

becomes very di�cult and is still an open problem, at least for a time-dependent vector potential.

2Note that v Æ T� 2 X if and only if v 2 X.
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4 Stability estimates

Lemma 4.1 B1, B2, B3, � are di�erentiable. For j� j � �1, and �1 small enough, we have

�(� ) = 1 + ��0(0) + o(� );

B
i
(� ) = I + �B0

i
(0) + o(� ); i = 1; : : : ; 3:

The derivatives at � = 0 are given by

�0(0) = div V (0);

B0

1(0) = �
�

DV (0);

B0

2(0) = div V (0)I � 2"(V (0));

B0

3(0) = div V (0)I � �

DV (0):

Here, "(V (0)) is the symmetrized part of DV (0), i.e. , "(V (0)) = 1
2
(DV (0) + �DV (0)):

For the proof, we refer again to [23, Sec. 2.13].

A particular consequence of Lemma 4.1 is

Corollary 4.1 Let j� j � �1, and �1 small enough. Then there exist real-valued functions g
i

satisfying g
i
(� ) = o(� ); i = 0; : : : ; 3 and bilinear forms ~�

i
(�; : ; : ); i = 0; 1; 2 and ~F (�; : ; : )

such that the following are valid:

(1) For all '1; '2 2 H
1(
)=IR, we have

�0(�; '1; '2) = �0(0; '1; '2) + ��0;� (0; '1; '2) + ~�0(�; '1; '2);

�0;� (0; '1; '2) = �0

Z



B 0

2(0)r'1r'2 dx;

���~�0(�; '1; '2)��� � g0(� )kr'1k
L2(
)

kr'2k
L2(
)

;

(2) For all v1; v2 2 L
2(D); we have

�1(�; v1; v2) = �1(0; v1; v2) + ��1;� (0; v1; v2) + ~�1(�; v1; v2);

�1;� (0; v1; v2) = �0

Z
G

�0(0)v1 � v2 dx;

���~�1(�; v1; v2)��� � g1(� )kv1k
L2(G)

kv2k
L2(G)

;
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(3) For all v1; v2 2 X; we have

�2(�; v1; v2) = �2(0; v1; v2) + ��
2;�
(0; v1; v2) + ~�2(�; v1; v2);

�
2;�
(0; v1; v2) =

Z
D

�0(0)

�

�
curl v1 � curl v2 + div v1 div v2

�
dx

+

Z
D

1

�
[(B 0

1(0)r)� v1] � curl v2 dx

+

Z
D

1

�
curl v1 � [(B

0

1(0)r)� v2] dx

+

Z
D

1

�
[(B 0

1(0)r) � v1] div v2 dx

+

Z
D

1

�
div v1 � [(B

0

1(0)r) � v2] dx

���~�2(�; v1; v2)��� � g2(� )kv1kXkv2kX:

(4) For all ' 2 H1(
)=IR and v 2 X; we have

F (�; '; v) = F (0; '; v) + �F
;�
(0; '; v) + ~F (�; '; v);

F
;�
(0; '; v) = �0

Z



B0

3(0)r' � v dx;

��� ~F (�; '; v)��� � g4(� )kr'kL2(
)kvkX:

Using Corollary 4.1, we can prove the following stability result:

Lemma 4.2 Assume (H1)�(H10), then there exists a constant C > 0 such that

(1) kr�� �r�k
H

1(0;T ;L2(
)) � C � j� j,

(2) kA� �Ak
L
2(0;T ;X)+ kA�

t
�A

t
k
L
10=3(0;T ;L10=3(G)) � C � j� j,

(3) k�� � �k
W

2;1
5=3

(Q)
� C � j� j,

(4) kz� � zk
W

1;5(0;T ;L5(�)) � C � j� j.

Remark 4.1 (z� ; �� ) is the solution to (2.1d) � (2.1h), where A
t
in (2.1f) has been replaced

with A�

t
. In view of (H12), we have A�

t
= A

�;t
on �.

For the proof, we need the following interpolation result:

Lemma 4.3 Let u 2 L1(0; T ;L2(�)) \ L2(0; T ;H1(�)), then there holds

TZ
0

ku(t)k10=3
L
10=3(�)

dt �
� TZ

0

ku(t)k2
L
6(�)

dt
�
kuk4=3

L
1(0;T ;L2(�))

:

12



Proof. Owing to Riesz' convexity theorem (cf. [24, (A113)]), we have

kuk
L
r(�) � kuk1��

L
q1 (�)

kuk�
L
q2(�)

;

for all u 2 Lq1(�) \ Lq2(�) with 1 � q1; q2 < 1; 0 < � < 1, and 1
r

= 1��
q1

+ �
q2
. Invoking the

continuous embedding H1(�) � L6(�), the assertion follows by de�ning q1 = 6; q2 = 2; � = 2
5
,

and r = 10
3
. 2

Proof. [of Lemma 4.2]

According to Lemma 4.1, we can write

�(� ) = 1 + ��0(�0); B
i
(� ) = I + �B0

i
(�

i
); i = 1; 2; 3 (4.10)

for � small enough and �
i
2 [0; � ], i = 0; : : : ; 3. Note that �(� ) � c

�1 > 0 for j� j � �1, if the

latter has been chosen small enough and that the B
i
's are positive de�nite for j� j � �1.

Using (H2) and (H5), this gives immediately

kr��k
H

1(0;T ;L2(
)) � c1; (4.11)

independent of � . Moreover, we can use (3.8) and (4.10) to write

0 = �0(�; �
� ; ')� �0(0; �; ')

= �0(0; �
�

� �;') + �

Z



B 0

2(�)r�
�

� r'dx:

Inserting ' = �� � � and using Young's inequality, we obtain

kr�� �r�k
L
2(0;T ;L2(
)) � c2j� j:

Since the same estimate holds true for ��
t
� �

t
, assertion (1) is proved.

We insert v = A�

t
into (3.9a), use (4.10) and integrate in time to obtain for the �rst term

�0

tZ
0

Z
�

�(� )A�

s
�A�

s
dx ds � c

�1�0

tZ
0

Z
�

jA�

s
j
2 dx ds:

13



The second term gives

tZ
0

�2(�;A
� ; A�

s
) ds =

tZ
0

Z
D

�(� )

�
f(B1(� ) � r)�A�g � f(B1(� ) � r)�A�

s
g dx ds

+

tZ
0

Z
D

�(� )

�
f(B1(� ) � r) �A�

g f(B1(� ) � r) �A�

s
)g dx ds

=
1

2

tZ
0

Z
D

�(� )

�

@

@s

��� (B1(� ) � r)�A�

���2 dx ds

+
1

2

tZ
0

Z
D

�(� )

�

@

@s

��� (B1(� ) � r) �A�

���2 dx ds
�

1

2�2

Z
D

��� curl A� (t)
���2 dx+ 1

2�2

Z
D

��� div A�(t)
���2 dx + �eg(A�(t))� c3;

with a function eg satisfying eg(A�(t)) � c4kA
�(t)k2

X
. For the last term in (3.9a), we apply

Young's inequality and obtain

tZ
0

F (�; �� ; A�

s
) ds �

c
�1

2
�0

tZ
0

Z



jA�

s
j
2 dx ds + c5

tZ
0

Z



jr�� j2 dx ds:

Invoking (4.11) and choosing � small enough, we �nally obtain

kA�

k
L
1(0;T ;X)+ kA�

t
k
L
2(0;T ;L2(G)) � c6: (4.12)

Now we di�erentiate (3.9a) formally with respect to time and insert v = A�

tt
. De�ning

A�

0;t = y Æ T
�

(4.13)

(cf. (H6) and (3.9b)), analogously to the derivation of the previous estimate, we get

kA�

t
k
L
1(0;T ;X)+ kA�

tt
k
L
2(0;T ;L2(G)) � c7: (4.14)

Next, we take the di�erence of (3.9a) for A� and A and obtain

0 = �1(�;A
�

t
; v) + �2(�;A

� ; v) + F (�; �� ; v)� �1(0; At
; v)� �2(0; A; v)� F (0; �; v)

= �1(0; A
�

t
�A

t
; v) + �2(0; A

�

�A; v) + F (0; �� � �; v)

+G0(�; �
� ; v) +G1(�;A

�

t
; v) +G2(�;A

� ; v); (4.15)

with G0(�; �
� ; v) = F (�; �� ; v) � F (0; �� ; v), G1(�;A

�

t
; v) = �1(�;A

�

t
; v) � �1(0; A

�

t
; v) and

G2(�;A
� ; v) = �2(�;A

� ; v)� �2(0; A
� ; v) satisfying (cf. (4.10)),

jG0(�; '; v)j � c8j� j kr'kL2(
)kvkX;

jG1(�; v1; v2)j � c9j� j kv1k
L2(G)

kv2k
L2(G)

;

jG2(�; v1; v2)j � c10j� j kv1kXkv2kX:

14



Inserting v = A� �A into (4.15) and integrating in time leads to

�0

2

Z
G

jA�(t)�A(t)j2 dx+

tZ
0

Z
D

1

�
j curl (A�

�A)j2 dx dt

� �0

tZ
0

Z
D

jr(�� � �) � (A� �A)j dx dt+
�0

2

Z
G

jA�

0 �A0j
2 dx

+j� jc8

tZ
0

kr��kL2(
)kA
�

�AkX + j� jc9

tZ
0

kA�

t
k
L2(G)

� kA�

�Ak
L2(G)

+j� jc10

tZ
0

kA�k
X
� kA� �Ak

X
:

Applying the inequalities of Young and Gronwall and using (3.9b), we obtain

kA�

�Ak
L
1(0;T ;L2(G)) + kA�

�Ak
L
2(0;T ;X) � c11j� j: (4.16)

Moreover, using (4.15) once again as well as (4.16), we obtain

tZ
0

�1(0; A
�

s
�A

s
; v) ds � c12j� jkvkL2(0;t;X): (4.17)

As before, we now di�erentiate (4.15) formally with respect to time3 insert v = A�

t
� A

t
and

make the same computations as before, but use (4.13) instead of (3.9b). Thus we obtain

kA�

t
�A

t
k
L
1(0;T ;L2(G)) + kA�

t
�A

t
k
L
2(0;T ;X) � c13j� j;

and, similar to (4.17)

tZ
0

�1(0; A
�

ss
�A

ss
; v) ds � c14j� jkvkL2(0;t;X): (4.18)

To conclude the proof of assertion (2), we apply Lemma 4.3 with u = A�

t
�A

t
, i.e.,

kA�

t
�A

t
k
L
10=3(0;T ;L10=3(�)) � c15 � j� j: (4.19)

To prove assertion (3), we de�ne �� = �� � � and �z = z� � z (cf. Remark 4.1). Then �� solves

�c
p

��
t
� k��� = ��L�z

t
+ �0(A

�

t
�A

t
) � (A�

t
+A

t
) in Q

@��

@�
= 0; in �� (0; T ); ��(0) = 0 in �:

3Note that Bi(� ); i = 1; 2; 3 and �(� ) are independent of time, hence the bilinear forms are not a�ected.

15



In view of Lemma 2.4, we can apply Hölder's inequality, Lemma 2.3(3), and (4.19) to infer

k��k
5=3

W

2;1
5=3

(Qt)
� c16

tZ
0

Z
�

j �z
s
j
5=3 dx ds

+c17

� tZ
0

Z
�

jA�

s
�A

s
j
10=3 dx ds

�1=2� tZ
0

Z
�

jA�

s
+A

s
j
10=3 dx ds

�1=2

� c18

tZ
0

k��k
5=3

W

2;1

5=3
(Qs)

+ c19j� j
5=3:

Then assertion (3) follows from Gronwall's lemma whereas assertion (4) is a direct consequence

of (3), Lemma 2.3(3), and the continuous embedding W 2;1

5=3
(Q) � L5(Q) (cf. Lemma 2.5). 2

16



5 Strong material derivatives

Remark 5.1 All the unknowns depend on the shape of 

�
, either explicitly as A� and �� or

implicitly as �� and z� . For all these functions, we call

_f = lim
�!0

f � � f

�

the strong material derivative of f , whenever the limit exists in the strong sense in the respective

Banach space.

Our main result in this section is

Theorem 5.1 Assume (H1)�(H10), then the following are valid:

(1) The strong material derivative

r _� exists in H1(0; T ;L2(
));
_A exists in L1(0; T ;X) and W 1;10=3(0; T ;L10=3(G));

_z exists in W 1;5=2(0; T ;L5=2(�)),
_� exists in W

2;1

5=3
(Q).

(2) ( _�; _A; _z; _�) satisfy the linearized state equations

�0(0; _�;') + �0;�(0; �; ') = 0; for all ' 2 H1(
)=IR; (5.20a)

�1(0; _A
t
; v) + �2(0; _A; v) + F (0; _�; v) + F

;�
(0; �; v)

+�1;�(0; At
; v) + �2;�(0; A; v) = 0; for all v 2 X; (5.20b)

_A0 �DA0V (0) = 0; in D; (5.20c)

_z
t
�
@f

@�
_� �

@f

@z
_z = 0; in Q; (5.20d)

_z(0) = 0; in �; (5.20e)

�c
p

_�
t
� k� _�+ �L _z

t
� 2�0At

� _A
t

= 0; in Q; (5.20f)

@ _�

@�
= 0; in @�� (0; T ); (5.20g)

_�(0) = 0; in �; (5.20h)

where f is the right-hand side of (2.1h).

(3) There exists a constant C > 0 such that

kr _�k
H

1(0;T ;L2(
)) + k _Ak
L
1(0;T ;X)+ k _A

t
k
L
10=3(0;T ;L10=3(G))

+k _�k
W

2;1
5=3

(Q) + k _zk
W

1;5(0;T ;L5(�)) � CkV (0)k
C
1(D): (5.21)

17



Proof.

Similar to the proof of Theorem 2.1, one can show that (5.20a) � (5.20h) has a unique solution

( _�; _A; _z; _�), hence we omit this part of the proof. To prove assertion (3), we �rst test (5.20a)

with _�. According to Corollary 4.1 and Lemma 4.1, we obtain

�0

tZ
0

Z



jr _�j2 dx ds � kB0

2(0)kC1(D)

� tZ
0

Z



jr _�j2 dx ds
�1=2� tZ

0

Z



jr�j2 dx ds
�1=2

:

Using Young's inequality and (2.2), we obtain the estimate for r _�. Then we again di�erentiate

formally with respect to t and obtain the estimate for r _�
t
.

Next, we test (5.20b) with _A and obtain

�0

2

Z
G

j _A(t)j2 dx+

tZ
0

Z
D

1

�
j curl _Aj2 dx ds+

tZ
0

Z
D

1

�
j div _Aj2 dx ds

� �1

tZ
0

kr _�kL2(
)k _AkL2(
) ds+ �1kB
0

3(0)kC1(D)

tZ
0

kr�kL2(
)k _AkL2(
) ds

+k�0(0)k
C
1(D)

Z
�

kA
s
kL2(G)k

_AkL2(G) ds

+c1kB
0

1(0)kC1(D)

tZ
0

kAkXk _AkX ds+
�0

2

Z
G

j _A(0)j2 dx:

Now we apply Young's inequality, Gronwall's lemma and (5.20c) to infer

k _Ak
L
1(0;T ;L2(G)) + k _Ak

L
2(0;T ;X) � c1kV (0)kC1(D):

Using the corresponding initial condition for _A
t
(cf. (4.13)), we di�erentiate (5.20b) formally

with respect to time and insert v = _A to obtain

k _A
t
k
L
1(0;T ;L2(G)) + k _A

t
k
L
2(0;T ;X) � c2kV (0)kC1(D):

A further application of Lemma 4.3 then yields

k _A
t
k
L
10=3(0;T ;L10=3(G)) � c3kV (0)kC1(D): (5.22)

Next, we remark that similarly to the derivation of Lemma 2.3(3), we can infer that

k _zk
p

W
1;p(0;T ;Lp(�))

� c4k _�kLp(Q):

Then in the light of (5.22), the last part of inequality (5.21) follows as in the proof of Lemma

4.2(3) and (4).
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It remains to show that the solutions to (5.20a)�(5.20h) are the strong material derivatives. To

this end, let

 � =
1

�
(�� � �)� _�; (5.23)

then, according to Corollary 4.1, (3.8), and (5.20a),  � satis�es

�0(0;  
� ; ') = �

1

�

�
�0(�; �

� ; ')� �0(0; �
� ; ')

�
� �0(0; _�;')

= �0;�(0; � � �� ; ')�
1

�
~�0(�; �

� ; '):

Integrating in time, inserting ' =  � , and using Corollary 4.1 once again, we obtain

kr �

k
L
2(0;T ;L2(
))

���!
�!0

0: (5.24)

Since the same computations hold for r�
t
, the �rst part of assertion (1) is proved.

Next, de�ning

p� =
1

�
(A� �A)� _A;

and using (5.20b), and Corollary 4.1, we see that p� satis�es

�1(0; p
�

t
; v) + �2(0; p

� ; v) = �
1

�

�
F (�; ��; v)� F (0; �; w)

�
�
1

�

�
�1(�;A

�

t
; v)� �1(0; A

�

t
; v)

�
�

1

�

�
�2(�;A

� ; v)� �2(0; A
� ; v)

�
+F (0; _�; v) + F

;�
(0; �; v) + �1;�(0; At

; v) + �2;�(0; A; v)

= �F (0;  �; v)� F
;�
(0; �� � �; v) +

1

�
~F (�; �� ; v)

��1;�(0; A
�

t
�A

t
; v)� �2;�(0; A

�

�A); v)

�
1

�
~�1(�;A

�

t
; v)�

1

�
~�2(�;A

� ; v): (5.25)

We take v = p� , integrate in time, and use Hölder's inequality to obtain

�0

2

Z
G

jp� j2 dx�
�0

2

Z
G

jp�0j
2 dx+

tZ
0

Z
D

1

�
j curl p� j2 dxds+

tZ
0

Z
D

1

�
( div p� )2 dxds

� �0

tZ
0

kr �k
L2(
)

kp�k
L2(
)

ds+ c5

tZ
0

kr�� �r�k
L2(
)

kp�k
L2(
)

ds

+
1

�
g3(� )

tZ
0

kr��k
L2(
)

kp�k
L2(
)

ds+

tZ
0

Z
G

� 0(0)(A�

s
�A

s
) � p� dx ds

+c6

tZ
0

kA� �Ak
X
kp�k

X
ds+

1

�
g1(� )

tZ
0

kA�

s
k
L2(G)

kp�k
L2(G)

+
1

�
g2(� )

tZ
0

kA�

k
X
kp�k

X
ds:
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Using (3.9b), the second term in (5.25) givesZ
G

jp�0j
2 dx =

Z
G

j
1

�
(A0 Æ T� �A0)� _A0j

2dx:

According to [23, Sec. 2.14], � 7! A0 Æ T� is di�erentiable with

d

d�
(A0 Æ T�)

���
�=0

= DA0V (0);

hence

A0 Æ T� = A0 + �DA0V (0) + o(� ):

Hence, we obtain Z
G

jp�0j
2 dx ���!

�!0
0:

Regarding (H12) and Lemma 4.1, �0(0)p� 2 X a.e. in (0; T ). Thus, we apply (4.17) to infer

tZ
0

Z
G

�0(0)(A�

s
�A

s
) � p� dx ds =

1

�1

tZ
0

�1(0; A
�

s
�A

s
; �0(0)p� ) ds

� c7j� jkp
�k

L
2(0;t;X):

Then we apply Young's inequality, Corollary 4.1, (5.24) and Gronwall's lemma to conclude

kp�k2
L
1(0;T ;L2(G)) + kp�k2

L
2(0;T ;X)

���!
�!0

0:

Now we di�erentiate (5.25) formally with respect to time, repeat the same considerations as

before (but use (4.13) as initial value instead of (3.9b)) and obtain

kp�
t
k
2
L
1(0;T ;L2(G)) + kp�

t
k
2
L
2(0;T ;X)

���!
�!0

0:

A further application of Lemma 4.3 �nally yields

kp�
t
k
L
10=3(0;T ;L10=3(G))

���!
�!0

0: (5.26)

To prove the di�erentiability of �� and z� , we de�ne

q� =
1

�
(�� � �)� _�;

r� =
1

�
(z� � z)� _z;

then, (q� ; r� ) solve

�c
p
q�
t
� k�q� = ��Lr�

t
+ �0� j _At

j
2 + �0p

�

t
�

�
2A

t
+ 2� _A

t
+ �p�

t

�
(5.27a)

r�
t

=
1

�

�
f(�� ; z� ) + f(�; z)

�
�
@f

@�
(�; z) _� �

@f

@z
(�; z) _z

=: G(� ) (5.27b)

@q�

@�
= 0; q� = 0; r� (0) = 0: (5.27c)
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Owing to (H7)�(H9), we can apply Taylor's formula to developG(� ) and obtain (with a constant

� 2 [0; 1])

jG(� )j =
���1
�

�
f(� + � (q� + _�); z + � (r� + _z))� f(�; z)

�
�
@f

@�
(�; z) _� �

@f

@z
(�; z) _z

���
=

���(q� + _�)
@f

@�
(� + �� (q� + _�); z + �� (r� + _z))

+(r� + _z)
@f

@z
(� + �� (q� + _�); z + �� (r� + _z))�

@f

@�
(�; z) _��

@f

@z
(�; z) _z

���
� c8jq

� j+ c9jr
� j+ j _�j

���@f
@�

(� + �(�� � �); z + �(z� � z))�
@f

@�
(�; z)

���
+j _zj

���@f
@z

(� + �(�� � �); z + �(z� � z))�
@f

@z
(�; z)

���
� c8jq

�

j+ c9jr
�

j+ c10j _�jj�
�

� �j+ c11j _�jjz
�

� zj+ c12j _zjj�
�

� �j+ c13j _zjjz
�

� zj:

Owing to (5.26) and (5.21), the last term of right-hand side of (5.27a) will be in L5=3(0; T ;L5=3(�)).

Thus we try to get an estimate for G(� ) in the same space. To this end, we apply the inequalities

of Hölder and Young and use (5.21) to obtain

tZ
0

Z
�

jG(� )j5=3 dx ds � c14

tZ
0

Z
�

jq� j5=3 dx ds + c15

tZ
0

Z
�

jr� j5=3 dx ds

+c16

� tZ
0

Z
�

j�� � �j10=3 dx ds
�1=2

+ c17

� tZ
0

Z
�

jz� � zj10=3 dx ds
�1=2

: (5.28)

Next, we test (5.27b) with (r� )2=3, use the estimate above and apply the inequalities of Young

and Gronwall, as well as the stability estimates of Lemma 4.2, to obtain

3

5

Z
�

jr� j5=3 dx � c18j� j
5=3+ c19

tZ
0

Z
�

jq� j5=3 dx ds:

Using the last estimate and (5.28) we go back to (5.27b) and conclude

tZ
0

Z
�

jr�
s
j5=3 dx ds � c20j� j

5=3+ c21

tZ
0

Z
�

jq� j5=3 dx ds: (5.29)

Now we can proceed again as in the proof of Lemma 4.2(3), i.e., we apply Lemma 2.4 to (5.27a),

and use (5.29) and (5.21) to obtain

kq�k
W

2;1
5=3

(Q)
= o(1):4 (5.30)

Using the embedding W
2;1

5=3
(Q) � L5(Q) (cf. Lemma 2.5), we can go back, estimate G(� ) again

(this time in L5=2(Q)), and obtain �nally

kr�k
W

1;5=2(0;T ;L5=2(�))
���!
�!0

0:

2

4Recall that g(� ) = o(1) if and only if g(� )! 0 for � ! 0.
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6 The structure theorem

In the last section we have shown that the state variables possess strong material derivatives.

In particular, we can conclude (cf. Theorem 5.1(1))

z� (T ) = z(T ) + � _z(T ) + o(� ); in L5=2(�);

where z� is the volume fraction of austenite in �, corresponding to the perturbation 

�
=

T
�
(V )(
).

Hence, our cost functional (2.7) is shape di�erentiable at any admissible domain 
, i.e. the

limit

dJ (
;V ) = lim
�!0

1

�
(J (


�
)� J (
)) (6.31)

exists and satis�es

dJ (
;V ) = 2

Z
�

�
z(x; T � �z(x)

�
_z(T ) dx: (6.32)

Let us recall that the cost functional depends only implicitly on 
, namely through the equation

for the scalar potential ' and the vector potential A. The dependence of the material derivative

_z on V is revealed in Theorem 5.1(3). We can conclude

Corollary 6.1 Assume (H1) � (H12), then the mapping

dJ (
; :) : C1
0(D) ! IR; V 7! dJ (
;V )

is linear and continuous.

Corollary 6.1 allows us to apply the structure theorem (cf. [23]).

From this, we infer

Corollary 6.2 Assume (H1) � (H12), and let in addition @
 be of class C2, then there exists

a distribution G
@
 with support in @
, the shape gradient, such that G

@
 2 C1(@
)�, and for

all V 2 C1
0(D; IR3) there holds

dJ (
;V ) =< G
@
; V � � >C

1(@
)��C1(@
);

where � is the outer unit normal vector on the boundary of the tube 
.
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